linux/net/ipv4/udp.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              The User Datagram Protocol (UDP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *              Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *              Alan Cox        :       verify_area() calls
  16 *              Alan Cox        :       stopped close while in use off icmp
  17 *                                      messages. Not a fix but a botch that
  18 *                                      for udp at least is 'valid'.
  19 *              Alan Cox        :       Fixed icmp handling properly
  20 *              Alan Cox        :       Correct error for oversized datagrams
  21 *              Alan Cox        :       Tidied select() semantics.
  22 *              Alan Cox        :       udp_err() fixed properly, also now
  23 *                                      select and read wake correctly on errors
  24 *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
  25 *              Alan Cox        :       UDP can count its memory
  26 *              Alan Cox        :       send to an unknown connection causes
  27 *                                      an ECONNREFUSED off the icmp, but
  28 *                                      does NOT close.
  29 *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
  30 *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
  31 *                                      bug no longer crashes it.
  32 *              Fred Van Kempen :       Net2e support for sk->broadcast.
  33 *              Alan Cox        :       Uses skb_free_datagram
  34 *              Alan Cox        :       Added get/set sockopt support.
  35 *              Alan Cox        :       Broadcasting without option set returns EACCES.
  36 *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
  37 *              Alan Cox        :       Use ip_tos and ip_ttl
  38 *              Alan Cox        :       SNMP Mibs
  39 *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
  40 *              Matt Dillon     :       UDP length checks.
  41 *              Alan Cox        :       Smarter af_inet used properly.
  42 *              Alan Cox        :       Use new kernel side addressing.
  43 *              Alan Cox        :       Incorrect return on truncated datagram receive.
  44 *      Arnt Gulbrandsen        :       New udp_send and stuff
  45 *              Alan Cox        :       Cache last socket
  46 *              Alan Cox        :       Route cache
  47 *              Jon Peatfield   :       Minor efficiency fix to sendto().
  48 *              Mike Shaver     :       RFC1122 checks.
  49 *              Alan Cox        :       Nonblocking error fix.
  50 *      Willy Konynenberg       :       Transparent proxying support.
  51 *              Mike McLagan    :       Routing by source
  52 *              David S. Miller :       New socket lookup architecture.
  53 *                                      Last socket cache retained as it
  54 *                                      does have a high hit rate.
  55 *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
  56 *              Andi Kleen      :       Some cleanups, cache destination entry
  57 *                                      for connect.
  58 *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
  59 *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
  60 *                                      return ENOTCONN for unconnected sockets (POSIX)
  61 *              Janos Farkas    :       don't deliver multi/broadcasts to a different
  62 *                                      bound-to-device socket
  63 *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
  64 *                                      datagrams.
  65 *      Hirokazu Takahashi      :       sendfile() on UDP works now.
  66 *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
  67 *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
  68 *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
  69 *                                      a single port at the same time.
  70 *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *      James Chapman           :       Add L2TP encapsulation type.
  72 *
  73 *
  74 *              This program is free software; you can redistribute it and/or
  75 *              modify it under the terms of the GNU General Public License
  76 *              as published by the Free Software Foundation; either version
  77 *              2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
  82#include <linux/uaccess.h>
  83#include <asm/ioctls.h>
  84#include <linux/memblock.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
  93#include <linux/inetdevice.h>
  94#include <linux/in.h>
  95#include <linux/errno.h>
  96#include <linux/timer.h>
  97#include <linux/mm.h>
  98#include <linux/inet.h>
  99#include <linux/netdevice.h>
 100#include <linux/slab.h>
 101#include <net/tcp_states.h>
 102#include <linux/skbuff.h>
 103#include <linux/proc_fs.h>
 104#include <linux/seq_file.h>
 105#include <net/net_namespace.h>
 106#include <net/icmp.h>
 107#include <net/inet_hashtables.h>
 108#include <net/ip_tunnels.h>
 109#include <net/route.h>
 110#include <net/checksum.h>
 111#include <net/xfrm.h>
 112#include <trace/events/udp.h>
 113#include <linux/static_key.h>
 114#include <linux/btf_ids.h>
 115#include <trace/events/skb.h>
 116#include <net/busy_poll.h>
 117#include "udp_impl.h"
 118#include <net/sock_reuseport.h>
 119#include <net/addrconf.h>
 120#include <net/udp_tunnel.h>
 121#if IS_ENABLED(CONFIG_IPV6)
 122#include <net/ipv6_stubs.h>
 123#endif
 124
 125struct udp_table udp_table __read_mostly;
 126EXPORT_SYMBOL(udp_table);
 127
 128long sysctl_udp_mem[3] __read_mostly;
 129EXPORT_SYMBOL(sysctl_udp_mem);
 130
 131atomic_long_t udp_memory_allocated;
 132EXPORT_SYMBOL(udp_memory_allocated);
 133
 134#define MAX_UDP_PORTS 65536
 135#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 136
 137static int udp_lib_lport_inuse(struct net *net, __u16 num,
 138                               const struct udp_hslot *hslot,
 139                               unsigned long *bitmap,
 140                               struct sock *sk, unsigned int log)
 141{
 142        struct sock *sk2;
 143        kuid_t uid = sock_i_uid(sk);
 144
 145        sk_for_each(sk2, &hslot->head) {
 146                if (net_eq(sock_net(sk2), net) &&
 147                    sk2 != sk &&
 148                    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 149                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 150                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 151                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 152                    inet_rcv_saddr_equal(sk, sk2, true)) {
 153                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 154                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 155                            uid_eq(uid, sock_i_uid(sk2))) {
 156                                if (!bitmap)
 157                                        return 0;
 158                        } else {
 159                                if (!bitmap)
 160                                        return 1;
 161                                __set_bit(udp_sk(sk2)->udp_port_hash >> log,
 162                                          bitmap);
 163                        }
 164                }
 165        }
 166        return 0;
 167}
 168
 169/*
 170 * Note: we still hold spinlock of primary hash chain, so no other writer
 171 * can insert/delete a socket with local_port == num
 172 */
 173static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 174                                struct udp_hslot *hslot2,
 175                                struct sock *sk)
 176{
 177        struct sock *sk2;
 178        kuid_t uid = sock_i_uid(sk);
 179        int res = 0;
 180
 181        spin_lock(&hslot2->lock);
 182        udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 183                if (net_eq(sock_net(sk2), net) &&
 184                    sk2 != sk &&
 185                    (udp_sk(sk2)->udp_port_hash == num) &&
 186                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 187                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 188                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 189                    inet_rcv_saddr_equal(sk, sk2, true)) {
 190                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 191                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 192                            uid_eq(uid, sock_i_uid(sk2))) {
 193                                res = 0;
 194                        } else {
 195                                res = 1;
 196                        }
 197                        break;
 198                }
 199        }
 200        spin_unlock(&hslot2->lock);
 201        return res;
 202}
 203
 204static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 205{
 206        struct net *net = sock_net(sk);
 207        kuid_t uid = sock_i_uid(sk);
 208        struct sock *sk2;
 209
 210        sk_for_each(sk2, &hslot->head) {
 211                if (net_eq(sock_net(sk2), net) &&
 212                    sk2 != sk &&
 213                    sk2->sk_family == sk->sk_family &&
 214                    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 215                    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 216                    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 217                    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 218                    inet_rcv_saddr_equal(sk, sk2, false)) {
 219                        return reuseport_add_sock(sk, sk2,
 220                                                  inet_rcv_saddr_any(sk));
 221                }
 222        }
 223
 224        return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 225}
 226
 227/**
 228 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 229 *
 230 *  @sk:          socket struct in question
 231 *  @snum:        port number to look up
 232 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 233 *                   with NULL address
 234 */
 235int udp_lib_get_port(struct sock *sk, unsigned short snum,
 236                     unsigned int hash2_nulladdr)
 237{
 238        struct udp_hslot *hslot, *hslot2;
 239        struct udp_table *udptable = sk->sk_prot->h.udp_table;
 240        int    error = 1;
 241        struct net *net = sock_net(sk);
 242
 243        if (!snum) {
 244                int low, high, remaining;
 245                unsigned int rand;
 246                unsigned short first, last;
 247                DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 248
 249                inet_get_local_port_range(net, &low, &high);
 250                remaining = (high - low) + 1;
 251
 252                rand = prandom_u32();
 253                first = reciprocal_scale(rand, remaining) + low;
 254                /*
 255                 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 256                 */
 257                rand = (rand | 1) * (udptable->mask + 1);
 258                last = first + udptable->mask + 1;
 259                do {
 260                        hslot = udp_hashslot(udptable, net, first);
 261                        bitmap_zero(bitmap, PORTS_PER_CHAIN);
 262                        spin_lock_bh(&hslot->lock);
 263                        udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 264                                            udptable->log);
 265
 266                        snum = first;
 267                        /*
 268                         * Iterate on all possible values of snum for this hash.
 269                         * Using steps of an odd multiple of UDP_HTABLE_SIZE
 270                         * give us randomization and full range coverage.
 271                         */
 272                        do {
 273                                if (low <= snum && snum <= high &&
 274                                    !test_bit(snum >> udptable->log, bitmap) &&
 275                                    !inet_is_local_reserved_port(net, snum))
 276                                        goto found;
 277                                snum += rand;
 278                        } while (snum != first);
 279                        spin_unlock_bh(&hslot->lock);
 280                        cond_resched();
 281                } while (++first != last);
 282                goto fail;
 283        } else {
 284                hslot = udp_hashslot(udptable, net, snum);
 285                spin_lock_bh(&hslot->lock);
 286                if (hslot->count > 10) {
 287                        int exist;
 288                        unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 289
 290                        slot2          &= udptable->mask;
 291                        hash2_nulladdr &= udptable->mask;
 292
 293                        hslot2 = udp_hashslot2(udptable, slot2);
 294                        if (hslot->count < hslot2->count)
 295                                goto scan_primary_hash;
 296
 297                        exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 298                        if (!exist && (hash2_nulladdr != slot2)) {
 299                                hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 300                                exist = udp_lib_lport_inuse2(net, snum, hslot2,
 301                                                             sk);
 302                        }
 303                        if (exist)
 304                                goto fail_unlock;
 305                        else
 306                                goto found;
 307                }
 308scan_primary_hash:
 309                if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 310                        goto fail_unlock;
 311        }
 312found:
 313        inet_sk(sk)->inet_num = snum;
 314        udp_sk(sk)->udp_port_hash = snum;
 315        udp_sk(sk)->udp_portaddr_hash ^= snum;
 316        if (sk_unhashed(sk)) {
 317                if (sk->sk_reuseport &&
 318                    udp_reuseport_add_sock(sk, hslot)) {
 319                        inet_sk(sk)->inet_num = 0;
 320                        udp_sk(sk)->udp_port_hash = 0;
 321                        udp_sk(sk)->udp_portaddr_hash ^= snum;
 322                        goto fail_unlock;
 323                }
 324
 325                sk_add_node_rcu(sk, &hslot->head);
 326                hslot->count++;
 327                sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 328
 329                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 330                spin_lock(&hslot2->lock);
 331                if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 332                    sk->sk_family == AF_INET6)
 333                        hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 334                                           &hslot2->head);
 335                else
 336                        hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 337                                           &hslot2->head);
 338                hslot2->count++;
 339                spin_unlock(&hslot2->lock);
 340        }
 341        sock_set_flag(sk, SOCK_RCU_FREE);
 342        error = 0;
 343fail_unlock:
 344        spin_unlock_bh(&hslot->lock);
 345fail:
 346        return error;
 347}
 348EXPORT_SYMBOL(udp_lib_get_port);
 349
 350int udp_v4_get_port(struct sock *sk, unsigned short snum)
 351{
 352        unsigned int hash2_nulladdr =
 353                ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 354        unsigned int hash2_partial =
 355                ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 356
 357        /* precompute partial secondary hash */
 358        udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 359        return udp_lib_get_port(sk, snum, hash2_nulladdr);
 360}
 361
 362static int compute_score(struct sock *sk, struct net *net,
 363                         __be32 saddr, __be16 sport,
 364                         __be32 daddr, unsigned short hnum,
 365                         int dif, int sdif)
 366{
 367        int score;
 368        struct inet_sock *inet;
 369        bool dev_match;
 370
 371        if (!net_eq(sock_net(sk), net) ||
 372            udp_sk(sk)->udp_port_hash != hnum ||
 373            ipv6_only_sock(sk))
 374                return -1;
 375
 376        if (sk->sk_rcv_saddr != daddr)
 377                return -1;
 378
 379        score = (sk->sk_family == PF_INET) ? 2 : 1;
 380
 381        inet = inet_sk(sk);
 382        if (inet->inet_daddr) {
 383                if (inet->inet_daddr != saddr)
 384                        return -1;
 385                score += 4;
 386        }
 387
 388        if (inet->inet_dport) {
 389                if (inet->inet_dport != sport)
 390                        return -1;
 391                score += 4;
 392        }
 393
 394        dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 395                                        dif, sdif);
 396        if (!dev_match)
 397                return -1;
 398        score += 4;
 399
 400        if (sk->sk_incoming_cpu == raw_smp_processor_id())
 401                score++;
 402        return score;
 403}
 404
 405static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 406                       const __u16 lport, const __be32 faddr,
 407                       const __be16 fport)
 408{
 409        static u32 udp_ehash_secret __read_mostly;
 410
 411        net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 412
 413        return __inet_ehashfn(laddr, lport, faddr, fport,
 414                              udp_ehash_secret + net_hash_mix(net));
 415}
 416
 417static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
 418                                     struct sk_buff *skb,
 419                                     __be32 saddr, __be16 sport,
 420                                     __be32 daddr, unsigned short hnum)
 421{
 422        struct sock *reuse_sk = NULL;
 423        u32 hash;
 424
 425        if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
 426                hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
 427                reuse_sk = reuseport_select_sock(sk, hash, skb,
 428                                                 sizeof(struct udphdr));
 429        }
 430        return reuse_sk;
 431}
 432
 433/* called with rcu_read_lock() */
 434static struct sock *udp4_lib_lookup2(struct net *net,
 435                                     __be32 saddr, __be16 sport,
 436                                     __be32 daddr, unsigned int hnum,
 437                                     int dif, int sdif,
 438                                     struct udp_hslot *hslot2,
 439                                     struct sk_buff *skb)
 440{
 441        struct sock *sk, *result;
 442        int score, badness;
 443
 444        result = NULL;
 445        badness = 0;
 446        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 447                score = compute_score(sk, net, saddr, sport,
 448                                      daddr, hnum, dif, sdif);
 449                if (score > badness) {
 450                        result = lookup_reuseport(net, sk, skb,
 451                                                  saddr, sport, daddr, hnum);
 452                        /* Fall back to scoring if group has connections */
 453                        if (result && !reuseport_has_conns(sk, false))
 454                                return result;
 455
 456                        result = result ? : sk;
 457                        badness = score;
 458                }
 459        }
 460        return result;
 461}
 462
 463static struct sock *udp4_lookup_run_bpf(struct net *net,
 464                                        struct udp_table *udptable,
 465                                        struct sk_buff *skb,
 466                                        __be32 saddr, __be16 sport,
 467                                        __be32 daddr, u16 hnum)
 468{
 469        struct sock *sk, *reuse_sk;
 470        bool no_reuseport;
 471
 472        if (udptable != &udp_table)
 473                return NULL; /* only UDP is supported */
 474
 475        no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
 476                                            saddr, sport, daddr, hnum, &sk);
 477        if (no_reuseport || IS_ERR_OR_NULL(sk))
 478                return sk;
 479
 480        reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
 481        if (reuse_sk)
 482                sk = reuse_sk;
 483        return sk;
 484}
 485
 486/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 487 * harder than this. -DaveM
 488 */
 489struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 490                __be16 sport, __be32 daddr, __be16 dport, int dif,
 491                int sdif, struct udp_table *udptable, struct sk_buff *skb)
 492{
 493        unsigned short hnum = ntohs(dport);
 494        unsigned int hash2, slot2;
 495        struct udp_hslot *hslot2;
 496        struct sock *result, *sk;
 497
 498        hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 499        slot2 = hash2 & udptable->mask;
 500        hslot2 = &udptable->hash2[slot2];
 501
 502        /* Lookup connected or non-wildcard socket */
 503        result = udp4_lib_lookup2(net, saddr, sport,
 504                                  daddr, hnum, dif, sdif,
 505                                  hslot2, skb);
 506        if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 507                goto done;
 508
 509        /* Lookup redirect from BPF */
 510        if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
 511                sk = udp4_lookup_run_bpf(net, udptable, skb,
 512                                         saddr, sport, daddr, hnum);
 513                if (sk) {
 514                        result = sk;
 515                        goto done;
 516                }
 517        }
 518
 519        /* Got non-wildcard socket or error on first lookup */
 520        if (result)
 521                goto done;
 522
 523        /* Lookup wildcard sockets */
 524        hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 525        slot2 = hash2 & udptable->mask;
 526        hslot2 = &udptable->hash2[slot2];
 527
 528        result = udp4_lib_lookup2(net, saddr, sport,
 529                                  htonl(INADDR_ANY), hnum, dif, sdif,
 530                                  hslot2, skb);
 531done:
 532        if (IS_ERR(result))
 533                return NULL;
 534        return result;
 535}
 536EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 537
 538static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 539                                                 __be16 sport, __be16 dport,
 540                                                 struct udp_table *udptable)
 541{
 542        const struct iphdr *iph = ip_hdr(skb);
 543
 544        return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 545                                 iph->daddr, dport, inet_iif(skb),
 546                                 inet_sdif(skb), udptable, skb);
 547}
 548
 549struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 550                                 __be16 sport, __be16 dport)
 551{
 552        const struct iphdr *iph = ip_hdr(skb);
 553
 554        return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 555                                 iph->daddr, dport, inet_iif(skb),
 556                                 inet_sdif(skb), &udp_table, NULL);
 557}
 558EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
 559
 560/* Must be called under rcu_read_lock().
 561 * Does increment socket refcount.
 562 */
 563#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 564struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 565                             __be32 daddr, __be16 dport, int dif)
 566{
 567        struct sock *sk;
 568
 569        sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 570                               dif, 0, &udp_table, NULL);
 571        if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 572                sk = NULL;
 573        return sk;
 574}
 575EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 576#endif
 577
 578static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 579                                       __be16 loc_port, __be32 loc_addr,
 580                                       __be16 rmt_port, __be32 rmt_addr,
 581                                       int dif, int sdif, unsigned short hnum)
 582{
 583        struct inet_sock *inet = inet_sk(sk);
 584
 585        if (!net_eq(sock_net(sk), net) ||
 586            udp_sk(sk)->udp_port_hash != hnum ||
 587            (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 588            (inet->inet_dport != rmt_port && inet->inet_dport) ||
 589            (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 590            ipv6_only_sock(sk) ||
 591            !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 592                return false;
 593        if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 594                return false;
 595        return true;
 596}
 597
 598DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 599void udp_encap_enable(void)
 600{
 601        static_branch_inc(&udp_encap_needed_key);
 602}
 603EXPORT_SYMBOL(udp_encap_enable);
 604
 605void udp_encap_disable(void)
 606{
 607        static_branch_dec(&udp_encap_needed_key);
 608}
 609EXPORT_SYMBOL(udp_encap_disable);
 610
 611/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 612 * through error handlers in encapsulations looking for a match.
 613 */
 614static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 615{
 616        int i;
 617
 618        for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 619                int (*handler)(struct sk_buff *skb, u32 info);
 620                const struct ip_tunnel_encap_ops *encap;
 621
 622                encap = rcu_dereference(iptun_encaps[i]);
 623                if (!encap)
 624                        continue;
 625                handler = encap->err_handler;
 626                if (handler && !handler(skb, info))
 627                        return 0;
 628        }
 629
 630        return -ENOENT;
 631}
 632
 633/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 634 * reversing source and destination port: this will match tunnels that force the
 635 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 636 * lwtunnels might actually break this assumption by being configured with
 637 * different destination ports on endpoints, in this case we won't be able to
 638 * trace ICMP messages back to them.
 639 *
 640 * If this doesn't match any socket, probe tunnels with arbitrary destination
 641 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 642 * we've sent packets to won't necessarily match the local destination port.
 643 *
 644 * Then ask the tunnel implementation to match the error against a valid
 645 * association.
 646 *
 647 * Return an error if we can't find a match, the socket if we need further
 648 * processing, zero otherwise.
 649 */
 650static struct sock *__udp4_lib_err_encap(struct net *net,
 651                                         const struct iphdr *iph,
 652                                         struct udphdr *uh,
 653                                         struct udp_table *udptable,
 654                                         struct sock *sk,
 655                                         struct sk_buff *skb, u32 info)
 656{
 657        int (*lookup)(struct sock *sk, struct sk_buff *skb);
 658        int network_offset, transport_offset;
 659        struct udp_sock *up;
 660
 661        network_offset = skb_network_offset(skb);
 662        transport_offset = skb_transport_offset(skb);
 663
 664        /* Network header needs to point to the outer IPv4 header inside ICMP */
 665        skb_reset_network_header(skb);
 666
 667        /* Transport header needs to point to the UDP header */
 668        skb_set_transport_header(skb, iph->ihl << 2);
 669
 670        if (sk) {
 671                up = udp_sk(sk);
 672
 673                lookup = READ_ONCE(up->encap_err_lookup);
 674                if (lookup && lookup(sk, skb))
 675                        sk = NULL;
 676
 677                goto out;
 678        }
 679
 680        sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 681                               iph->saddr, uh->dest, skb->dev->ifindex, 0,
 682                               udptable, NULL);
 683        if (sk) {
 684                up = udp_sk(sk);
 685
 686                lookup = READ_ONCE(up->encap_err_lookup);
 687                if (!lookup || lookup(sk, skb))
 688                        sk = NULL;
 689        }
 690
 691out:
 692        if (!sk)
 693                sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 694
 695        skb_set_transport_header(skb, transport_offset);
 696        skb_set_network_header(skb, network_offset);
 697
 698        return sk;
 699}
 700
 701/*
 702 * This routine is called by the ICMP module when it gets some
 703 * sort of error condition.  If err < 0 then the socket should
 704 * be closed and the error returned to the user.  If err > 0
 705 * it's just the icmp type << 8 | icmp code.
 706 * Header points to the ip header of the error packet. We move
 707 * on past this. Then (as it used to claim before adjustment)
 708 * header points to the first 8 bytes of the udp header.  We need
 709 * to find the appropriate port.
 710 */
 711
 712int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 713{
 714        struct inet_sock *inet;
 715        const struct iphdr *iph = (const struct iphdr *)skb->data;
 716        struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 717        const int type = icmp_hdr(skb)->type;
 718        const int code = icmp_hdr(skb)->code;
 719        bool tunnel = false;
 720        struct sock *sk;
 721        int harderr;
 722        int err;
 723        struct net *net = dev_net(skb->dev);
 724
 725        sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 726                               iph->saddr, uh->source, skb->dev->ifindex,
 727                               inet_sdif(skb), udptable, NULL);
 728
 729        if (!sk || udp_sk(sk)->encap_type) {
 730                /* No socket for error: try tunnels before discarding */
 731                if (static_branch_unlikely(&udp_encap_needed_key)) {
 732                        sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 733                                                  info);
 734                        if (!sk)
 735                                return 0;
 736                } else
 737                        sk = ERR_PTR(-ENOENT);
 738
 739                if (IS_ERR(sk)) {
 740                        __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 741                        return PTR_ERR(sk);
 742                }
 743
 744                tunnel = true;
 745        }
 746
 747        err = 0;
 748        harderr = 0;
 749        inet = inet_sk(sk);
 750
 751        switch (type) {
 752        default:
 753        case ICMP_TIME_EXCEEDED:
 754                err = EHOSTUNREACH;
 755                break;
 756        case ICMP_SOURCE_QUENCH:
 757                goto out;
 758        case ICMP_PARAMETERPROB:
 759                err = EPROTO;
 760                harderr = 1;
 761                break;
 762        case ICMP_DEST_UNREACH:
 763                if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 764                        ipv4_sk_update_pmtu(skb, sk, info);
 765                        if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 766                                err = EMSGSIZE;
 767                                harderr = 1;
 768                                break;
 769                        }
 770                        goto out;
 771                }
 772                err = EHOSTUNREACH;
 773                if (code <= NR_ICMP_UNREACH) {
 774                        harderr = icmp_err_convert[code].fatal;
 775                        err = icmp_err_convert[code].errno;
 776                }
 777                break;
 778        case ICMP_REDIRECT:
 779                ipv4_sk_redirect(skb, sk);
 780                goto out;
 781        }
 782
 783        /*
 784         *      RFC1122: OK.  Passes ICMP errors back to application, as per
 785         *      4.1.3.3.
 786         */
 787        if (tunnel) {
 788                /* ...not for tunnels though: we don't have a sending socket */
 789                goto out;
 790        }
 791        if (!inet->recverr) {
 792                if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 793                        goto out;
 794        } else
 795                ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 796
 797        sk->sk_err = err;
 798        sk_error_report(sk);
 799out:
 800        return 0;
 801}
 802
 803int udp_err(struct sk_buff *skb, u32 info)
 804{
 805        return __udp4_lib_err(skb, info, &udp_table);
 806}
 807
 808/*
 809 * Throw away all pending data and cancel the corking. Socket is locked.
 810 */
 811void udp_flush_pending_frames(struct sock *sk)
 812{
 813        struct udp_sock *up = udp_sk(sk);
 814
 815        if (up->pending) {
 816                up->len = 0;
 817                up->pending = 0;
 818                ip_flush_pending_frames(sk);
 819        }
 820}
 821EXPORT_SYMBOL(udp_flush_pending_frames);
 822
 823/**
 824 *      udp4_hwcsum  -  handle outgoing HW checksumming
 825 *      @skb:   sk_buff containing the filled-in UDP header
 826 *              (checksum field must be zeroed out)
 827 *      @src:   source IP address
 828 *      @dst:   destination IP address
 829 */
 830void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 831{
 832        struct udphdr *uh = udp_hdr(skb);
 833        int offset = skb_transport_offset(skb);
 834        int len = skb->len - offset;
 835        int hlen = len;
 836        __wsum csum = 0;
 837
 838        if (!skb_has_frag_list(skb)) {
 839                /*
 840                 * Only one fragment on the socket.
 841                 */
 842                skb->csum_start = skb_transport_header(skb) - skb->head;
 843                skb->csum_offset = offsetof(struct udphdr, check);
 844                uh->check = ~csum_tcpudp_magic(src, dst, len,
 845                                               IPPROTO_UDP, 0);
 846        } else {
 847                struct sk_buff *frags;
 848
 849                /*
 850                 * HW-checksum won't work as there are two or more
 851                 * fragments on the socket so that all csums of sk_buffs
 852                 * should be together
 853                 */
 854                skb_walk_frags(skb, frags) {
 855                        csum = csum_add(csum, frags->csum);
 856                        hlen -= frags->len;
 857                }
 858
 859                csum = skb_checksum(skb, offset, hlen, csum);
 860                skb->ip_summed = CHECKSUM_NONE;
 861
 862                uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 863                if (uh->check == 0)
 864                        uh->check = CSUM_MANGLED_0;
 865        }
 866}
 867EXPORT_SYMBOL_GPL(udp4_hwcsum);
 868
 869/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 870 * for the simple case like when setting the checksum for a UDP tunnel.
 871 */
 872void udp_set_csum(bool nocheck, struct sk_buff *skb,
 873                  __be32 saddr, __be32 daddr, int len)
 874{
 875        struct udphdr *uh = udp_hdr(skb);
 876
 877        if (nocheck) {
 878                uh->check = 0;
 879        } else if (skb_is_gso(skb)) {
 880                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 881        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 882                uh->check = 0;
 883                uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 884                if (uh->check == 0)
 885                        uh->check = CSUM_MANGLED_0;
 886        } else {
 887                skb->ip_summed = CHECKSUM_PARTIAL;
 888                skb->csum_start = skb_transport_header(skb) - skb->head;
 889                skb->csum_offset = offsetof(struct udphdr, check);
 890                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 891        }
 892}
 893EXPORT_SYMBOL(udp_set_csum);
 894
 895static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 896                        struct inet_cork *cork)
 897{
 898        struct sock *sk = skb->sk;
 899        struct inet_sock *inet = inet_sk(sk);
 900        struct udphdr *uh;
 901        int err = 0;
 902        int is_udplite = IS_UDPLITE(sk);
 903        int offset = skb_transport_offset(skb);
 904        int len = skb->len - offset;
 905        int datalen = len - sizeof(*uh);
 906        __wsum csum = 0;
 907
 908        /*
 909         * Create a UDP header
 910         */
 911        uh = udp_hdr(skb);
 912        uh->source = inet->inet_sport;
 913        uh->dest = fl4->fl4_dport;
 914        uh->len = htons(len);
 915        uh->check = 0;
 916
 917        if (cork->gso_size) {
 918                const int hlen = skb_network_header_len(skb) +
 919                                 sizeof(struct udphdr);
 920
 921                if (hlen + cork->gso_size > cork->fragsize) {
 922                        kfree_skb(skb);
 923                        return -EINVAL;
 924                }
 925                if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
 926                        kfree_skb(skb);
 927                        return -EINVAL;
 928                }
 929                if (sk->sk_no_check_tx) {
 930                        kfree_skb(skb);
 931                        return -EINVAL;
 932                }
 933                if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 934                    dst_xfrm(skb_dst(skb))) {
 935                        kfree_skb(skb);
 936                        return -EIO;
 937                }
 938
 939                if (datalen > cork->gso_size) {
 940                        skb_shinfo(skb)->gso_size = cork->gso_size;
 941                        skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 942                        skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 943                                                                 cork->gso_size);
 944                }
 945                goto csum_partial;
 946        }
 947
 948        if (is_udplite)                                  /*     UDP-Lite      */
 949                csum = udplite_csum(skb);
 950
 951        else if (sk->sk_no_check_tx) {                   /* UDP csum off */
 952
 953                skb->ip_summed = CHECKSUM_NONE;
 954                goto send;
 955
 956        } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 957csum_partial:
 958
 959                udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 960                goto send;
 961
 962        } else
 963                csum = udp_csum(skb);
 964
 965        /* add protocol-dependent pseudo-header */
 966        uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 967                                      sk->sk_protocol, csum);
 968        if (uh->check == 0)
 969                uh->check = CSUM_MANGLED_0;
 970
 971send:
 972        err = ip_send_skb(sock_net(sk), skb);
 973        if (err) {
 974                if (err == -ENOBUFS && !inet->recverr) {
 975                        UDP_INC_STATS(sock_net(sk),
 976                                      UDP_MIB_SNDBUFERRORS, is_udplite);
 977                        err = 0;
 978                }
 979        } else
 980                UDP_INC_STATS(sock_net(sk),
 981                              UDP_MIB_OUTDATAGRAMS, is_udplite);
 982        return err;
 983}
 984
 985/*
 986 * Push out all pending data as one UDP datagram. Socket is locked.
 987 */
 988int udp_push_pending_frames(struct sock *sk)
 989{
 990        struct udp_sock  *up = udp_sk(sk);
 991        struct inet_sock *inet = inet_sk(sk);
 992        struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 993        struct sk_buff *skb;
 994        int err = 0;
 995
 996        skb = ip_finish_skb(sk, fl4);
 997        if (!skb)
 998                goto out;
 999
1000        err = udp_send_skb(skb, fl4, &inet->cork.base);
1001
1002out:
1003        up->len = 0;
1004        up->pending = 0;
1005        return err;
1006}
1007EXPORT_SYMBOL(udp_push_pending_frames);
1008
1009static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1010{
1011        switch (cmsg->cmsg_type) {
1012        case UDP_SEGMENT:
1013                if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1014                        return -EINVAL;
1015                *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1016                return 0;
1017        default:
1018                return -EINVAL;
1019        }
1020}
1021
1022int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1023{
1024        struct cmsghdr *cmsg;
1025        bool need_ip = false;
1026        int err;
1027
1028        for_each_cmsghdr(cmsg, msg) {
1029                if (!CMSG_OK(msg, cmsg))
1030                        return -EINVAL;
1031
1032                if (cmsg->cmsg_level != SOL_UDP) {
1033                        need_ip = true;
1034                        continue;
1035                }
1036
1037                err = __udp_cmsg_send(cmsg, gso_size);
1038                if (err)
1039                        return err;
1040        }
1041
1042        return need_ip;
1043}
1044EXPORT_SYMBOL_GPL(udp_cmsg_send);
1045
1046int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1047{
1048        struct inet_sock *inet = inet_sk(sk);
1049        struct udp_sock *up = udp_sk(sk);
1050        DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1051        struct flowi4 fl4_stack;
1052        struct flowi4 *fl4;
1053        int ulen = len;
1054        struct ipcm_cookie ipc;
1055        struct rtable *rt = NULL;
1056        int free = 0;
1057        int connected = 0;
1058        __be32 daddr, faddr, saddr;
1059        __be16 dport;
1060        u8  tos;
1061        int err, is_udplite = IS_UDPLITE(sk);
1062        int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1063        int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1064        struct sk_buff *skb;
1065        struct ip_options_data opt_copy;
1066
1067        if (len > 0xFFFF)
1068                return -EMSGSIZE;
1069
1070        /*
1071         *      Check the flags.
1072         */
1073
1074        if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1075                return -EOPNOTSUPP;
1076
1077        ipc.opt = NULL;
1078        ipc.tx_flags = 0;
1079        ipc.ttl = 0;
1080        ipc.tos = -1;
1081        ipc.sockc.transmit_time = 0;
1082
1083        getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1084
1085        fl4 = &inet->cork.fl.u.ip4;
1086        if (up->pending) {
1087                /*
1088                 * There are pending frames.
1089                 * The socket lock must be held while it's corked.
1090                 */
1091                lock_sock(sk);
1092                if (likely(up->pending)) {
1093                        if (unlikely(up->pending != AF_INET)) {
1094                                release_sock(sk);
1095                                return -EINVAL;
1096                        }
1097                        goto do_append_data;
1098                }
1099                release_sock(sk);
1100        }
1101        ulen += sizeof(struct udphdr);
1102
1103        /*
1104         *      Get and verify the address.
1105         */
1106        if (usin) {
1107                if (msg->msg_namelen < sizeof(*usin))
1108                        return -EINVAL;
1109                if (usin->sin_family != AF_INET) {
1110                        if (usin->sin_family != AF_UNSPEC)
1111                                return -EAFNOSUPPORT;
1112                }
1113
1114                daddr = usin->sin_addr.s_addr;
1115                dport = usin->sin_port;
1116                if (dport == 0)
1117                        return -EINVAL;
1118        } else {
1119                if (sk->sk_state != TCP_ESTABLISHED)
1120                        return -EDESTADDRREQ;
1121                daddr = inet->inet_daddr;
1122                dport = inet->inet_dport;
1123                /* Open fast path for connected socket.
1124                   Route will not be used, if at least one option is set.
1125                 */
1126                connected = 1;
1127        }
1128
1129        ipc.sockc.tsflags = sk->sk_tsflags;
1130        ipc.addr = inet->inet_saddr;
1131        ipc.oif = sk->sk_bound_dev_if;
1132        ipc.gso_size = READ_ONCE(up->gso_size);
1133
1134        if (msg->msg_controllen) {
1135                err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1136                if (err > 0)
1137                        err = ip_cmsg_send(sk, msg, &ipc,
1138                                           sk->sk_family == AF_INET6);
1139                if (unlikely(err < 0)) {
1140                        kfree(ipc.opt);
1141                        return err;
1142                }
1143                if (ipc.opt)
1144                        free = 1;
1145                connected = 0;
1146        }
1147        if (!ipc.opt) {
1148                struct ip_options_rcu *inet_opt;
1149
1150                rcu_read_lock();
1151                inet_opt = rcu_dereference(inet->inet_opt);
1152                if (inet_opt) {
1153                        memcpy(&opt_copy, inet_opt,
1154                               sizeof(*inet_opt) + inet_opt->opt.optlen);
1155                        ipc.opt = &opt_copy.opt;
1156                }
1157                rcu_read_unlock();
1158        }
1159
1160        if (cgroup_bpf_enabled(BPF_CGROUP_UDP4_SENDMSG) && !connected) {
1161                err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1162                                            (struct sockaddr *)usin, &ipc.addr);
1163                if (err)
1164                        goto out_free;
1165                if (usin) {
1166                        if (usin->sin_port == 0) {
1167                                /* BPF program set invalid port. Reject it. */
1168                                err = -EINVAL;
1169                                goto out_free;
1170                        }
1171                        daddr = usin->sin_addr.s_addr;
1172                        dport = usin->sin_port;
1173                }
1174        }
1175
1176        saddr = ipc.addr;
1177        ipc.addr = faddr = daddr;
1178
1179        sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1180
1181        if (ipc.opt && ipc.opt->opt.srr) {
1182                if (!daddr) {
1183                        err = -EINVAL;
1184                        goto out_free;
1185                }
1186                faddr = ipc.opt->opt.faddr;
1187                connected = 0;
1188        }
1189        tos = get_rttos(&ipc, inet);
1190        if (sock_flag(sk, SOCK_LOCALROUTE) ||
1191            (msg->msg_flags & MSG_DONTROUTE) ||
1192            (ipc.opt && ipc.opt->opt.is_strictroute)) {
1193                tos |= RTO_ONLINK;
1194                connected = 0;
1195        }
1196
1197        if (ipv4_is_multicast(daddr)) {
1198                if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1199                        ipc.oif = inet->mc_index;
1200                if (!saddr)
1201                        saddr = inet->mc_addr;
1202                connected = 0;
1203        } else if (!ipc.oif) {
1204                ipc.oif = inet->uc_index;
1205        } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1206                /* oif is set, packet is to local broadcast and
1207                 * and uc_index is set. oif is most likely set
1208                 * by sk_bound_dev_if. If uc_index != oif check if the
1209                 * oif is an L3 master and uc_index is an L3 slave.
1210                 * If so, we want to allow the send using the uc_index.
1211                 */
1212                if (ipc.oif != inet->uc_index &&
1213                    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1214                                                              inet->uc_index)) {
1215                        ipc.oif = inet->uc_index;
1216                }
1217        }
1218
1219        if (connected)
1220                rt = (struct rtable *)sk_dst_check(sk, 0);
1221
1222        if (!rt) {
1223                struct net *net = sock_net(sk);
1224                __u8 flow_flags = inet_sk_flowi_flags(sk);
1225
1226                fl4 = &fl4_stack;
1227
1228                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1229                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1230                                   flow_flags,
1231                                   faddr, saddr, dport, inet->inet_sport,
1232                                   sk->sk_uid);
1233
1234                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1235                rt = ip_route_output_flow(net, fl4, sk);
1236                if (IS_ERR(rt)) {
1237                        err = PTR_ERR(rt);
1238                        rt = NULL;
1239                        if (err == -ENETUNREACH)
1240                                IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1241                        goto out;
1242                }
1243
1244                err = -EACCES;
1245                if ((rt->rt_flags & RTCF_BROADCAST) &&
1246                    !sock_flag(sk, SOCK_BROADCAST))
1247                        goto out;
1248                if (connected)
1249                        sk_dst_set(sk, dst_clone(&rt->dst));
1250        }
1251
1252        if (msg->msg_flags&MSG_CONFIRM)
1253                goto do_confirm;
1254back_from_confirm:
1255
1256        saddr = fl4->saddr;
1257        if (!ipc.addr)
1258                daddr = ipc.addr = fl4->daddr;
1259
1260        /* Lockless fast path for the non-corking case. */
1261        if (!corkreq) {
1262                struct inet_cork cork;
1263
1264                skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1265                                  sizeof(struct udphdr), &ipc, &rt,
1266                                  &cork, msg->msg_flags);
1267                err = PTR_ERR(skb);
1268                if (!IS_ERR_OR_NULL(skb))
1269                        err = udp_send_skb(skb, fl4, &cork);
1270                goto out;
1271        }
1272
1273        lock_sock(sk);
1274        if (unlikely(up->pending)) {
1275                /* The socket is already corked while preparing it. */
1276                /* ... which is an evident application bug. --ANK */
1277                release_sock(sk);
1278
1279                net_dbg_ratelimited("socket already corked\n");
1280                err = -EINVAL;
1281                goto out;
1282        }
1283        /*
1284         *      Now cork the socket to pend data.
1285         */
1286        fl4 = &inet->cork.fl.u.ip4;
1287        fl4->daddr = daddr;
1288        fl4->saddr = saddr;
1289        fl4->fl4_dport = dport;
1290        fl4->fl4_sport = inet->inet_sport;
1291        up->pending = AF_INET;
1292
1293do_append_data:
1294        up->len += ulen;
1295        err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1296                             sizeof(struct udphdr), &ipc, &rt,
1297                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1298        if (err)
1299                udp_flush_pending_frames(sk);
1300        else if (!corkreq)
1301                err = udp_push_pending_frames(sk);
1302        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1303                up->pending = 0;
1304        release_sock(sk);
1305
1306out:
1307        ip_rt_put(rt);
1308out_free:
1309        if (free)
1310                kfree(ipc.opt);
1311        if (!err)
1312                return len;
1313        /*
1314         * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1315         * ENOBUFS might not be good (it's not tunable per se), but otherwise
1316         * we don't have a good statistic (IpOutDiscards but it can be too many
1317         * things).  We could add another new stat but at least for now that
1318         * seems like overkill.
1319         */
1320        if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1321                UDP_INC_STATS(sock_net(sk),
1322                              UDP_MIB_SNDBUFERRORS, is_udplite);
1323        }
1324        return err;
1325
1326do_confirm:
1327        if (msg->msg_flags & MSG_PROBE)
1328                dst_confirm_neigh(&rt->dst, &fl4->daddr);
1329        if (!(msg->msg_flags&MSG_PROBE) || len)
1330                goto back_from_confirm;
1331        err = 0;
1332        goto out;
1333}
1334EXPORT_SYMBOL(udp_sendmsg);
1335
1336int udp_sendpage(struct sock *sk, struct page *page, int offset,
1337                 size_t size, int flags)
1338{
1339        struct inet_sock *inet = inet_sk(sk);
1340        struct udp_sock *up = udp_sk(sk);
1341        int ret;
1342
1343        if (flags & MSG_SENDPAGE_NOTLAST)
1344                flags |= MSG_MORE;
1345
1346        if (!up->pending) {
1347                struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
1348
1349                /* Call udp_sendmsg to specify destination address which
1350                 * sendpage interface can't pass.
1351                 * This will succeed only when the socket is connected.
1352                 */
1353                ret = udp_sendmsg(sk, &msg, 0);
1354                if (ret < 0)
1355                        return ret;
1356        }
1357
1358        lock_sock(sk);
1359
1360        if (unlikely(!up->pending)) {
1361                release_sock(sk);
1362
1363                net_dbg_ratelimited("cork failed\n");
1364                return -EINVAL;
1365        }
1366
1367        ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1368                             page, offset, size, flags);
1369        if (ret == -EOPNOTSUPP) {
1370                release_sock(sk);
1371                return sock_no_sendpage(sk->sk_socket, page, offset,
1372                                        size, flags);
1373        }
1374        if (ret < 0) {
1375                udp_flush_pending_frames(sk);
1376                goto out;
1377        }
1378
1379        up->len += size;
1380        if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1381                ret = udp_push_pending_frames(sk);
1382        if (!ret)
1383                ret = size;
1384out:
1385        release_sock(sk);
1386        return ret;
1387}
1388
1389#define UDP_SKB_IS_STATELESS 0x80000000
1390
1391static void udp_set_dev_scratch(struct sk_buff *skb)
1392{
1393        struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1394
1395        BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1396        scratch->_tsize_state = skb->truesize;
1397#if BITS_PER_LONG == 64
1398        scratch->len = skb->len;
1399        scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1400        scratch->is_linear = !skb_is_nonlinear(skb);
1401#endif
1402        /* all head states execept sp (dst, sk, nf) are always cleared by
1403         * udp_rcv() and we need to preserve secpath, if present, to eventually
1404         * process IP_CMSG_PASSSEC at recvmsg() time
1405         */
1406        if (likely(!skb_sec_path(skb)))
1407                scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1408}
1409
1410static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1411{
1412        /* We come here after udp_lib_checksum_complete() returned 0.
1413         * This means that __skb_checksum_complete() might have
1414         * set skb->csum_valid to 1.
1415         * On 64bit platforms, we can set csum_unnecessary
1416         * to true, but only if the skb is not shared.
1417         */
1418#if BITS_PER_LONG == 64
1419        if (!skb_shared(skb))
1420                udp_skb_scratch(skb)->csum_unnecessary = true;
1421#endif
1422}
1423
1424static int udp_skb_truesize(struct sk_buff *skb)
1425{
1426        return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1427}
1428
1429static bool udp_skb_has_head_state(struct sk_buff *skb)
1430{
1431        return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1432}
1433
1434/* fully reclaim rmem/fwd memory allocated for skb */
1435static void udp_rmem_release(struct sock *sk, int size, int partial,
1436                             bool rx_queue_lock_held)
1437{
1438        struct udp_sock *up = udp_sk(sk);
1439        struct sk_buff_head *sk_queue;
1440        int amt;
1441
1442        if (likely(partial)) {
1443                up->forward_deficit += size;
1444                size = up->forward_deficit;
1445                if (size < (sk->sk_rcvbuf >> 2) &&
1446                    !skb_queue_empty(&up->reader_queue))
1447                        return;
1448        } else {
1449                size += up->forward_deficit;
1450        }
1451        up->forward_deficit = 0;
1452
1453        /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1454         * if the called don't held it already
1455         */
1456        sk_queue = &sk->sk_receive_queue;
1457        if (!rx_queue_lock_held)
1458                spin_lock(&sk_queue->lock);
1459
1460
1461        sk->sk_forward_alloc += size;
1462        amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1463        sk->sk_forward_alloc -= amt;
1464
1465        if (amt)
1466                __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1467
1468        atomic_sub(size, &sk->sk_rmem_alloc);
1469
1470        /* this can save us from acquiring the rx queue lock on next receive */
1471        skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1472
1473        if (!rx_queue_lock_held)
1474                spin_unlock(&sk_queue->lock);
1475}
1476
1477/* Note: called with reader_queue.lock held.
1478 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1479 * This avoids a cache line miss while receive_queue lock is held.
1480 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1481 */
1482void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1483{
1484        prefetch(&skb->data);
1485        udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1486}
1487EXPORT_SYMBOL(udp_skb_destructor);
1488
1489/* as above, but the caller held the rx queue lock, too */
1490static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1491{
1492        prefetch(&skb->data);
1493        udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1494}
1495
1496/* Idea of busylocks is to let producers grab an extra spinlock
1497 * to relieve pressure on the receive_queue spinlock shared by consumer.
1498 * Under flood, this means that only one producer can be in line
1499 * trying to acquire the receive_queue spinlock.
1500 * These busylock can be allocated on a per cpu manner, instead of a
1501 * per socket one (that would consume a cache line per socket)
1502 */
1503static int udp_busylocks_log __read_mostly;
1504static spinlock_t *udp_busylocks __read_mostly;
1505
1506static spinlock_t *busylock_acquire(void *ptr)
1507{
1508        spinlock_t *busy;
1509
1510        busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1511        spin_lock(busy);
1512        return busy;
1513}
1514
1515static void busylock_release(spinlock_t *busy)
1516{
1517        if (busy)
1518                spin_unlock(busy);
1519}
1520
1521int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1522{
1523        struct sk_buff_head *list = &sk->sk_receive_queue;
1524        int rmem, delta, amt, err = -ENOMEM;
1525        spinlock_t *busy = NULL;
1526        int size;
1527
1528        /* try to avoid the costly atomic add/sub pair when the receive
1529         * queue is full; always allow at least a packet
1530         */
1531        rmem = atomic_read(&sk->sk_rmem_alloc);
1532        if (rmem > sk->sk_rcvbuf)
1533                goto drop;
1534
1535        /* Under mem pressure, it might be helpful to help udp_recvmsg()
1536         * having linear skbs :
1537         * - Reduce memory overhead and thus increase receive queue capacity
1538         * - Less cache line misses at copyout() time
1539         * - Less work at consume_skb() (less alien page frag freeing)
1540         */
1541        if (rmem > (sk->sk_rcvbuf >> 1)) {
1542                skb_condense(skb);
1543
1544                busy = busylock_acquire(sk);
1545        }
1546        size = skb->truesize;
1547        udp_set_dev_scratch(skb);
1548
1549        /* we drop only if the receive buf is full and the receive
1550         * queue contains some other skb
1551         */
1552        rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1553        if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1554                goto uncharge_drop;
1555
1556        spin_lock(&list->lock);
1557        if (size >= sk->sk_forward_alloc) {
1558                amt = sk_mem_pages(size);
1559                delta = amt << SK_MEM_QUANTUM_SHIFT;
1560                if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1561                        err = -ENOBUFS;
1562                        spin_unlock(&list->lock);
1563                        goto uncharge_drop;
1564                }
1565
1566                sk->sk_forward_alloc += delta;
1567        }
1568
1569        sk->sk_forward_alloc -= size;
1570
1571        /* no need to setup a destructor, we will explicitly release the
1572         * forward allocated memory on dequeue
1573         */
1574        sock_skb_set_dropcount(sk, skb);
1575
1576        __skb_queue_tail(list, skb);
1577        spin_unlock(&list->lock);
1578
1579        if (!sock_flag(sk, SOCK_DEAD))
1580                sk->sk_data_ready(sk);
1581
1582        busylock_release(busy);
1583        return 0;
1584
1585uncharge_drop:
1586        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1587
1588drop:
1589        atomic_inc(&sk->sk_drops);
1590        busylock_release(busy);
1591        return err;
1592}
1593EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1594
1595void udp_destruct_sock(struct sock *sk)
1596{
1597        /* reclaim completely the forward allocated memory */
1598        struct udp_sock *up = udp_sk(sk);
1599        unsigned int total = 0;
1600        struct sk_buff *skb;
1601
1602        skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1603        while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1604                total += skb->truesize;
1605                kfree_skb(skb);
1606        }
1607        udp_rmem_release(sk, total, 0, true);
1608
1609        inet_sock_destruct(sk);
1610}
1611EXPORT_SYMBOL_GPL(udp_destruct_sock);
1612
1613int udp_init_sock(struct sock *sk)
1614{
1615        skb_queue_head_init(&udp_sk(sk)->reader_queue);
1616        sk->sk_destruct = udp_destruct_sock;
1617        return 0;
1618}
1619EXPORT_SYMBOL_GPL(udp_init_sock);
1620
1621void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1622{
1623        if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1624                bool slow = lock_sock_fast(sk);
1625
1626                sk_peek_offset_bwd(sk, len);
1627                unlock_sock_fast(sk, slow);
1628        }
1629
1630        if (!skb_unref(skb))
1631                return;
1632
1633        /* In the more common cases we cleared the head states previously,
1634         * see __udp_queue_rcv_skb().
1635         */
1636        if (unlikely(udp_skb_has_head_state(skb)))
1637                skb_release_head_state(skb);
1638        __consume_stateless_skb(skb);
1639}
1640EXPORT_SYMBOL_GPL(skb_consume_udp);
1641
1642static struct sk_buff *__first_packet_length(struct sock *sk,
1643                                             struct sk_buff_head *rcvq,
1644                                             int *total)
1645{
1646        struct sk_buff *skb;
1647
1648        while ((skb = skb_peek(rcvq)) != NULL) {
1649                if (udp_lib_checksum_complete(skb)) {
1650                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1651                                        IS_UDPLITE(sk));
1652                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1653                                        IS_UDPLITE(sk));
1654                        atomic_inc(&sk->sk_drops);
1655                        __skb_unlink(skb, rcvq);
1656                        *total += skb->truesize;
1657                        kfree_skb(skb);
1658                } else {
1659                        udp_skb_csum_unnecessary_set(skb);
1660                        break;
1661                }
1662        }
1663        return skb;
1664}
1665
1666/**
1667 *      first_packet_length     - return length of first packet in receive queue
1668 *      @sk: socket
1669 *
1670 *      Drops all bad checksum frames, until a valid one is found.
1671 *      Returns the length of found skb, or -1 if none is found.
1672 */
1673static int first_packet_length(struct sock *sk)
1674{
1675        struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1676        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1677        struct sk_buff *skb;
1678        int total = 0;
1679        int res;
1680
1681        spin_lock_bh(&rcvq->lock);
1682        skb = __first_packet_length(sk, rcvq, &total);
1683        if (!skb && !skb_queue_empty(sk_queue)) {
1684                spin_lock(&sk_queue->lock);
1685                skb_queue_splice_tail_init(sk_queue, rcvq);
1686                spin_unlock(&sk_queue->lock);
1687
1688                skb = __first_packet_length(sk, rcvq, &total);
1689        }
1690        res = skb ? skb->len : -1;
1691        if (total)
1692                udp_rmem_release(sk, total, 1, false);
1693        spin_unlock_bh(&rcvq->lock);
1694        return res;
1695}
1696
1697/*
1698 *      IOCTL requests applicable to the UDP protocol
1699 */
1700
1701int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1702{
1703        switch (cmd) {
1704        case SIOCOUTQ:
1705        {
1706                int amount = sk_wmem_alloc_get(sk);
1707
1708                return put_user(amount, (int __user *)arg);
1709        }
1710
1711        case SIOCINQ:
1712        {
1713                int amount = max_t(int, 0, first_packet_length(sk));
1714
1715                return put_user(amount, (int __user *)arg);
1716        }
1717
1718        default:
1719                return -ENOIOCTLCMD;
1720        }
1721
1722        return 0;
1723}
1724EXPORT_SYMBOL(udp_ioctl);
1725
1726struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1727                               int noblock, int *off, int *err)
1728{
1729        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1730        struct sk_buff_head *queue;
1731        struct sk_buff *last;
1732        long timeo;
1733        int error;
1734
1735        queue = &udp_sk(sk)->reader_queue;
1736        flags |= noblock ? MSG_DONTWAIT : 0;
1737        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1738        do {
1739                struct sk_buff *skb;
1740
1741                error = sock_error(sk);
1742                if (error)
1743                        break;
1744
1745                error = -EAGAIN;
1746                do {
1747                        spin_lock_bh(&queue->lock);
1748                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1749                                                        udp_skb_destructor,
1750                                                        off, err, &last);
1751                        if (skb) {
1752                                spin_unlock_bh(&queue->lock);
1753                                return skb;
1754                        }
1755
1756                        if (skb_queue_empty(sk_queue)) {
1757                                spin_unlock_bh(&queue->lock);
1758                                goto busy_check;
1759                        }
1760
1761                        /* refill the reader queue and walk it again
1762                         * keep both queues locked to avoid re-acquiring
1763                         * the sk_receive_queue lock if fwd memory scheduling
1764                         * is needed.
1765                         */
1766                        spin_lock(&sk_queue->lock);
1767                        skb_queue_splice_tail_init(sk_queue, queue);
1768
1769                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1770                                                        udp_skb_dtor_locked,
1771                                                        off, err, &last);
1772                        spin_unlock(&sk_queue->lock);
1773                        spin_unlock_bh(&queue->lock);
1774                        if (skb)
1775                                return skb;
1776
1777busy_check:
1778                        if (!sk_can_busy_loop(sk))
1779                                break;
1780
1781                        sk_busy_loop(sk, flags & MSG_DONTWAIT);
1782                } while (!skb_queue_empty(sk_queue));
1783
1784                /* sk_queue is empty, reader_queue may contain peeked packets */
1785        } while (timeo &&
1786                 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1787                                              &error, &timeo,
1788                                              (struct sk_buff *)sk_queue));
1789
1790        *err = error;
1791        return NULL;
1792}
1793EXPORT_SYMBOL(__skb_recv_udp);
1794
1795int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1796                  sk_read_actor_t recv_actor)
1797{
1798        int copied = 0;
1799
1800        while (1) {
1801                struct sk_buff *skb;
1802                int err, used;
1803
1804                skb = skb_recv_udp(sk, 0, 1, &err);
1805                if (!skb)
1806                        return err;
1807
1808                if (udp_lib_checksum_complete(skb)) {
1809                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1810                                        IS_UDPLITE(sk));
1811                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1812                                        IS_UDPLITE(sk));
1813                        atomic_inc(&sk->sk_drops);
1814                        kfree_skb(skb);
1815                        continue;
1816                }
1817
1818                used = recv_actor(desc, skb, 0, skb->len);
1819                if (used <= 0) {
1820                        if (!copied)
1821                                copied = used;
1822                        kfree_skb(skb);
1823                        break;
1824                } else if (used <= skb->len) {
1825                        copied += used;
1826                }
1827
1828                kfree_skb(skb);
1829                if (!desc->count)
1830                        break;
1831        }
1832
1833        return copied;
1834}
1835EXPORT_SYMBOL(udp_read_sock);
1836
1837/*
1838 *      This should be easy, if there is something there we
1839 *      return it, otherwise we block.
1840 */
1841
1842int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1843                int flags, int *addr_len)
1844{
1845        struct inet_sock *inet = inet_sk(sk);
1846        DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1847        struct sk_buff *skb;
1848        unsigned int ulen, copied;
1849        int off, err, peeking = flags & MSG_PEEK;
1850        int is_udplite = IS_UDPLITE(sk);
1851        bool checksum_valid = false;
1852
1853        if (flags & MSG_ERRQUEUE)
1854                return ip_recv_error(sk, msg, len, addr_len);
1855
1856try_again:
1857        off = sk_peek_offset(sk, flags);
1858        skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1859        if (!skb)
1860                return err;
1861
1862        ulen = udp_skb_len(skb);
1863        copied = len;
1864        if (copied > ulen - off)
1865                copied = ulen - off;
1866        else if (copied < ulen)
1867                msg->msg_flags |= MSG_TRUNC;
1868
1869        /*
1870         * If checksum is needed at all, try to do it while copying the
1871         * data.  If the data is truncated, or if we only want a partial
1872         * coverage checksum (UDP-Lite), do it before the copy.
1873         */
1874
1875        if (copied < ulen || peeking ||
1876            (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1877                checksum_valid = udp_skb_csum_unnecessary(skb) ||
1878                                !__udp_lib_checksum_complete(skb);
1879                if (!checksum_valid)
1880                        goto csum_copy_err;
1881        }
1882
1883        if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1884                if (udp_skb_is_linear(skb))
1885                        err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1886                else
1887                        err = skb_copy_datagram_msg(skb, off, msg, copied);
1888        } else {
1889                err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1890
1891                if (err == -EINVAL)
1892                        goto csum_copy_err;
1893        }
1894
1895        if (unlikely(err)) {
1896                if (!peeking) {
1897                        atomic_inc(&sk->sk_drops);
1898                        UDP_INC_STATS(sock_net(sk),
1899                                      UDP_MIB_INERRORS, is_udplite);
1900                }
1901                kfree_skb(skb);
1902                return err;
1903        }
1904
1905        if (!peeking)
1906                UDP_INC_STATS(sock_net(sk),
1907                              UDP_MIB_INDATAGRAMS, is_udplite);
1908
1909        sock_recv_ts_and_drops(msg, sk, skb);
1910
1911        /* Copy the address. */
1912        if (sin) {
1913                sin->sin_family = AF_INET;
1914                sin->sin_port = udp_hdr(skb)->source;
1915                sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1916                memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1917                *addr_len = sizeof(*sin);
1918
1919                BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1920                                                      (struct sockaddr *)sin);
1921        }
1922
1923        if (udp_sk(sk)->gro_enabled)
1924                udp_cmsg_recv(msg, sk, skb);
1925
1926        if (inet->cmsg_flags)
1927                ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1928
1929        err = copied;
1930        if (flags & MSG_TRUNC)
1931                err = ulen;
1932
1933        skb_consume_udp(sk, skb, peeking ? -err : err);
1934        return err;
1935
1936csum_copy_err:
1937        if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1938                                 udp_skb_destructor)) {
1939                UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1940                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1941        }
1942        kfree_skb(skb);
1943
1944        /* starting over for a new packet, but check if we need to yield */
1945        cond_resched();
1946        msg->msg_flags &= ~MSG_TRUNC;
1947        goto try_again;
1948}
1949
1950int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1951{
1952        /* This check is replicated from __ip4_datagram_connect() and
1953         * intended to prevent BPF program called below from accessing bytes
1954         * that are out of the bound specified by user in addr_len.
1955         */
1956        if (addr_len < sizeof(struct sockaddr_in))
1957                return -EINVAL;
1958
1959        return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1960}
1961EXPORT_SYMBOL(udp_pre_connect);
1962
1963int __udp_disconnect(struct sock *sk, int flags)
1964{
1965        struct inet_sock *inet = inet_sk(sk);
1966        /*
1967         *      1003.1g - break association.
1968         */
1969
1970        sk->sk_state = TCP_CLOSE;
1971        inet->inet_daddr = 0;
1972        inet->inet_dport = 0;
1973        sock_rps_reset_rxhash(sk);
1974        sk->sk_bound_dev_if = 0;
1975        if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1976                inet_reset_saddr(sk);
1977                if (sk->sk_prot->rehash &&
1978                    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1979                        sk->sk_prot->rehash(sk);
1980        }
1981
1982        if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1983                sk->sk_prot->unhash(sk);
1984                inet->inet_sport = 0;
1985        }
1986        sk_dst_reset(sk);
1987        return 0;
1988}
1989EXPORT_SYMBOL(__udp_disconnect);
1990
1991int udp_disconnect(struct sock *sk, int flags)
1992{
1993        lock_sock(sk);
1994        __udp_disconnect(sk, flags);
1995        release_sock(sk);
1996        return 0;
1997}
1998EXPORT_SYMBOL(udp_disconnect);
1999
2000void udp_lib_unhash(struct sock *sk)
2001{
2002        if (sk_hashed(sk)) {
2003                struct udp_table *udptable = sk->sk_prot->h.udp_table;
2004                struct udp_hslot *hslot, *hslot2;
2005
2006                hslot  = udp_hashslot(udptable, sock_net(sk),
2007                                      udp_sk(sk)->udp_port_hash);
2008                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2009
2010                spin_lock_bh(&hslot->lock);
2011                if (rcu_access_pointer(sk->sk_reuseport_cb))
2012                        reuseport_detach_sock(sk);
2013                if (sk_del_node_init_rcu(sk)) {
2014                        hslot->count--;
2015                        inet_sk(sk)->inet_num = 0;
2016                        sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2017
2018                        spin_lock(&hslot2->lock);
2019                        hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2020                        hslot2->count--;
2021                        spin_unlock(&hslot2->lock);
2022                }
2023                spin_unlock_bh(&hslot->lock);
2024        }
2025}
2026EXPORT_SYMBOL(udp_lib_unhash);
2027
2028/*
2029 * inet_rcv_saddr was changed, we must rehash secondary hash
2030 */
2031void udp_lib_rehash(struct sock *sk, u16 newhash)
2032{
2033        if (sk_hashed(sk)) {
2034                struct udp_table *udptable = sk->sk_prot->h.udp_table;
2035                struct udp_hslot *hslot, *hslot2, *nhslot2;
2036
2037                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2038                nhslot2 = udp_hashslot2(udptable, newhash);
2039                udp_sk(sk)->udp_portaddr_hash = newhash;
2040
2041                if (hslot2 != nhslot2 ||
2042                    rcu_access_pointer(sk->sk_reuseport_cb)) {
2043                        hslot = udp_hashslot(udptable, sock_net(sk),
2044                                             udp_sk(sk)->udp_port_hash);
2045                        /* we must lock primary chain too */
2046                        spin_lock_bh(&hslot->lock);
2047                        if (rcu_access_pointer(sk->sk_reuseport_cb))
2048                                reuseport_detach_sock(sk);
2049
2050                        if (hslot2 != nhslot2) {
2051                                spin_lock(&hslot2->lock);
2052                                hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2053                                hslot2->count--;
2054                                spin_unlock(&hslot2->lock);
2055
2056                                spin_lock(&nhslot2->lock);
2057                                hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2058                                                         &nhslot2->head);
2059                                nhslot2->count++;
2060                                spin_unlock(&nhslot2->lock);
2061                        }
2062
2063                        spin_unlock_bh(&hslot->lock);
2064                }
2065        }
2066}
2067EXPORT_SYMBOL(udp_lib_rehash);
2068
2069void udp_v4_rehash(struct sock *sk)
2070{
2071        u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2072                                          inet_sk(sk)->inet_rcv_saddr,
2073                                          inet_sk(sk)->inet_num);
2074        udp_lib_rehash(sk, new_hash);
2075}
2076
2077static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2078{
2079        int rc;
2080
2081        if (inet_sk(sk)->inet_daddr) {
2082                sock_rps_save_rxhash(sk, skb);
2083                sk_mark_napi_id(sk, skb);
2084                sk_incoming_cpu_update(sk);
2085        } else {
2086                sk_mark_napi_id_once(sk, skb);
2087        }
2088
2089        rc = __udp_enqueue_schedule_skb(sk, skb);
2090        if (rc < 0) {
2091                int is_udplite = IS_UDPLITE(sk);
2092
2093                /* Note that an ENOMEM error is charged twice */
2094                if (rc == -ENOMEM)
2095                        UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2096                                        is_udplite);
2097                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2098                kfree_skb(skb);
2099                trace_udp_fail_queue_rcv_skb(rc, sk);
2100                return -1;
2101        }
2102
2103        return 0;
2104}
2105
2106/* returns:
2107 *  -1: error
2108 *   0: success
2109 *  >0: "udp encap" protocol resubmission
2110 *
2111 * Note that in the success and error cases, the skb is assumed to
2112 * have either been requeued or freed.
2113 */
2114static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2115{
2116        struct udp_sock *up = udp_sk(sk);
2117        int is_udplite = IS_UDPLITE(sk);
2118
2119        /*
2120         *      Charge it to the socket, dropping if the queue is full.
2121         */
2122        if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2123                goto drop;
2124        nf_reset(skb);
2125
2126        if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2127                int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2128
2129                /*
2130                 * This is an encapsulation socket so pass the skb to
2131                 * the socket's udp_encap_rcv() hook. Otherwise, just
2132                 * fall through and pass this up the UDP socket.
2133                 * up->encap_rcv() returns the following value:
2134                 * =0 if skb was successfully passed to the encap
2135                 *    handler or was discarded by it.
2136                 * >0 if skb should be passed on to UDP.
2137                 * <0 if skb should be resubmitted as proto -N
2138                 */
2139
2140                /* if we're overly short, let UDP handle it */
2141                encap_rcv = READ_ONCE(up->encap_rcv);
2142                if (encap_rcv) {
2143                        int ret;
2144
2145                        /* Verify checksum before giving to encap */
2146                        if (udp_lib_checksum_complete(skb))
2147                                goto csum_error;
2148
2149                        ret = encap_rcv(sk, skb);
2150                        if (ret <= 0) {
2151                                __UDP_INC_STATS(sock_net(sk),
2152                                                UDP_MIB_INDATAGRAMS,
2153                                                is_udplite);
2154                                return -ret;
2155                        }
2156                }
2157
2158                /* FALLTHROUGH -- it's a UDP Packet */
2159        }
2160
2161        /*
2162         *      UDP-Lite specific tests, ignored on UDP sockets
2163         */
2164        if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2165
2166                /*
2167                 * MIB statistics other than incrementing the error count are
2168                 * disabled for the following two types of errors: these depend
2169                 * on the application settings, not on the functioning of the
2170                 * protocol stack as such.
2171                 *
2172                 * RFC 3828 here recommends (sec 3.3): "There should also be a
2173                 * way ... to ... at least let the receiving application block
2174                 * delivery of packets with coverage values less than a value
2175                 * provided by the application."
2176                 */
2177                if (up->pcrlen == 0) {          /* full coverage was set  */
2178                        net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2179                                            UDP_SKB_CB(skb)->cscov, skb->len);
2180                        goto drop;
2181                }
2182                /* The next case involves violating the min. coverage requested
2183                 * by the receiver. This is subtle: if receiver wants x and x is
2184                 * greater than the buffersize/MTU then receiver will complain
2185                 * that it wants x while sender emits packets of smaller size y.
2186                 * Therefore the above ...()->partial_cov statement is essential.
2187                 */
2188                if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2189                        net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2190                                            UDP_SKB_CB(skb)->cscov, up->pcrlen);
2191                        goto drop;
2192                }
2193        }
2194
2195        prefetch(&sk->sk_rmem_alloc);
2196        if (rcu_access_pointer(sk->sk_filter) &&
2197            udp_lib_checksum_complete(skb))
2198                        goto csum_error;
2199
2200        if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2201                goto drop;
2202
2203        udp_csum_pull_header(skb);
2204
2205        ipv4_pktinfo_prepare(sk, skb);
2206        return __udp_queue_rcv_skb(sk, skb);
2207
2208csum_error:
2209        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2210drop:
2211        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2212        atomic_inc(&sk->sk_drops);
2213        kfree_skb(skb);
2214        return -1;
2215}
2216
2217static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2218{
2219        struct sk_buff *next, *segs;
2220        int ret;
2221
2222        if (likely(!udp_unexpected_gso(sk, skb)))
2223                return udp_queue_rcv_one_skb(sk, skb);
2224
2225        BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2226        __skb_push(skb, -skb_mac_offset(skb));
2227        segs = udp_rcv_segment(sk, skb, true);
2228        for (skb = segs; skb; skb = next) {
2229                next = skb->next;
2230                __skb_pull(skb, skb_transport_offset(skb));
2231
2232                udp_post_segment_fix_csum(skb);
2233                ret = udp_queue_rcv_one_skb(sk, skb);
2234                if (ret > 0)
2235                        ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2236        }
2237        return 0;
2238}
2239
2240/* For TCP sockets, sk_rx_dst is protected by socket lock
2241 * For UDP, we use xchg() to guard against concurrent changes.
2242 */
2243bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2244{
2245        struct dst_entry *old;
2246
2247        if (dst_hold_safe(dst)) {
2248                old = xchg(&sk->sk_rx_dst, dst);
2249                dst_release(old);
2250                return old != dst;
2251        }
2252        return false;
2253}
2254EXPORT_SYMBOL(udp_sk_rx_dst_set);
2255
2256/*
2257 *      Multicasts and broadcasts go to each listener.
2258 *
2259 *      Note: called only from the BH handler context.
2260 */
2261static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2262                                    struct udphdr  *uh,
2263                                    __be32 saddr, __be32 daddr,
2264                                    struct udp_table *udptable,
2265                                    int proto)
2266{
2267        struct sock *sk, *first = NULL;
2268        unsigned short hnum = ntohs(uh->dest);
2269        struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2270        unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2271        unsigned int offset = offsetof(typeof(*sk), sk_node);
2272        int dif = skb->dev->ifindex;
2273        int sdif = inet_sdif(skb);
2274        struct hlist_node *node;
2275        struct sk_buff *nskb;
2276
2277        if (use_hash2) {
2278                hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2279                            udptable->mask;
2280                hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2281start_lookup:
2282                hslot = &udptable->hash2[hash2];
2283                offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2284        }
2285
2286        sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2287                if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2288                                         uh->source, saddr, dif, sdif, hnum))
2289                        continue;
2290
2291                if (!first) {
2292                        first = sk;
2293                        continue;
2294                }
2295                nskb = skb_clone(skb, GFP_ATOMIC);
2296
2297                if (unlikely(!nskb)) {
2298                        atomic_inc(&sk->sk_drops);
2299                        __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2300                                        IS_UDPLITE(sk));
2301                        __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2302                                        IS_UDPLITE(sk));
2303                        continue;
2304                }
2305                if (udp_queue_rcv_skb(sk, nskb) > 0)
2306                        consume_skb(nskb);
2307        }
2308
2309        /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2310        if (use_hash2 && hash2 != hash2_any) {
2311                hash2 = hash2_any;
2312                goto start_lookup;
2313        }
2314
2315        if (first) {
2316                if (udp_queue_rcv_skb(first, skb) > 0)
2317                        consume_skb(skb);
2318        } else {
2319                kfree_skb(skb);
2320                __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2321                                proto == IPPROTO_UDPLITE);
2322        }
2323        return 0;
2324}
2325
2326/* Initialize UDP checksum. If exited with zero value (success),
2327 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2328 * Otherwise, csum completion requires chacksumming packet body,
2329 * including udp header and folding it to skb->csum.
2330 */
2331static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2332                                 int proto)
2333{
2334        int err;
2335
2336        UDP_SKB_CB(skb)->partial_cov = 0;
2337        UDP_SKB_CB(skb)->cscov = skb->len;
2338
2339        if (proto == IPPROTO_UDPLITE) {
2340                err = udplite_checksum_init(skb, uh);
2341                if (err)
2342                        return err;
2343
2344                if (UDP_SKB_CB(skb)->partial_cov) {
2345                        skb->csum = inet_compute_pseudo(skb, proto);
2346                        return 0;
2347                }
2348        }
2349
2350        /* Note, we are only interested in != 0 or == 0, thus the
2351         * force to int.
2352         */
2353        err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2354                                                        inet_compute_pseudo);
2355        if (err)
2356                return err;
2357
2358        if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2359                /* If SW calculated the value, we know it's bad */
2360                if (skb->csum_complete_sw)
2361                        return 1;
2362
2363                /* HW says the value is bad. Let's validate that.
2364                 * skb->csum is no longer the full packet checksum,
2365                 * so don't treat it as such.
2366                 */
2367                skb_checksum_complete_unset(skb);
2368        }
2369
2370        return 0;
2371}
2372
2373/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2374 * return code conversion for ip layer consumption
2375 */
2376static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2377                               struct udphdr *uh)
2378{
2379        int ret;
2380
2381        if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2382                skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2383                                         inet_compute_pseudo);
2384
2385        ret = udp_queue_rcv_skb(sk, skb);
2386
2387        /* a return value > 0 means to resubmit the input, but
2388         * it wants the return to be -protocol, or 0
2389         */
2390        if (ret > 0)
2391                return -ret;
2392        return 0;
2393}
2394
2395/*
2396 *      All we need to do is get the socket, and then do a checksum.
2397 */
2398
2399int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2400                   int proto)
2401{
2402        struct sock *sk;
2403        struct udphdr *uh;
2404        unsigned short ulen;
2405        struct rtable *rt = skb_rtable(skb);
2406        __be32 saddr, daddr;
2407        struct net *net = dev_net(skb->dev);
2408        bool refcounted;
2409
2410        /*
2411         *  Validate the packet.
2412         */
2413        if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2414                goto drop;              /* No space for header. */
2415
2416        uh   = udp_hdr(skb);
2417        ulen = ntohs(uh->len);
2418        saddr = ip_hdr(skb)->saddr;
2419        daddr = ip_hdr(skb)->daddr;
2420
2421        if (ulen > skb->len)
2422                goto short_packet;
2423
2424        if (proto == IPPROTO_UDP) {
2425                /* UDP validates ulen. */
2426                if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2427                        goto short_packet;
2428                uh = udp_hdr(skb);
2429        }
2430
2431        if (udp4_csum_init(skb, uh, proto))
2432                goto csum_error;
2433
2434        sk = skb_steal_sock(skb, &refcounted);
2435        if (sk) {
2436                struct dst_entry *dst = skb_dst(skb);
2437                int ret;
2438
2439                if (unlikely(sk->sk_rx_dst != dst))
2440                        udp_sk_rx_dst_set(sk, dst);
2441
2442                ret = udp_unicast_rcv_skb(sk, skb, uh);
2443                if (refcounted)
2444                        sock_put(sk);
2445                return ret;
2446        }
2447
2448        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2449                return __udp4_lib_mcast_deliver(net, skb, uh,
2450                                                saddr, daddr, udptable, proto);
2451
2452        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2453        if (sk)
2454                return udp_unicast_rcv_skb(sk, skb, uh);
2455
2456        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2457                goto drop;
2458        nf_reset(skb);
2459
2460        /* No socket. Drop packet silently, if checksum is wrong */
2461        if (udp_lib_checksum_complete(skb))
2462                goto csum_error;
2463
2464        __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2465        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2466
2467        /*
2468         * Hmm.  We got an UDP packet to a port to which we
2469         * don't wanna listen.  Ignore it.
2470         */
2471        kfree_skb(skb);
2472        return 0;
2473
2474short_packet:
2475        net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2476                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2477                            &saddr, ntohs(uh->source),
2478                            ulen, skb->len,
2479                            &daddr, ntohs(uh->dest));
2480        goto drop;
2481
2482csum_error:
2483        /*
2484         * RFC1122: OK.  Discards the bad packet silently (as far as
2485         * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2486         */
2487        net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2488                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2489                            &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2490                            ulen);
2491        __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2492drop:
2493        __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2494        kfree_skb(skb);
2495        return 0;
2496}
2497
2498/* We can only early demux multicast if there is a single matching socket.
2499 * If more than one socket found returns NULL
2500 */
2501static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2502                                                  __be16 loc_port, __be32 loc_addr,
2503                                                  __be16 rmt_port, __be32 rmt_addr,
2504                                                  int dif, int sdif)
2505{
2506        struct sock *sk, *result;
2507        unsigned short hnum = ntohs(loc_port);
2508        unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2509        struct udp_hslot *hslot = &udp_table.hash[slot];
2510
2511        /* Do not bother scanning a too big list */
2512        if (hslot->count > 10)
2513                return NULL;
2514
2515        result = NULL;
2516        sk_for_each_rcu(sk, &hslot->head) {
2517                if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2518                                        rmt_port, rmt_addr, dif, sdif, hnum)) {
2519                        if (result)
2520                                return NULL;
2521                        result = sk;
2522                }
2523        }
2524
2525        return result;
2526}
2527
2528/* For unicast we should only early demux connected sockets or we can
2529 * break forwarding setups.  The chains here can be long so only check
2530 * if the first socket is an exact match and if not move on.
2531 */
2532static struct sock *__udp4_lib_demux_lookup(struct net *net,
2533                                            __be16 loc_port, __be32 loc_addr,
2534                                            __be16 rmt_port, __be32 rmt_addr,
2535                                            int dif, int sdif)
2536{
2537        unsigned short hnum = ntohs(loc_port);
2538        unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2539        unsigned int slot2 = hash2 & udp_table.mask;
2540        struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2541        INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2542        const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2543        struct sock *sk;
2544
2545        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2546                if (INET_MATCH(sk, net, acookie, rmt_addr,
2547                               loc_addr, ports, dif, sdif))
2548                        return sk;
2549                /* Only check first socket in chain */
2550                break;
2551        }
2552        return NULL;
2553}
2554
2555int udp_v4_early_demux(struct sk_buff *skb)
2556{
2557        struct net *net = dev_net(skb->dev);
2558        struct in_device *in_dev = NULL;
2559        const struct iphdr *iph;
2560        const struct udphdr *uh;
2561        struct sock *sk = NULL;
2562        struct dst_entry *dst;
2563        int dif = skb->dev->ifindex;
2564        int sdif = inet_sdif(skb);
2565        int ours;
2566
2567        /* validate the packet */
2568        if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2569                return 0;
2570
2571        iph = ip_hdr(skb);
2572        uh = udp_hdr(skb);
2573
2574        if (skb->pkt_type == PACKET_MULTICAST) {
2575                in_dev = __in_dev_get_rcu(skb->dev);
2576
2577                if (!in_dev)
2578                        return 0;
2579
2580                ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2581                                       iph->protocol);
2582                if (!ours)
2583                        return 0;
2584
2585                sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2586                                                   uh->source, iph->saddr,
2587                                                   dif, sdif);
2588        } else if (skb->pkt_type == PACKET_HOST) {
2589                sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2590                                             uh->source, iph->saddr, dif, sdif);
2591        }
2592
2593        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2594                return 0;
2595
2596        skb->sk = sk;
2597        skb->destructor = sock_efree;
2598        dst = READ_ONCE(sk->sk_rx_dst);
2599
2600        if (dst)
2601                dst = dst_check(dst, 0);
2602        if (dst) {
2603                u32 itag = 0;
2604
2605                /* set noref for now.
2606                 * any place which wants to hold dst has to call
2607                 * dst_hold_safe()
2608                 */
2609                skb_dst_set_noref(skb, dst);
2610
2611                /* for unconnected multicast sockets we need to validate
2612                 * the source on each packet
2613                 */
2614                if (!inet_sk(sk)->inet_daddr && in_dev)
2615                        return ip_mc_validate_source(skb, iph->daddr,
2616                                                     iph->saddr,
2617                                                     iph->tos & IPTOS_RT_MASK,
2618                                                     skb->dev, in_dev, &itag);
2619        }
2620        return 0;
2621}
2622
2623int udp_rcv(struct sk_buff *skb)
2624{
2625        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2626}
2627
2628void udp_destroy_sock(struct sock *sk)
2629{
2630        struct udp_sock *up = udp_sk(sk);
2631        bool slow = lock_sock_fast(sk);
2632
2633        /* protects from races with udp_abort() */
2634        sock_set_flag(sk, SOCK_DEAD);
2635        udp_flush_pending_frames(sk);
2636        unlock_sock_fast(sk, slow);
2637        if (static_branch_unlikely(&udp_encap_needed_key)) {
2638                if (up->encap_type) {
2639                        void (*encap_destroy)(struct sock *sk);
2640                        encap_destroy = READ_ONCE(up->encap_destroy);
2641                        if (encap_destroy)
2642                                encap_destroy(sk);
2643                }
2644                if (up->encap_enabled)
2645                        static_branch_dec(&udp_encap_needed_key);
2646        }
2647}
2648
2649/*
2650 *      Socket option code for UDP
2651 */
2652int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2653                       char __user *optval, unsigned int optlen,
2654                       int (*push_pending_frames)(struct sock *))
2655{
2656        struct udp_sock *up = udp_sk(sk);
2657        int val, valbool;
2658        int err = 0;
2659        int is_udplite = IS_UDPLITE(sk);
2660
2661        if (optlen < sizeof(int))
2662                return -EINVAL;
2663
2664        if (get_user(val, (int __user *)optval))
2665                return -EFAULT;
2666
2667        valbool = val ? 1 : 0;
2668
2669        switch (optname) {
2670        case UDP_CORK:
2671                if (val != 0) {
2672                        WRITE_ONCE(up->corkflag, 1);
2673                } else {
2674                        WRITE_ONCE(up->corkflag, 0);
2675                        lock_sock(sk);
2676                        push_pending_frames(sk);
2677                        release_sock(sk);
2678                }
2679                break;
2680
2681        case UDP_ENCAP:
2682                switch (val) {
2683                case 0:
2684#ifdef CONFIG_XFRM
2685                case UDP_ENCAP_ESPINUDP:
2686                case UDP_ENCAP_ESPINUDP_NON_IKE:
2687#if IS_ENABLED(CONFIG_IPV6)
2688                        if (sk->sk_family == AF_INET6)
2689                                up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2690                        else
2691#endif
2692                                up->encap_rcv = xfrm4_udp_encap_rcv;
2693#endif
2694                        /* FALLTHROUGH */
2695                case UDP_ENCAP_L2TPINUDP:
2696                        up->encap_type = val;
2697                        lock_sock(sk);
2698                        udp_tunnel_encap_enable(sk->sk_socket);
2699                        release_sock(sk);
2700                        break;
2701                default:
2702                        err = -ENOPROTOOPT;
2703                        break;
2704                }
2705                break;
2706
2707        case UDP_NO_CHECK6_TX:
2708                up->no_check6_tx = valbool;
2709                break;
2710
2711        case UDP_NO_CHECK6_RX:
2712                up->no_check6_rx = valbool;
2713                break;
2714
2715        case UDP_SEGMENT:
2716                if (val < 0 || val > USHRT_MAX)
2717                        return -EINVAL;
2718                WRITE_ONCE(up->gso_size, val);
2719                break;
2720
2721        case UDP_GRO:
2722                lock_sock(sk);
2723
2724                /* when enabling GRO, accept the related GSO packet type */
2725                if (valbool)
2726                        udp_tunnel_encap_enable(sk->sk_socket);
2727                up->gro_enabled = valbool;
2728                up->accept_udp_l4 = valbool;
2729                release_sock(sk);
2730                break;
2731
2732        /*
2733         *      UDP-Lite's partial checksum coverage (RFC 3828).
2734         */
2735        /* The sender sets actual checksum coverage length via this option.
2736         * The case coverage > packet length is handled by send module. */
2737        case UDPLITE_SEND_CSCOV:
2738                if (!is_udplite)         /* Disable the option on UDP sockets */
2739                        return -ENOPROTOOPT;
2740                if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2741                        val = 8;
2742                else if (val > USHRT_MAX)
2743                        val = USHRT_MAX;
2744                up->pcslen = val;
2745                up->pcflag |= UDPLITE_SEND_CC;
2746                break;
2747
2748        /* The receiver specifies a minimum checksum coverage value. To make
2749         * sense, this should be set to at least 8 (as done below). If zero is
2750         * used, this again means full checksum coverage.                     */
2751        case UDPLITE_RECV_CSCOV:
2752                if (!is_udplite)         /* Disable the option on UDP sockets */
2753                        return -ENOPROTOOPT;
2754                if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2755                        val = 8;
2756                else if (val > USHRT_MAX)
2757                        val = USHRT_MAX;
2758                up->pcrlen = val;
2759                up->pcflag |= UDPLITE_RECV_CC;
2760                break;
2761
2762        default:
2763                err = -ENOPROTOOPT;
2764                break;
2765        }
2766
2767        return err;
2768}
2769EXPORT_SYMBOL(udp_lib_setsockopt);
2770
2771int udp_setsockopt(struct sock *sk, int level, int optname,
2772                   char __user *optval, unsigned int optlen)
2773{
2774        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2775                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2776                                          udp_push_pending_frames);
2777        return ip_setsockopt(sk, level, optname, optval, optlen);
2778}
2779
2780#ifdef CONFIG_COMPAT
2781int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2782                          char __user *optval, unsigned int optlen)
2783{
2784        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2785                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2786                                          udp_push_pending_frames);
2787        return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2788}
2789#endif
2790
2791int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2792                       char __user *optval, int __user *optlen)
2793{
2794        struct udp_sock *up = udp_sk(sk);
2795        int val, len;
2796
2797        if (get_user(len, optlen))
2798                return -EFAULT;
2799
2800        len = min_t(unsigned int, len, sizeof(int));
2801
2802        if (len < 0)
2803                return -EINVAL;
2804
2805        switch (optname) {
2806        case UDP_CORK:
2807                val = READ_ONCE(up->corkflag);
2808                break;
2809
2810        case UDP_ENCAP:
2811                val = up->encap_type;
2812                break;
2813
2814        case UDP_NO_CHECK6_TX:
2815                val = up->no_check6_tx;
2816                break;
2817
2818        case UDP_NO_CHECK6_RX:
2819                val = up->no_check6_rx;
2820                break;
2821
2822        case UDP_SEGMENT:
2823                val = READ_ONCE(up->gso_size);
2824                break;
2825
2826        case UDP_GRO:
2827                val = up->gro_enabled;
2828                break;
2829
2830        /* The following two cannot be changed on UDP sockets, the return is
2831         * always 0 (which corresponds to the full checksum coverage of UDP). */
2832        case UDPLITE_SEND_CSCOV:
2833                val = up->pcslen;
2834                break;
2835
2836        case UDPLITE_RECV_CSCOV:
2837                val = up->pcrlen;
2838                break;
2839
2840        default:
2841                return -ENOPROTOOPT;
2842        }
2843
2844        if (put_user(len, optlen))
2845                return -EFAULT;
2846        if (copy_to_user(optval, &val, len))
2847                return -EFAULT;
2848        return 0;
2849}
2850EXPORT_SYMBOL(udp_lib_getsockopt);
2851
2852int udp_getsockopt(struct sock *sk, int level, int optname,
2853                   char __user *optval, int __user *optlen)
2854{
2855        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2856                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2857        return ip_getsockopt(sk, level, optname, optval, optlen);
2858}
2859
2860#ifdef CONFIG_COMPAT
2861int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2862                                 char __user *optval, int __user *optlen)
2863{
2864        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2865                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2866        return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2867}
2868#endif
2869/**
2870 *      udp_poll - wait for a UDP event.
2871 *      @file - file struct
2872 *      @sock - socket
2873 *      @wait - poll table
2874 *
2875 *      This is same as datagram poll, except for the special case of
2876 *      blocking sockets. If application is using a blocking fd
2877 *      and a packet with checksum error is in the queue;
2878 *      then it could get return from select indicating data available
2879 *      but then block when reading it. Add special case code
2880 *      to work around these arguably broken applications.
2881 */
2882__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2883{
2884        __poll_t mask = datagram_poll(file, sock, wait);
2885        struct sock *sk = sock->sk;
2886
2887        if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2888                mask |= EPOLLIN | EPOLLRDNORM;
2889
2890        /* Check for false positives due to checksum errors */
2891        if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2892            !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2893                mask &= ~(EPOLLIN | EPOLLRDNORM);
2894
2895        return mask;
2896
2897}
2898EXPORT_SYMBOL(udp_poll);
2899
2900int udp_abort(struct sock *sk, int err)
2901{
2902        lock_sock(sk);
2903
2904        /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2905         * with close()
2906         */
2907        if (sock_flag(sk, SOCK_DEAD))
2908                goto out;
2909
2910        sk->sk_err = err;
2911        sk_error_report(sk);
2912        __udp_disconnect(sk, 0);
2913
2914out:
2915        release_sock(sk);
2916
2917        return 0;
2918}
2919EXPORT_SYMBOL_GPL(udp_abort);
2920
2921struct proto udp_prot = {
2922        .name                   = "UDP",
2923        .owner                  = THIS_MODULE,
2924        .close                  = udp_lib_close,
2925        .pre_connect            = udp_pre_connect,
2926        .connect                = ip4_datagram_connect,
2927        .disconnect             = udp_disconnect,
2928        .ioctl                  = udp_ioctl,
2929        .init                   = udp_init_sock,
2930        .destroy                = udp_destroy_sock,
2931        .setsockopt             = udp_setsockopt,
2932        .getsockopt             = udp_getsockopt,
2933        .sendmsg                = udp_sendmsg,
2934        .recvmsg                = udp_recvmsg,
2935        .sendpage               = udp_sendpage,
2936        .release_cb             = ip4_datagram_release_cb,
2937        .hash                   = udp_lib_hash,
2938        .unhash                 = udp_lib_unhash,
2939        .rehash                 = udp_v4_rehash,
2940        .get_port               = udp_v4_get_port,
2941#ifdef CONFIG_BPF_SYSCALL
2942        .psock_update_sk_prot   = udp_bpf_update_proto,
2943#endif
2944        .memory_allocated       = &udp_memory_allocated,
2945        .sysctl_mem             = sysctl_udp_mem,
2946        .sysctl_wmem_offset     = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2947        .sysctl_rmem_offset     = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2948        .obj_size               = sizeof(struct udp_sock),
2949        .h.udp_table            = &udp_table,
2950#ifdef CONFIG_COMPAT
2951        .compat_setsockopt      = compat_udp_setsockopt,
2952        .compat_getsockopt      = compat_udp_getsockopt,
2953#endif
2954        .diag_destroy           = udp_abort,
2955};
2956EXPORT_SYMBOL(udp_prot);
2957
2958/* ------------------------------------------------------------------------ */
2959#ifdef CONFIG_PROC_FS
2960
2961static struct sock *udp_get_first(struct seq_file *seq, int start)
2962{
2963        struct sock *sk;
2964        struct udp_seq_afinfo *afinfo;
2965        struct udp_iter_state *state = seq->private;
2966        struct net *net = seq_file_net(seq);
2967
2968        if (state->bpf_seq_afinfo)
2969                afinfo = state->bpf_seq_afinfo;
2970        else
2971                afinfo = PDE_DATA(file_inode(seq->file));
2972
2973        for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2974             ++state->bucket) {
2975                struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2976
2977                if (hlist_empty(&hslot->head))
2978                        continue;
2979
2980                spin_lock_bh(&hslot->lock);
2981                sk_for_each(sk, &hslot->head) {
2982                        if (!net_eq(sock_net(sk), net))
2983                                continue;
2984                        if (afinfo->family == AF_UNSPEC ||
2985                            sk->sk_family == afinfo->family)
2986                                goto found;
2987                }
2988                spin_unlock_bh(&hslot->lock);
2989        }
2990        sk = NULL;
2991found:
2992        return sk;
2993}
2994
2995static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2996{
2997        struct udp_seq_afinfo *afinfo;
2998        struct udp_iter_state *state = seq->private;
2999        struct net *net = seq_file_net(seq);
3000
3001        if (state->bpf_seq_afinfo)
3002                afinfo = state->bpf_seq_afinfo;
3003        else
3004                afinfo = PDE_DATA(file_inode(seq->file));
3005
3006        do {
3007                sk = sk_next(sk);
3008        } while (sk && (!net_eq(sock_net(sk), net) ||
3009                        (afinfo->family != AF_UNSPEC &&
3010                         sk->sk_family != afinfo->family)));
3011
3012        if (!sk) {
3013                if (state->bucket <= afinfo->udp_table->mask)
3014                        spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3015                return udp_get_first(seq, state->bucket + 1);
3016        }
3017        return sk;
3018}
3019
3020static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3021{
3022        struct sock *sk = udp_get_first(seq, 0);
3023
3024        if (sk)
3025                while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3026                        --pos;
3027        return pos ? NULL : sk;
3028}
3029
3030void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3031{
3032        struct udp_iter_state *state = seq->private;
3033        state->bucket = MAX_UDP_PORTS;
3034
3035        return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3036}
3037EXPORT_SYMBOL(udp_seq_start);
3038
3039void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3040{
3041        struct sock *sk;
3042
3043        if (v == SEQ_START_TOKEN)
3044                sk = udp_get_idx(seq, 0);
3045        else
3046                sk = udp_get_next(seq, v);
3047
3048        ++*pos;
3049        return sk;
3050}
3051EXPORT_SYMBOL(udp_seq_next);
3052
3053void udp_seq_stop(struct seq_file *seq, void *v)
3054{
3055        struct udp_seq_afinfo *afinfo;
3056        struct udp_iter_state *state = seq->private;
3057
3058        if (state->bpf_seq_afinfo)
3059                afinfo = state->bpf_seq_afinfo;
3060        else
3061                afinfo = PDE_DATA(file_inode(seq->file));
3062
3063        if (state->bucket <= afinfo->udp_table->mask)
3064                spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3065}
3066EXPORT_SYMBOL(udp_seq_stop);
3067
3068/* ------------------------------------------------------------------------ */
3069static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3070                int bucket)
3071{
3072        struct inet_sock *inet = inet_sk(sp);
3073        __be32 dest = inet->inet_daddr;
3074        __be32 src  = inet->inet_rcv_saddr;
3075        __u16 destp       = ntohs(inet->inet_dport);
3076        __u16 srcp        = ntohs(inet->inet_sport);
3077
3078        seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3079                " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3080                bucket, src, srcp, dest, destp, sp->sk_state,
3081                sk_wmem_alloc_get(sp),
3082                udp_rqueue_get(sp),
3083                0, 0L, 0,
3084                from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3085                0, sock_i_ino(sp),
3086                refcount_read(&sp->sk_refcnt), sp,
3087                atomic_read(&sp->sk_drops));
3088}
3089
3090int udp4_seq_show(struct seq_file *seq, void *v)
3091{
3092        seq_setwidth(seq, 127);
3093        if (v == SEQ_START_TOKEN)
3094                seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
3095                           "rx_queue tr tm->when retrnsmt   uid  timeout "
3096                           "inode ref pointer drops");
3097        else {
3098                struct udp_iter_state *state = seq->private;
3099
3100                udp4_format_sock(v, seq, state->bucket);
3101        }
3102        seq_pad(seq, '\n');
3103        return 0;
3104}
3105
3106#ifdef CONFIG_BPF_SYSCALL
3107struct bpf_iter__udp {
3108        __bpf_md_ptr(struct bpf_iter_meta *, meta);
3109        __bpf_md_ptr(struct udp_sock *, udp_sk);
3110        uid_t uid __aligned(8);
3111        int bucket __aligned(8);
3112};
3113
3114static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3115                             struct udp_sock *udp_sk, uid_t uid, int bucket)
3116{
3117        struct bpf_iter__udp ctx;
3118
3119        meta->seq_num--;  /* skip SEQ_START_TOKEN */
3120        ctx.meta = meta;
3121        ctx.udp_sk = udp_sk;
3122        ctx.uid = uid;
3123        ctx.bucket = bucket;
3124        return bpf_iter_run_prog(prog, &ctx);
3125}
3126
3127static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3128{
3129        struct udp_iter_state *state = seq->private;
3130        struct bpf_iter_meta meta;
3131        struct bpf_prog *prog;
3132        struct sock *sk = v;
3133        uid_t uid;
3134
3135        if (v == SEQ_START_TOKEN)
3136                return 0;
3137
3138        uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3139        meta.seq = seq;
3140        prog = bpf_iter_get_info(&meta, false);
3141        return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3142}
3143
3144static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3145{
3146        struct bpf_iter_meta meta;
3147        struct bpf_prog *prog;
3148
3149        if (!v) {
3150                meta.seq = seq;
3151                prog = bpf_iter_get_info(&meta, true);
3152                if (prog)
3153                        (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3154        }
3155
3156        udp_seq_stop(seq, v);
3157}
3158
3159static const struct seq_operations bpf_iter_udp_seq_ops = {
3160        .start          = udp_seq_start,
3161        .next           = udp_seq_next,
3162        .stop           = bpf_iter_udp_seq_stop,
3163        .show           = bpf_iter_udp_seq_show,
3164};
3165#endif
3166
3167const struct seq_operations udp_seq_ops = {
3168        .start          = udp_seq_start,
3169        .next           = udp_seq_next,
3170        .stop           = udp_seq_stop,
3171        .show           = udp4_seq_show,
3172};
3173EXPORT_SYMBOL(udp_seq_ops);
3174
3175static struct udp_seq_afinfo udp4_seq_afinfo = {
3176        .family         = AF_INET,
3177        .udp_table      = &udp_table,
3178};
3179
3180static int __net_init udp4_proc_init_net(struct net *net)
3181{
3182        if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3183                        sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3184                return -ENOMEM;
3185        return 0;
3186}
3187
3188static void __net_exit udp4_proc_exit_net(struct net *net)
3189{
3190        remove_proc_entry("udp", net->proc_net);
3191}
3192
3193static struct pernet_operations udp4_net_ops = {
3194        .init = udp4_proc_init_net,
3195        .exit = udp4_proc_exit_net,
3196};
3197
3198int __init udp4_proc_init(void)
3199{
3200        return register_pernet_subsys(&udp4_net_ops);
3201}
3202
3203void udp4_proc_exit(void)
3204{
3205        unregister_pernet_subsys(&udp4_net_ops);
3206}
3207#endif /* CONFIG_PROC_FS */
3208
3209static __initdata unsigned long uhash_entries;
3210static int __init set_uhash_entries(char *str)
3211{
3212        ssize_t ret;
3213
3214        if (!str)
3215                return 0;
3216
3217        ret = kstrtoul(str, 0, &uhash_entries);
3218        if (ret)
3219                return 0;
3220
3221        if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3222                uhash_entries = UDP_HTABLE_SIZE_MIN;
3223        return 1;
3224}
3225__setup("uhash_entries=", set_uhash_entries);
3226
3227void __init udp_table_init(struct udp_table *table, const char *name)
3228{
3229        unsigned int i;
3230
3231        table->hash = alloc_large_system_hash(name,
3232                                              2 * sizeof(struct udp_hslot),
3233                                              uhash_entries,
3234                                              21, /* one slot per 2 MB */
3235                                              0,
3236                                              &table->log,
3237                                              &table->mask,
3238                                              UDP_HTABLE_SIZE_MIN,
3239                                              64 * 1024);
3240
3241        table->hash2 = table->hash + (table->mask + 1);
3242        for (i = 0; i <= table->mask; i++) {
3243                INIT_HLIST_HEAD(&table->hash[i].head);
3244                table->hash[i].count = 0;
3245                spin_lock_init(&table->hash[i].lock);
3246        }
3247        for (i = 0; i <= table->mask; i++) {
3248                INIT_HLIST_HEAD(&table->hash2[i].head);
3249                table->hash2[i].count = 0;
3250                spin_lock_init(&table->hash2[i].lock);
3251        }
3252}
3253
3254u32 udp_flow_hashrnd(void)
3255{
3256        static u32 hashrnd __read_mostly;
3257
3258        net_get_random_once(&hashrnd, sizeof(hashrnd));
3259
3260        return hashrnd;
3261}
3262EXPORT_SYMBOL(udp_flow_hashrnd);
3263
3264static void __udp_sysctl_init(struct net *net)
3265{
3266        net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3267        net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3268
3269#ifdef CONFIG_NET_L3_MASTER_DEV
3270        net->ipv4.sysctl_udp_l3mdev_accept = 0;
3271#endif
3272}
3273
3274static int __net_init udp_sysctl_init(struct net *net)
3275{
3276        __udp_sysctl_init(net);
3277        return 0;
3278}
3279
3280static struct pernet_operations __net_initdata udp_sysctl_ops = {
3281        .init   = udp_sysctl_init,
3282};
3283
3284#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3285DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3286                     struct udp_sock *udp_sk, uid_t uid, int bucket)
3287
3288static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3289{
3290        struct udp_iter_state *st = priv_data;
3291        struct udp_seq_afinfo *afinfo;
3292        int ret;
3293
3294        afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3295        if (!afinfo)
3296                return -ENOMEM;
3297
3298        afinfo->family = AF_UNSPEC;
3299        afinfo->udp_table = &udp_table;
3300        st->bpf_seq_afinfo = afinfo;
3301        ret = bpf_iter_init_seq_net(priv_data, aux);
3302        if (ret)
3303                kfree(afinfo);
3304        return ret;
3305}
3306
3307static void bpf_iter_fini_udp(void *priv_data)
3308{
3309        struct udp_iter_state *st = priv_data;
3310
3311        kfree(st->bpf_seq_afinfo);
3312        bpf_iter_fini_seq_net(priv_data);
3313}
3314
3315static const struct bpf_iter_seq_info udp_seq_info = {
3316        .seq_ops                = &bpf_iter_udp_seq_ops,
3317        .init_seq_private       = bpf_iter_init_udp,
3318        .fini_seq_private       = bpf_iter_fini_udp,
3319        .seq_priv_size          = sizeof(struct udp_iter_state),
3320};
3321
3322static struct bpf_iter_reg udp_reg_info = {
3323        .target                 = "udp",
3324        .ctx_arg_info_size      = 1,
3325        .ctx_arg_info           = {
3326                { offsetof(struct bpf_iter__udp, udp_sk),
3327                  PTR_TO_BTF_ID_OR_NULL },
3328        },
3329        .seq_info               = &udp_seq_info,
3330};
3331
3332static void __init bpf_iter_register(void)
3333{
3334        udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3335        if (bpf_iter_reg_target(&udp_reg_info))
3336                pr_warn("Warning: could not register bpf iterator udp\n");
3337}
3338#endif
3339
3340void __init udp_init(void)
3341{
3342        unsigned long limit;
3343        unsigned int i;
3344
3345        udp_table_init(&udp_table, "UDP");
3346        limit = nr_free_buffer_pages() / 8;
3347        limit = max(limit, 128UL);
3348        sysctl_udp_mem[0] = limit / 4 * 3;
3349        sysctl_udp_mem[1] = limit;
3350        sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3351
3352        __udp_sysctl_init(&init_net);
3353
3354        /* 16 spinlocks per cpu */
3355        udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3356        udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3357                                GFP_KERNEL);
3358        if (!udp_busylocks)
3359                panic("UDP: failed to alloc udp_busylocks\n");
3360        for (i = 0; i < (1U << udp_busylocks_log); i++)
3361                spin_lock_init(udp_busylocks + i);
3362
3363        if (register_pernet_subsys(&udp_sysctl_ops))
3364                panic("UDP: failed to init sysctl parameters.\n");
3365
3366#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3367        bpf_iter_register();
3368#endif
3369}
3370