linux/kernel/sched/pelt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Per Entity Load Tracking
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 *
  23 *  Move PELT related code from fair.c into this pelt.c file
  24 *  Author: Vincent Guittot <vincent.guittot@linaro.org>
  25 */
  26
  27#include <linux/sched.h>
  28#include "sched.h"
  29#include "pelt.h"
  30
  31/*
  32 * Approximate:
  33 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
  34 */
  35static u64 decay_load(u64 val, u64 n)
  36{
  37        unsigned int local_n;
  38
  39        if (unlikely(n > LOAD_AVG_PERIOD * 63))
  40                return 0;
  41
  42        /* after bounds checking we can collapse to 32-bit */
  43        local_n = n;
  44
  45        /*
  46         * As y^PERIOD = 1/2, we can combine
  47         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  48         * With a look-up table which covers y^n (n<PERIOD)
  49         *
  50         * To achieve constant time decay_load.
  51         */
  52        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  53                val >>= local_n / LOAD_AVG_PERIOD;
  54                local_n %= LOAD_AVG_PERIOD;
  55        }
  56
  57        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  58        return val;
  59}
  60
  61static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
  62{
  63        u32 c1, c2, c3 = d3; /* y^0 == 1 */
  64
  65        /*
  66         * c1 = d1 y^p
  67         */
  68        c1 = decay_load((u64)d1, periods);
  69
  70        /*
  71         *            p-1
  72         * c2 = 1024 \Sum y^n
  73         *            n=1
  74         *
  75         *              inf        inf
  76         *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
  77         *              n=0        n=p
  78         */
  79        c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
  80
  81        return c1 + c2 + c3;
  82}
  83
  84/*
  85 * Accumulate the three separate parts of the sum; d1 the remainder
  86 * of the last (incomplete) period, d2 the span of full periods and d3
  87 * the remainder of the (incomplete) current period.
  88 *
  89 *           d1          d2           d3
  90 *           ^           ^            ^
  91 *           |           |            |
  92 *         |<->|<----------------->|<--->|
  93 * ... |---x---|------| ... |------|-----x (now)
  94 *
  95 *                           p-1
  96 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
  97 *                           n=1
  98 *
  99 *    = u y^p +                                 (Step 1)
 100 *
 101 *                     p-1
 102 *      d1 y^p + 1024 \Sum y^n + d3 y^0         (Step 2)
 103 *                     n=1
 104 */
 105static __always_inline u32
 106accumulate_sum(u64 delta, struct sched_avg *sa,
 107               unsigned long load, unsigned long runnable, int running)
 108{
 109        u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
 110        u64 periods;
 111
 112        delta += sa->period_contrib;
 113        periods = delta / 1024; /* A period is 1024us (~1ms) */
 114
 115        /*
 116         * Step 1: decay old *_sum if we crossed period boundaries.
 117         */
 118        if (periods) {
 119                sa->load_sum = decay_load(sa->load_sum, periods);
 120                sa->runnable_sum =
 121                        decay_load(sa->runnable_sum, periods);
 122                sa->util_sum = decay_load((u64)(sa->util_sum), periods);
 123
 124                /*
 125                 * Step 2
 126                 */
 127                delta %= 1024;
 128                if (load) {
 129                        /*
 130                         * This relies on the:
 131                         *
 132                         * if (!load)
 133                         *      runnable = running = 0;
 134                         *
 135                         * clause from ___update_load_sum(); this results in
 136                         * the below usage of @contrib to disappear entirely,
 137                         * so no point in calculating it.
 138                         */
 139                        contrib = __accumulate_pelt_segments(periods,
 140                                        1024 - sa->period_contrib, delta);
 141                }
 142        }
 143        sa->period_contrib = delta;
 144
 145        if (load)
 146                sa->load_sum += load * contrib;
 147        if (runnable)
 148                sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
 149        if (running)
 150                sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
 151
 152        return periods;
 153}
 154
 155/*
 156 * We can represent the historical contribution to runnable average as the
 157 * coefficients of a geometric series.  To do this we sub-divide our runnable
 158 * history into segments of approximately 1ms (1024us); label the segment that
 159 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 160 *
 161 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 162 *      p0            p1           p2
 163 *     (now)       (~1ms ago)  (~2ms ago)
 164 *
 165 * Let u_i denote the fraction of p_i that the entity was runnable.
 166 *
 167 * We then designate the fractions u_i as our co-efficients, yielding the
 168 * following representation of historical load:
 169 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 170 *
 171 * We choose y based on the with of a reasonably scheduling period, fixing:
 172 *   y^32 = 0.5
 173 *
 174 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 175 * approximately half as much as the contribution to load within the last ms
 176 * (u_0).
 177 *
 178 * When a period "rolls over" and we have new u_0`, multiplying the previous
 179 * sum again by y is sufficient to update:
 180 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 181 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 182 */
 183static __always_inline int
 184___update_load_sum(u64 now, struct sched_avg *sa,
 185                  unsigned long load, unsigned long runnable, int running)
 186{
 187        u64 delta;
 188
 189        delta = now - sa->last_update_time;
 190        /*
 191         * This should only happen when time goes backwards, which it
 192         * unfortunately does during sched clock init when we swap over to TSC.
 193         */
 194        if ((s64)delta < 0) {
 195                sa->last_update_time = now;
 196                return 0;
 197        }
 198
 199        /*
 200         * Use 1024ns as the unit of measurement since it's a reasonable
 201         * approximation of 1us and fast to compute.
 202         */
 203        delta >>= 10;
 204        if (!delta)
 205                return 0;
 206
 207        sa->last_update_time += delta << 10;
 208
 209        /*
 210         * running is a subset of runnable (weight) so running can't be set if
 211         * runnable is clear. But there are some corner cases where the current
 212         * se has been already dequeued but cfs_rq->curr still points to it.
 213         * This means that weight will be 0 but not running for a sched_entity
 214         * but also for a cfs_rq if the latter becomes idle. As an example,
 215         * this happens during idle_balance() which calls
 216         * update_blocked_averages().
 217         *
 218         * Also see the comment in accumulate_sum().
 219         */
 220        if (!load)
 221                runnable = running = 0;
 222
 223        /*
 224         * Now we know we crossed measurement unit boundaries. The *_avg
 225         * accrues by two steps:
 226         *
 227         * Step 1: accumulate *_sum since last_update_time. If we haven't
 228         * crossed period boundaries, finish.
 229         */
 230        if (!accumulate_sum(delta, sa, load, runnable, running))
 231                return 0;
 232
 233        return 1;
 234}
 235
 236/*
 237 * When syncing *_avg with *_sum, we must take into account the current
 238 * position in the PELT segment otherwise the remaining part of the segment
 239 * will be considered as idle time whereas it's not yet elapsed and this will
 240 * generate unwanted oscillation in the range [1002..1024[.
 241 *
 242 * The max value of *_sum varies with the position in the time segment and is
 243 * equals to :
 244 *
 245 *   LOAD_AVG_MAX*y + sa->period_contrib
 246 *
 247 * which can be simplified into:
 248 *
 249 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
 250 *
 251 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
 252 *
 253 * The same care must be taken when a sched entity is added, updated or
 254 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
 255 * and the cfs rq, to which they are attached, have the same position in the
 256 * time segment because they use the same clock. This means that we can use
 257 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
 258 * if it's more convenient.
 259 */
 260static __always_inline void
 261___update_load_avg(struct sched_avg *sa, unsigned long load)
 262{
 263        u32 divider = get_pelt_divider(sa);
 264
 265        /*
 266         * Step 2: update *_avg.
 267         */
 268        sa->load_avg = div_u64(load * sa->load_sum, divider);
 269        sa->runnable_avg = div_u64(sa->runnable_sum, divider);
 270        WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
 271}
 272
 273/*
 274 * sched_entity:
 275 *
 276 *   task:
 277 *     se_weight()   = se->load.weight
 278 *     se_runnable() = !!on_rq
 279 *
 280 *   group: [ see update_cfs_group() ]
 281 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 282 *     se_runnable() = grq->h_nr_running
 283 *
 284 *   runnable_sum = se_runnable() * runnable = grq->runnable_sum
 285 *   runnable_avg = runnable_sum
 286 *
 287 *   load_sum := runnable
 288 *   load_avg = se_weight(se) * load_sum
 289 *
 290 * cfq_rq:
 291 *
 292 *   runnable_sum = \Sum se->avg.runnable_sum
 293 *   runnable_avg = \Sum se->avg.runnable_avg
 294 *
 295 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 296 *   load_avg = \Sum se->avg.load_avg
 297 */
 298
 299int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
 300{
 301        if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
 302                ___update_load_avg(&se->avg, se_weight(se));
 303                trace_pelt_se_tp(se);
 304                return 1;
 305        }
 306
 307        return 0;
 308}
 309
 310int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
 311{
 312        if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
 313                                cfs_rq->curr == se)) {
 314
 315                ___update_load_avg(&se->avg, se_weight(se));
 316                cfs_se_util_change(&se->avg);
 317                trace_pelt_se_tp(se);
 318                return 1;
 319        }
 320
 321        return 0;
 322}
 323
 324int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
 325{
 326        if (___update_load_sum(now, &cfs_rq->avg,
 327                                scale_load_down(cfs_rq->load.weight),
 328                                cfs_rq->h_nr_running,
 329                                cfs_rq->curr != NULL)) {
 330
 331                ___update_load_avg(&cfs_rq->avg, 1);
 332                trace_pelt_cfs_tp(cfs_rq);
 333                return 1;
 334        }
 335
 336        return 0;
 337}
 338
 339/*
 340 * rt_rq:
 341 *
 342 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 343 *   util_sum = cpu_scale * load_sum
 344 *   runnable_sum = util_sum
 345 *
 346 *   load_avg and runnable_avg are not supported and meaningless.
 347 *
 348 */
 349
 350int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
 351{
 352        if (___update_load_sum(now, &rq->avg_rt,
 353                                running,
 354                                running,
 355                                running)) {
 356
 357                ___update_load_avg(&rq->avg_rt, 1);
 358                trace_pelt_rt_tp(rq);
 359                return 1;
 360        }
 361
 362        return 0;
 363}
 364
 365/*
 366 * dl_rq:
 367 *
 368 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 369 *   util_sum = cpu_scale * load_sum
 370 *   runnable_sum = util_sum
 371 *
 372 *   load_avg and runnable_avg are not supported and meaningless.
 373 *
 374 */
 375
 376int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
 377{
 378        if (___update_load_sum(now, &rq->avg_dl,
 379                                running,
 380                                running,
 381                                running)) {
 382
 383                ___update_load_avg(&rq->avg_dl, 1);
 384                trace_pelt_dl_tp(rq);
 385                return 1;
 386        }
 387
 388        return 0;
 389}
 390
 391#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 392/*
 393 * irq:
 394 *
 395 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 396 *   util_sum = cpu_scale * load_sum
 397 *   runnable_sum = util_sum
 398 *
 399 *   load_avg and runnable_avg are not supported and meaningless.
 400 *
 401 */
 402
 403int update_irq_load_avg(struct rq *rq, u64 running)
 404{
 405        int ret = 0;
 406
 407        /*
 408         * We can't use clock_pelt because irq time is not accounted in
 409         * clock_task. Instead we directly scale the running time to
 410         * reflect the real amount of computation
 411         */
 412        running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
 413        running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
 414
 415        /*
 416         * We know the time that has been used by interrupt since last update
 417         * but we don't when. Let be pessimistic and assume that interrupt has
 418         * happened just before the update. This is not so far from reality
 419         * because interrupt will most probably wake up task and trig an update
 420         * of rq clock during which the metric is updated.
 421         * We start to decay with normal context time and then we add the
 422         * interrupt context time.
 423         * We can safely remove running from rq->clock because
 424         * rq->clock += delta with delta >= running
 425         */
 426        ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
 427                                0,
 428                                0,
 429                                0);
 430        ret += ___update_load_sum(rq->clock, &rq->avg_irq,
 431                                1,
 432                                1,
 433                                1);
 434
 435        if (ret) {
 436                ___update_load_avg(&rq->avg_irq, 1);
 437                trace_pelt_irq_tp(rq);
 438        }
 439
 440        return ret;
 441}
 442#endif
 443