linux/net/ipv4/tcp_fastopen.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/crypto.h>
   3#include <linux/err.h>
   4#include <linux/init.h>
   5#include <linux/kernel.h>
   6#include <linux/list.h>
   7#include <linux/tcp.h>
   8#include <linux/rcupdate.h>
   9#include <linux/rculist.h>
  10#include <net/inetpeer.h>
  11#include <net/tcp.h>
  12
  13void tcp_fastopen_init_key_once(struct net *net)
  14{
  15        u8 key[TCP_FASTOPEN_KEY_LENGTH];
  16        struct tcp_fastopen_context *ctxt;
  17
  18        rcu_read_lock();
  19        ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
  20        if (ctxt) {
  21                rcu_read_unlock();
  22                return;
  23        }
  24        rcu_read_unlock();
  25
  26        /* tcp_fastopen_reset_cipher publishes the new context
  27         * atomically, so we allow this race happening here.
  28         *
  29         * All call sites of tcp_fastopen_cookie_gen also check
  30         * for a valid cookie, so this is an acceptable risk.
  31         */
  32        get_random_bytes(key, sizeof(key));
  33        tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
  34}
  35
  36static void tcp_fastopen_ctx_free(struct rcu_head *head)
  37{
  38        struct tcp_fastopen_context *ctx =
  39            container_of(head, struct tcp_fastopen_context, rcu);
  40        crypto_free_cipher(ctx->tfm);
  41        kfree(ctx);
  42}
  43
  44void tcp_fastopen_destroy_cipher(struct sock *sk)
  45{
  46        struct tcp_fastopen_context *ctx;
  47
  48        ctx = rcu_dereference_protected(
  49                        inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
  50        if (ctx)
  51                call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
  52}
  53
  54void tcp_fastopen_ctx_destroy(struct net *net)
  55{
  56        struct tcp_fastopen_context *ctxt;
  57
  58        spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
  59
  60        ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
  61                                lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
  62        rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
  63        spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
  64
  65        if (ctxt)
  66                call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
  67}
  68
  69int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
  70                              void *key, unsigned int len)
  71{
  72        struct tcp_fastopen_context *ctx, *octx;
  73        struct fastopen_queue *q;
  74        int err;
  75
  76        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  77        if (!ctx)
  78                return -ENOMEM;
  79        ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
  80
  81        if (IS_ERR(ctx->tfm)) {
  82                err = PTR_ERR(ctx->tfm);
  83error:          kfree(ctx);
  84                pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
  85                return err;
  86        }
  87        err = crypto_cipher_setkey(ctx->tfm, key, len);
  88        if (err) {
  89                pr_err("TCP: TFO cipher key error: %d\n", err);
  90                crypto_free_cipher(ctx->tfm);
  91                goto error;
  92        }
  93        memcpy(ctx->key, key, len);
  94
  95
  96        spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
  97        if (sk) {
  98                q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
  99                octx = rcu_dereference_protected(q->ctx,
 100                        lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 101                rcu_assign_pointer(q->ctx, ctx);
 102        } else {
 103                octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
 104                        lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 105                rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
 106        }
 107        spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
 108
 109        if (octx)
 110                call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 111        return err;
 112}
 113
 114static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
 115                                      struct tcp_fastopen_cookie *foc)
 116{
 117        struct tcp_fastopen_context *ctx;
 118        bool ok = false;
 119
 120        rcu_read_lock();
 121
 122        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
 123        if (!ctx)
 124                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
 125
 126        if (ctx) {
 127                crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
 128                foc->len = TCP_FASTOPEN_COOKIE_SIZE;
 129                ok = true;
 130        }
 131        rcu_read_unlock();
 132        return ok;
 133}
 134
 135/* Generate the fastopen cookie by doing aes128 encryption on both
 136 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
 137 * addresses. For the longer IPv6 addresses use CBC-MAC.
 138 *
 139 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
 140 */
 141static bool tcp_fastopen_cookie_gen(struct sock *sk,
 142                                    struct request_sock *req,
 143                                    struct sk_buff *syn,
 144                                    struct tcp_fastopen_cookie *foc)
 145{
 146        if (req->rsk_ops->family == AF_INET) {
 147                const struct iphdr *iph = ip_hdr(syn);
 148
 149                __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
 150                return __tcp_fastopen_cookie_gen(sk, path, foc);
 151        }
 152
 153#if IS_ENABLED(CONFIG_IPV6)
 154        if (req->rsk_ops->family == AF_INET6) {
 155                const struct ipv6hdr *ip6h = ipv6_hdr(syn);
 156                struct tcp_fastopen_cookie tmp;
 157
 158                if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
 159                        struct in6_addr *buf = &tmp.addr;
 160                        int i;
 161
 162                        for (i = 0; i < 4; i++)
 163                                buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
 164                        return __tcp_fastopen_cookie_gen(sk, buf, foc);
 165                }
 166        }
 167#endif
 168        return false;
 169}
 170
 171
 172/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
 173 * queue this additional data / FIN.
 174 */
 175void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
 176{
 177        struct tcp_sock *tp = tcp_sk(sk);
 178
 179        if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
 180                return;
 181
 182        skb = skb_clone(skb, GFP_ATOMIC);
 183        if (!skb)
 184                return;
 185
 186        skb_dst_drop(skb);
 187        /* segs_in has been initialized to 1 in tcp_create_openreq_child().
 188         * Hence, reset segs_in to 0 before calling tcp_segs_in()
 189         * to avoid double counting.  Also, tcp_segs_in() expects
 190         * skb->len to include the tcp_hdrlen.  Hence, it should
 191         * be called before __skb_pull().
 192         */
 193        tp->segs_in = 0;
 194        tcp_segs_in(tp, skb);
 195        __skb_pull(skb, tcp_hdrlen(skb));
 196        sk_forced_mem_schedule(sk, skb->truesize);
 197        skb_set_owner_r(skb, sk);
 198
 199        TCP_SKB_CB(skb)->seq++;
 200        TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
 201
 202        tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 203        __skb_queue_tail(&sk->sk_receive_queue, skb);
 204        tp->syn_data_acked = 1;
 205
 206        /* u64_stats_update_begin(&tp->syncp) not needed here,
 207         * as we certainly are not changing upper 32bit value (0)
 208         */
 209        tp->bytes_received = skb->len;
 210
 211        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
 212                tcp_fin(sk);
 213}
 214
 215static struct sock *tcp_fastopen_create_child(struct sock *sk,
 216                                              struct sk_buff *skb,
 217                                              struct request_sock *req)
 218{
 219        struct tcp_sock *tp;
 220        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
 221        struct sock *child;
 222        bool own_req;
 223
 224        req->num_retrans = 0;
 225        req->num_timeout = 0;
 226        req->sk = NULL;
 227
 228        child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
 229                                                         NULL, &own_req);
 230        if (!child)
 231                return NULL;
 232
 233        spin_lock(&queue->fastopenq.lock);
 234        queue->fastopenq.qlen++;
 235        spin_unlock(&queue->fastopenq.lock);
 236
 237        /* Initialize the child socket. Have to fix some values to take
 238         * into account the child is a Fast Open socket and is created
 239         * only out of the bits carried in the SYN packet.
 240         */
 241        tp = tcp_sk(child);
 242
 243        rcu_assign_pointer(tp->fastopen_rsk, req);
 244        tcp_rsk(req)->tfo_listener = true;
 245
 246        /* RFC1323: The window in SYN & SYN/ACK segments is never
 247         * scaled. So correct it appropriately.
 248         */
 249        tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
 250        tp->max_window = tp->snd_wnd;
 251
 252        /* Activate the retrans timer so that SYNACK can be retransmitted.
 253         * The request socket is not added to the ehash
 254         * because it's been added to the accept queue directly.
 255         */
 256        inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
 257                                  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
 258
 259        refcount_set(&req->rsk_refcnt, 2);
 260
 261        /* Now finish processing the fastopen child socket. */
 262        tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
 263
 264        tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 265
 266        tcp_fastopen_add_skb(child, skb);
 267
 268        tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
 269        tp->rcv_wup = tp->rcv_nxt;
 270        /* tcp_conn_request() is sending the SYNACK,
 271         * and queues the child into listener accept queue.
 272         */
 273        return child;
 274}
 275
 276static bool tcp_fastopen_queue_check(struct sock *sk)
 277{
 278        struct fastopen_queue *fastopenq;
 279
 280        /* Make sure the listener has enabled fastopen, and we don't
 281         * exceed the max # of pending TFO requests allowed before trying
 282         * to validating the cookie in order to avoid burning CPU cycles
 283         * unnecessarily.
 284         *
 285         * XXX (TFO) - The implication of checking the max_qlen before
 286         * processing a cookie request is that clients can't differentiate
 287         * between qlen overflow causing Fast Open to be disabled
 288         * temporarily vs a server not supporting Fast Open at all.
 289         */
 290        fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 291        if (fastopenq->max_qlen == 0)
 292                return false;
 293
 294        if (fastopenq->qlen >= fastopenq->max_qlen) {
 295                struct request_sock *req1;
 296                spin_lock(&fastopenq->lock);
 297                req1 = fastopenq->rskq_rst_head;
 298                if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
 299                        __NET_INC_STATS(sock_net(sk),
 300                                        LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
 301                        spin_unlock(&fastopenq->lock);
 302                        return false;
 303                }
 304                fastopenq->rskq_rst_head = req1->dl_next;
 305                fastopenq->qlen--;
 306                spin_unlock(&fastopenq->lock);
 307                reqsk_put(req1);
 308        }
 309        return true;
 310}
 311
 312static bool tcp_fastopen_no_cookie(const struct sock *sk,
 313                                   const struct dst_entry *dst,
 314                                   int flag)
 315{
 316        return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
 317               tcp_sk(sk)->fastopen_no_cookie ||
 318               (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
 319}
 320
 321/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
 322 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
 323 * cookie request (foc->len == 0).
 324 */
 325struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
 326                              struct request_sock *req,
 327                              struct tcp_fastopen_cookie *foc,
 328                              const struct dst_entry *dst)
 329{
 330        bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
 331        int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
 332        struct tcp_fastopen_cookie valid_foc = { .len = -1 };
 333        struct sock *child;
 334
 335        if (foc->len == 0) /* Client requests a cookie */
 336                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
 337
 338        if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
 339              (syn_data || foc->len >= 0) &&
 340              tcp_fastopen_queue_check(sk))) {
 341                foc->len = -1;
 342                return NULL;
 343        }
 344
 345        if (syn_data &&
 346            tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
 347                goto fastopen;
 348
 349        if (foc->len >= 0 &&  /* Client presents or requests a cookie */
 350            tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
 351            foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
 352            foc->len == valid_foc.len &&
 353            !memcmp(foc->val, valid_foc.val, foc->len)) {
 354                /* Cookie is valid. Create a (full) child socket to accept
 355                 * the data in SYN before returning a SYN-ACK to ack the
 356                 * data. If we fail to create the socket, fall back and
 357                 * ack the ISN only but includes the same cookie.
 358                 *
 359                 * Note: Data-less SYN with valid cookie is allowed to send
 360                 * data in SYN_RECV state.
 361                 */
 362fastopen:
 363                child = tcp_fastopen_create_child(sk, skb, req);
 364                if (child) {
 365                        foc->len = -1;
 366                        NET_INC_STATS(sock_net(sk),
 367                                      LINUX_MIB_TCPFASTOPENPASSIVE);
 368                        return child;
 369                }
 370                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
 371        } else if (foc->len > 0) /* Client presents an invalid cookie */
 372                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
 373
 374        valid_foc.exp = foc->exp;
 375        *foc = valid_foc;
 376        return NULL;
 377}
 378
 379bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
 380                               struct tcp_fastopen_cookie *cookie)
 381{
 382        const struct dst_entry *dst;
 383
 384        tcp_fastopen_cache_get(sk, mss, cookie);
 385
 386        /* Firewall blackhole issue check */
 387        if (tcp_fastopen_active_should_disable(sk)) {
 388                cookie->len = -1;
 389                return false;
 390        }
 391
 392        dst = __sk_dst_get(sk);
 393
 394        if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
 395                cookie->len = -1;
 396                return true;
 397        }
 398        return cookie->len > 0;
 399}
 400
 401/* This function checks if we want to defer sending SYN until the first
 402 * write().  We defer under the following conditions:
 403 * 1. fastopen_connect sockopt is set
 404 * 2. we have a valid cookie
 405 * Return value: return true if we want to defer until application writes data
 406 *               return false if we want to send out SYN immediately
 407 */
 408bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
 409{
 410        struct tcp_fastopen_cookie cookie = { .len = 0 };
 411        struct tcp_sock *tp = tcp_sk(sk);
 412        u16 mss;
 413
 414        if (tp->fastopen_connect && !tp->fastopen_req) {
 415                if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
 416                        inet_sk(sk)->defer_connect = 1;
 417                        return true;
 418                }
 419
 420                /* Alloc fastopen_req in order for FO option to be included
 421                 * in SYN
 422                 */
 423                tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
 424                                           sk->sk_allocation);
 425                if (tp->fastopen_req)
 426                        tp->fastopen_req->cookie = cookie;
 427                else
 428                        *err = -ENOBUFS;
 429        }
 430        return false;
 431}
 432EXPORT_SYMBOL(tcp_fastopen_defer_connect);
 433
 434/*
 435 * The following code block is to deal with middle box issues with TFO:
 436 * Middlebox firewall issues can potentially cause server's data being
 437 * blackholed after a successful 3WHS using TFO.
 438 * The proposed solution is to disable active TFO globally under the
 439 * following circumstances:
 440 *   1. client side TFO socket receives out of order FIN
 441 *   2. client side TFO socket receives out of order RST
 442 *   3. client side TFO socket has timed out three times consecutively during
 443 *      or after handshake
 444 * We disable active side TFO globally for 1hr at first. Then if it
 445 * happens again, we disable it for 2h, then 4h, 8h, ...
 446 * And we reset the timeout back to 1hr when we see a successful active
 447 * TFO connection with data exchanges.
 448 */
 449
 450/* Disable active TFO and record current jiffies and
 451 * tfo_active_disable_times
 452 */
 453void tcp_fastopen_active_disable(struct sock *sk)
 454{
 455        struct net *net = sock_net(sk);
 456
 457        /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
 458        WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
 459
 460        /* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
 461         * We want net->ipv4.tfo_active_disable_stamp to be updated first.
 462         */
 463        smp_mb__before_atomic();
 464        atomic_inc(&net->ipv4.tfo_active_disable_times);
 465
 466        NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
 467}
 468
 469/* Calculate timeout for tfo active disable
 470 * Return true if we are still in the active TFO disable period
 471 * Return false if timeout already expired and we should use active TFO
 472 */
 473bool tcp_fastopen_active_should_disable(struct sock *sk)
 474{
 475        unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
 476        int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
 477        unsigned long timeout;
 478        int multiplier;
 479
 480        if (!tfo_da_times)
 481                return false;
 482
 483        /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
 484        smp_rmb();
 485
 486        /* Limit timout to max: 2^6 * initial timeout */
 487        multiplier = 1 << min(tfo_da_times - 1, 6);
 488
 489        /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
 490        timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
 491                  multiplier * tfo_bh_timeout * HZ;
 492        if (time_before(jiffies, timeout))
 493                return true;
 494
 495        /* Mark check bit so we can check for successful active TFO
 496         * condition and reset tfo_active_disable_times
 497         */
 498        tcp_sk(sk)->syn_fastopen_ch = 1;
 499        return false;
 500}
 501
 502/* Disable active TFO if FIN is the only packet in the ofo queue
 503 * and no data is received.
 504 * Also check if we can reset tfo_active_disable_times if data is
 505 * received successfully on a marked active TFO sockets opened on
 506 * a non-loopback interface
 507 */
 508void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
 509{
 510        struct tcp_sock *tp = tcp_sk(sk);
 511        struct dst_entry *dst;
 512        struct sk_buff *skb;
 513
 514        if (!tp->syn_fastopen)
 515                return;
 516
 517        if (!tp->data_segs_in) {
 518                skb = skb_rb_first(&tp->out_of_order_queue);
 519                if (skb && !skb_rb_next(skb)) {
 520                        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
 521                                tcp_fastopen_active_disable(sk);
 522                                return;
 523                        }
 524                }
 525        } else if (tp->syn_fastopen_ch &&
 526                   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
 527                dst = sk_dst_get(sk);
 528                if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
 529                        atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
 530                dst_release(dst);
 531        }
 532}
 533
 534void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
 535{
 536        u32 timeouts = inet_csk(sk)->icsk_retransmits;
 537        struct tcp_sock *tp = tcp_sk(sk);
 538
 539        /* Broken middle-boxes may black-hole Fast Open connection during or
 540         * even after the handshake. Be extremely conservative and pause
 541         * Fast Open globally after hitting the third consecutive timeout or
 542         * exceeding the configured timeout limit.
 543         */
 544        if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
 545            (timeouts == 2 || (timeouts < 2 && expired))) {
 546                tcp_fastopen_active_disable(sk);
 547                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
 548        }
 549}
 550