linux/kernel/sched/topology.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10cpumask_var_t sched_domains_tmpmask;
  11cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17        sched_debug_enabled = true;
  18
  19        return 0;
  20}
  21early_param("sched_debug", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25        return sched_debug_enabled;
  26}
  27
  28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  29                                  struct cpumask *groupmask)
  30{
  31        struct sched_group *group = sd->groups;
  32
  33        cpumask_clear(groupmask);
  34
  35        printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  36
  37        if (!(sd->flags & SD_LOAD_BALANCE)) {
  38                printk("does not load-balance\n");
  39                if (sd->parent)
  40                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  41                return -1;
  42        }
  43
  44        printk(KERN_CONT "span=%*pbl level=%s\n",
  45               cpumask_pr_args(sched_domain_span(sd)), sd->name);
  46
  47        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  48                printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  49        }
  50        if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  51                printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  52        }
  53
  54        printk(KERN_DEBUG "%*s groups:", level + 1, "");
  55        do {
  56                if (!group) {
  57                        printk("\n");
  58                        printk(KERN_ERR "ERROR: group is NULL\n");
  59                        break;
  60                }
  61
  62                if (!cpumask_weight(sched_group_span(group))) {
  63                        printk(KERN_CONT "\n");
  64                        printk(KERN_ERR "ERROR: empty group\n");
  65                        break;
  66                }
  67
  68                if (!(sd->flags & SD_OVERLAP) &&
  69                    cpumask_intersects(groupmask, sched_group_span(group))) {
  70                        printk(KERN_CONT "\n");
  71                        printk(KERN_ERR "ERROR: repeated CPUs\n");
  72                        break;
  73                }
  74
  75                cpumask_or(groupmask, groupmask, sched_group_span(group));
  76
  77                printk(KERN_CONT " %d:{ span=%*pbl",
  78                                group->sgc->id,
  79                                cpumask_pr_args(sched_group_span(group)));
  80
  81                if ((sd->flags & SD_OVERLAP) &&
  82                    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  83                        printk(KERN_CONT " mask=%*pbl",
  84                                cpumask_pr_args(group_balance_mask(group)));
  85                }
  86
  87                if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  88                        printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  89
  90                if (group == sd->groups && sd->child &&
  91                    !cpumask_equal(sched_domain_span(sd->child),
  92                                   sched_group_span(group))) {
  93                        printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
  94                }
  95
  96                printk(KERN_CONT " }");
  97
  98                group = group->next;
  99
 100                if (group != sd->groups)
 101                        printk(KERN_CONT ",");
 102
 103        } while (group != sd->groups);
 104        printk(KERN_CONT "\n");
 105
 106        if (!cpumask_equal(sched_domain_span(sd), groupmask))
 107                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 108
 109        if (sd->parent &&
 110            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 111                printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 112        return 0;
 113}
 114
 115static void sched_domain_debug(struct sched_domain *sd, int cpu)
 116{
 117        int level = 0;
 118
 119        if (!sched_debug_enabled)
 120                return;
 121
 122        if (!sd) {
 123                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 124                return;
 125        }
 126
 127        printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 128
 129        for (;;) {
 130                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 131                        break;
 132                level++;
 133                sd = sd->parent;
 134                if (!sd)
 135                        break;
 136        }
 137}
 138#else /* !CONFIG_SCHED_DEBUG */
 139
 140# define sched_debug_enabled 0
 141# define sched_domain_debug(sd, cpu) do { } while (0)
 142static inline bool sched_debug(void)
 143{
 144        return false;
 145}
 146#endif /* CONFIG_SCHED_DEBUG */
 147
 148static int sd_degenerate(struct sched_domain *sd)
 149{
 150        if (cpumask_weight(sched_domain_span(sd)) == 1)
 151                return 1;
 152
 153        /* Following flags need at least 2 groups */
 154        if (sd->flags & (SD_LOAD_BALANCE |
 155                         SD_BALANCE_NEWIDLE |
 156                         SD_BALANCE_FORK |
 157                         SD_BALANCE_EXEC |
 158                         SD_SHARE_CPUCAPACITY |
 159                         SD_ASYM_CPUCAPACITY |
 160                         SD_SHARE_PKG_RESOURCES |
 161                         SD_SHARE_POWERDOMAIN)) {
 162                if (sd->groups != sd->groups->next)
 163                        return 0;
 164        }
 165
 166        /* Following flags don't use groups */
 167        if (sd->flags & (SD_WAKE_AFFINE))
 168                return 0;
 169
 170        return 1;
 171}
 172
 173static int
 174sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 175{
 176        unsigned long cflags = sd->flags, pflags = parent->flags;
 177
 178        if (sd_degenerate(parent))
 179                return 1;
 180
 181        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 182                return 0;
 183
 184        /* Flags needing groups don't count if only 1 group in parent */
 185        if (parent->groups == parent->groups->next) {
 186                pflags &= ~(SD_LOAD_BALANCE |
 187                                SD_BALANCE_NEWIDLE |
 188                                SD_BALANCE_FORK |
 189                                SD_BALANCE_EXEC |
 190                                SD_ASYM_CPUCAPACITY |
 191                                SD_SHARE_CPUCAPACITY |
 192                                SD_SHARE_PKG_RESOURCES |
 193                                SD_PREFER_SIBLING |
 194                                SD_SHARE_POWERDOMAIN);
 195                if (nr_node_ids == 1)
 196                        pflags &= ~SD_SERIALIZE;
 197        }
 198        if (~cflags & pflags)
 199                return 0;
 200
 201        return 1;
 202}
 203
 204DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 205#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 206unsigned int sysctl_sched_energy_aware = 1;
 207DEFINE_MUTEX(sched_energy_mutex);
 208bool sched_energy_update;
 209
 210void rebuild_sched_domains_energy(void)
 211{
 212        mutex_lock(&sched_energy_mutex);
 213        sched_energy_update = true;
 214        rebuild_sched_domains();
 215        sched_energy_update = false;
 216        mutex_unlock(&sched_energy_mutex);
 217}
 218
 219#ifdef CONFIG_PROC_SYSCTL
 220int sched_energy_aware_handler(struct ctl_table *table, int write,
 221                         void __user *buffer, size_t *lenp, loff_t *ppos)
 222{
 223        int ret, state;
 224
 225        if (write && !capable(CAP_SYS_ADMIN))
 226                return -EPERM;
 227
 228        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 229        if (!ret && write) {
 230                state = static_branch_unlikely(&sched_energy_present);
 231                if (state != sysctl_sched_energy_aware)
 232                        rebuild_sched_domains_energy();
 233        }
 234
 235        return ret;
 236}
 237#endif
 238
 239static void free_pd(struct perf_domain *pd)
 240{
 241        struct perf_domain *tmp;
 242
 243        while (pd) {
 244                tmp = pd->next;
 245                kfree(pd);
 246                pd = tmp;
 247        }
 248}
 249
 250static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 251{
 252        while (pd) {
 253                if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 254                        return pd;
 255                pd = pd->next;
 256        }
 257
 258        return NULL;
 259}
 260
 261static struct perf_domain *pd_init(int cpu)
 262{
 263        struct em_perf_domain *obj = em_cpu_get(cpu);
 264        struct perf_domain *pd;
 265
 266        if (!obj) {
 267                if (sched_debug())
 268                        pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 269                return NULL;
 270        }
 271
 272        pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 273        if (!pd)
 274                return NULL;
 275        pd->em_pd = obj;
 276
 277        return pd;
 278}
 279
 280static void perf_domain_debug(const struct cpumask *cpu_map,
 281                                                struct perf_domain *pd)
 282{
 283        if (!sched_debug() || !pd)
 284                return;
 285
 286        printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 287
 288        while (pd) {
 289                printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
 290                                cpumask_first(perf_domain_span(pd)),
 291                                cpumask_pr_args(perf_domain_span(pd)),
 292                                em_pd_nr_cap_states(pd->em_pd));
 293                pd = pd->next;
 294        }
 295
 296        printk(KERN_CONT "\n");
 297}
 298
 299static void destroy_perf_domain_rcu(struct rcu_head *rp)
 300{
 301        struct perf_domain *pd;
 302
 303        pd = container_of(rp, struct perf_domain, rcu);
 304        free_pd(pd);
 305}
 306
 307static void sched_energy_set(bool has_eas)
 308{
 309        if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 310                if (sched_debug())
 311                        pr_info("%s: stopping EAS\n", __func__);
 312                static_branch_disable_cpuslocked(&sched_energy_present);
 313        } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 314                if (sched_debug())
 315                        pr_info("%s: starting EAS\n", __func__);
 316                static_branch_enable_cpuslocked(&sched_energy_present);
 317        }
 318}
 319
 320/*
 321 * EAS can be used on a root domain if it meets all the following conditions:
 322 *    1. an Energy Model (EM) is available;
 323 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 324 *    3. no SMT is detected.
 325 *    4. the EM complexity is low enough to keep scheduling overheads low;
 326 *    5. schedutil is driving the frequency of all CPUs of the rd;
 327 *    6. frequency invariance support is present;
 328 *
 329 * The complexity of the Energy Model is defined as:
 330 *
 331 *              C = nr_pd * (nr_cpus + nr_cs)
 332 *
 333 * with parameters defined as:
 334 *  - nr_pd:    the number of performance domains
 335 *  - nr_cpus:  the number of CPUs
 336 *  - nr_cs:    the sum of the number of capacity states of all performance
 337 *              domains (for example, on a system with 2 performance domains,
 338 *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
 339 *
 340 * It is generally not a good idea to use such a model in the wake-up path on
 341 * very complex platforms because of the associated scheduling overheads. The
 342 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 343 * with per-CPU DVFS and less than 8 capacity states each, for example.
 344 */
 345#define EM_MAX_COMPLEXITY 2048
 346
 347extern struct cpufreq_governor schedutil_gov;
 348static bool build_perf_domains(const struct cpumask *cpu_map)
 349{
 350        int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
 351        struct perf_domain *pd = NULL, *tmp;
 352        int cpu = cpumask_first(cpu_map);
 353        struct root_domain *rd = cpu_rq(cpu)->rd;
 354        struct cpufreq_policy *policy;
 355        struct cpufreq_governor *gov;
 356
 357        if (!sysctl_sched_energy_aware)
 358                goto free;
 359
 360        /* EAS is enabled for asymmetric CPU capacity topologies. */
 361        if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 362                if (sched_debug()) {
 363                        pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 364                                        cpumask_pr_args(cpu_map));
 365                }
 366                goto free;
 367        }
 368
 369        /* EAS definitely does *not* handle SMT */
 370        if (sched_smt_active()) {
 371                pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 372                        cpumask_pr_args(cpu_map));
 373                goto free;
 374        }
 375
 376        if (!arch_scale_freq_invariant()) {
 377                if (sched_debug()) {
 378                        pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
 379                                cpumask_pr_args(cpu_map));
 380                }
 381                goto free;
 382        }
 383
 384        for_each_cpu(i, cpu_map) {
 385                /* Skip already covered CPUs. */
 386                if (find_pd(pd, i))
 387                        continue;
 388
 389                /* Do not attempt EAS if schedutil is not being used. */
 390                policy = cpufreq_cpu_get(i);
 391                if (!policy)
 392                        goto free;
 393                gov = policy->governor;
 394                cpufreq_cpu_put(policy);
 395                if (gov != &schedutil_gov) {
 396                        if (rd->pd)
 397                                pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 398                                                cpumask_pr_args(cpu_map));
 399                        goto free;
 400                }
 401
 402                /* Create the new pd and add it to the local list. */
 403                tmp = pd_init(i);
 404                if (!tmp)
 405                        goto free;
 406                tmp->next = pd;
 407                pd = tmp;
 408
 409                /*
 410                 * Count performance domains and capacity states for the
 411                 * complexity check.
 412                 */
 413                nr_pd++;
 414                nr_cs += em_pd_nr_cap_states(pd->em_pd);
 415        }
 416
 417        /* Bail out if the Energy Model complexity is too high. */
 418        if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
 419                WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 420                                                cpumask_pr_args(cpu_map));
 421                goto free;
 422        }
 423
 424        perf_domain_debug(cpu_map, pd);
 425
 426        /* Attach the new list of performance domains to the root domain. */
 427        tmp = rd->pd;
 428        rcu_assign_pointer(rd->pd, pd);
 429        if (tmp)
 430                call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 431
 432        return !!pd;
 433
 434free:
 435        free_pd(pd);
 436        tmp = rd->pd;
 437        rcu_assign_pointer(rd->pd, NULL);
 438        if (tmp)
 439                call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 440
 441        return false;
 442}
 443#else
 444static void free_pd(struct perf_domain *pd) { }
 445#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 446
 447static void free_rootdomain(struct rcu_head *rcu)
 448{
 449        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 450
 451        cpupri_cleanup(&rd->cpupri);
 452        cpudl_cleanup(&rd->cpudl);
 453        free_cpumask_var(rd->dlo_mask);
 454        free_cpumask_var(rd->rto_mask);
 455        free_cpumask_var(rd->online);
 456        free_cpumask_var(rd->span);
 457        free_pd(rd->pd);
 458        kfree(rd);
 459}
 460
 461void rq_attach_root(struct rq *rq, struct root_domain *rd)
 462{
 463        struct root_domain *old_rd = NULL;
 464        unsigned long flags;
 465
 466        raw_spin_lock_irqsave(&rq->lock, flags);
 467
 468        if (rq->rd) {
 469                old_rd = rq->rd;
 470
 471                if (cpumask_test_cpu(rq->cpu, old_rd->online))
 472                        set_rq_offline(rq);
 473
 474                cpumask_clear_cpu(rq->cpu, old_rd->span);
 475
 476                /*
 477                 * If we dont want to free the old_rd yet then
 478                 * set old_rd to NULL to skip the freeing later
 479                 * in this function:
 480                 */
 481                if (!atomic_dec_and_test(&old_rd->refcount))
 482                        old_rd = NULL;
 483        }
 484
 485        atomic_inc(&rd->refcount);
 486        rq->rd = rd;
 487
 488        cpumask_set_cpu(rq->cpu, rd->span);
 489        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 490                set_rq_online(rq);
 491
 492        raw_spin_unlock_irqrestore(&rq->lock, flags);
 493
 494        if (old_rd)
 495                call_rcu(&old_rd->rcu, free_rootdomain);
 496}
 497
 498void sched_get_rd(struct root_domain *rd)
 499{
 500        atomic_inc(&rd->refcount);
 501}
 502
 503void sched_put_rd(struct root_domain *rd)
 504{
 505        if (!atomic_dec_and_test(&rd->refcount))
 506                return;
 507
 508        call_rcu(&rd->rcu, free_rootdomain);
 509}
 510
 511static int init_rootdomain(struct root_domain *rd)
 512{
 513        if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 514                goto out;
 515        if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 516                goto free_span;
 517        if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 518                goto free_online;
 519        if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 520                goto free_dlo_mask;
 521
 522#ifdef HAVE_RT_PUSH_IPI
 523        rd->rto_cpu = -1;
 524        raw_spin_lock_init(&rd->rto_lock);
 525        init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 526#endif
 527
 528        rd->visit_gen = 0;
 529        init_dl_bw(&rd->dl_bw);
 530        if (cpudl_init(&rd->cpudl) != 0)
 531                goto free_rto_mask;
 532
 533        if (cpupri_init(&rd->cpupri) != 0)
 534                goto free_cpudl;
 535        return 0;
 536
 537free_cpudl:
 538        cpudl_cleanup(&rd->cpudl);
 539free_rto_mask:
 540        free_cpumask_var(rd->rto_mask);
 541free_dlo_mask:
 542        free_cpumask_var(rd->dlo_mask);
 543free_online:
 544        free_cpumask_var(rd->online);
 545free_span:
 546        free_cpumask_var(rd->span);
 547out:
 548        return -ENOMEM;
 549}
 550
 551/*
 552 * By default the system creates a single root-domain with all CPUs as
 553 * members (mimicking the global state we have today).
 554 */
 555struct root_domain def_root_domain;
 556
 557void init_defrootdomain(void)
 558{
 559        init_rootdomain(&def_root_domain);
 560
 561        atomic_set(&def_root_domain.refcount, 1);
 562}
 563
 564static struct root_domain *alloc_rootdomain(void)
 565{
 566        struct root_domain *rd;
 567
 568        rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 569        if (!rd)
 570                return NULL;
 571
 572        if (init_rootdomain(rd) != 0) {
 573                kfree(rd);
 574                return NULL;
 575        }
 576
 577        return rd;
 578}
 579
 580static void free_sched_groups(struct sched_group *sg, int free_sgc)
 581{
 582        struct sched_group *tmp, *first;
 583
 584        if (!sg)
 585                return;
 586
 587        first = sg;
 588        do {
 589                tmp = sg->next;
 590
 591                if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 592                        kfree(sg->sgc);
 593
 594                if (atomic_dec_and_test(&sg->ref))
 595                        kfree(sg);
 596                sg = tmp;
 597        } while (sg != first);
 598}
 599
 600static void destroy_sched_domain(struct sched_domain *sd)
 601{
 602        /*
 603         * A normal sched domain may have multiple group references, an
 604         * overlapping domain, having private groups, only one.  Iterate,
 605         * dropping group/capacity references, freeing where none remain.
 606         */
 607        free_sched_groups(sd->groups, 1);
 608
 609        if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 610                kfree(sd->shared);
 611        kfree(sd);
 612}
 613
 614static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 615{
 616        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 617
 618        while (sd) {
 619                struct sched_domain *parent = sd->parent;
 620                destroy_sched_domain(sd);
 621                sd = parent;
 622        }
 623}
 624
 625static void destroy_sched_domains(struct sched_domain *sd)
 626{
 627        if (sd)
 628                call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 629}
 630
 631/*
 632 * Keep a special pointer to the highest sched_domain that has
 633 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 634 * allows us to avoid some pointer chasing select_idle_sibling().
 635 *
 636 * Also keep a unique ID per domain (we use the first CPU number in
 637 * the cpumask of the domain), this allows us to quickly tell if
 638 * two CPUs are in the same cache domain, see cpus_share_cache().
 639 */
 640DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 641DEFINE_PER_CPU(int, sd_llc_size);
 642DEFINE_PER_CPU(int, sd_llc_id);
 643DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 644DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 645DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing);
 646DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
 647DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 648
 649static void update_top_cache_domain(int cpu)
 650{
 651        struct sched_domain_shared *sds = NULL;
 652        struct sched_domain *sd;
 653        int id = cpu;
 654        int size = 1;
 655
 656        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 657        if (sd) {
 658                id = cpumask_first(sched_domain_span(sd));
 659                size = cpumask_weight(sched_domain_span(sd));
 660                sds = sd->shared;
 661        }
 662
 663        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 664        per_cpu(sd_llc_size, cpu) = size;
 665        per_cpu(sd_llc_id, cpu) = id;
 666        rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 667
 668        sd = lowest_flag_domain(cpu, SD_NUMA);
 669        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 670
 671        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 672        rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 673
 674        sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
 675        rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 676}
 677
 678/*
 679 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 680 * hold the hotplug lock.
 681 */
 682static void
 683cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 684{
 685        struct rq *rq = cpu_rq(cpu);
 686        struct sched_domain *tmp;
 687        int numa_distance = 0;
 688
 689        /* Remove the sched domains which do not contribute to scheduling. */
 690        for (tmp = sd; tmp; ) {
 691                struct sched_domain *parent = tmp->parent;
 692                if (!parent)
 693                        break;
 694
 695                if (sd_parent_degenerate(tmp, parent)) {
 696                        tmp->parent = parent->parent;
 697                        if (parent->parent)
 698                                parent->parent->child = tmp;
 699                        /*
 700                         * Transfer SD_PREFER_SIBLING down in case of a
 701                         * degenerate parent; the spans match for this
 702                         * so the property transfers.
 703                         */
 704                        if (parent->flags & SD_PREFER_SIBLING)
 705                                tmp->flags |= SD_PREFER_SIBLING;
 706                        destroy_sched_domain(parent);
 707                } else
 708                        tmp = tmp->parent;
 709        }
 710
 711        if (sd && sd_degenerate(sd)) {
 712                tmp = sd;
 713                sd = sd->parent;
 714                destroy_sched_domain(tmp);
 715                if (sd) {
 716                        struct sched_group *sg = sd->groups;
 717
 718                        /*
 719                         * sched groups hold the flags of the child sched
 720                         * domain for convenience. Clear such flags since
 721                         * the child is being destroyed.
 722                         */
 723                        do {
 724                                sg->flags = 0;
 725                        } while (sg != sd->groups);
 726
 727                        sd->child = NULL;
 728                }
 729        }
 730
 731        for (tmp = sd; tmp; tmp = tmp->parent)
 732                numa_distance += !!(tmp->flags & SD_NUMA);
 733
 734        sched_domain_debug(sd, cpu);
 735
 736        rq_attach_root(rq, rd);
 737        tmp = rq->sd;
 738        rcu_assign_pointer(rq->sd, sd);
 739        dirty_sched_domain_sysctl(cpu);
 740        destroy_sched_domains(tmp);
 741
 742        update_top_cache_domain(cpu);
 743}
 744
 745struct s_data {
 746        struct sched_domain * __percpu *sd;
 747        struct root_domain      *rd;
 748};
 749
 750enum s_alloc {
 751        sa_rootdomain,
 752        sa_sd,
 753        sa_sd_storage,
 754        sa_none,
 755};
 756
 757/*
 758 * Return the canonical balance CPU for this group, this is the first CPU
 759 * of this group that's also in the balance mask.
 760 *
 761 * The balance mask are all those CPUs that could actually end up at this
 762 * group. See build_balance_mask().
 763 *
 764 * Also see should_we_balance().
 765 */
 766int group_balance_cpu(struct sched_group *sg)
 767{
 768        return cpumask_first(group_balance_mask(sg));
 769}
 770
 771
 772/*
 773 * NUMA topology (first read the regular topology blurb below)
 774 *
 775 * Given a node-distance table, for example:
 776 *
 777 *   node   0   1   2   3
 778 *     0:  10  20  30  20
 779 *     1:  20  10  20  30
 780 *     2:  30  20  10  20
 781 *     3:  20  30  20  10
 782 *
 783 * which represents a 4 node ring topology like:
 784 *
 785 *   0 ----- 1
 786 *   |       |
 787 *   |       |
 788 *   |       |
 789 *   3 ----- 2
 790 *
 791 * We want to construct domains and groups to represent this. The way we go
 792 * about doing this is to build the domains on 'hops'. For each NUMA level we
 793 * construct the mask of all nodes reachable in @level hops.
 794 *
 795 * For the above NUMA topology that gives 3 levels:
 796 *
 797 * NUMA-2       0-3             0-3             0-3             0-3
 798 *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
 799 *
 800 * NUMA-1       0-1,3           0-2             1-3             0,2-3
 801 *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
 802 *
 803 * NUMA-0       0               1               2               3
 804 *
 805 *
 806 * As can be seen; things don't nicely line up as with the regular topology.
 807 * When we iterate a domain in child domain chunks some nodes can be
 808 * represented multiple times -- hence the "overlap" naming for this part of
 809 * the topology.
 810 *
 811 * In order to minimize this overlap, we only build enough groups to cover the
 812 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 813 *
 814 * Because:
 815 *
 816 *  - the first group of each domain is its child domain; this
 817 *    gets us the first 0-1,3
 818 *  - the only uncovered node is 2, who's child domain is 1-3.
 819 *
 820 * However, because of the overlap, computing a unique CPU for each group is
 821 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 822 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 823 * end up at those groups (they would end up in group: 0-1,3).
 824 *
 825 * To correct this we have to introduce the group balance mask. This mask
 826 * will contain those CPUs in the group that can reach this group given the
 827 * (child) domain tree.
 828 *
 829 * With this we can once again compute balance_cpu and sched_group_capacity
 830 * relations.
 831 *
 832 * XXX include words on how balance_cpu is unique and therefore can be
 833 * used for sched_group_capacity links.
 834 *
 835 *
 836 * Another 'interesting' topology is:
 837 *
 838 *   node   0   1   2   3
 839 *     0:  10  20  20  30
 840 *     1:  20  10  20  20
 841 *     2:  20  20  10  20
 842 *     3:  30  20  20  10
 843 *
 844 * Which looks a little like:
 845 *
 846 *   0 ----- 1
 847 *   |     / |
 848 *   |   /   |
 849 *   | /     |
 850 *   2 ----- 3
 851 *
 852 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 853 * are not.
 854 *
 855 * This leads to a few particularly weird cases where the sched_domain's are
 856 * not of the same number for each CPU. Consider:
 857 *
 858 * NUMA-2       0-3                                             0-3
 859 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
 860 *
 861 * NUMA-1       0-2             0-3             0-3             1-3
 862 *
 863 * NUMA-0       0               1               2               3
 864 *
 865 */
 866
 867
 868/*
 869 * Build the balance mask; it contains only those CPUs that can arrive at this
 870 * group and should be considered to continue balancing.
 871 *
 872 * We do this during the group creation pass, therefore the group information
 873 * isn't complete yet, however since each group represents a (child) domain we
 874 * can fully construct this using the sched_domain bits (which are already
 875 * complete).
 876 */
 877static void
 878build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 879{
 880        const struct cpumask *sg_span = sched_group_span(sg);
 881        struct sd_data *sdd = sd->private;
 882        struct sched_domain *sibling;
 883        int i;
 884
 885        cpumask_clear(mask);
 886
 887        for_each_cpu(i, sg_span) {
 888                sibling = *per_cpu_ptr(sdd->sd, i);
 889
 890                /*
 891                 * Can happen in the asymmetric case, where these siblings are
 892                 * unused. The mask will not be empty because those CPUs that
 893                 * do have the top domain _should_ span the domain.
 894                 */
 895                if (!sibling->child)
 896                        continue;
 897
 898                /* If we would not end up here, we can't continue from here */
 899                if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 900                        continue;
 901
 902                cpumask_set_cpu(i, mask);
 903        }
 904
 905        /* We must not have empty masks here */
 906        WARN_ON_ONCE(cpumask_empty(mask));
 907}
 908
 909/*
 910 * XXX: This creates per-node group entries; since the load-balancer will
 911 * immediately access remote memory to construct this group's load-balance
 912 * statistics having the groups node local is of dubious benefit.
 913 */
 914static struct sched_group *
 915build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 916{
 917        struct sched_group *sg;
 918        struct cpumask *sg_span;
 919
 920        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 921                        GFP_KERNEL, cpu_to_node(cpu));
 922
 923        if (!sg)
 924                return NULL;
 925
 926        sg_span = sched_group_span(sg);
 927        if (sd->child) {
 928                cpumask_copy(sg_span, sched_domain_span(sd->child));
 929                sg->flags = sd->child->flags;
 930        } else {
 931                cpumask_copy(sg_span, sched_domain_span(sd));
 932        }
 933
 934        atomic_inc(&sg->ref);
 935        return sg;
 936}
 937
 938static void init_overlap_sched_group(struct sched_domain *sd,
 939                                     struct sched_group *sg)
 940{
 941        struct cpumask *mask = sched_domains_tmpmask2;
 942        struct sd_data *sdd = sd->private;
 943        struct cpumask *sg_span;
 944        int cpu;
 945
 946        build_balance_mask(sd, sg, mask);
 947        cpu = cpumask_first(mask);
 948
 949        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 950        if (atomic_inc_return(&sg->sgc->ref) == 1)
 951                cpumask_copy(group_balance_mask(sg), mask);
 952        else
 953                WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 954
 955        /*
 956         * Initialize sgc->capacity such that even if we mess up the
 957         * domains and no possible iteration will get us here, we won't
 958         * die on a /0 trap.
 959         */
 960        sg_span = sched_group_span(sg);
 961        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 962        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 963        sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 964}
 965
 966static struct sched_domain *
 967find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
 968{
 969        /*
 970         * The proper descendant would be the one whose child won't span out
 971         * of sd
 972         */
 973        while (sibling->child &&
 974               !cpumask_subset(sched_domain_span(sibling->child),
 975                               sched_domain_span(sd)))
 976                sibling = sibling->child;
 977
 978        /*
 979         * As we are referencing sgc across different topology level, we need
 980         * to go down to skip those sched_domains which don't contribute to
 981         * scheduling because they will be degenerated in cpu_attach_domain
 982         */
 983        while (sibling->child &&
 984               cpumask_equal(sched_domain_span(sibling->child),
 985                             sched_domain_span(sibling)))
 986                sibling = sibling->child;
 987
 988        return sibling;
 989}
 990
 991static int
 992build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 993{
 994        struct sched_group *first = NULL, *last = NULL, *sg;
 995        const struct cpumask *span = sched_domain_span(sd);
 996        struct cpumask *covered = sched_domains_tmpmask;
 997        struct sd_data *sdd = sd->private;
 998        struct sched_domain *sibling;
 999        int i;
1000
1001        cpumask_clear(covered);
1002
1003        for_each_cpu_wrap(i, span, cpu) {
1004                struct cpumask *sg_span;
1005
1006                if (cpumask_test_cpu(i, covered))
1007                        continue;
1008
1009                sibling = *per_cpu_ptr(sdd->sd, i);
1010
1011                /*
1012                 * Asymmetric node setups can result in situations where the
1013                 * domain tree is of unequal depth, make sure to skip domains
1014                 * that already cover the entire range.
1015                 *
1016                 * In that case build_sched_domains() will have terminated the
1017                 * iteration early and our sibling sd spans will be empty.
1018                 * Domains should always include the CPU they're built on, so
1019                 * check that.
1020                 */
1021                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1022                        continue;
1023
1024                /*
1025                 * Usually we build sched_group by sibling's child sched_domain
1026                 * But for machines whose NUMA diameter are 3 or above, we move
1027                 * to build sched_group by sibling's proper descendant's child
1028                 * domain because sibling's child sched_domain will span out of
1029                 * the sched_domain being built as below.
1030                 *
1031                 * Smallest diameter=3 topology is:
1032                 *
1033                 *   node   0   1   2   3
1034                 *     0:  10  20  30  40
1035                 *     1:  20  10  20  30
1036                 *     2:  30  20  10  20
1037                 *     3:  40  30  20  10
1038                 *
1039                 *   0 --- 1 --- 2 --- 3
1040                 *
1041                 * NUMA-3       0-3             N/A             N/A             0-3
1042                 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1043                 *
1044                 * NUMA-2       0-2             0-3             0-3             1-3
1045                 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1046                 *
1047                 * NUMA-1       0-1             0-2             1-3             2-3
1048                 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1049                 *
1050                 * NUMA-0       0               1               2               3
1051                 *
1052                 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1053                 * group span isn't a subset of the domain span.
1054                 */
1055                if (sibling->child &&
1056                    !cpumask_subset(sched_domain_span(sibling->child), span))
1057                        sibling = find_descended_sibling(sd, sibling);
1058
1059                sg = build_group_from_child_sched_domain(sibling, cpu);
1060                if (!sg)
1061                        goto fail;
1062
1063                sg_span = sched_group_span(sg);
1064                cpumask_or(covered, covered, sg_span);
1065
1066                init_overlap_sched_group(sibling, sg);
1067
1068                if (!first)
1069                        first = sg;
1070                if (last)
1071                        last->next = sg;
1072                last = sg;
1073                last->next = first;
1074        }
1075        sd->groups = first;
1076
1077        return 0;
1078
1079fail:
1080        free_sched_groups(first, 0);
1081
1082        return -ENOMEM;
1083}
1084
1085
1086/*
1087 * Package topology (also see the load-balance blurb in fair.c)
1088 *
1089 * The scheduler builds a tree structure to represent a number of important
1090 * topology features. By default (default_topology[]) these include:
1091 *
1092 *  - Simultaneous multithreading (SMT)
1093 *  - Multi-Core Cache (MC)
1094 *  - Package (DIE)
1095 *
1096 * Where the last one more or less denotes everything up to a NUMA node.
1097 *
1098 * The tree consists of 3 primary data structures:
1099 *
1100 *      sched_domain -> sched_group -> sched_group_capacity
1101 *          ^ ^             ^ ^
1102 *          `-'             `-'
1103 *
1104 * The sched_domains are per-CPU and have a two way link (parent & child) and
1105 * denote the ever growing mask of CPUs belonging to that level of topology.
1106 *
1107 * Each sched_domain has a circular (double) linked list of sched_group's, each
1108 * denoting the domains of the level below (or individual CPUs in case of the
1109 * first domain level). The sched_group linked by a sched_domain includes the
1110 * CPU of that sched_domain [*].
1111 *
1112 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1113 *
1114 * CPU   0   1   2   3   4   5   6   7
1115 *
1116 * DIE  [                             ]
1117 * MC   [             ] [             ]
1118 * SMT  [     ] [     ] [     ] [     ]
1119 *
1120 *  - or -
1121 *
1122 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1123 * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1124 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1125 *
1126 * CPU   0   1   2   3   4   5   6   7
1127 *
1128 * One way to think about it is: sched_domain moves you up and down among these
1129 * topology levels, while sched_group moves you sideways through it, at child
1130 * domain granularity.
1131 *
1132 * sched_group_capacity ensures each unique sched_group has shared storage.
1133 *
1134 * There are two related construction problems, both require a CPU that
1135 * uniquely identify each group (for a given domain):
1136 *
1137 *  - The first is the balance_cpu (see should_we_balance() and the
1138 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1139 *    continue balancing at a higher domain.
1140 *
1141 *  - The second is the sched_group_capacity; we want all identical groups
1142 *    to share a single sched_group_capacity.
1143 *
1144 * Since these topologies are exclusive by construction. That is, its
1145 * impossible for an SMT thread to belong to multiple cores, and cores to
1146 * be part of multiple caches. There is a very clear and unique location
1147 * for each CPU in the hierarchy.
1148 *
1149 * Therefore computing a unique CPU for each group is trivial (the iteration
1150 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1151 * group), we can simply pick the first CPU in each group.
1152 *
1153 *
1154 * [*] in other words, the first group of each domain is its child domain.
1155 */
1156
1157static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1158{
1159        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1160        struct sched_domain *child = sd->child;
1161        struct sched_group *sg;
1162
1163        if (child)
1164                cpu = cpumask_first(sched_domain_span(child));
1165
1166        sg = *per_cpu_ptr(sdd->sg, cpu);
1167        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1168
1169        /* For claim_allocations: */
1170        atomic_inc(&sg->ref);
1171        atomic_inc(&sg->sgc->ref);
1172
1173        if (child) {
1174                cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1175                cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1176                sg->flags = child->flags;
1177        } else {
1178                cpumask_set_cpu(cpu, sched_group_span(sg));
1179                cpumask_set_cpu(cpu, group_balance_mask(sg));
1180        }
1181
1182        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1183        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1184        sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1185
1186        return sg;
1187}
1188
1189/*
1190 * build_sched_groups will build a circular linked list of the groups
1191 * covered by the given span, and will set each group's ->cpumask correctly,
1192 * and ->cpu_capacity to 0.
1193 *
1194 * Assumes the sched_domain tree is fully constructed
1195 */
1196static int
1197build_sched_groups(struct sched_domain *sd, int cpu)
1198{
1199        struct sched_group *first = NULL, *last = NULL;
1200        struct sd_data *sdd = sd->private;
1201        const struct cpumask *span = sched_domain_span(sd);
1202        struct cpumask *covered;
1203        int i;
1204
1205        lockdep_assert_held(&sched_domains_mutex);
1206        covered = sched_domains_tmpmask;
1207
1208        cpumask_clear(covered);
1209
1210        for_each_cpu_wrap(i, span, cpu) {
1211                struct sched_group *sg;
1212
1213                if (cpumask_test_cpu(i, covered))
1214                        continue;
1215
1216                sg = get_group(i, sdd);
1217
1218                cpumask_or(covered, covered, sched_group_span(sg));
1219
1220                if (!first)
1221                        first = sg;
1222                if (last)
1223                        last->next = sg;
1224                last = sg;
1225        }
1226        last->next = first;
1227        sd->groups = first;
1228
1229        return 0;
1230}
1231
1232/*
1233 * Initialize sched groups cpu_capacity.
1234 *
1235 * cpu_capacity indicates the capacity of sched group, which is used while
1236 * distributing the load between different sched groups in a sched domain.
1237 * Typically cpu_capacity for all the groups in a sched domain will be same
1238 * unless there are asymmetries in the topology. If there are asymmetries,
1239 * group having more cpu_capacity will pickup more load compared to the
1240 * group having less cpu_capacity.
1241 */
1242static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1243{
1244        struct sched_group *sg = sd->groups;
1245
1246        WARN_ON(!sg);
1247
1248        do {
1249                int cpu, max_cpu = -1;
1250
1251                sg->group_weight = cpumask_weight(sched_group_span(sg));
1252
1253                if (!(sd->flags & SD_ASYM_PACKING))
1254                        goto next;
1255
1256                for_each_cpu(cpu, sched_group_span(sg)) {
1257                        if (max_cpu < 0)
1258                                max_cpu = cpu;
1259                        else if (sched_asym_prefer(cpu, max_cpu))
1260                                max_cpu = cpu;
1261                }
1262                sg->asym_prefer_cpu = max_cpu;
1263
1264next:
1265                sg = sg->next;
1266        } while (sg != sd->groups);
1267
1268        if (cpu != group_balance_cpu(sg))
1269                return;
1270
1271        update_group_capacity(sd, cpu);
1272}
1273
1274/*
1275 * Initializers for schedule domains
1276 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1277 */
1278
1279static int default_relax_domain_level = -1;
1280int sched_domain_level_max;
1281
1282static int __init setup_relax_domain_level(char *str)
1283{
1284        if (kstrtoint(str, 0, &default_relax_domain_level))
1285                pr_warn("Unable to set relax_domain_level\n");
1286
1287        return 1;
1288}
1289__setup("relax_domain_level=", setup_relax_domain_level);
1290
1291static void set_domain_attribute(struct sched_domain *sd,
1292                                 struct sched_domain_attr *attr)
1293{
1294        int request;
1295
1296        if (!attr || attr->relax_domain_level < 0) {
1297                if (default_relax_domain_level < 0)
1298                        return;
1299                request = default_relax_domain_level;
1300        } else
1301                request = attr->relax_domain_level;
1302
1303        if (sd->level > request) {
1304                /* Turn off idle balance on this domain: */
1305                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1306        }
1307}
1308
1309static void __sdt_free(const struct cpumask *cpu_map);
1310static int __sdt_alloc(const struct cpumask *cpu_map);
1311
1312static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1313                                 const struct cpumask *cpu_map)
1314{
1315        switch (what) {
1316        case sa_rootdomain:
1317                if (!atomic_read(&d->rd->refcount))
1318                        free_rootdomain(&d->rd->rcu);
1319                fallthrough;
1320        case sa_sd:
1321                free_percpu(d->sd);
1322                fallthrough;
1323        case sa_sd_storage:
1324                __sdt_free(cpu_map);
1325                fallthrough;
1326        case sa_none:
1327                break;
1328        }
1329}
1330
1331static enum s_alloc
1332__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1333{
1334        memset(d, 0, sizeof(*d));
1335
1336        if (__sdt_alloc(cpu_map))
1337                return sa_sd_storage;
1338        d->sd = alloc_percpu(struct sched_domain *);
1339        if (!d->sd)
1340                return sa_sd_storage;
1341        d->rd = alloc_rootdomain();
1342        if (!d->rd)
1343                return sa_sd;
1344
1345        return sa_rootdomain;
1346}
1347
1348/*
1349 * NULL the sd_data elements we've used to build the sched_domain and
1350 * sched_group structure so that the subsequent __free_domain_allocs()
1351 * will not free the data we're using.
1352 */
1353static void claim_allocations(int cpu, struct sched_domain *sd)
1354{
1355        struct sd_data *sdd = sd->private;
1356
1357        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1358        *per_cpu_ptr(sdd->sd, cpu) = NULL;
1359
1360        if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1361                *per_cpu_ptr(sdd->sds, cpu) = NULL;
1362
1363        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1364                *per_cpu_ptr(sdd->sg, cpu) = NULL;
1365
1366        if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1367                *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1368}
1369
1370#ifdef CONFIG_NUMA
1371enum numa_topology_type sched_numa_topology_type;
1372
1373static int                      sched_domains_numa_levels;
1374static int                      sched_domains_curr_level;
1375
1376int                             sched_max_numa_distance;
1377static int                      *sched_domains_numa_distance;
1378static struct cpumask           ***sched_domains_numa_masks;
1379int __read_mostly               node_reclaim_distance = RECLAIM_DISTANCE;
1380#endif
1381
1382/*
1383 * SD_flags allowed in topology descriptions.
1384 *
1385 * These flags are purely descriptive of the topology and do not prescribe
1386 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1387 * function:
1388 *
1389 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1390 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1391 *   SD_NUMA                - describes NUMA topologies
1392 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1393 *
1394 * Odd one out, which beside describing the topology has a quirk also
1395 * prescribes the desired behaviour that goes along with it:
1396 *
1397 *   SD_ASYM_PACKING        - describes SMT quirks
1398 */
1399#define TOPOLOGY_SD_FLAGS               \
1400        (SD_SHARE_CPUCAPACITY   |       \
1401         SD_SHARE_PKG_RESOURCES |       \
1402         SD_NUMA                |       \
1403         SD_ASYM_PACKING        |       \
1404         SD_SHARE_POWERDOMAIN)
1405
1406static struct sched_domain *
1407sd_init(struct sched_domain_topology_level *tl,
1408        const struct cpumask *cpu_map,
1409        struct sched_domain *child, int dflags, int cpu)
1410{
1411        struct sd_data *sdd = &tl->data;
1412        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1413        int sd_id, sd_weight, sd_flags = 0;
1414
1415#ifdef CONFIG_NUMA
1416        /*
1417         * Ugly hack to pass state to sd_numa_mask()...
1418         */
1419        sched_domains_curr_level = tl->numa_level;
1420#endif
1421
1422        sd_weight = cpumask_weight(tl->mask(cpu));
1423
1424        if (tl->sd_flags)
1425                sd_flags = (*tl->sd_flags)();
1426        if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1427                        "wrong sd_flags in topology description\n"))
1428                sd_flags &= TOPOLOGY_SD_FLAGS;
1429
1430        /* Apply detected topology flags */
1431        sd_flags |= dflags;
1432
1433        *sd = (struct sched_domain){
1434                .min_interval           = sd_weight,
1435                .max_interval           = 2*sd_weight,
1436                .busy_factor            = 16,
1437                .imbalance_pct          = 117,
1438
1439                .cache_nice_tries       = 0,
1440
1441                .flags                  = 1*SD_LOAD_BALANCE
1442                                        | 1*SD_BALANCE_NEWIDLE
1443                                        | 1*SD_BALANCE_EXEC
1444                                        | 1*SD_BALANCE_FORK
1445                                        | 0*SD_BALANCE_WAKE
1446                                        | 1*SD_WAKE_AFFINE
1447                                        | 0*SD_SHARE_CPUCAPACITY
1448                                        | 0*SD_SHARE_PKG_RESOURCES
1449                                        | 0*SD_SERIALIZE
1450                                        | 1*SD_PREFER_SIBLING
1451                                        | 0*SD_NUMA
1452                                        | sd_flags
1453                                        ,
1454
1455                .last_balance           = jiffies,
1456                .balance_interval       = sd_weight,
1457                .max_newidle_lb_cost    = 0,
1458                .next_decay_max_lb_cost = jiffies,
1459                .child                  = child,
1460#ifdef CONFIG_SCHED_DEBUG
1461                .name                   = tl->name,
1462#endif
1463        };
1464
1465        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1466        sd_id = cpumask_first(sched_domain_span(sd));
1467
1468        /*
1469         * Convert topological properties into behaviour.
1470         */
1471
1472        if (sd->flags & SD_ASYM_CPUCAPACITY) {
1473                struct sched_domain *t = sd;
1474
1475                /*
1476                 * Don't attempt to spread across CPUs of different capacities.
1477                 */
1478                if (sd->child)
1479                        sd->child->flags &= ~SD_PREFER_SIBLING;
1480
1481                for_each_lower_domain(t)
1482                        t->flags |= SD_BALANCE_WAKE;
1483        }
1484
1485        if (sd->flags & SD_SHARE_CPUCAPACITY) {
1486                sd->imbalance_pct = 110;
1487
1488        } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1489                sd->imbalance_pct = 117;
1490                sd->cache_nice_tries = 1;
1491
1492#ifdef CONFIG_NUMA
1493        } else if (sd->flags & SD_NUMA) {
1494                sd->cache_nice_tries = 2;
1495
1496                sd->flags &= ~SD_PREFER_SIBLING;
1497                sd->flags |= SD_SERIALIZE;
1498                if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1499                        sd->flags &= ~(SD_BALANCE_EXEC |
1500                                       SD_BALANCE_FORK |
1501                                       SD_WAKE_AFFINE);
1502                }
1503
1504#endif
1505        } else {
1506                sd->cache_nice_tries = 1;
1507        }
1508
1509        /*
1510         * For all levels sharing cache; connect a sched_domain_shared
1511         * instance.
1512         */
1513        if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1514                sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1515                atomic_inc(&sd->shared->ref);
1516                atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1517        }
1518
1519        sd->private = sdd;
1520
1521        return sd;
1522}
1523
1524/*
1525 * Topology list, bottom-up.
1526 */
1527static struct sched_domain_topology_level default_topology[] = {
1528#ifdef CONFIG_SCHED_SMT
1529        { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1530#endif
1531
1532#ifdef CONFIG_SCHED_CLUSTER
1533        { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1534#endif
1535
1536#ifdef CONFIG_SCHED_MC
1537        { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1538#endif
1539        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1540        { NULL, },
1541};
1542
1543static struct sched_domain_topology_level *sched_domain_topology =
1544        default_topology;
1545
1546#define for_each_sd_topology(tl)                        \
1547        for (tl = sched_domain_topology; tl->mask; tl++)
1548
1549void set_sched_topology(struct sched_domain_topology_level *tl)
1550{
1551        if (WARN_ON_ONCE(sched_smp_initialized))
1552                return;
1553
1554        sched_domain_topology = tl;
1555}
1556
1557#ifdef CONFIG_NUMA
1558
1559static const struct cpumask *sd_numa_mask(int cpu)
1560{
1561        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1562}
1563
1564static void sched_numa_warn(const char *str)
1565{
1566        static int done = false;
1567        int i,j;
1568
1569        if (done)
1570                return;
1571
1572        done = true;
1573
1574        printk(KERN_WARNING "ERROR: %s\n\n", str);
1575
1576        for (i = 0; i < nr_node_ids; i++) {
1577                printk(KERN_WARNING "  ");
1578                for (j = 0; j < nr_node_ids; j++)
1579                        printk(KERN_CONT "%02d ", node_distance(i,j));
1580                printk(KERN_CONT "\n");
1581        }
1582        printk(KERN_WARNING "\n");
1583}
1584
1585bool find_numa_distance(int distance)
1586{
1587        int i;
1588
1589        if (distance == node_distance(0, 0))
1590                return true;
1591
1592        for (i = 0; i < sched_domains_numa_levels; i++) {
1593                if (sched_domains_numa_distance[i] == distance)
1594                        return true;
1595        }
1596
1597        return false;
1598}
1599
1600/*
1601 * A system can have three types of NUMA topology:
1602 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1603 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1604 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1605 *
1606 * The difference between a glueless mesh topology and a backplane
1607 * topology lies in whether communication between not directly
1608 * connected nodes goes through intermediary nodes (where programs
1609 * could run), or through backplane controllers. This affects
1610 * placement of programs.
1611 *
1612 * The type of topology can be discerned with the following tests:
1613 * - If the maximum distance between any nodes is 1 hop, the system
1614 *   is directly connected.
1615 * - If for two nodes A and B, located N > 1 hops away from each other,
1616 *   there is an intermediary node C, which is < N hops away from both
1617 *   nodes A and B, the system is a glueless mesh.
1618 */
1619static void init_numa_topology_type(void)
1620{
1621        int a, b, c, n;
1622
1623        n = sched_max_numa_distance;
1624
1625        if (sched_domains_numa_levels <= 2) {
1626                sched_numa_topology_type = NUMA_DIRECT;
1627                return;
1628        }
1629
1630        for_each_online_node(a) {
1631                for_each_online_node(b) {
1632                        /* Find two nodes furthest removed from each other. */
1633                        if (node_distance(a, b) < n)
1634                                continue;
1635
1636                        /* Is there an intermediary node between a and b? */
1637                        for_each_online_node(c) {
1638                                if (node_distance(a, c) < n &&
1639                                    node_distance(b, c) < n) {
1640                                        sched_numa_topology_type =
1641                                                        NUMA_GLUELESS_MESH;
1642                                        return;
1643                                }
1644                        }
1645
1646                        sched_numa_topology_type = NUMA_BACKPLANE;
1647                        return;
1648                }
1649        }
1650}
1651
1652void sched_init_numa(void)
1653{
1654        int next_distance, curr_distance = node_distance(0, 0);
1655        struct sched_domain_topology_level *tl;
1656        int level = 0;
1657        int i, j, k;
1658
1659        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1660        if (!sched_domains_numa_distance)
1661                return;
1662
1663        /* Includes NUMA identity node at level 0. */
1664        sched_domains_numa_distance[level++] = curr_distance;
1665        sched_domains_numa_levels = level;
1666
1667        /*
1668         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1669         * unique distances in the node_distance() table.
1670         *
1671         * Assumes node_distance(0,j) includes all distances in
1672         * node_distance(i,j) in order to avoid cubic time.
1673         */
1674        next_distance = curr_distance;
1675        for (i = 0; i < nr_node_ids; i++) {
1676                for (j = 0; j < nr_node_ids; j++) {
1677                        for (k = 0; k < nr_node_ids; k++) {
1678                                int distance = node_distance(i, k);
1679
1680                                if (distance > curr_distance &&
1681                                    (distance < next_distance ||
1682                                     next_distance == curr_distance))
1683                                        next_distance = distance;
1684
1685                                /*
1686                                 * While not a strong assumption it would be nice to know
1687                                 * about cases where if node A is connected to B, B is not
1688                                 * equally connected to A.
1689                                 */
1690                                if (sched_debug() && node_distance(k, i) != distance)
1691                                        sched_numa_warn("Node-distance not symmetric");
1692
1693                                if (sched_debug() && i && !find_numa_distance(distance))
1694                                        sched_numa_warn("Node-0 not representative");
1695                        }
1696                        if (next_distance != curr_distance) {
1697                                sched_domains_numa_distance[level++] = next_distance;
1698                                sched_domains_numa_levels = level;
1699                                curr_distance = next_distance;
1700                        } else break;
1701                }
1702
1703                /*
1704                 * In case of sched_debug() we verify the above assumption.
1705                 */
1706                if (!sched_debug())
1707                        break;
1708        }
1709
1710        /*
1711         * 'level' contains the number of unique distances
1712         *
1713         * The sched_domains_numa_distance[] array includes the actual distance
1714         * numbers.
1715         */
1716
1717        /*
1718         * Here, we should temporarily reset sched_domains_numa_levels to 0.
1719         * If it fails to allocate memory for array sched_domains_numa_masks[][],
1720         * the array will contain less then 'level' members. This could be
1721         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1722         * in other functions.
1723         *
1724         * We reset it to 'level' at the end of this function.
1725         */
1726        sched_domains_numa_levels = 0;
1727
1728        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1729        if (!sched_domains_numa_masks)
1730                return;
1731
1732        /*
1733         * Now for each level, construct a mask per node which contains all
1734         * CPUs of nodes that are that many hops away from us.
1735         */
1736        for (i = 0; i < level; i++) {
1737                sched_domains_numa_masks[i] =
1738                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1739                if (!sched_domains_numa_masks[i])
1740                        return;
1741
1742                for (j = 0; j < nr_node_ids; j++) {
1743                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1744                        if (!mask)
1745                                return;
1746
1747                        sched_domains_numa_masks[i][j] = mask;
1748
1749                        for_each_node(k) {
1750                                if (node_distance(j, k) > sched_domains_numa_distance[i])
1751                                        continue;
1752
1753                                cpumask_or(mask, mask, cpumask_of_node(k));
1754                        }
1755                }
1756        }
1757
1758        /* Compute default topology size */
1759        for (i = 0; sched_domain_topology[i].mask; i++);
1760
1761        tl = kzalloc((i + level + 1) *
1762                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1763        if (!tl)
1764                return;
1765
1766        /*
1767         * Copy the default topology bits..
1768         */
1769        for (i = 0; sched_domain_topology[i].mask; i++)
1770                tl[i] = sched_domain_topology[i];
1771
1772        /*
1773         * Add the NUMA identity distance, aka single NODE.
1774         */
1775        tl[i++] = (struct sched_domain_topology_level){
1776                .mask = sd_numa_mask,
1777                .numa_level = 0,
1778                SD_INIT_NAME(NODE)
1779        };
1780
1781        /*
1782         * .. and append 'j' levels of NUMA goodness.
1783         */
1784        for (j = 1; j < level; i++, j++) {
1785                tl[i] = (struct sched_domain_topology_level){
1786                        .mask = sd_numa_mask,
1787                        .sd_flags = cpu_numa_flags,
1788                        .flags = SDTL_OVERLAP,
1789                        .numa_level = j,
1790                        SD_INIT_NAME(NUMA)
1791                };
1792        }
1793
1794        sched_domain_topology = tl;
1795
1796        sched_domains_numa_levels = level;
1797        sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1798
1799        init_numa_topology_type();
1800}
1801
1802void sched_domains_numa_masks_set(unsigned int cpu)
1803{
1804        int node = cpu_to_node(cpu);
1805        int i, j;
1806
1807        for (i = 0; i < sched_domains_numa_levels; i++) {
1808                for (j = 0; j < nr_node_ids; j++) {
1809                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
1810                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1811                }
1812        }
1813}
1814
1815void sched_domains_numa_masks_clear(unsigned int cpu)
1816{
1817        int i, j;
1818
1819        for (i = 0; i < sched_domains_numa_levels; i++) {
1820                for (j = 0; j < nr_node_ids; j++)
1821                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1822        }
1823}
1824
1825/*
1826 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1827 *                             closest to @cpu from @cpumask.
1828 * cpumask: cpumask to find a cpu from
1829 * cpu: cpu to be close to
1830 *
1831 * returns: cpu, or nr_cpu_ids when nothing found.
1832 */
1833int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1834{
1835        int i, j = cpu_to_node(cpu);
1836
1837        for (i = 0; i < sched_domains_numa_levels; i++) {
1838                cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1839                if (cpu < nr_cpu_ids)
1840                        return cpu;
1841        }
1842        return nr_cpu_ids;
1843}
1844
1845#endif /* CONFIG_NUMA */
1846
1847static int __sdt_alloc(const struct cpumask *cpu_map)
1848{
1849        struct sched_domain_topology_level *tl;
1850        int j;
1851
1852        for_each_sd_topology(tl) {
1853                struct sd_data *sdd = &tl->data;
1854
1855                sdd->sd = alloc_percpu(struct sched_domain *);
1856                if (!sdd->sd)
1857                        return -ENOMEM;
1858
1859                sdd->sds = alloc_percpu(struct sched_domain_shared *);
1860                if (!sdd->sds)
1861                        return -ENOMEM;
1862
1863                sdd->sg = alloc_percpu(struct sched_group *);
1864                if (!sdd->sg)
1865                        return -ENOMEM;
1866
1867                sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1868                if (!sdd->sgc)
1869                        return -ENOMEM;
1870
1871                for_each_cpu(j, cpu_map) {
1872                        struct sched_domain *sd;
1873                        struct sched_domain_shared *sds;
1874                        struct sched_group *sg;
1875                        struct sched_group_capacity *sgc;
1876
1877                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1878                                        GFP_KERNEL, cpu_to_node(j));
1879                        if (!sd)
1880                                return -ENOMEM;
1881
1882                        *per_cpu_ptr(sdd->sd, j) = sd;
1883
1884                        sds = kzalloc_node(sizeof(struct sched_domain_shared),
1885                                        GFP_KERNEL, cpu_to_node(j));
1886                        if (!sds)
1887                                return -ENOMEM;
1888
1889                        *per_cpu_ptr(sdd->sds, j) = sds;
1890
1891                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1892                                        GFP_KERNEL, cpu_to_node(j));
1893                        if (!sg)
1894                                return -ENOMEM;
1895
1896                        sg->next = sg;
1897
1898                        *per_cpu_ptr(sdd->sg, j) = sg;
1899
1900                        sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1901                                        GFP_KERNEL, cpu_to_node(j));
1902                        if (!sgc)
1903                                return -ENOMEM;
1904
1905#ifdef CONFIG_SCHED_DEBUG
1906                        sgc->id = j;
1907#endif
1908
1909                        *per_cpu_ptr(sdd->sgc, j) = sgc;
1910                }
1911        }
1912
1913        return 0;
1914}
1915
1916static void __sdt_free(const struct cpumask *cpu_map)
1917{
1918        struct sched_domain_topology_level *tl;
1919        int j;
1920
1921        for_each_sd_topology(tl) {
1922                struct sd_data *sdd = &tl->data;
1923
1924                for_each_cpu(j, cpu_map) {
1925                        struct sched_domain *sd;
1926
1927                        if (sdd->sd) {
1928                                sd = *per_cpu_ptr(sdd->sd, j);
1929                                if (sd && (sd->flags & SD_OVERLAP))
1930                                        free_sched_groups(sd->groups, 0);
1931                                kfree(*per_cpu_ptr(sdd->sd, j));
1932                        }
1933
1934                        if (sdd->sds)
1935                                kfree(*per_cpu_ptr(sdd->sds, j));
1936                        if (sdd->sg)
1937                                kfree(*per_cpu_ptr(sdd->sg, j));
1938                        if (sdd->sgc)
1939                                kfree(*per_cpu_ptr(sdd->sgc, j));
1940                }
1941                free_percpu(sdd->sd);
1942                sdd->sd = NULL;
1943                free_percpu(sdd->sds);
1944                sdd->sds = NULL;
1945                free_percpu(sdd->sg);
1946                sdd->sg = NULL;
1947                free_percpu(sdd->sgc);
1948                sdd->sgc = NULL;
1949        }
1950}
1951
1952static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1953                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1954                struct sched_domain *child, int dflags, int cpu)
1955{
1956        struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1957
1958        if (child) {
1959                sd->level = child->level + 1;
1960                sched_domain_level_max = max(sched_domain_level_max, sd->level);
1961                child->parent = sd;
1962
1963                if (!cpumask_subset(sched_domain_span(child),
1964                                    sched_domain_span(sd))) {
1965                        pr_err("BUG: arch topology borken\n");
1966#ifdef CONFIG_SCHED_DEBUG
1967                        pr_err("     the %s domain not a subset of the %s domain\n",
1968                                        child->name, sd->name);
1969#endif
1970                        /* Fixup, ensure @sd has at least @child CPUs. */
1971                        cpumask_or(sched_domain_span(sd),
1972                                   sched_domain_span(sd),
1973                                   sched_domain_span(child));
1974                }
1975
1976        }
1977        set_domain_attribute(sd, attr);
1978
1979        return sd;
1980}
1981
1982/*
1983 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1984 * any two given CPUs at this (non-NUMA) topology level.
1985 */
1986static bool topology_span_sane(struct sched_domain_topology_level *tl,
1987                              const struct cpumask *cpu_map, int cpu)
1988{
1989        int i;
1990
1991        /* NUMA levels are allowed to overlap */
1992        if (tl->flags & SDTL_OVERLAP)
1993                return true;
1994
1995        /*
1996         * Non-NUMA levels cannot partially overlap - they must be either
1997         * completely equal or completely disjoint. Otherwise we can end up
1998         * breaking the sched_group lists - i.e. a later get_group() pass
1999         * breaks the linking done for an earlier span.
2000         */
2001        for_each_cpu(i, cpu_map) {
2002                if (i == cpu)
2003                        continue;
2004                /*
2005                 * We should 'and' all those masks with 'cpu_map' to exactly
2006                 * match the topology we're about to build, but that can only
2007                 * remove CPUs, which only lessens our ability to detect
2008                 * overlaps
2009                 */
2010                if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2011                    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2012                        return false;
2013        }
2014
2015        return true;
2016}
2017
2018/*
2019 * Find the sched_domain_topology_level where all CPU capacities are visible
2020 * for all CPUs.
2021 */
2022static struct sched_domain_topology_level
2023*asym_cpu_capacity_level(const struct cpumask *cpu_map)
2024{
2025        int i, j, asym_level = 0;
2026        bool asym = false;
2027        struct sched_domain_topology_level *tl, *asym_tl = NULL;
2028        unsigned long cap;
2029
2030        /* Is there any asymmetry? */
2031        cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
2032
2033        for_each_cpu(i, cpu_map) {
2034                if (arch_scale_cpu_capacity(i) != cap) {
2035                        asym = true;
2036                        break;
2037                }
2038        }
2039
2040        if (!asym)
2041                return NULL;
2042
2043        /*
2044         * Examine topology from all CPU's point of views to detect the lowest
2045         * sched_domain_topology_level where a highest capacity CPU is visible
2046         * to everyone.
2047         */
2048        for_each_cpu(i, cpu_map) {
2049                unsigned long max_capacity = arch_scale_cpu_capacity(i);
2050                int tl_id = 0;
2051
2052                for_each_sd_topology(tl) {
2053                        if (tl_id < asym_level)
2054                                goto next_level;
2055
2056                        for_each_cpu_and(j, tl->mask(i), cpu_map) {
2057                                unsigned long capacity;
2058
2059                                capacity = arch_scale_cpu_capacity(j);
2060
2061                                if (capacity <= max_capacity)
2062                                        continue;
2063
2064                                max_capacity = capacity;
2065                                asym_level = tl_id;
2066                                asym_tl = tl;
2067                        }
2068next_level:
2069                        tl_id++;
2070                }
2071        }
2072
2073        return asym_tl;
2074}
2075
2076
2077/*
2078 * Build sched domains for a given set of CPUs and attach the sched domains
2079 * to the individual CPUs
2080 */
2081static int
2082build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2083{
2084        enum s_alloc alloc_state = sa_none;
2085        struct sched_domain *sd;
2086        struct s_data d;
2087        struct rq *rq = NULL;
2088        int i, ret = -ENOMEM;
2089        struct sched_domain_topology_level *tl_asym;
2090        bool has_asym = false;
2091
2092        if (WARN_ON(cpumask_empty(cpu_map)))
2093                goto error;
2094
2095        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2096        if (alloc_state != sa_rootdomain)
2097                goto error;
2098
2099        tl_asym = asym_cpu_capacity_level(cpu_map);
2100
2101        /* Set up domains for CPUs specified by the cpu_map: */
2102        for_each_cpu(i, cpu_map) {
2103                struct sched_domain_topology_level *tl;
2104
2105                sd = NULL;
2106                for_each_sd_topology(tl) {
2107                        int dflags = 0;
2108
2109                        if (tl == tl_asym) {
2110                                dflags |= SD_ASYM_CPUCAPACITY;
2111                                has_asym = true;
2112                        }
2113
2114                        if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2115                                goto error;
2116
2117                        sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2118
2119                        if (tl == sched_domain_topology)
2120                                *per_cpu_ptr(d.sd, i) = sd;
2121                        if (tl->flags & SDTL_OVERLAP)
2122                                sd->flags |= SD_OVERLAP;
2123                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2124                                break;
2125                }
2126        }
2127
2128        /* Build the groups for the domains */
2129        for_each_cpu(i, cpu_map) {
2130                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2131                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
2132                        if (sd->flags & SD_OVERLAP) {
2133                                if (build_overlap_sched_groups(sd, i))
2134                                        goto error;
2135                        } else {
2136                                if (build_sched_groups(sd, i))
2137                                        goto error;
2138                        }
2139                }
2140        }
2141
2142        /* Calculate CPU capacity for physical packages and nodes */
2143        for (i = nr_cpumask_bits-1; i >= 0; i--) {
2144                if (!cpumask_test_cpu(i, cpu_map))
2145                        continue;
2146
2147                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2148                        claim_allocations(i, sd);
2149                        init_sched_groups_capacity(i, sd);
2150                }
2151        }
2152
2153        /* Attach the domains */
2154        rcu_read_lock();
2155        for_each_cpu(i, cpu_map) {
2156                rq = cpu_rq(i);
2157                sd = *per_cpu_ptr(d.sd, i);
2158
2159                /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2160                if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2161                        WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2162
2163                cpu_attach_domain(sd, d.rd, i);
2164        }
2165        rcu_read_unlock();
2166
2167        if (has_asym)
2168                static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2169
2170        if (rq && sched_debug_enabled) {
2171                pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2172                        cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2173        }
2174
2175        ret = 0;
2176error:
2177        __free_domain_allocs(&d, alloc_state, cpu_map);
2178
2179        return ret;
2180}
2181
2182/* Current sched domains: */
2183static cpumask_var_t                    *doms_cur;
2184
2185/* Number of sched domains in 'doms_cur': */
2186static int                              ndoms_cur;
2187
2188/* Attributes of custom domains in 'doms_cur' */
2189static struct sched_domain_attr         *dattr_cur;
2190
2191/*
2192 * Special case: If a kmalloc() of a doms_cur partition (array of
2193 * cpumask) fails, then fallback to a single sched domain,
2194 * as determined by the single cpumask fallback_doms.
2195 */
2196static cpumask_var_t                    fallback_doms;
2197
2198/*
2199 * arch_update_cpu_topology lets virtualized architectures update the
2200 * CPU core maps. It is supposed to return 1 if the topology changed
2201 * or 0 if it stayed the same.
2202 */
2203int __weak arch_update_cpu_topology(void)
2204{
2205        return 0;
2206}
2207
2208cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2209{
2210        int i;
2211        cpumask_var_t *doms;
2212
2213        doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2214        if (!doms)
2215                return NULL;
2216        for (i = 0; i < ndoms; i++) {
2217                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2218                        free_sched_domains(doms, i);
2219                        return NULL;
2220                }
2221        }
2222        return doms;
2223}
2224
2225void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2226{
2227        unsigned int i;
2228        for (i = 0; i < ndoms; i++)
2229                free_cpumask_var(doms[i]);
2230        kfree(doms);
2231}
2232
2233/*
2234 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2235 * For now this just excludes isolated CPUs, but could be used to
2236 * exclude other special cases in the future.
2237 */
2238int sched_init_domains(const struct cpumask *cpu_map)
2239{
2240        int err;
2241
2242        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2243        zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2244        zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2245
2246        arch_update_cpu_topology();
2247        ndoms_cur = 1;
2248        doms_cur = alloc_sched_domains(ndoms_cur);
2249        if (!doms_cur)
2250                doms_cur = &fallback_doms;
2251        cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2252        err = build_sched_domains(doms_cur[0], NULL);
2253        register_sched_domain_sysctl();
2254
2255        return err;
2256}
2257
2258/*
2259 * Detach sched domains from a group of CPUs specified in cpu_map
2260 * These CPUs will now be attached to the NULL domain
2261 */
2262static void detach_destroy_domains(const struct cpumask *cpu_map)
2263{
2264        unsigned int cpu = cpumask_any(cpu_map);
2265        int i;
2266
2267        if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2268                static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2269
2270        rcu_read_lock();
2271        for_each_cpu(i, cpu_map)
2272                cpu_attach_domain(NULL, &def_root_domain, i);
2273        rcu_read_unlock();
2274}
2275
2276/* handle null as "default" */
2277static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2278                        struct sched_domain_attr *new, int idx_new)
2279{
2280        struct sched_domain_attr tmp;
2281
2282        /* Fast path: */
2283        if (!new && !cur)
2284                return 1;
2285
2286        tmp = SD_ATTR_INIT;
2287
2288        return !memcmp(cur ? (cur + idx_cur) : &tmp,
2289                        new ? (new + idx_new) : &tmp,
2290                        sizeof(struct sched_domain_attr));
2291}
2292
2293/*
2294 * Partition sched domains as specified by the 'ndoms_new'
2295 * cpumasks in the array doms_new[] of cpumasks. This compares
2296 * doms_new[] to the current sched domain partitioning, doms_cur[].
2297 * It destroys each deleted domain and builds each new domain.
2298 *
2299 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2300 * The masks don't intersect (don't overlap.) We should setup one
2301 * sched domain for each mask. CPUs not in any of the cpumasks will
2302 * not be load balanced. If the same cpumask appears both in the
2303 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2304 * it as it is.
2305 *
2306 * The passed in 'doms_new' should be allocated using
2307 * alloc_sched_domains.  This routine takes ownership of it and will
2308 * free_sched_domains it when done with it. If the caller failed the
2309 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2310 * and partition_sched_domains() will fallback to the single partition
2311 * 'fallback_doms', it also forces the domains to be rebuilt.
2312 *
2313 * If doms_new == NULL it will be replaced with cpu_online_mask.
2314 * ndoms_new == 0 is a special case for destroying existing domains,
2315 * and it will not create the default domain.
2316 *
2317 * Call with hotplug lock and sched_domains_mutex held
2318 */
2319void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2320                                    struct sched_domain_attr *dattr_new)
2321{
2322        bool __maybe_unused has_eas = false;
2323        int i, j, n;
2324        int new_topology;
2325
2326        lockdep_assert_held(&sched_domains_mutex);
2327
2328        /* Always unregister in case we don't destroy any domains: */
2329        unregister_sched_domain_sysctl();
2330
2331        /* Let the architecture update CPU core mappings: */
2332        new_topology = arch_update_cpu_topology();
2333
2334        if (!doms_new) {
2335                WARN_ON_ONCE(dattr_new);
2336                n = 0;
2337                doms_new = alloc_sched_domains(1);
2338                if (doms_new) {
2339                        n = 1;
2340                        cpumask_and(doms_new[0], cpu_active_mask,
2341                                    housekeeping_cpumask(HK_FLAG_DOMAIN));
2342                }
2343        } else {
2344                n = ndoms_new;
2345        }
2346
2347        /* Destroy deleted domains: */
2348        for (i = 0; i < ndoms_cur; i++) {
2349                for (j = 0; j < n && !new_topology; j++) {
2350                        if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2351                            dattrs_equal(dattr_cur, i, dattr_new, j)) {
2352                                struct root_domain *rd;
2353
2354                                /*
2355                                 * This domain won't be destroyed and as such
2356                                 * its dl_bw->total_bw needs to be cleared.  It
2357                                 * will be recomputed in function
2358                                 * update_tasks_root_domain().
2359                                 */
2360                                rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2361                                dl_clear_root_domain(rd);
2362                                goto match1;
2363                        }
2364                }
2365                /* No match - a current sched domain not in new doms_new[] */
2366                detach_destroy_domains(doms_cur[i]);
2367match1:
2368                ;
2369        }
2370
2371        n = ndoms_cur;
2372        if (!doms_new) {
2373                n = 0;
2374                doms_new = &fallback_doms;
2375                cpumask_and(doms_new[0], cpu_active_mask,
2376                            housekeeping_cpumask(HK_FLAG_DOMAIN));
2377        }
2378
2379        /* Build new domains: */
2380        for (i = 0; i < ndoms_new; i++) {
2381                for (j = 0; j < n && !new_topology; j++) {
2382                        if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2383                            dattrs_equal(dattr_new, i, dattr_cur, j))
2384                                goto match2;
2385                }
2386                /* No match - add a new doms_new */
2387                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2388match2:
2389                ;
2390        }
2391
2392#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2393        /* Build perf. domains: */
2394        for (i = 0; i < ndoms_new; i++) {
2395                for (j = 0; j < n && !sched_energy_update; j++) {
2396                        if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2397                            cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2398                                has_eas = true;
2399                                goto match3;
2400                        }
2401                }
2402                /* No match - add perf. domains for a new rd */
2403                has_eas |= build_perf_domains(doms_new[i]);
2404match3:
2405                ;
2406        }
2407        sched_energy_set(has_eas);
2408#endif
2409
2410        /* Remember the new sched domains: */
2411        if (doms_cur != &fallback_doms)
2412                free_sched_domains(doms_cur, ndoms_cur);
2413
2414        kfree(dattr_cur);
2415        doms_cur = doms_new;
2416        dattr_cur = dattr_new;
2417        ndoms_cur = ndoms_new;
2418
2419        register_sched_domain_sysctl();
2420}
2421
2422/*
2423 * Call with hotplug lock held
2424 */
2425void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2426                             struct sched_domain_attr *dattr_new)
2427{
2428        mutex_lock(&sched_domains_mutex);
2429        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2430        mutex_unlock(&sched_domains_mutex);
2431}
2432