linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/coredump.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/jhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42
  43#include <asm/tlbflush.h>
  44#include "internal.h"
  45
  46#ifdef CONFIG_NUMA
  47#define NUMA(x)         (x)
  48#define DO_NUMA(x)      do { (x); } while (0)
  49#else
  50#define NUMA(x)         (0)
  51#define DO_NUMA(x)      do { } while (0)
  52#endif
  53
  54/**
  55 * DOC: Overview
  56 *
  57 * A few notes about the KSM scanning process,
  58 * to make it easier to understand the data structures below:
  59 *
  60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  61 * contents into a data structure that holds pointers to the pages' locations.
  62 *
  63 * Since the contents of the pages may change at any moment, KSM cannot just
  64 * insert the pages into a normal sorted tree and expect it to find anything.
  65 * Therefore KSM uses two data structures - the stable and the unstable tree.
  66 *
  67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  68 * by their contents.  Because each such page is write-protected, searching on
  69 * this tree is fully assured to be working (except when pages are unmapped),
  70 * and therefore this tree is called the stable tree.
  71 *
  72 * The stable tree node includes information required for reverse
  73 * mapping from a KSM page to virtual addresses that map this page.
  74 *
  75 * In order to avoid large latencies of the rmap walks on KSM pages,
  76 * KSM maintains two types of nodes in the stable tree:
  77 *
  78 * * the regular nodes that keep the reverse mapping structures in a
  79 *   linked list
  80 * * the "chains" that link nodes ("dups") that represent the same
  81 *   write protected memory content, but each "dup" corresponds to a
  82 *   different KSM page copy of that content
  83 *
  84 * Internally, the regular nodes, "dups" and "chains" are represented
  85 * using the same :c:type:`struct stable_node` structure.
  86 *
  87 * In addition to the stable tree, KSM uses a second data structure called the
  88 * unstable tree: this tree holds pointers to pages which have been found to
  89 * be "unchanged for a period of time".  The unstable tree sorts these pages
  90 * by their contents, but since they are not write-protected, KSM cannot rely
  91 * upon the unstable tree to work correctly - the unstable tree is liable to
  92 * be corrupted as its contents are modified, and so it is called unstable.
  93 *
  94 * KSM solves this problem by several techniques:
  95 *
  96 * 1) The unstable tree is flushed every time KSM completes scanning all
  97 *    memory areas, and then the tree is rebuilt again from the beginning.
  98 * 2) KSM will only insert into the unstable tree, pages whose hash value
  99 *    has not changed since the previous scan of all memory areas.
 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 101 *    colors of the nodes and not on their contents, assuring that even when
 102 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 103 *    remains the same (also, searching and inserting nodes in an rbtree uses
 104 *    the same algorithm, so we have no overhead when we flush and rebuild).
 105 * 4) KSM never flushes the stable tree, which means that even if it were to
 106 *    take 10 attempts to find a page in the unstable tree, once it is found,
 107 *    it is secured in the stable tree.  (When we scan a new page, we first
 108 *    compare it against the stable tree, and then against the unstable tree.)
 109 *
 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 111 * stable trees and multiple unstable trees: one of each for each NUMA node.
 112 */
 113
 114/**
 115 * struct mm_slot - ksm information per mm that is being scanned
 116 * @link: link to the mm_slots hash list
 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 119 * @mm: the mm that this information is valid for
 120 */
 121struct mm_slot {
 122        struct hlist_node link;
 123        struct list_head mm_list;
 124        struct rmap_item *rmap_list;
 125        struct mm_struct *mm;
 126};
 127
 128/**
 129 * struct ksm_scan - cursor for scanning
 130 * @mm_slot: the current mm_slot we are scanning
 131 * @address: the next address inside that to be scanned
 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 133 * @seqnr: count of completed full scans (needed when removing unstable node)
 134 *
 135 * There is only the one ksm_scan instance of this cursor structure.
 136 */
 137struct ksm_scan {
 138        struct mm_slot *mm_slot;
 139        unsigned long address;
 140        struct rmap_item **rmap_list;
 141        unsigned long seqnr;
 142};
 143
 144/**
 145 * struct stable_node - node of the stable rbtree
 146 * @node: rb node of this ksm page in the stable tree
 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
 150 * @hlist: hlist head of rmap_items using this ksm page
 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 152 * @chain_prune_time: time of the last full garbage collection
 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 155 */
 156struct stable_node {
 157        union {
 158                struct rb_node node;    /* when node of stable tree */
 159                struct {                /* when listed for migration */
 160                        struct list_head *head;
 161                        struct {
 162                                struct hlist_node hlist_dup;
 163                                struct list_head list;
 164                        };
 165                };
 166        };
 167        struct hlist_head hlist;
 168        union {
 169                unsigned long kpfn;
 170                unsigned long chain_prune_time;
 171        };
 172        /*
 173         * STABLE_NODE_CHAIN can be any negative number in
 174         * rmap_hlist_len negative range, but better not -1 to be able
 175         * to reliably detect underflows.
 176         */
 177#define STABLE_NODE_CHAIN -1024
 178        int rmap_hlist_len;
 179#ifdef CONFIG_NUMA
 180        int nid;
 181#endif
 182};
 183
 184/**
 185 * struct rmap_item - reverse mapping item for virtual addresses
 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 189 * @mm: the memory structure this rmap_item is pointing into
 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 191 * @oldchecksum: previous checksum of the page at that virtual address
 192 * @node: rb node of this rmap_item in the unstable tree
 193 * @head: pointer to stable_node heading this list in the stable tree
 194 * @hlist: link into hlist of rmap_items hanging off that stable_node
 195 */
 196struct rmap_item {
 197        struct rmap_item *rmap_list;
 198        union {
 199                struct anon_vma *anon_vma;      /* when stable */
 200#ifdef CONFIG_NUMA
 201                int nid;                /* when node of unstable tree */
 202#endif
 203        };
 204        struct mm_struct *mm;
 205        unsigned long address;          /* + low bits used for flags below */
 206        unsigned int oldchecksum;       /* when unstable */
 207        union {
 208                struct rb_node node;    /* when node of unstable tree */
 209                struct {                /* when listed from stable tree */
 210                        struct stable_node *head;
 211                        struct hlist_node hlist;
 212                };
 213        };
 214};
 215
 216#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 217#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 218#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 219#define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 220                                /* to mask all the flags */
 221
 222/* The stable and unstable tree heads */
 223static struct rb_root one_stable_tree[1] = { RB_ROOT };
 224static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 225static struct rb_root *root_stable_tree = one_stable_tree;
 226static struct rb_root *root_unstable_tree = one_unstable_tree;
 227
 228/* Recently migrated nodes of stable tree, pending proper placement */
 229static LIST_HEAD(migrate_nodes);
 230#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 231
 232#define MM_SLOTS_HASH_BITS 10
 233static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 234
 235static struct mm_slot ksm_mm_head = {
 236        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 237};
 238static struct ksm_scan ksm_scan = {
 239        .mm_slot = &ksm_mm_head,
 240};
 241
 242static struct kmem_cache *rmap_item_cache;
 243static struct kmem_cache *stable_node_cache;
 244static struct kmem_cache *mm_slot_cache;
 245
 246/* The number of nodes in the stable tree */
 247static unsigned long ksm_pages_shared;
 248
 249/* The number of page slots additionally sharing those nodes */
 250static unsigned long ksm_pages_sharing;
 251
 252/* The number of nodes in the unstable tree */
 253static unsigned long ksm_pages_unshared;
 254
 255/* The number of rmap_items in use: to calculate pages_volatile */
 256static unsigned long ksm_rmap_items;
 257
 258/* The number of stable_node chains */
 259static unsigned long ksm_stable_node_chains;
 260
 261/* The number of stable_node dups linked to the stable_node chains */
 262static unsigned long ksm_stable_node_dups;
 263
 264/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 265static int ksm_stable_node_chains_prune_millisecs = 2000;
 266
 267/* Maximum number of page slots sharing a stable node */
 268static int ksm_max_page_sharing = 256;
 269
 270/* Number of pages ksmd should scan in one batch */
 271static unsigned int ksm_thread_pages_to_scan = 100;
 272
 273/* Milliseconds ksmd should sleep between batches */
 274static unsigned int ksm_thread_sleep_millisecs = 20;
 275
 276/* Checksum of an empty (zeroed) page */
 277static unsigned int zero_checksum __read_mostly;
 278
 279/* Whether to merge empty (zeroed) pages with actual zero pages */
 280static bool ksm_use_zero_pages __read_mostly;
 281
 282#ifdef CONFIG_NUMA
 283/* Zeroed when merging across nodes is not allowed */
 284static unsigned int ksm_merge_across_nodes = 1;
 285static int ksm_nr_node_ids = 1;
 286#else
 287#define ksm_merge_across_nodes  1U
 288#define ksm_nr_node_ids         1
 289#endif
 290
 291#define KSM_RUN_STOP    0
 292#define KSM_RUN_MERGE   1
 293#define KSM_RUN_UNMERGE 2
 294#define KSM_RUN_OFFLINE 4
 295static unsigned long ksm_run = KSM_RUN_STOP;
 296static void wait_while_offlining(void);
 297
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 299static DEFINE_MUTEX(ksm_thread_mutex);
 300static DEFINE_SPINLOCK(ksm_mmlist_lock);
 301
 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 303                sizeof(struct __struct), __alignof__(struct __struct),\
 304                (__flags), NULL)
 305
 306static int __init ksm_slab_init(void)
 307{
 308        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 309        if (!rmap_item_cache)
 310                goto out;
 311
 312        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 313        if (!stable_node_cache)
 314                goto out_free1;
 315
 316        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 317        if (!mm_slot_cache)
 318                goto out_free2;
 319
 320        return 0;
 321
 322out_free2:
 323        kmem_cache_destroy(stable_node_cache);
 324out_free1:
 325        kmem_cache_destroy(rmap_item_cache);
 326out:
 327        return -ENOMEM;
 328}
 329
 330static void __init ksm_slab_free(void)
 331{
 332        kmem_cache_destroy(mm_slot_cache);
 333        kmem_cache_destroy(stable_node_cache);
 334        kmem_cache_destroy(rmap_item_cache);
 335        mm_slot_cache = NULL;
 336}
 337
 338static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 339{
 340        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 341}
 342
 343static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 344{
 345        return dup->head == STABLE_NODE_DUP_HEAD;
 346}
 347
 348static inline void stable_node_chain_add_dup(struct stable_node *dup,
 349                                             struct stable_node *chain)
 350{
 351        VM_BUG_ON(is_stable_node_dup(dup));
 352        dup->head = STABLE_NODE_DUP_HEAD;
 353        VM_BUG_ON(!is_stable_node_chain(chain));
 354        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 355        ksm_stable_node_dups++;
 356}
 357
 358static inline void __stable_node_dup_del(struct stable_node *dup)
 359{
 360        VM_BUG_ON(!is_stable_node_dup(dup));
 361        hlist_del(&dup->hlist_dup);
 362        ksm_stable_node_dups--;
 363}
 364
 365static inline void stable_node_dup_del(struct stable_node *dup)
 366{
 367        VM_BUG_ON(is_stable_node_chain(dup));
 368        if (is_stable_node_dup(dup))
 369                __stable_node_dup_del(dup);
 370        else
 371                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 372#ifdef CONFIG_DEBUG_VM
 373        dup->head = NULL;
 374#endif
 375}
 376
 377static inline struct rmap_item *alloc_rmap_item(void)
 378{
 379        struct rmap_item *rmap_item;
 380
 381        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 382                                                __GFP_NORETRY | __GFP_NOWARN);
 383        if (rmap_item)
 384                ksm_rmap_items++;
 385        return rmap_item;
 386}
 387
 388static inline void free_rmap_item(struct rmap_item *rmap_item)
 389{
 390        ksm_rmap_items--;
 391        rmap_item->mm = NULL;   /* debug safety */
 392        kmem_cache_free(rmap_item_cache, rmap_item);
 393}
 394
 395static inline struct stable_node *alloc_stable_node(void)
 396{
 397        /*
 398         * The allocation can take too long with GFP_KERNEL when memory is under
 399         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 400         * grants access to memory reserves, helping to avoid this problem.
 401         */
 402        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 403}
 404
 405static inline void free_stable_node(struct stable_node *stable_node)
 406{
 407        VM_BUG_ON(stable_node->rmap_hlist_len &&
 408                  !is_stable_node_chain(stable_node));
 409        kmem_cache_free(stable_node_cache, stable_node);
 410}
 411
 412static inline struct mm_slot *alloc_mm_slot(void)
 413{
 414        if (!mm_slot_cache)     /* initialization failed */
 415                return NULL;
 416        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 417}
 418
 419static inline void free_mm_slot(struct mm_slot *mm_slot)
 420{
 421        kmem_cache_free(mm_slot_cache, mm_slot);
 422}
 423
 424static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 425{
 426        struct mm_slot *slot;
 427
 428        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 429                if (slot->mm == mm)
 430                        return slot;
 431
 432        return NULL;
 433}
 434
 435static void insert_to_mm_slots_hash(struct mm_struct *mm,
 436                                    struct mm_slot *mm_slot)
 437{
 438        mm_slot->mm = mm;
 439        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 440}
 441
 442/*
 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 444 * page tables after it has passed through ksm_exit() - which, if necessary,
 445 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 446 * a special flag: they can just back out as soon as mm_users goes to zero.
 447 * ksm_test_exit() is used throughout to make this test for exit: in some
 448 * places for correctness, in some places just to avoid unnecessary work.
 449 */
 450static inline bool ksm_test_exit(struct mm_struct *mm)
 451{
 452        return atomic_read(&mm->mm_users) == 0;
 453}
 454
 455/*
 456 * We use break_ksm to break COW on a ksm page: it's a stripped down
 457 *
 458 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 459 *              put_page(page);
 460 *
 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 462 * in case the application has unmapped and remapped mm,addr meanwhile.
 463 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 465 *
 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 467 * of the process that owns 'vma'.  We also do not want to enforce
 468 * protection keys here anyway.
 469 */
 470static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 471{
 472        struct page *page;
 473        vm_fault_t ret = 0;
 474
 475        do {
 476                cond_resched();
 477                page = follow_page(vma, addr,
 478                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 479                if (IS_ERR_OR_NULL(page))
 480                        break;
 481                if (PageKsm(page))
 482                        ret = handle_mm_fault(vma, addr,
 483                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 484                else
 485                        ret = VM_FAULT_WRITE;
 486                put_page(page);
 487        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 488        /*
 489         * We must loop because handle_mm_fault() may back out if there's
 490         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 491         *
 492         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 493         * COW has been broken, even if the vma does not permit VM_WRITE;
 494         * but note that a concurrent fault might break PageKsm for us.
 495         *
 496         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 497         * backing file, which also invalidates anonymous pages: that's
 498         * okay, that truncation will have unmapped the PageKsm for us.
 499         *
 500         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 501         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 502         * current task has TIF_MEMDIE set, and will be OOM killed on return
 503         * to user; and ksmd, having no mm, would never be chosen for that.
 504         *
 505         * But if the mm is in a limited mem_cgroup, then the fault may fail
 506         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 507         * even ksmd can fail in this way - though it's usually breaking ksm
 508         * just to undo a merge it made a moment before, so unlikely to oom.
 509         *
 510         * That's a pity: we might therefore have more kernel pages allocated
 511         * than we're counting as nodes in the stable tree; but ksm_do_scan
 512         * will retry to break_cow on each pass, so should recover the page
 513         * in due course.  The important thing is to not let VM_MERGEABLE
 514         * be cleared while any such pages might remain in the area.
 515         */
 516        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 517}
 518
 519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 520                unsigned long addr)
 521{
 522        struct vm_area_struct *vma;
 523        if (ksm_test_exit(mm))
 524                return NULL;
 525        vma = vma_lookup(mm, addr);
 526        if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 527                return NULL;
 528        return vma;
 529}
 530
 531static void break_cow(struct rmap_item *rmap_item)
 532{
 533        struct mm_struct *mm = rmap_item->mm;
 534        unsigned long addr = rmap_item->address;
 535        struct vm_area_struct *vma;
 536
 537        /*
 538         * It is not an accident that whenever we want to break COW
 539         * to undo, we also need to drop a reference to the anon_vma.
 540         */
 541        put_anon_vma(rmap_item->anon_vma);
 542
 543        mmap_read_lock(mm);
 544        vma = find_mergeable_vma(mm, addr);
 545        if (vma)
 546                break_ksm(vma, addr);
 547        mmap_read_unlock(mm);
 548}
 549
 550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 551{
 552        struct mm_struct *mm = rmap_item->mm;
 553        unsigned long addr = rmap_item->address;
 554        struct vm_area_struct *vma;
 555        struct page *page;
 556
 557        mmap_read_lock(mm);
 558        vma = find_mergeable_vma(mm, addr);
 559        if (!vma)
 560                goto out;
 561
 562        page = follow_page(vma, addr, FOLL_GET);
 563        if (IS_ERR_OR_NULL(page))
 564                goto out;
 565        if (PageAnon(page)) {
 566                flush_anon_page(vma, page, addr);
 567                flush_dcache_page(page);
 568        } else {
 569                put_page(page);
 570out:
 571                page = NULL;
 572        }
 573        mmap_read_unlock(mm);
 574        return page;
 575}
 576
 577/*
 578 * This helper is used for getting right index into array of tree roots.
 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 581 * every node has its own stable and unstable tree.
 582 */
 583static inline int get_kpfn_nid(unsigned long kpfn)
 584{
 585        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 586}
 587
 588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 589                                                   struct rb_root *root)
 590{
 591        struct stable_node *chain = alloc_stable_node();
 592        VM_BUG_ON(is_stable_node_chain(dup));
 593        if (likely(chain)) {
 594                INIT_HLIST_HEAD(&chain->hlist);
 595                chain->chain_prune_time = jiffies;
 596                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 598                chain->nid = NUMA_NO_NODE; /* debug */
 599#endif
 600                ksm_stable_node_chains++;
 601
 602                /*
 603                 * Put the stable node chain in the first dimension of
 604                 * the stable tree and at the same time remove the old
 605                 * stable node.
 606                 */
 607                rb_replace_node(&dup->node, &chain->node, root);
 608
 609                /*
 610                 * Move the old stable node to the second dimension
 611                 * queued in the hlist_dup. The invariant is that all
 612                 * dup stable_nodes in the chain->hlist point to pages
 613                 * that are wrprotected and have the exact same
 614                 * content.
 615                 */
 616                stable_node_chain_add_dup(dup, chain);
 617        }
 618        return chain;
 619}
 620
 621static inline void free_stable_node_chain(struct stable_node *chain,
 622                                          struct rb_root *root)
 623{
 624        rb_erase(&chain->node, root);
 625        free_stable_node(chain);
 626        ksm_stable_node_chains--;
 627}
 628
 629static void remove_node_from_stable_tree(struct stable_node *stable_node)
 630{
 631        struct rmap_item *rmap_item;
 632
 633        /* check it's not STABLE_NODE_CHAIN or negative */
 634        BUG_ON(stable_node->rmap_hlist_len < 0);
 635
 636        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 637                if (rmap_item->hlist.next)
 638                        ksm_pages_sharing--;
 639                else
 640                        ksm_pages_shared--;
 641                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 642                stable_node->rmap_hlist_len--;
 643                put_anon_vma(rmap_item->anon_vma);
 644                rmap_item->address &= PAGE_MASK;
 645                cond_resched();
 646        }
 647
 648        /*
 649         * We need the second aligned pointer of the migrate_nodes
 650         * list_head to stay clear from the rb_parent_color union
 651         * (aligned and different than any node) and also different
 652         * from &migrate_nodes. This will verify that future list.h changes
 653         * don't break STABLE_NODE_DUP_HEAD.
 654         */
 655#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
 656        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 657        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 658#endif
 659
 660        if (stable_node->head == &migrate_nodes)
 661                list_del(&stable_node->list);
 662        else
 663                stable_node_dup_del(stable_node);
 664        free_stable_node(stable_node);
 665}
 666
 667/*
 668 * get_ksm_page: checks if the page indicated by the stable node
 669 * is still its ksm page, despite having held no reference to it.
 670 * In which case we can trust the content of the page, and it
 671 * returns the gotten page; but if the page has now been zapped,
 672 * remove the stale node from the stable tree and return NULL.
 673 * But beware, the stable node's page might be being migrated.
 674 *
 675 * You would expect the stable_node to hold a reference to the ksm page.
 676 * But if it increments the page's count, swapping out has to wait for
 677 * ksmd to come around again before it can free the page, which may take
 678 * seconds or even minutes: much too unresponsive.  So instead we use a
 679 * "keyhole reference": access to the ksm page from the stable node peeps
 680 * out through its keyhole to see if that page still holds the right key,
 681 * pointing back to this stable node.  This relies on freeing a PageAnon
 682 * page to reset its page->mapping to NULL, and relies on no other use of
 683 * a page to put something that might look like our key in page->mapping.
 684 * is on its way to being freed; but it is an anomaly to bear in mind.
 685 */
 686static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 687{
 688        struct page *page;
 689        void *expected_mapping;
 690        unsigned long kpfn;
 691
 692        expected_mapping = (void *)((unsigned long)stable_node |
 693                                        PAGE_MAPPING_KSM);
 694again:
 695        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 696        page = pfn_to_page(kpfn);
 697        if (READ_ONCE(page->mapping) != expected_mapping)
 698                goto stale;
 699
 700        /*
 701         * We cannot do anything with the page while its refcount is 0.
 702         * Usually 0 means free, or tail of a higher-order page: in which
 703         * case this node is no longer referenced, and should be freed;
 704         * however, it might mean that the page is under page_ref_freeze().
 705         * The __remove_mapping() case is easy, again the node is now stale;
 706         * the same is in reuse_ksm_page() case; but if page is swapcache
 707         * in migrate_page_move_mapping(), it might still be our page,
 708         * in which case it's essential to keep the node.
 709         */
 710        while (!get_page_unless_zero(page)) {
 711                /*
 712                 * Another check for page->mapping != expected_mapping would
 713                 * work here too.  We have chosen the !PageSwapCache test to
 714                 * optimize the common case, when the page is or is about to
 715                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 716                 * in the ref_freeze section of __remove_mapping(); but Anon
 717                 * page->mapping reset to NULL later, in free_pages_prepare().
 718                 */
 719                if (!PageSwapCache(page))
 720                        goto stale;
 721                cpu_relax();
 722        }
 723
 724        if (READ_ONCE(page->mapping) != expected_mapping) {
 725                put_page(page);
 726                goto stale;
 727        }
 728
 729        if (lock_it) {
 730                lock_page(page);
 731                if (READ_ONCE(page->mapping) != expected_mapping) {
 732                        unlock_page(page);
 733                        put_page(page);
 734                        goto stale;
 735                }
 736        }
 737        return page;
 738
 739stale:
 740        /*
 741         * We come here from above when page->mapping or !PageSwapCache
 742         * suggests that the node is stale; but it might be under migration.
 743         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 744         * before checking whether node->kpfn has been changed.
 745         */
 746        smp_rmb();
 747        if (READ_ONCE(stable_node->kpfn) != kpfn)
 748                goto again;
 749        remove_node_from_stable_tree(stable_node);
 750        return NULL;
 751}
 752
 753/*
 754 * Removing rmap_item from stable or unstable tree.
 755 * This function will clean the information from the stable/unstable tree.
 756 */
 757static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 758{
 759        if (rmap_item->address & STABLE_FLAG) {
 760                struct stable_node *stable_node;
 761                struct page *page;
 762
 763                stable_node = rmap_item->head;
 764                page = get_ksm_page(stable_node, true);
 765                if (!page)
 766                        goto out;
 767
 768                hlist_del(&rmap_item->hlist);
 769                unlock_page(page);
 770                put_page(page);
 771
 772                if (!hlist_empty(&stable_node->hlist))
 773                        ksm_pages_sharing--;
 774                else
 775                        ksm_pages_shared--;
 776                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 777                stable_node->rmap_hlist_len--;
 778
 779                put_anon_vma(rmap_item->anon_vma);
 780                rmap_item->head = NULL;
 781                rmap_item->address &= PAGE_MASK;
 782
 783        } else if (rmap_item->address & UNSTABLE_FLAG) {
 784                unsigned char age;
 785                /*
 786                 * Usually ksmd can and must skip the rb_erase, because
 787                 * root_unstable_tree was already reset to RB_ROOT.
 788                 * But be careful when an mm is exiting: do the rb_erase
 789                 * if this rmap_item was inserted by this scan, rather
 790                 * than left over from before.
 791                 */
 792                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 793                BUG_ON(age > 1);
 794                if (!age)
 795                        rb_erase(&rmap_item->node,
 796                                 root_unstable_tree + NUMA(rmap_item->nid));
 797                ksm_pages_unshared--;
 798                rmap_item->address &= PAGE_MASK;
 799        }
 800out:
 801        cond_resched();         /* we're called from many long loops */
 802}
 803
 804static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 805                                       struct rmap_item **rmap_list)
 806{
 807        while (*rmap_list) {
 808                struct rmap_item *rmap_item = *rmap_list;
 809                *rmap_list = rmap_item->rmap_list;
 810                remove_rmap_item_from_tree(rmap_item);
 811                free_rmap_item(rmap_item);
 812        }
 813}
 814
 815/*
 816 * Though it's very tempting to unmerge rmap_items from stable tree rather
 817 * than check every pte of a given vma, the locking doesn't quite work for
 818 * that - an rmap_item is assigned to the stable tree after inserting ksm
 819 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
 820 * rmap_items from parent to child at fork time (so as not to waste time
 821 * if exit comes before the next scan reaches it).
 822 *
 823 * Similarly, although we'd like to remove rmap_items (so updating counts
 824 * and freeing memory) when unmerging an area, it's easier to leave that
 825 * to the next pass of ksmd - consider, for example, how ksmd might be
 826 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 827 */
 828static int unmerge_ksm_pages(struct vm_area_struct *vma,
 829                             unsigned long start, unsigned long end)
 830{
 831        unsigned long addr;
 832        int err = 0;
 833
 834        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 835                if (ksm_test_exit(vma->vm_mm))
 836                        break;
 837                if (signal_pending(current))
 838                        err = -ERESTARTSYS;
 839                else
 840                        err = break_ksm(vma, addr);
 841        }
 842        return err;
 843}
 844
 845static inline struct stable_node *page_stable_node(struct page *page)
 846{
 847        return PageKsm(page) ? page_rmapping(page) : NULL;
 848}
 849
 850static inline void set_page_stable_node(struct page *page,
 851                                        struct stable_node *stable_node)
 852{
 853        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 854}
 855
 856#ifdef CONFIG_SYSFS
 857/*
 858 * Only called through the sysfs control interface:
 859 */
 860static int remove_stable_node(struct stable_node *stable_node)
 861{
 862        struct page *page;
 863        int err;
 864
 865        page = get_ksm_page(stable_node, true);
 866        if (!page) {
 867                /*
 868                 * get_ksm_page did remove_node_from_stable_tree itself.
 869                 */
 870                return 0;
 871        }
 872
 873        /*
 874         * Page could be still mapped if this races with __mmput() running in
 875         * between ksm_exit() and exit_mmap(). Just refuse to let
 876         * merge_across_nodes/max_page_sharing be switched.
 877         */
 878        err = -EBUSY;
 879        if (!page_mapped(page)) {
 880                /*
 881                 * The stable node did not yet appear stale to get_ksm_page(),
 882                 * since that allows for an unmapped ksm page to be recognized
 883                 * right up until it is freed; but the node is safe to remove.
 884                 * This page might be in a pagevec waiting to be freed,
 885                 * or it might be PageSwapCache (perhaps under writeback),
 886                 * or it might have been removed from swapcache a moment ago.
 887                 */
 888                set_page_stable_node(page, NULL);
 889                remove_node_from_stable_tree(stable_node);
 890                err = 0;
 891        }
 892
 893        unlock_page(page);
 894        put_page(page);
 895        return err;
 896}
 897
 898static int remove_stable_node_chain(struct stable_node *stable_node,
 899                                    struct rb_root *root)
 900{
 901        struct stable_node *dup;
 902        struct hlist_node *hlist_safe;
 903
 904        if (!is_stable_node_chain(stable_node)) {
 905                VM_BUG_ON(is_stable_node_dup(stable_node));
 906                if (remove_stable_node(stable_node))
 907                        return true;
 908                else
 909                        return false;
 910        }
 911
 912        hlist_for_each_entry_safe(dup, hlist_safe,
 913                                  &stable_node->hlist, hlist_dup) {
 914                VM_BUG_ON(!is_stable_node_dup(dup));
 915                if (remove_stable_node(dup))
 916                        return true;
 917        }
 918        BUG_ON(!hlist_empty(&stable_node->hlist));
 919        free_stable_node_chain(stable_node, root);
 920        return false;
 921}
 922
 923static int remove_all_stable_nodes(void)
 924{
 925        struct stable_node *stable_node, *next;
 926        int nid;
 927        int err = 0;
 928
 929        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 930                while (root_stable_tree[nid].rb_node) {
 931                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 932                                                struct stable_node, node);
 933                        if (remove_stable_node_chain(stable_node,
 934                                                     root_stable_tree + nid)) {
 935                                err = -EBUSY;
 936                                break;  /* proceed to next nid */
 937                        }
 938                        cond_resched();
 939                }
 940        }
 941        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 942                if (remove_stable_node(stable_node))
 943                        err = -EBUSY;
 944                cond_resched();
 945        }
 946        return err;
 947}
 948
 949static int unmerge_and_remove_all_rmap_items(void)
 950{
 951        struct mm_slot *mm_slot;
 952        struct mm_struct *mm;
 953        struct vm_area_struct *vma;
 954        int err = 0;
 955
 956        spin_lock(&ksm_mmlist_lock);
 957        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 958                                                struct mm_slot, mm_list);
 959        spin_unlock(&ksm_mmlist_lock);
 960
 961        for (mm_slot = ksm_scan.mm_slot;
 962                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 963                mm = mm_slot->mm;
 964                mmap_read_lock(mm);
 965                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 966                        if (ksm_test_exit(mm))
 967                                break;
 968                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 969                                continue;
 970                        err = unmerge_ksm_pages(vma,
 971                                                vma->vm_start, vma->vm_end);
 972                        if (err)
 973                                goto error;
 974                }
 975
 976                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 977                mmap_read_unlock(mm);
 978
 979                spin_lock(&ksm_mmlist_lock);
 980                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 981                                                struct mm_slot, mm_list);
 982                if (ksm_test_exit(mm)) {
 983                        hash_del(&mm_slot->link);
 984                        list_del(&mm_slot->mm_list);
 985                        spin_unlock(&ksm_mmlist_lock);
 986
 987                        free_mm_slot(mm_slot);
 988                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 989                        mmdrop(mm);
 990                } else
 991                        spin_unlock(&ksm_mmlist_lock);
 992        }
 993
 994        /* Clean up stable nodes, but don't worry if some are still busy */
 995        remove_all_stable_nodes();
 996        ksm_scan.seqnr = 0;
 997        return 0;
 998
 999error:
1000        mmap_read_unlock(mm);
1001        spin_lock(&ksm_mmlist_lock);
1002        ksm_scan.mm_slot = &ksm_mm_head;
1003        spin_unlock(&ksm_mmlist_lock);
1004        return err;
1005}
1006#endif /* CONFIG_SYSFS */
1007
1008static u32 calc_checksum(struct page *page)
1009{
1010        u32 checksum;
1011        void *addr = kmap_atomic(page);
1012        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1013        kunmap_atomic(addr);
1014        return checksum;
1015}
1016
1017static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1018                              pte_t *orig_pte)
1019{
1020        struct mm_struct *mm = vma->vm_mm;
1021        struct page_vma_mapped_walk pvmw = {
1022                .page = page,
1023                .vma = vma,
1024        };
1025        int swapped;
1026        int err = -EFAULT;
1027        struct mmu_notifier_range range;
1028
1029        pvmw.address = page_address_in_vma(page, vma);
1030        if (pvmw.address == -EFAULT)
1031                goto out;
1032
1033        BUG_ON(PageTransCompound(page));
1034
1035        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1036                                pvmw.address,
1037                                pvmw.address + PAGE_SIZE);
1038        mmu_notifier_invalidate_range_start(&range);
1039
1040        if (!page_vma_mapped_walk(&pvmw))
1041                goto out_mn;
1042        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1043                goto out_unlock;
1044
1045        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1046            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1047                                                mm_tlb_flush_pending(mm)) {
1048                pte_t entry;
1049
1050                swapped = PageSwapCache(page);
1051                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1052                /*
1053                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1054                 * take any lock, therefore the check that we are going to make
1055                 * with the pagecount against the mapcount is racey and
1056                 * O_DIRECT can happen right after the check.
1057                 * So we clear the pte and flush the tlb before the check
1058                 * this assure us that no O_DIRECT can happen after the check
1059                 * or in the middle of the check.
1060                 *
1061                 * No need to notify as we are downgrading page table to read
1062                 * only not changing it to point to a new page.
1063                 *
1064                 * See Documentation/vm/mmu_notifier.rst
1065                 */
1066                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1067                /*
1068                 * Check that no O_DIRECT or similar I/O is in progress on the
1069                 * page
1070                 */
1071                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1072                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1073                        goto out_unlock;
1074                }
1075                if (pte_dirty(entry))
1076                        set_page_dirty(page);
1077
1078                if (pte_protnone(entry))
1079                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1080                else
1081                        entry = pte_mkclean(pte_wrprotect(entry));
1082                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1083        }
1084        *orig_pte = *pvmw.pte;
1085        err = 0;
1086
1087out_unlock:
1088        page_vma_mapped_walk_done(&pvmw);
1089out_mn:
1090        mmu_notifier_invalidate_range_end(&range);
1091out:
1092        return err;
1093}
1094
1095/**
1096 * replace_page - replace page in vma by new ksm page
1097 * @vma:      vma that holds the pte pointing to page
1098 * @page:     the page we are replacing by kpage
1099 * @kpage:    the ksm page we replace page by
1100 * @orig_pte: the original value of the pte
1101 *
1102 * Returns 0 on success, -EFAULT on failure.
1103 */
1104static int replace_page(struct vm_area_struct *vma, struct page *page,
1105                        struct page *kpage, pte_t orig_pte)
1106{
1107        struct mm_struct *mm = vma->vm_mm;
1108        pmd_t *pmd;
1109        pte_t *ptep;
1110        pte_t newpte;
1111        spinlock_t *ptl;
1112        unsigned long addr;
1113        int err = -EFAULT;
1114        struct mmu_notifier_range range;
1115
1116        addr = page_address_in_vma(page, vma);
1117        if (addr == -EFAULT)
1118                goto out;
1119
1120        pmd = mm_find_pmd(mm, addr);
1121        if (!pmd)
1122                goto out;
1123
1124        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1125                                addr + PAGE_SIZE);
1126        mmu_notifier_invalidate_range_start(&range);
1127
1128        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129        if (!pte_same(*ptep, orig_pte)) {
1130                pte_unmap_unlock(ptep, ptl);
1131                goto out_mn;
1132        }
1133
1134        /*
1135         * No need to check ksm_use_zero_pages here: we can only have a
1136         * zero_page here if ksm_use_zero_pages was enabled alreaady.
1137         */
1138        if (!is_zero_pfn(page_to_pfn(kpage))) {
1139                get_page(kpage);
1140                page_add_anon_rmap(kpage, vma, addr, false);
1141                newpte = mk_pte(kpage, vma->vm_page_prot);
1142        } else {
1143                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1144                                               vma->vm_page_prot));
1145                /*
1146                 * We're replacing an anonymous page with a zero page, which is
1147                 * not anonymous. We need to do proper accounting otherwise we
1148                 * will get wrong values in /proc, and a BUG message in dmesg
1149                 * when tearing down the mm.
1150                 */
1151                dec_mm_counter(mm, MM_ANONPAGES);
1152        }
1153
1154        flush_cache_page(vma, addr, pte_pfn(*ptep));
1155        /*
1156         * No need to notify as we are replacing a read only page with another
1157         * read only page with the same content.
1158         *
1159         * See Documentation/vm/mmu_notifier.rst
1160         */
1161        ptep_clear_flush(vma, addr, ptep);
1162        set_pte_at_notify(mm, addr, ptep, newpte);
1163
1164        page_remove_rmap(page, false);
1165        if (!page_mapped(page))
1166                try_to_free_swap(page);
1167        put_page(page);
1168
1169        pte_unmap_unlock(ptep, ptl);
1170        err = 0;
1171out_mn:
1172        mmu_notifier_invalidate_range_end(&range);
1173out:
1174        return err;
1175}
1176
1177/*
1178 * try_to_merge_one_page - take two pages and merge them into one
1179 * @vma: the vma that holds the pte pointing to page
1180 * @page: the PageAnon page that we want to replace with kpage
1181 * @kpage: the PageKsm page that we want to map instead of page,
1182 *         or NULL the first time when we want to use page as kpage.
1183 *
1184 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1185 */
1186static int try_to_merge_one_page(struct vm_area_struct *vma,
1187                                 struct page *page, struct page *kpage)
1188{
1189        pte_t orig_pte = __pte(0);
1190        int err = -EFAULT;
1191
1192        if (page == kpage)                      /* ksm page forked */
1193                return 0;
1194
1195        if (!PageAnon(page))
1196                goto out;
1197
1198        /*
1199         * We need the page lock to read a stable PageSwapCache in
1200         * write_protect_page().  We use trylock_page() instead of
1201         * lock_page() because we don't want to wait here - we
1202         * prefer to continue scanning and merging different pages,
1203         * then come back to this page when it is unlocked.
1204         */
1205        if (!trylock_page(page))
1206                goto out;
1207
1208        if (PageTransCompound(page)) {
1209                if (split_huge_page(page))
1210                        goto out_unlock;
1211        }
1212
1213        /*
1214         * If this anonymous page is mapped only here, its pte may need
1215         * to be write-protected.  If it's mapped elsewhere, all of its
1216         * ptes are necessarily already write-protected.  But in either
1217         * case, we need to lock and check page_count is not raised.
1218         */
1219        if (write_protect_page(vma, page, &orig_pte) == 0) {
1220                if (!kpage) {
1221                        /*
1222                         * While we hold page lock, upgrade page from
1223                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1224                         * stable_tree_insert() will update stable_node.
1225                         */
1226                        set_page_stable_node(page, NULL);
1227                        mark_page_accessed(page);
1228                        /*
1229                         * Page reclaim just frees a clean page with no dirty
1230                         * ptes: make sure that the ksm page would be swapped.
1231                         */
1232                        if (!PageDirty(page))
1233                                SetPageDirty(page);
1234                        err = 0;
1235                } else if (pages_identical(page, kpage))
1236                        err = replace_page(vma, page, kpage, orig_pte);
1237        }
1238
1239        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1240                munlock_vma_page(page);
1241                if (!PageMlocked(kpage)) {
1242                        unlock_page(page);
1243                        lock_page(kpage);
1244                        mlock_vma_page(kpage);
1245                        page = kpage;           /* for final unlock */
1246                }
1247        }
1248
1249out_unlock:
1250        unlock_page(page);
1251out:
1252        return err;
1253}
1254
1255/*
1256 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1257 * but no new kernel page is allocated: kpage must already be a ksm page.
1258 *
1259 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1260 */
1261static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1262                                      struct page *page, struct page *kpage)
1263{
1264        struct mm_struct *mm = rmap_item->mm;
1265        struct vm_area_struct *vma;
1266        int err = -EFAULT;
1267
1268        mmap_read_lock(mm);
1269        vma = find_mergeable_vma(mm, rmap_item->address);
1270        if (!vma)
1271                goto out;
1272
1273        err = try_to_merge_one_page(vma, page, kpage);
1274        if (err)
1275                goto out;
1276
1277        /* Unstable nid is in union with stable anon_vma: remove first */
1278        remove_rmap_item_from_tree(rmap_item);
1279
1280        /* Must get reference to anon_vma while still holding mmap_lock */
1281        rmap_item->anon_vma = vma->anon_vma;
1282        get_anon_vma(vma->anon_vma);
1283out:
1284        mmap_read_unlock(mm);
1285        return err;
1286}
1287
1288/*
1289 * try_to_merge_two_pages - take two identical pages and prepare them
1290 * to be merged into one page.
1291 *
1292 * This function returns the kpage if we successfully merged two identical
1293 * pages into one ksm page, NULL otherwise.
1294 *
1295 * Note that this function upgrades page to ksm page: if one of the pages
1296 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1297 */
1298static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1299                                           struct page *page,
1300                                           struct rmap_item *tree_rmap_item,
1301                                           struct page *tree_page)
1302{
1303        int err;
1304
1305        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1306        if (!err) {
1307                err = try_to_merge_with_ksm_page(tree_rmap_item,
1308                                                        tree_page, page);
1309                /*
1310                 * If that fails, we have a ksm page with only one pte
1311                 * pointing to it: so break it.
1312                 */
1313                if (err)
1314                        break_cow(rmap_item);
1315        }
1316        return err ? NULL : page;
1317}
1318
1319static __always_inline
1320bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1321{
1322        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1323        /*
1324         * Check that at least one mapping still exists, otherwise
1325         * there's no much point to merge and share with this
1326         * stable_node, as the underlying tree_page of the other
1327         * sharer is going to be freed soon.
1328         */
1329        return stable_node->rmap_hlist_len &&
1330                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1331}
1332
1333static __always_inline
1334bool is_page_sharing_candidate(struct stable_node *stable_node)
1335{
1336        return __is_page_sharing_candidate(stable_node, 0);
1337}
1338
1339static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1340                                    struct stable_node **_stable_node,
1341                                    struct rb_root *root,
1342                                    bool prune_stale_stable_nodes)
1343{
1344        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1345        struct hlist_node *hlist_safe;
1346        struct page *_tree_page, *tree_page = NULL;
1347        int nr = 0;
1348        int found_rmap_hlist_len;
1349
1350        if (!prune_stale_stable_nodes ||
1351            time_before(jiffies, stable_node->chain_prune_time +
1352                        msecs_to_jiffies(
1353                                ksm_stable_node_chains_prune_millisecs)))
1354                prune_stale_stable_nodes = false;
1355        else
1356                stable_node->chain_prune_time = jiffies;
1357
1358        hlist_for_each_entry_safe(dup, hlist_safe,
1359                                  &stable_node->hlist, hlist_dup) {
1360                cond_resched();
1361                /*
1362                 * We must walk all stable_node_dup to prune the stale
1363                 * stable nodes during lookup.
1364                 *
1365                 * get_ksm_page can drop the nodes from the
1366                 * stable_node->hlist if they point to freed pages
1367                 * (that's why we do a _safe walk). The "dup"
1368                 * stable_node parameter itself will be freed from
1369                 * under us if it returns NULL.
1370                 */
1371                _tree_page = get_ksm_page(dup, false);
1372                if (!_tree_page)
1373                        continue;
1374                nr += 1;
1375                if (is_page_sharing_candidate(dup)) {
1376                        if (!found ||
1377                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1378                                if (found)
1379                                        put_page(tree_page);
1380                                found = dup;
1381                                found_rmap_hlist_len = found->rmap_hlist_len;
1382                                tree_page = _tree_page;
1383
1384                                /* skip put_page for found dup */
1385                                if (!prune_stale_stable_nodes)
1386                                        break;
1387                                continue;
1388                        }
1389                }
1390                put_page(_tree_page);
1391        }
1392
1393        if (found) {
1394                /*
1395                 * nr is counting all dups in the chain only if
1396                 * prune_stale_stable_nodes is true, otherwise we may
1397                 * break the loop at nr == 1 even if there are
1398                 * multiple entries.
1399                 */
1400                if (prune_stale_stable_nodes && nr == 1) {
1401                        /*
1402                         * If there's not just one entry it would
1403                         * corrupt memory, better BUG_ON. In KSM
1404                         * context with no lock held it's not even
1405                         * fatal.
1406                         */
1407                        BUG_ON(stable_node->hlist.first->next);
1408
1409                        /*
1410                         * There's just one entry and it is below the
1411                         * deduplication limit so drop the chain.
1412                         */
1413                        rb_replace_node(&stable_node->node, &found->node,
1414                                        root);
1415                        free_stable_node(stable_node);
1416                        ksm_stable_node_chains--;
1417                        ksm_stable_node_dups--;
1418                        /*
1419                         * NOTE: the caller depends on the stable_node
1420                         * to be equal to stable_node_dup if the chain
1421                         * was collapsed.
1422                         */
1423                        *_stable_node = found;
1424                        /*
1425                         * Just for robustneess as stable_node is
1426                         * otherwise left as a stable pointer, the
1427                         * compiler shall optimize it away at build
1428                         * time.
1429                         */
1430                        stable_node = NULL;
1431                } else if (stable_node->hlist.first != &found->hlist_dup &&
1432                           __is_page_sharing_candidate(found, 1)) {
1433                        /*
1434                         * If the found stable_node dup can accept one
1435                         * more future merge (in addition to the one
1436                         * that is underway) and is not at the head of
1437                         * the chain, put it there so next search will
1438                         * be quicker in the !prune_stale_stable_nodes
1439                         * case.
1440                         *
1441                         * NOTE: it would be inaccurate to use nr > 1
1442                         * instead of checking the hlist.first pointer
1443                         * directly, because in the
1444                         * prune_stale_stable_nodes case "nr" isn't
1445                         * the position of the found dup in the chain,
1446                         * but the total number of dups in the chain.
1447                         */
1448                        hlist_del(&found->hlist_dup);
1449                        hlist_add_head(&found->hlist_dup,
1450                                       &stable_node->hlist);
1451                }
1452        }
1453
1454        *_stable_node_dup = found;
1455        return tree_page;
1456}
1457
1458static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1459                                               struct rb_root *root)
1460{
1461        if (!is_stable_node_chain(stable_node))
1462                return stable_node;
1463        if (hlist_empty(&stable_node->hlist)) {
1464                free_stable_node_chain(stable_node, root);
1465                return NULL;
1466        }
1467        return hlist_entry(stable_node->hlist.first,
1468                           typeof(*stable_node), hlist_dup);
1469}
1470
1471/*
1472 * Like for get_ksm_page, this function can free the *_stable_node and
1473 * *_stable_node_dup if the returned tree_page is NULL.
1474 *
1475 * It can also free and overwrite *_stable_node with the found
1476 * stable_node_dup if the chain is collapsed (in which case
1477 * *_stable_node will be equal to *_stable_node_dup like if the chain
1478 * never existed). It's up to the caller to verify tree_page is not
1479 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1480 *
1481 * *_stable_node_dup is really a second output parameter of this
1482 * function and will be overwritten in all cases, the caller doesn't
1483 * need to initialize it.
1484 */
1485static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1486                                        struct stable_node **_stable_node,
1487                                        struct rb_root *root,
1488                                        bool prune_stale_stable_nodes)
1489{
1490        struct stable_node *stable_node = *_stable_node;
1491        if (!is_stable_node_chain(stable_node)) {
1492                if (is_page_sharing_candidate(stable_node)) {
1493                        *_stable_node_dup = stable_node;
1494                        return get_ksm_page(stable_node, false);
1495                }
1496                /*
1497                 * _stable_node_dup set to NULL means the stable_node
1498                 * reached the ksm_max_page_sharing limit.
1499                 */
1500                *_stable_node_dup = NULL;
1501                return NULL;
1502        }
1503        return stable_node_dup(_stable_node_dup, _stable_node, root,
1504                               prune_stale_stable_nodes);
1505}
1506
1507static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1508                                                struct stable_node **s_n,
1509                                                struct rb_root *root)
1510{
1511        return __stable_node_chain(s_n_d, s_n, root, true);
1512}
1513
1514static __always_inline struct page *chain(struct stable_node **s_n_d,
1515                                          struct stable_node *s_n,
1516                                          struct rb_root *root)
1517{
1518        struct stable_node *old_stable_node = s_n;
1519        struct page *tree_page;
1520
1521        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1522        /* not pruning dups so s_n cannot have changed */
1523        VM_BUG_ON(s_n != old_stable_node);
1524        return tree_page;
1525}
1526
1527/*
1528 * stable_tree_search - search for page inside the stable tree
1529 *
1530 * This function checks if there is a page inside the stable tree
1531 * with identical content to the page that we are scanning right now.
1532 *
1533 * This function returns the stable tree node of identical content if found,
1534 * NULL otherwise.
1535 */
1536static struct page *stable_tree_search(struct page *page)
1537{
1538        int nid;
1539        struct rb_root *root;
1540        struct rb_node **new;
1541        struct rb_node *parent;
1542        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1543        struct stable_node *page_node;
1544
1545        page_node = page_stable_node(page);
1546        if (page_node && page_node->head != &migrate_nodes) {
1547                /* ksm page forked */
1548                get_page(page);
1549                return page;
1550        }
1551
1552        nid = get_kpfn_nid(page_to_pfn(page));
1553        root = root_stable_tree + nid;
1554again:
1555        new = &root->rb_node;
1556        parent = NULL;
1557
1558        while (*new) {
1559                struct page *tree_page;
1560                int ret;
1561
1562                cond_resched();
1563                stable_node = rb_entry(*new, struct stable_node, node);
1564                stable_node_any = NULL;
1565                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1566                /*
1567                 * NOTE: stable_node may have been freed by
1568                 * chain_prune() if the returned stable_node_dup is
1569                 * not NULL. stable_node_dup may have been inserted in
1570                 * the rbtree instead as a regular stable_node (in
1571                 * order to collapse the stable_node chain if a single
1572                 * stable_node dup was found in it). In such case the
1573                 * stable_node is overwritten by the calleee to point
1574                 * to the stable_node_dup that was collapsed in the
1575                 * stable rbtree and stable_node will be equal to
1576                 * stable_node_dup like if the chain never existed.
1577                 */
1578                if (!stable_node_dup) {
1579                        /*
1580                         * Either all stable_node dups were full in
1581                         * this stable_node chain, or this chain was
1582                         * empty and should be rb_erased.
1583                         */
1584                        stable_node_any = stable_node_dup_any(stable_node,
1585                                                              root);
1586                        if (!stable_node_any) {
1587                                /* rb_erase just run */
1588                                goto again;
1589                        }
1590                        /*
1591                         * Take any of the stable_node dups page of
1592                         * this stable_node chain to let the tree walk
1593                         * continue. All KSM pages belonging to the
1594                         * stable_node dups in a stable_node chain
1595                         * have the same content and they're
1596                         * wrprotected at all times. Any will work
1597                         * fine to continue the walk.
1598                         */
1599                        tree_page = get_ksm_page(stable_node_any, false);
1600                }
1601                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1602                if (!tree_page) {
1603                        /*
1604                         * If we walked over a stale stable_node,
1605                         * get_ksm_page() will call rb_erase() and it
1606                         * may rebalance the tree from under us. So
1607                         * restart the search from scratch. Returning
1608                         * NULL would be safe too, but we'd generate
1609                         * false negative insertions just because some
1610                         * stable_node was stale.
1611                         */
1612                        goto again;
1613                }
1614
1615                ret = memcmp_pages(page, tree_page);
1616                put_page(tree_page);
1617
1618                parent = *new;
1619                if (ret < 0)
1620                        new = &parent->rb_left;
1621                else if (ret > 0)
1622                        new = &parent->rb_right;
1623                else {
1624                        if (page_node) {
1625                                VM_BUG_ON(page_node->head != &migrate_nodes);
1626                                /*
1627                                 * Test if the migrated page should be merged
1628                                 * into a stable node dup. If the mapcount is
1629                                 * 1 we can migrate it with another KSM page
1630                                 * without adding it to the chain.
1631                                 */
1632                                if (page_mapcount(page) > 1)
1633                                        goto chain_append;
1634                        }
1635
1636                        if (!stable_node_dup) {
1637                                /*
1638                                 * If the stable_node is a chain and
1639                                 * we got a payload match in memcmp
1640                                 * but we cannot merge the scanned
1641                                 * page in any of the existing
1642                                 * stable_node dups because they're
1643                                 * all full, we need to wait the
1644                                 * scanned page to find itself a match
1645                                 * in the unstable tree to create a
1646                                 * brand new KSM page to add later to
1647                                 * the dups of this stable_node.
1648                                 */
1649                                return NULL;
1650                        }
1651
1652                        /*
1653                         * Lock and unlock the stable_node's page (which
1654                         * might already have been migrated) so that page
1655                         * migration is sure to notice its raised count.
1656                         * It would be more elegant to return stable_node
1657                         * than kpage, but that involves more changes.
1658                         */
1659                        tree_page = get_ksm_page(stable_node_dup, true);
1660                        if (unlikely(!tree_page))
1661                                /*
1662                                 * The tree may have been rebalanced,
1663                                 * so re-evaluate parent and new.
1664                                 */
1665                                goto again;
1666                        unlock_page(tree_page);
1667
1668                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1669                            NUMA(stable_node_dup->nid)) {
1670                                put_page(tree_page);
1671                                goto replace;
1672                        }
1673                        return tree_page;
1674                }
1675        }
1676
1677        if (!page_node)
1678                return NULL;
1679
1680        list_del(&page_node->list);
1681        DO_NUMA(page_node->nid = nid);
1682        rb_link_node(&page_node->node, parent, new);
1683        rb_insert_color(&page_node->node, root);
1684out:
1685        if (is_page_sharing_candidate(page_node)) {
1686                get_page(page);
1687                return page;
1688        } else
1689                return NULL;
1690
1691replace:
1692        /*
1693         * If stable_node was a chain and chain_prune collapsed it,
1694         * stable_node has been updated to be the new regular
1695         * stable_node. A collapse of the chain is indistinguishable
1696         * from the case there was no chain in the stable
1697         * rbtree. Otherwise stable_node is the chain and
1698         * stable_node_dup is the dup to replace.
1699         */
1700        if (stable_node_dup == stable_node) {
1701                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1702                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1703                /* there is no chain */
1704                if (page_node) {
1705                        VM_BUG_ON(page_node->head != &migrate_nodes);
1706                        list_del(&page_node->list);
1707                        DO_NUMA(page_node->nid = nid);
1708                        rb_replace_node(&stable_node_dup->node,
1709                                        &page_node->node,
1710                                        root);
1711                        if (is_page_sharing_candidate(page_node))
1712                                get_page(page);
1713                        else
1714                                page = NULL;
1715                } else {
1716                        rb_erase(&stable_node_dup->node, root);
1717                        page = NULL;
1718                }
1719        } else {
1720                VM_BUG_ON(!is_stable_node_chain(stable_node));
1721                __stable_node_dup_del(stable_node_dup);
1722                if (page_node) {
1723                        VM_BUG_ON(page_node->head != &migrate_nodes);
1724                        list_del(&page_node->list);
1725                        DO_NUMA(page_node->nid = nid);
1726                        stable_node_chain_add_dup(page_node, stable_node);
1727                        if (is_page_sharing_candidate(page_node))
1728                                get_page(page);
1729                        else
1730                                page = NULL;
1731                } else {
1732                        page = NULL;
1733                }
1734        }
1735        stable_node_dup->head = &migrate_nodes;
1736        list_add(&stable_node_dup->list, stable_node_dup->head);
1737        return page;
1738
1739chain_append:
1740        /* stable_node_dup could be null if it reached the limit */
1741        if (!stable_node_dup)
1742                stable_node_dup = stable_node_any;
1743        /*
1744         * If stable_node was a chain and chain_prune collapsed it,
1745         * stable_node has been updated to be the new regular
1746         * stable_node. A collapse of the chain is indistinguishable
1747         * from the case there was no chain in the stable
1748         * rbtree. Otherwise stable_node is the chain and
1749         * stable_node_dup is the dup to replace.
1750         */
1751        if (stable_node_dup == stable_node) {
1752                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1753                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1754                /* chain is missing so create it */
1755                stable_node = alloc_stable_node_chain(stable_node_dup,
1756                                                      root);
1757                if (!stable_node)
1758                        return NULL;
1759        }
1760        /*
1761         * Add this stable_node dup that was
1762         * migrated to the stable_node chain
1763         * of the current nid for this page
1764         * content.
1765         */
1766        VM_BUG_ON(!is_stable_node_chain(stable_node));
1767        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1768        VM_BUG_ON(page_node->head != &migrate_nodes);
1769        list_del(&page_node->list);
1770        DO_NUMA(page_node->nid = nid);
1771        stable_node_chain_add_dup(page_node, stable_node);
1772        goto out;
1773}
1774
1775/*
1776 * stable_tree_insert - insert stable tree node pointing to new ksm page
1777 * into the stable tree.
1778 *
1779 * This function returns the stable tree node just allocated on success,
1780 * NULL otherwise.
1781 */
1782static struct stable_node *stable_tree_insert(struct page *kpage)
1783{
1784        int nid;
1785        unsigned long kpfn;
1786        struct rb_root *root;
1787        struct rb_node **new;
1788        struct rb_node *parent;
1789        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1790        bool need_chain = false;
1791
1792        kpfn = page_to_pfn(kpage);
1793        nid = get_kpfn_nid(kpfn);
1794        root = root_stable_tree + nid;
1795again:
1796        parent = NULL;
1797        new = &root->rb_node;
1798
1799        while (*new) {
1800                struct page *tree_page;
1801                int ret;
1802
1803                cond_resched();
1804                stable_node = rb_entry(*new, struct stable_node, node);
1805                stable_node_any = NULL;
1806                tree_page = chain(&stable_node_dup, stable_node, root);
1807                if (!stable_node_dup) {
1808                        /*
1809                         * Either all stable_node dups were full in
1810                         * this stable_node chain, or this chain was
1811                         * empty and should be rb_erased.
1812                         */
1813                        stable_node_any = stable_node_dup_any(stable_node,
1814                                                              root);
1815                        if (!stable_node_any) {
1816                                /* rb_erase just run */
1817                                goto again;
1818                        }
1819                        /*
1820                         * Take any of the stable_node dups page of
1821                         * this stable_node chain to let the tree walk
1822                         * continue. All KSM pages belonging to the
1823                         * stable_node dups in a stable_node chain
1824                         * have the same content and they're
1825                         * wrprotected at all times. Any will work
1826                         * fine to continue the walk.
1827                         */
1828                        tree_page = get_ksm_page(stable_node_any, false);
1829                }
1830                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1831                if (!tree_page) {
1832                        /*
1833                         * If we walked over a stale stable_node,
1834                         * get_ksm_page() will call rb_erase() and it
1835                         * may rebalance the tree from under us. So
1836                         * restart the search from scratch. Returning
1837                         * NULL would be safe too, but we'd generate
1838                         * false negative insertions just because some
1839                         * stable_node was stale.
1840                         */
1841                        goto again;
1842                }
1843
1844                ret = memcmp_pages(kpage, tree_page);
1845                put_page(tree_page);
1846
1847                parent = *new;
1848                if (ret < 0)
1849                        new = &parent->rb_left;
1850                else if (ret > 0)
1851                        new = &parent->rb_right;
1852                else {
1853                        need_chain = true;
1854                        break;
1855                }
1856        }
1857
1858        stable_node_dup = alloc_stable_node();
1859        if (!stable_node_dup)
1860                return NULL;
1861
1862        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1863        stable_node_dup->kpfn = kpfn;
1864        set_page_stable_node(kpage, stable_node_dup);
1865        stable_node_dup->rmap_hlist_len = 0;
1866        DO_NUMA(stable_node_dup->nid = nid);
1867        if (!need_chain) {
1868                rb_link_node(&stable_node_dup->node, parent, new);
1869                rb_insert_color(&stable_node_dup->node, root);
1870        } else {
1871                if (!is_stable_node_chain(stable_node)) {
1872                        struct stable_node *orig = stable_node;
1873                        /* chain is missing so create it */
1874                        stable_node = alloc_stable_node_chain(orig, root);
1875                        if (!stable_node) {
1876                                free_stable_node(stable_node_dup);
1877                                return NULL;
1878                        }
1879                }
1880                stable_node_chain_add_dup(stable_node_dup, stable_node);
1881        }
1882
1883        return stable_node_dup;
1884}
1885
1886/*
1887 * unstable_tree_search_insert - search for identical page,
1888 * else insert rmap_item into the unstable tree.
1889 *
1890 * This function searches for a page in the unstable tree identical to the
1891 * page currently being scanned; and if no identical page is found in the
1892 * tree, we insert rmap_item as a new object into the unstable tree.
1893 *
1894 * This function returns pointer to rmap_item found to be identical
1895 * to the currently scanned page, NULL otherwise.
1896 *
1897 * This function does both searching and inserting, because they share
1898 * the same walking algorithm in an rbtree.
1899 */
1900static
1901struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1902                                              struct page *page,
1903                                              struct page **tree_pagep)
1904{
1905        struct rb_node **new;
1906        struct rb_root *root;
1907        struct rb_node *parent = NULL;
1908        int nid;
1909
1910        nid = get_kpfn_nid(page_to_pfn(page));
1911        root = root_unstable_tree + nid;
1912        new = &root->rb_node;
1913
1914        while (*new) {
1915                struct rmap_item *tree_rmap_item;
1916                struct page *tree_page;
1917                int ret;
1918
1919                cond_resched();
1920                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1921                tree_page = get_mergeable_page(tree_rmap_item);
1922                if (!tree_page)
1923                        return NULL;
1924
1925                /*
1926                 * Don't substitute a ksm page for a forked page.
1927                 */
1928                if (page == tree_page) {
1929                        put_page(tree_page);
1930                        return NULL;
1931                }
1932
1933                ret = memcmp_pages(page, tree_page);
1934
1935                parent = *new;
1936                if (ret < 0) {
1937                        put_page(tree_page);
1938                        new = &parent->rb_left;
1939                } else if (ret > 0) {
1940                        put_page(tree_page);
1941                        new = &parent->rb_right;
1942                } else if (!ksm_merge_across_nodes &&
1943                           page_to_nid(tree_page) != nid) {
1944                        /*
1945                         * If tree_page has been migrated to another NUMA node,
1946                         * it will be flushed out and put in the right unstable
1947                         * tree next time: only merge with it when across_nodes.
1948                         */
1949                        put_page(tree_page);
1950                        return NULL;
1951                } else {
1952                        *tree_pagep = tree_page;
1953                        return tree_rmap_item;
1954                }
1955        }
1956
1957        rmap_item->address |= UNSTABLE_FLAG;
1958        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1959        DO_NUMA(rmap_item->nid = nid);
1960        rb_link_node(&rmap_item->node, parent, new);
1961        rb_insert_color(&rmap_item->node, root);
1962
1963        ksm_pages_unshared++;
1964        return NULL;
1965}
1966
1967/*
1968 * stable_tree_append - add another rmap_item to the linked list of
1969 * rmap_items hanging off a given node of the stable tree, all sharing
1970 * the same ksm page.
1971 */
1972static void stable_tree_append(struct rmap_item *rmap_item,
1973                               struct stable_node *stable_node,
1974                               bool max_page_sharing_bypass)
1975{
1976        /*
1977         * rmap won't find this mapping if we don't insert the
1978         * rmap_item in the right stable_node
1979         * duplicate. page_migration could break later if rmap breaks,
1980         * so we can as well crash here. We really need to check for
1981         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1982         * for other negative values as an undeflow if detected here
1983         * for the first time (and not when decreasing rmap_hlist_len)
1984         * would be sign of memory corruption in the stable_node.
1985         */
1986        BUG_ON(stable_node->rmap_hlist_len < 0);
1987
1988        stable_node->rmap_hlist_len++;
1989        if (!max_page_sharing_bypass)
1990                /* possibly non fatal but unexpected overflow, only warn */
1991                WARN_ON_ONCE(stable_node->rmap_hlist_len >
1992                             ksm_max_page_sharing);
1993
1994        rmap_item->head = stable_node;
1995        rmap_item->address |= STABLE_FLAG;
1996        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1997
1998        if (rmap_item->hlist.next)
1999                ksm_pages_sharing++;
2000        else
2001                ksm_pages_shared++;
2002}
2003
2004/*
2005 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2006 * if not, compare checksum to previous and if it's the same, see if page can
2007 * be inserted into the unstable tree, or merged with a page already there and
2008 * both transferred to the stable tree.
2009 *
2010 * @page: the page that we are searching identical page to.
2011 * @rmap_item: the reverse mapping into the virtual address of this page
2012 */
2013static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2014{
2015        struct mm_struct *mm = rmap_item->mm;
2016        struct rmap_item *tree_rmap_item;
2017        struct page *tree_page = NULL;
2018        struct stable_node *stable_node;
2019        struct page *kpage;
2020        unsigned int checksum;
2021        int err;
2022        bool max_page_sharing_bypass = false;
2023
2024        stable_node = page_stable_node(page);
2025        if (stable_node) {
2026                if (stable_node->head != &migrate_nodes &&
2027                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2028                    NUMA(stable_node->nid)) {
2029                        stable_node_dup_del(stable_node);
2030                        stable_node->head = &migrate_nodes;
2031                        list_add(&stable_node->list, stable_node->head);
2032                }
2033                if (stable_node->head != &migrate_nodes &&
2034                    rmap_item->head == stable_node)
2035                        return;
2036                /*
2037                 * If it's a KSM fork, allow it to go over the sharing limit
2038                 * without warnings.
2039                 */
2040                if (!is_page_sharing_candidate(stable_node))
2041                        max_page_sharing_bypass = true;
2042        }
2043
2044        /* We first start with searching the page inside the stable tree */
2045        kpage = stable_tree_search(page);
2046        if (kpage == page && rmap_item->head == stable_node) {
2047                put_page(kpage);
2048                return;
2049        }
2050
2051        remove_rmap_item_from_tree(rmap_item);
2052
2053        if (kpage) {
2054                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2055                if (!err) {
2056                        /*
2057                         * The page was successfully merged:
2058                         * add its rmap_item to the stable tree.
2059                         */
2060                        lock_page(kpage);
2061                        stable_tree_append(rmap_item, page_stable_node(kpage),
2062                                           max_page_sharing_bypass);
2063                        unlock_page(kpage);
2064                }
2065                put_page(kpage);
2066                return;
2067        }
2068
2069        /*
2070         * If the hash value of the page has changed from the last time
2071         * we calculated it, this page is changing frequently: therefore we
2072         * don't want to insert it in the unstable tree, and we don't want
2073         * to waste our time searching for something identical to it there.
2074         */
2075        checksum = calc_checksum(page);
2076        if (rmap_item->oldchecksum != checksum) {
2077                rmap_item->oldchecksum = checksum;
2078                return;
2079        }
2080
2081        /*
2082         * Same checksum as an empty page. We attempt to merge it with the
2083         * appropriate zero page if the user enabled this via sysfs.
2084         */
2085        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2086                struct vm_area_struct *vma;
2087
2088                mmap_read_lock(mm);
2089                vma = find_mergeable_vma(mm, rmap_item->address);
2090                if (vma) {
2091                        err = try_to_merge_one_page(vma, page,
2092                                        ZERO_PAGE(rmap_item->address));
2093                } else {
2094                        /*
2095                         * If the vma is out of date, we do not need to
2096                         * continue.
2097                         */
2098                        err = 0;
2099                }
2100                mmap_read_unlock(mm);
2101                /*
2102                 * In case of failure, the page was not really empty, so we
2103                 * need to continue. Otherwise we're done.
2104                 */
2105                if (!err)
2106                        return;
2107        }
2108        tree_rmap_item =
2109                unstable_tree_search_insert(rmap_item, page, &tree_page);
2110        if (tree_rmap_item) {
2111                bool split;
2112
2113                kpage = try_to_merge_two_pages(rmap_item, page,
2114                                                tree_rmap_item, tree_page);
2115                /*
2116                 * If both pages we tried to merge belong to the same compound
2117                 * page, then we actually ended up increasing the reference
2118                 * count of the same compound page twice, and split_huge_page
2119                 * failed.
2120                 * Here we set a flag if that happened, and we use it later to
2121                 * try split_huge_page again. Since we call put_page right
2122                 * afterwards, the reference count will be correct and
2123                 * split_huge_page should succeed.
2124                 */
2125                split = PageTransCompound(page)
2126                        && compound_head(page) == compound_head(tree_page);
2127                put_page(tree_page);
2128                if (kpage) {
2129                        /*
2130                         * The pages were successfully merged: insert new
2131                         * node in the stable tree and add both rmap_items.
2132                         */
2133                        lock_page(kpage);
2134                        stable_node = stable_tree_insert(kpage);
2135                        if (stable_node) {
2136                                stable_tree_append(tree_rmap_item, stable_node,
2137                                                   false);
2138                                stable_tree_append(rmap_item, stable_node,
2139                                                   false);
2140                        }
2141                        unlock_page(kpage);
2142
2143                        /*
2144                         * If we fail to insert the page into the stable tree,
2145                         * we will have 2 virtual addresses that are pointing
2146                         * to a ksm page left outside the stable tree,
2147                         * in which case we need to break_cow on both.
2148                         */
2149                        if (!stable_node) {
2150                                break_cow(tree_rmap_item);
2151                                break_cow(rmap_item);
2152                        }
2153                } else if (split) {
2154                        /*
2155                         * We are here if we tried to merge two pages and
2156                         * failed because they both belonged to the same
2157                         * compound page. We will split the page now, but no
2158                         * merging will take place.
2159                         * We do not want to add the cost of a full lock; if
2160                         * the page is locked, it is better to skip it and
2161                         * perhaps try again later.
2162                         */
2163                        if (!trylock_page(page))
2164                                return;
2165                        split_huge_page(page);
2166                        unlock_page(page);
2167                }
2168        }
2169}
2170
2171static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2172                                            struct rmap_item **rmap_list,
2173                                            unsigned long addr)
2174{
2175        struct rmap_item *rmap_item;
2176
2177        while (*rmap_list) {
2178                rmap_item = *rmap_list;
2179                if ((rmap_item->address & PAGE_MASK) == addr)
2180                        return rmap_item;
2181                if (rmap_item->address > addr)
2182                        break;
2183                *rmap_list = rmap_item->rmap_list;
2184                remove_rmap_item_from_tree(rmap_item);
2185                free_rmap_item(rmap_item);
2186        }
2187
2188        rmap_item = alloc_rmap_item();
2189        if (rmap_item) {
2190                /* It has already been zeroed */
2191                rmap_item->mm = mm_slot->mm;
2192                rmap_item->address = addr;
2193                rmap_item->rmap_list = *rmap_list;
2194                *rmap_list = rmap_item;
2195        }
2196        return rmap_item;
2197}
2198
2199static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2200{
2201        struct mm_struct *mm;
2202        struct mm_slot *slot;
2203        struct vm_area_struct *vma;
2204        struct rmap_item *rmap_item;
2205        int nid;
2206
2207        if (list_empty(&ksm_mm_head.mm_list))
2208                return NULL;
2209
2210        slot = ksm_scan.mm_slot;
2211        if (slot == &ksm_mm_head) {
2212                /*
2213                 * A number of pages can hang around indefinitely on per-cpu
2214                 * pagevecs, raised page count preventing write_protect_page
2215                 * from merging them.  Though it doesn't really matter much,
2216                 * it is puzzling to see some stuck in pages_volatile until
2217                 * other activity jostles them out, and they also prevented
2218                 * LTP's KSM test from succeeding deterministically; so drain
2219                 * them here (here rather than on entry to ksm_do_scan(),
2220                 * so we don't IPI too often when pages_to_scan is set low).
2221                 */
2222                lru_add_drain_all();
2223
2224                /*
2225                 * Whereas stale stable_nodes on the stable_tree itself
2226                 * get pruned in the regular course of stable_tree_search(),
2227                 * those moved out to the migrate_nodes list can accumulate:
2228                 * so prune them once before each full scan.
2229                 */
2230                if (!ksm_merge_across_nodes) {
2231                        struct stable_node *stable_node, *next;
2232                        struct page *page;
2233
2234                        list_for_each_entry_safe(stable_node, next,
2235                                                 &migrate_nodes, list) {
2236                                page = get_ksm_page(stable_node, false);
2237                                if (page)
2238                                        put_page(page);
2239                                cond_resched();
2240                        }
2241                }
2242
2243                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2244                        root_unstable_tree[nid] = RB_ROOT;
2245
2246                spin_lock(&ksm_mmlist_lock);
2247                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2248                ksm_scan.mm_slot = slot;
2249                spin_unlock(&ksm_mmlist_lock);
2250                /*
2251                 * Although we tested list_empty() above, a racing __ksm_exit
2252                 * of the last mm on the list may have removed it since then.
2253                 */
2254                if (slot == &ksm_mm_head)
2255                        return NULL;
2256next_mm:
2257                ksm_scan.address = 0;
2258                ksm_scan.rmap_list = &slot->rmap_list;
2259        }
2260
2261        mm = slot->mm;
2262        mmap_read_lock(mm);
2263        if (ksm_test_exit(mm))
2264                vma = NULL;
2265        else
2266                vma = find_vma(mm, ksm_scan.address);
2267
2268        for (; vma; vma = vma->vm_next) {
2269                if (!(vma->vm_flags & VM_MERGEABLE))
2270                        continue;
2271                if (ksm_scan.address < vma->vm_start)
2272                        ksm_scan.address = vma->vm_start;
2273                if (!vma->anon_vma)
2274                        ksm_scan.address = vma->vm_end;
2275
2276                while (ksm_scan.address < vma->vm_end) {
2277                        if (ksm_test_exit(mm))
2278                                break;
2279                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2280                        if (IS_ERR_OR_NULL(*page)) {
2281                                ksm_scan.address += PAGE_SIZE;
2282                                cond_resched();
2283                                continue;
2284                        }
2285                        if (PageAnon(*page)) {
2286                                flush_anon_page(vma, *page, ksm_scan.address);
2287                                flush_dcache_page(*page);
2288                                rmap_item = get_next_rmap_item(slot,
2289                                        ksm_scan.rmap_list, ksm_scan.address);
2290                                if (rmap_item) {
2291                                        ksm_scan.rmap_list =
2292                                                        &rmap_item->rmap_list;
2293                                        ksm_scan.address += PAGE_SIZE;
2294                                } else
2295                                        put_page(*page);
2296                                mmap_read_unlock(mm);
2297                                return rmap_item;
2298                        }
2299                        put_page(*page);
2300                        ksm_scan.address += PAGE_SIZE;
2301                        cond_resched();
2302                }
2303        }
2304
2305        if (ksm_test_exit(mm)) {
2306                ksm_scan.address = 0;
2307                ksm_scan.rmap_list = &slot->rmap_list;
2308        }
2309        /*
2310         * Nuke all the rmap_items that are above this current rmap:
2311         * because there were no VM_MERGEABLE vmas with such addresses.
2312         */
2313        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2314
2315        spin_lock(&ksm_mmlist_lock);
2316        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2317                                                struct mm_slot, mm_list);
2318        if (ksm_scan.address == 0) {
2319                /*
2320                 * We've completed a full scan of all vmas, holding mmap_lock
2321                 * throughout, and found no VM_MERGEABLE: so do the same as
2322                 * __ksm_exit does to remove this mm from all our lists now.
2323                 * This applies either when cleaning up after __ksm_exit
2324                 * (but beware: we can reach here even before __ksm_exit),
2325                 * or when all VM_MERGEABLE areas have been unmapped (and
2326                 * mmap_lock then protects against race with MADV_MERGEABLE).
2327                 */
2328                hash_del(&slot->link);
2329                list_del(&slot->mm_list);
2330                spin_unlock(&ksm_mmlist_lock);
2331
2332                free_mm_slot(slot);
2333                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2334                mmap_read_unlock(mm);
2335                mmdrop(mm);
2336        } else {
2337                mmap_read_unlock(mm);
2338                /*
2339                 * mmap_read_unlock(mm) first because after
2340                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2341                 * already have been freed under us by __ksm_exit()
2342                 * because the "mm_slot" is still hashed and
2343                 * ksm_scan.mm_slot doesn't point to it anymore.
2344                 */
2345                spin_unlock(&ksm_mmlist_lock);
2346        }
2347
2348        /* Repeat until we've completed scanning the whole list */
2349        slot = ksm_scan.mm_slot;
2350        if (slot != &ksm_mm_head)
2351                goto next_mm;
2352
2353        ksm_scan.seqnr++;
2354        return NULL;
2355}
2356
2357/**
2358 * ksm_do_scan  - the ksm scanner main worker function.
2359 * @scan_npages:  number of pages we want to scan before we return.
2360 */
2361static void ksm_do_scan(unsigned int scan_npages)
2362{
2363        struct rmap_item *rmap_item;
2364        struct page *uninitialized_var(page);
2365
2366        while (scan_npages-- && likely(!freezing(current))) {
2367                cond_resched();
2368                rmap_item = scan_get_next_rmap_item(&page);
2369                if (!rmap_item)
2370                        return;
2371                cmp_and_merge_page(page, rmap_item);
2372                put_page(page);
2373        }
2374}
2375
2376static int ksmd_should_run(void)
2377{
2378        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2379}
2380
2381static int ksm_scan_thread(void *nothing)
2382{
2383        set_freezable();
2384        set_user_nice(current, 5);
2385
2386        while (!kthread_should_stop()) {
2387                mutex_lock(&ksm_thread_mutex);
2388                wait_while_offlining();
2389                if (ksmd_should_run())
2390                        ksm_do_scan(ksm_thread_pages_to_scan);
2391                mutex_unlock(&ksm_thread_mutex);
2392
2393                try_to_freeze();
2394
2395                if (ksmd_should_run()) {
2396                        schedule_timeout_interruptible(
2397                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
2398                } else {
2399                        wait_event_freezable(ksm_thread_wait,
2400                                ksmd_should_run() || kthread_should_stop());
2401                }
2402        }
2403        return 0;
2404}
2405
2406int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2407                unsigned long end, int advice, unsigned long *vm_flags)
2408{
2409        struct mm_struct *mm = vma->vm_mm;
2410        int err;
2411
2412        switch (advice) {
2413        case MADV_MERGEABLE:
2414                /*
2415                 * Be somewhat over-protective for now!
2416                 */
2417                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2418                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2419                                 VM_HUGETLB | VM_MIXEDMAP))
2420                        return 0;               /* just ignore the advice */
2421
2422                if (vma_is_dax(vma))
2423                        return 0;
2424
2425#ifdef VM_SAO
2426                if (*vm_flags & VM_SAO)
2427                        return 0;
2428#endif
2429#ifdef VM_SPARC_ADI
2430                if (*vm_flags & VM_SPARC_ADI)
2431                        return 0;
2432#endif
2433
2434                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2435                        err = __ksm_enter(mm);
2436                        if (err)
2437                                return err;
2438                }
2439
2440                *vm_flags |= VM_MERGEABLE;
2441                break;
2442
2443        case MADV_UNMERGEABLE:
2444                if (!(*vm_flags & VM_MERGEABLE))
2445                        return 0;               /* just ignore the advice */
2446
2447                if (vma->anon_vma) {
2448                        err = unmerge_ksm_pages(vma, start, end);
2449                        if (err)
2450                                return err;
2451                }
2452
2453                *vm_flags &= ~VM_MERGEABLE;
2454                break;
2455        }
2456
2457        return 0;
2458}
2459EXPORT_SYMBOL_GPL(ksm_madvise);
2460
2461int __ksm_enter(struct mm_struct *mm)
2462{
2463        struct mm_slot *mm_slot;
2464        int needs_wakeup;
2465
2466        mm_slot = alloc_mm_slot();
2467        if (!mm_slot)
2468                return -ENOMEM;
2469
2470        /* Check ksm_run too?  Would need tighter locking */
2471        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2472
2473        spin_lock(&ksm_mmlist_lock);
2474        insert_to_mm_slots_hash(mm, mm_slot);
2475        /*
2476         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2477         * insert just behind the scanning cursor, to let the area settle
2478         * down a little; when fork is followed by immediate exec, we don't
2479         * want ksmd to waste time setting up and tearing down an rmap_list.
2480         *
2481         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2482         * scanning cursor, otherwise KSM pages in newly forked mms will be
2483         * missed: then we might as well insert at the end of the list.
2484         */
2485        if (ksm_run & KSM_RUN_UNMERGE)
2486                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2487        else
2488                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2489        spin_unlock(&ksm_mmlist_lock);
2490
2491        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2492        mmgrab(mm);
2493
2494        if (needs_wakeup)
2495                wake_up_interruptible(&ksm_thread_wait);
2496
2497        return 0;
2498}
2499
2500void __ksm_exit(struct mm_struct *mm)
2501{
2502        struct mm_slot *mm_slot;
2503        int easy_to_free = 0;
2504
2505        /*
2506         * This process is exiting: if it's straightforward (as is the
2507         * case when ksmd was never running), free mm_slot immediately.
2508         * But if it's at the cursor or has rmap_items linked to it, use
2509         * mmap_lock to synchronize with any break_cows before pagetables
2510         * are freed, and leave the mm_slot on the list for ksmd to free.
2511         * Beware: ksm may already have noticed it exiting and freed the slot.
2512         */
2513
2514        spin_lock(&ksm_mmlist_lock);
2515        mm_slot = get_mm_slot(mm);
2516        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2517                if (!mm_slot->rmap_list) {
2518                        hash_del(&mm_slot->link);
2519                        list_del(&mm_slot->mm_list);
2520                        easy_to_free = 1;
2521                } else {
2522                        list_move(&mm_slot->mm_list,
2523                                  &ksm_scan.mm_slot->mm_list);
2524                }
2525        }
2526        spin_unlock(&ksm_mmlist_lock);
2527
2528        if (easy_to_free) {
2529                free_mm_slot(mm_slot);
2530                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2531                mmdrop(mm);
2532        } else if (mm_slot) {
2533                mmap_write_lock(mm);
2534                mmap_write_unlock(mm);
2535        }
2536}
2537
2538struct page *ksm_might_need_to_copy(struct page *page,
2539                        struct vm_area_struct *vma, unsigned long address)
2540{
2541        struct anon_vma *anon_vma = page_anon_vma(page);
2542        struct page *new_page;
2543
2544        if (PageKsm(page)) {
2545                if (page_stable_node(page) &&
2546                    !(ksm_run & KSM_RUN_UNMERGE))
2547                        return page;    /* no need to copy it */
2548        } else if (!anon_vma) {
2549                return page;            /* no need to copy it */
2550        } else if (anon_vma->root == vma->anon_vma->root &&
2551                 page->index == linear_page_index(vma, address)) {
2552                return page;            /* still no need to copy it */
2553        }
2554        if (!PageUptodate(page))
2555                return page;            /* let do_swap_page report the error */
2556
2557        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2558        if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2559                put_page(new_page);
2560                new_page = NULL;
2561        }
2562        if (new_page) {
2563                copy_user_highpage(new_page, page, address, vma);
2564
2565                SetPageDirty(new_page);
2566                __SetPageUptodate(new_page);
2567                __SetPageLocked(new_page);
2568        }
2569
2570        return new_page;
2571}
2572
2573void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2574{
2575        struct stable_node *stable_node;
2576        struct rmap_item *rmap_item;
2577        int search_new_forks = 0;
2578
2579        VM_BUG_ON_PAGE(!PageKsm(page), page);
2580
2581        /*
2582         * Rely on the page lock to protect against concurrent modifications
2583         * to that page's node of the stable tree.
2584         */
2585        VM_BUG_ON_PAGE(!PageLocked(page), page);
2586
2587        stable_node = page_stable_node(page);
2588        if (!stable_node)
2589                return;
2590again:
2591        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2592                struct anon_vma *anon_vma = rmap_item->anon_vma;
2593                struct anon_vma_chain *vmac;
2594                struct vm_area_struct *vma;
2595
2596                cond_resched();
2597                anon_vma_lock_read(anon_vma);
2598                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2599                                               0, ULONG_MAX) {
2600                        unsigned long addr;
2601
2602                        cond_resched();
2603                        vma = vmac->vma;
2604
2605                        /* Ignore the stable/unstable/sqnr flags */
2606                        addr = rmap_item->address & ~KSM_FLAG_MASK;
2607
2608                        if (addr < vma->vm_start || addr >= vma->vm_end)
2609                                continue;
2610                        /*
2611                         * Initially we examine only the vma which covers this
2612                         * rmap_item; but later, if there is still work to do,
2613                         * we examine covering vmas in other mms: in case they
2614                         * were forked from the original since ksmd passed.
2615                         */
2616                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2617                                continue;
2618
2619                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2620                                continue;
2621
2622                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2623                                anon_vma_unlock_read(anon_vma);
2624                                return;
2625                        }
2626                        if (rwc->done && rwc->done(page)) {
2627                                anon_vma_unlock_read(anon_vma);
2628                                return;
2629                        }
2630                }
2631                anon_vma_unlock_read(anon_vma);
2632        }
2633        if (!search_new_forks++)
2634                goto again;
2635}
2636
2637bool reuse_ksm_page(struct page *page,
2638                    struct vm_area_struct *vma,
2639                    unsigned long address)
2640{
2641#ifdef CONFIG_DEBUG_VM
2642        if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2643                        WARN_ON(!page_mapped(page)) ||
2644                        WARN_ON(!PageLocked(page))) {
2645                dump_page(page, "reuse_ksm_page");
2646                return false;
2647        }
2648#endif
2649
2650        if (PageSwapCache(page) || !page_stable_node(page))
2651                return false;
2652        /* Prohibit parallel get_ksm_page() */
2653        if (!page_ref_freeze(page, 1))
2654                return false;
2655
2656        page_move_anon_rmap(page, vma);
2657        page->index = linear_page_index(vma, address);
2658        page_ref_unfreeze(page, 1);
2659
2660        return true;
2661}
2662#ifdef CONFIG_MIGRATION
2663void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664{
2665        struct stable_node *stable_node;
2666
2667        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670
2671        stable_node = page_stable_node(newpage);
2672        if (stable_node) {
2673                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674                stable_node->kpfn = page_to_pfn(newpage);
2675                /*
2676                 * newpage->mapping was set in advance; now we need smp_wmb()
2677                 * to make sure that the new stable_node->kpfn is visible
2678                 * to get_ksm_page() before it can see that oldpage->mapping
2679                 * has gone stale (or that PageSwapCache has been cleared).
2680                 */
2681                smp_wmb();
2682                set_page_stable_node(oldpage, NULL);
2683        }
2684}
2685#endif /* CONFIG_MIGRATION */
2686
2687#ifdef CONFIG_MEMORY_HOTREMOVE
2688static void wait_while_offlining(void)
2689{
2690        while (ksm_run & KSM_RUN_OFFLINE) {
2691                mutex_unlock(&ksm_thread_mutex);
2692                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693                            TASK_UNINTERRUPTIBLE);
2694                mutex_lock(&ksm_thread_mutex);
2695        }
2696}
2697
2698static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699                                         unsigned long start_pfn,
2700                                         unsigned long end_pfn)
2701{
2702        if (stable_node->kpfn >= start_pfn &&
2703            stable_node->kpfn < end_pfn) {
2704                /*
2705                 * Don't get_ksm_page, page has already gone:
2706                 * which is why we keep kpfn instead of page*
2707                 */
2708                remove_node_from_stable_tree(stable_node);
2709                return true;
2710        }
2711        return false;
2712}
2713
2714static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715                                           unsigned long start_pfn,
2716                                           unsigned long end_pfn,
2717                                           struct rb_root *root)
2718{
2719        struct stable_node *dup;
2720        struct hlist_node *hlist_safe;
2721
2722        if (!is_stable_node_chain(stable_node)) {
2723                VM_BUG_ON(is_stable_node_dup(stable_node));
2724                return stable_node_dup_remove_range(stable_node, start_pfn,
2725                                                    end_pfn);
2726        }
2727
2728        hlist_for_each_entry_safe(dup, hlist_safe,
2729                                  &stable_node->hlist, hlist_dup) {
2730                VM_BUG_ON(!is_stable_node_dup(dup));
2731                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732        }
2733        if (hlist_empty(&stable_node->hlist)) {
2734                free_stable_node_chain(stable_node, root);
2735                return true; /* notify caller that tree was rebalanced */
2736        } else
2737                return false;
2738}
2739
2740static void ksm_check_stable_tree(unsigned long start_pfn,
2741                                  unsigned long end_pfn)
2742{
2743        struct stable_node *stable_node, *next;
2744        struct rb_node *node;
2745        int nid;
2746
2747        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748                node = rb_first(root_stable_tree + nid);
2749                while (node) {
2750                        stable_node = rb_entry(node, struct stable_node, node);
2751                        if (stable_node_chain_remove_range(stable_node,
2752                                                           start_pfn, end_pfn,
2753                                                           root_stable_tree +
2754                                                           nid))
2755                                node = rb_first(root_stable_tree + nid);
2756                        else
2757                                node = rb_next(node);
2758                        cond_resched();
2759                }
2760        }
2761        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762                if (stable_node->kpfn >= start_pfn &&
2763                    stable_node->kpfn < end_pfn)
2764                        remove_node_from_stable_tree(stable_node);
2765                cond_resched();
2766        }
2767}
2768
2769static int ksm_memory_callback(struct notifier_block *self,
2770                               unsigned long action, void *arg)
2771{
2772        struct memory_notify *mn = arg;
2773
2774        switch (action) {
2775        case MEM_GOING_OFFLINE:
2776                /*
2777                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778                 * and remove_all_stable_nodes() while memory is going offline:
2779                 * it is unsafe for them to touch the stable tree at this time.
2780                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2781                 * which do not need the ksm_thread_mutex are all safe.
2782                 */
2783                mutex_lock(&ksm_thread_mutex);
2784                ksm_run |= KSM_RUN_OFFLINE;
2785                mutex_unlock(&ksm_thread_mutex);
2786                break;
2787
2788        case MEM_OFFLINE:
2789                /*
2790                 * Most of the work is done by page migration; but there might
2791                 * be a few stable_nodes left over, still pointing to struct
2792                 * pages which have been offlined: prune those from the tree,
2793                 * otherwise get_ksm_page() might later try to access a
2794                 * non-existent struct page.
2795                 */
2796                ksm_check_stable_tree(mn->start_pfn,
2797                                      mn->start_pfn + mn->nr_pages);
2798                /* fallthrough */
2799
2800        case MEM_CANCEL_OFFLINE:
2801                mutex_lock(&ksm_thread_mutex);
2802                ksm_run &= ~KSM_RUN_OFFLINE;
2803                mutex_unlock(&ksm_thread_mutex);
2804
2805                smp_mb();       /* wake_up_bit advises this */
2806                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2807                break;
2808        }
2809        return NOTIFY_OK;
2810}
2811#else
2812static void wait_while_offlining(void)
2813{
2814}
2815#endif /* CONFIG_MEMORY_HOTREMOVE */
2816
2817#ifdef CONFIG_SYSFS
2818/*
2819 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2820 */
2821
2822#define KSM_ATTR_RO(_name) \
2823        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2824#define KSM_ATTR(_name) \
2825        static struct kobj_attribute _name##_attr = \
2826                __ATTR(_name, 0644, _name##_show, _name##_store)
2827
2828static ssize_t sleep_millisecs_show(struct kobject *kobj,
2829                                    struct kobj_attribute *attr, char *buf)
2830{
2831        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2832}
2833
2834static ssize_t sleep_millisecs_store(struct kobject *kobj,
2835                                     struct kobj_attribute *attr,
2836                                     const char *buf, size_t count)
2837{
2838        unsigned long msecs;
2839        int err;
2840
2841        err = kstrtoul(buf, 10, &msecs);
2842        if (err || msecs > UINT_MAX)
2843                return -EINVAL;
2844
2845        ksm_thread_sleep_millisecs = msecs;
2846
2847        return count;
2848}
2849KSM_ATTR(sleep_millisecs);
2850
2851static ssize_t pages_to_scan_show(struct kobject *kobj,
2852                                  struct kobj_attribute *attr, char *buf)
2853{
2854        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2855}
2856
2857static ssize_t pages_to_scan_store(struct kobject *kobj,
2858                                   struct kobj_attribute *attr,
2859                                   const char *buf, size_t count)
2860{
2861        int err;
2862        unsigned long nr_pages;
2863
2864        err = kstrtoul(buf, 10, &nr_pages);
2865        if (err || nr_pages > UINT_MAX)
2866                return -EINVAL;
2867
2868        ksm_thread_pages_to_scan = nr_pages;
2869
2870        return count;
2871}
2872KSM_ATTR(pages_to_scan);
2873
2874static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875                        char *buf)
2876{
2877        return sprintf(buf, "%lu\n", ksm_run);
2878}
2879
2880static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881                         const char *buf, size_t count)
2882{
2883        int err;
2884        unsigned long flags;
2885
2886        err = kstrtoul(buf, 10, &flags);
2887        if (err || flags > UINT_MAX)
2888                return -EINVAL;
2889        if (flags > KSM_RUN_UNMERGE)
2890                return -EINVAL;
2891
2892        /*
2893         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895         * breaking COW to free the pages_shared (but leaves mm_slots
2896         * on the list for when ksmd may be set running again).
2897         */
2898
2899        mutex_lock(&ksm_thread_mutex);
2900        wait_while_offlining();
2901        if (ksm_run != flags) {
2902                ksm_run = flags;
2903                if (flags & KSM_RUN_UNMERGE) {
2904                        set_current_oom_origin();
2905                        err = unmerge_and_remove_all_rmap_items();
2906                        clear_current_oom_origin();
2907                        if (err) {
2908                                ksm_run = KSM_RUN_STOP;
2909                                count = err;
2910                        }
2911                }
2912        }
2913        mutex_unlock(&ksm_thread_mutex);
2914
2915        if (flags & KSM_RUN_MERGE)
2916                wake_up_interruptible(&ksm_thread_wait);
2917
2918        return count;
2919}
2920KSM_ATTR(run);
2921
2922#ifdef CONFIG_NUMA
2923static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924                                struct kobj_attribute *attr, char *buf)
2925{
2926        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2927}
2928
2929static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930                                   struct kobj_attribute *attr,
2931                                   const char *buf, size_t count)
2932{
2933        int err;
2934        unsigned long knob;
2935
2936        err = kstrtoul(buf, 10, &knob);
2937        if (err)
2938                return err;
2939        if (knob > 1)
2940                return -EINVAL;
2941
2942        mutex_lock(&ksm_thread_mutex);
2943        wait_while_offlining();
2944        if (ksm_merge_across_nodes != knob) {
2945                if (ksm_pages_shared || remove_all_stable_nodes())
2946                        err = -EBUSY;
2947                else if (root_stable_tree == one_stable_tree) {
2948                        struct rb_root *buf;
2949                        /*
2950                         * This is the first time that we switch away from the
2951                         * default of merging across nodes: must now allocate
2952                         * a buffer to hold as many roots as may be needed.
2953                         * Allocate stable and unstable together:
2954                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2955                         */
2956                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957                                      GFP_KERNEL);
2958                        /* Let us assume that RB_ROOT is NULL is zero */
2959                        if (!buf)
2960                                err = -ENOMEM;
2961                        else {
2962                                root_stable_tree = buf;
2963                                root_unstable_tree = buf + nr_node_ids;
2964                                /* Stable tree is empty but not the unstable */
2965                                root_unstable_tree[0] = one_unstable_tree[0];
2966                        }
2967                }
2968                if (!err) {
2969                        ksm_merge_across_nodes = knob;
2970                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971                }
2972        }
2973        mutex_unlock(&ksm_thread_mutex);
2974
2975        return err ? err : count;
2976}
2977KSM_ATTR(merge_across_nodes);
2978#endif
2979
2980static ssize_t use_zero_pages_show(struct kobject *kobj,
2981                                struct kobj_attribute *attr, char *buf)
2982{
2983        return sprintf(buf, "%u\n", ksm_use_zero_pages);
2984}
2985static ssize_t use_zero_pages_store(struct kobject *kobj,
2986                                   struct kobj_attribute *attr,
2987                                   const char *buf, size_t count)
2988{
2989        int err;
2990        bool value;
2991
2992        err = kstrtobool(buf, &value);
2993        if (err)
2994                return -EINVAL;
2995
2996        ksm_use_zero_pages = value;
2997
2998        return count;
2999}
3000KSM_ATTR(use_zero_pages);
3001
3002static ssize_t max_page_sharing_show(struct kobject *kobj,
3003                                     struct kobj_attribute *attr, char *buf)
3004{
3005        return sprintf(buf, "%u\n", ksm_max_page_sharing);
3006}
3007
3008static ssize_t max_page_sharing_store(struct kobject *kobj,
3009                                      struct kobj_attribute *attr,
3010                                      const char *buf, size_t count)
3011{
3012        int err;
3013        int knob;
3014
3015        err = kstrtoint(buf, 10, &knob);
3016        if (err)
3017                return err;
3018        /*
3019         * When a KSM page is created it is shared by 2 mappings. This
3020         * being a signed comparison, it implicitly verifies it's not
3021         * negative.
3022         */
3023        if (knob < 2)
3024                return -EINVAL;
3025
3026        if (READ_ONCE(ksm_max_page_sharing) == knob)
3027                return count;
3028
3029        mutex_lock(&ksm_thread_mutex);
3030        wait_while_offlining();
3031        if (ksm_max_page_sharing != knob) {
3032                if (ksm_pages_shared || remove_all_stable_nodes())
3033                        err = -EBUSY;
3034                else
3035                        ksm_max_page_sharing = knob;
3036        }
3037        mutex_unlock(&ksm_thread_mutex);
3038
3039        return err ? err : count;
3040}
3041KSM_ATTR(max_page_sharing);
3042
3043static ssize_t pages_shared_show(struct kobject *kobj,
3044                                 struct kobj_attribute *attr, char *buf)
3045{
3046        return sprintf(buf, "%lu\n", ksm_pages_shared);
3047}
3048KSM_ATTR_RO(pages_shared);
3049
3050static ssize_t pages_sharing_show(struct kobject *kobj,
3051                                  struct kobj_attribute *attr, char *buf)
3052{
3053        return sprintf(buf, "%lu\n", ksm_pages_sharing);
3054}
3055KSM_ATTR_RO(pages_sharing);
3056
3057static ssize_t pages_unshared_show(struct kobject *kobj,
3058                                   struct kobj_attribute *attr, char *buf)
3059{
3060        return sprintf(buf, "%lu\n", ksm_pages_unshared);
3061}
3062KSM_ATTR_RO(pages_unshared);
3063
3064static ssize_t pages_volatile_show(struct kobject *kobj,
3065                                   struct kobj_attribute *attr, char *buf)
3066{
3067        long ksm_pages_volatile;
3068
3069        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070                                - ksm_pages_sharing - ksm_pages_unshared;
3071        /*
3072         * It was not worth any locking to calculate that statistic,
3073         * but it might therefore sometimes be negative: conceal that.
3074         */
3075        if (ksm_pages_volatile < 0)
3076                ksm_pages_volatile = 0;
3077        return sprintf(buf, "%ld\n", ksm_pages_volatile);
3078}
3079KSM_ATTR_RO(pages_volatile);
3080
3081static ssize_t stable_node_dups_show(struct kobject *kobj,
3082                                     struct kobj_attribute *attr, char *buf)
3083{
3084        return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3085}
3086KSM_ATTR_RO(stable_node_dups);
3087
3088static ssize_t stable_node_chains_show(struct kobject *kobj,
3089                                       struct kobj_attribute *attr, char *buf)
3090{
3091        return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3092}
3093KSM_ATTR_RO(stable_node_chains);
3094
3095static ssize_t
3096stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097                                        struct kobj_attribute *attr,
3098                                        char *buf)
3099{
3100        return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101}
3102
3103static ssize_t
3104stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105                                         struct kobj_attribute *attr,
3106                                         const char *buf, size_t count)
3107{
3108        unsigned long msecs;
3109        int err;
3110
3111        err = kstrtoul(buf, 10, &msecs);
3112        if (err || msecs > UINT_MAX)
3113                return -EINVAL;
3114
3115        ksm_stable_node_chains_prune_millisecs = msecs;
3116
3117        return count;
3118}
3119KSM_ATTR(stable_node_chains_prune_millisecs);
3120
3121static ssize_t full_scans_show(struct kobject *kobj,
3122                               struct kobj_attribute *attr, char *buf)
3123{
3124        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3125}
3126KSM_ATTR_RO(full_scans);
3127
3128static struct attribute *ksm_attrs[] = {
3129        &sleep_millisecs_attr.attr,
3130        &pages_to_scan_attr.attr,
3131        &run_attr.attr,
3132        &pages_shared_attr.attr,
3133        &pages_sharing_attr.attr,
3134        &pages_unshared_attr.attr,
3135        &pages_volatile_attr.attr,
3136        &full_scans_attr.attr,
3137#ifdef CONFIG_NUMA
3138        &merge_across_nodes_attr.attr,
3139#endif
3140        &max_page_sharing_attr.attr,
3141        &stable_node_chains_attr.attr,
3142        &stable_node_dups_attr.attr,
3143        &stable_node_chains_prune_millisecs_attr.attr,
3144        &use_zero_pages_attr.attr,
3145        NULL,
3146};
3147
3148static const struct attribute_group ksm_attr_group = {
3149        .attrs = ksm_attrs,
3150        .name = "ksm",
3151};
3152#endif /* CONFIG_SYSFS */
3153
3154static int __init ksm_init(void)
3155{
3156        struct task_struct *ksm_thread;
3157        int err;
3158
3159        /* The correct value depends on page size and endianness */
3160        zero_checksum = calc_checksum(ZERO_PAGE(0));
3161        /* Default to false for backwards compatibility */
3162        ksm_use_zero_pages = false;
3163
3164        err = ksm_slab_init();
3165        if (err)
3166                goto out;
3167
3168        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169        if (IS_ERR(ksm_thread)) {
3170                pr_err("ksm: creating kthread failed\n");
3171                err = PTR_ERR(ksm_thread);
3172                goto out_free;
3173        }
3174
3175#ifdef CONFIG_SYSFS
3176        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177        if (err) {
3178                pr_err("ksm: register sysfs failed\n");
3179                kthread_stop(ksm_thread);
3180                goto out_free;
3181        }
3182#else
3183        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3184
3185#endif /* CONFIG_SYSFS */
3186
3187#ifdef CONFIG_MEMORY_HOTREMOVE
3188        /* There is no significance to this priority 100 */
3189        hotplug_memory_notifier(ksm_memory_callback, 100);
3190#endif
3191        return 0;
3192
3193out_free:
3194        ksm_slab_free();
3195out:
3196        return err;
3197}
3198subsys_initcall(ksm_init);
3199