linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <linux/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include <trace/events/sunrpc.h>
  38#include "netns.h"
  39
  40#define  RPCDBG_FACILITY RPCDBG_CACHE
  41
  42static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  43static void cache_revisit_request(struct cache_head *item);
  44
  45static void cache_init(struct cache_head *h, struct cache_detail *detail)
  46{
  47        time64_t now = seconds_since_boot();
  48        INIT_HLIST_NODE(&h->cache_list);
  49        h->flags = 0;
  50        kref_init(&h->ref);
  51        h->expiry_time = now + CACHE_NEW_EXPIRY;
  52        if (now <= detail->flush_time)
  53                /* ensure it isn't already expired */
  54                now = detail->flush_time + 1;
  55        h->last_refresh = now;
  56}
  57
  58static void cache_fresh_unlocked(struct cache_head *head,
  59                                struct cache_detail *detail);
  60
  61static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
  62                                                struct cache_head *key,
  63                                                int hash)
  64{
  65        struct hlist_head *head = &detail->hash_table[hash];
  66        struct cache_head *tmp;
  67
  68        rcu_read_lock();
  69        hlist_for_each_entry_rcu(tmp, head, cache_list) {
  70                if (!detail->match(tmp, key))
  71                        continue;
  72                if (test_bit(CACHE_VALID, &tmp->flags) &&
  73                    cache_is_expired(detail, tmp))
  74                        continue;
  75                tmp = cache_get_rcu(tmp);
  76                rcu_read_unlock();
  77                return tmp;
  78        }
  79        rcu_read_unlock();
  80        return NULL;
  81}
  82
  83static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
  84                                            struct cache_detail *cd)
  85{
  86        /* Must be called under cd->hash_lock */
  87        hlist_del_init_rcu(&ch->cache_list);
  88        set_bit(CACHE_CLEANED, &ch->flags);
  89        cd->entries --;
  90}
  91
  92static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
  93                                          struct cache_detail *cd)
  94{
  95        cache_fresh_unlocked(ch, cd);
  96        cache_put(ch, cd);
  97}
  98
  99static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
 100                                                 struct cache_head *key,
 101                                                 int hash)
 102{
 103        struct cache_head *new, *tmp, *freeme = NULL;
 104        struct hlist_head *head = &detail->hash_table[hash];
 105
 106        new = detail->alloc();
 107        if (!new)
 108                return NULL;
 109        /* must fully initialise 'new', else
 110         * we might get lose if we need to
 111         * cache_put it soon.
 112         */
 113        cache_init(new, detail);
 114        detail->init(new, key);
 115
 116        spin_lock(&detail->hash_lock);
 117
 118        /* check if entry appeared while we slept */
 119        hlist_for_each_entry_rcu(tmp, head, cache_list,
 120                                 lockdep_is_held(&detail->hash_lock)) {
 121                if (!detail->match(tmp, key))
 122                        continue;
 123                if (test_bit(CACHE_VALID, &tmp->flags) &&
 124                    cache_is_expired(detail, tmp)) {
 125                        sunrpc_begin_cache_remove_entry(tmp, detail);
 126                        trace_cache_entry_expired(detail, tmp);
 127                        freeme = tmp;
 128                        break;
 129                }
 130                cache_get(tmp);
 131                spin_unlock(&detail->hash_lock);
 132                cache_put(new, detail);
 133                return tmp;
 134        }
 135
 136        hlist_add_head_rcu(&new->cache_list, head);
 137        detail->entries++;
 138        cache_get(new);
 139        spin_unlock(&detail->hash_lock);
 140
 141        if (freeme)
 142                sunrpc_end_cache_remove_entry(freeme, detail);
 143        return new;
 144}
 145
 146struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
 147                                           struct cache_head *key, int hash)
 148{
 149        struct cache_head *ret;
 150
 151        ret = sunrpc_cache_find_rcu(detail, key, hash);
 152        if (ret)
 153                return ret;
 154        /* Didn't find anything, insert an empty entry */
 155        return sunrpc_cache_add_entry(detail, key, hash);
 156}
 157EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
 158
 159static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 160
 161static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
 162                               struct cache_detail *detail)
 163{
 164        time64_t now = seconds_since_boot();
 165        if (now <= detail->flush_time)
 166                /* ensure it isn't immediately treated as expired */
 167                now = detail->flush_time + 1;
 168        head->expiry_time = expiry;
 169        head->last_refresh = now;
 170        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 171        set_bit(CACHE_VALID, &head->flags);
 172}
 173
 174static void cache_fresh_unlocked(struct cache_head *head,
 175                                 struct cache_detail *detail)
 176{
 177        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 178                cache_revisit_request(head);
 179                cache_dequeue(detail, head);
 180        }
 181}
 182
 183static void cache_make_negative(struct cache_detail *detail,
 184                                struct cache_head *h)
 185{
 186        set_bit(CACHE_NEGATIVE, &h->flags);
 187        trace_cache_entry_make_negative(detail, h);
 188}
 189
 190static void cache_entry_update(struct cache_detail *detail,
 191                               struct cache_head *h,
 192                               struct cache_head *new)
 193{
 194        if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
 195                detail->update(h, new);
 196                trace_cache_entry_update(detail, h);
 197        } else {
 198                cache_make_negative(detail, h);
 199        }
 200}
 201
 202struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 203                                       struct cache_head *new, struct cache_head *old, int hash)
 204{
 205        /* The 'old' entry is to be replaced by 'new'.
 206         * If 'old' is not VALID, we update it directly,
 207         * otherwise we need to replace it
 208         */
 209        struct cache_head *tmp;
 210
 211        if (!test_bit(CACHE_VALID, &old->flags)) {
 212                spin_lock(&detail->hash_lock);
 213                if (!test_bit(CACHE_VALID, &old->flags)) {
 214                        cache_entry_update(detail, old, new);
 215                        cache_fresh_locked(old, new->expiry_time, detail);
 216                        spin_unlock(&detail->hash_lock);
 217                        cache_fresh_unlocked(old, detail);
 218                        return old;
 219                }
 220                spin_unlock(&detail->hash_lock);
 221        }
 222        /* We need to insert a new entry */
 223        tmp = detail->alloc();
 224        if (!tmp) {
 225                cache_put(old, detail);
 226                return NULL;
 227        }
 228        cache_init(tmp, detail);
 229        detail->init(tmp, old);
 230
 231        spin_lock(&detail->hash_lock);
 232        cache_entry_update(detail, tmp, new);
 233        hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 234        detail->entries++;
 235        cache_get(tmp);
 236        cache_fresh_locked(tmp, new->expiry_time, detail);
 237        cache_fresh_locked(old, 0, detail);
 238        spin_unlock(&detail->hash_lock);
 239        cache_fresh_unlocked(tmp, detail);
 240        cache_fresh_unlocked(old, detail);
 241        cache_put(old, detail);
 242        return tmp;
 243}
 244EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 245
 246static inline int cache_is_valid(struct cache_head *h)
 247{
 248        if (!test_bit(CACHE_VALID, &h->flags))
 249                return -EAGAIN;
 250        else {
 251                /* entry is valid */
 252                if (test_bit(CACHE_NEGATIVE, &h->flags))
 253                        return -ENOENT;
 254                else {
 255                        /*
 256                         * In combination with write barrier in
 257                         * sunrpc_cache_update, ensures that anyone
 258                         * using the cache entry after this sees the
 259                         * updated contents:
 260                         */
 261                        smp_rmb();
 262                        return 0;
 263                }
 264        }
 265}
 266
 267static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 268{
 269        int rv;
 270
 271        spin_lock(&detail->hash_lock);
 272        rv = cache_is_valid(h);
 273        if (rv == -EAGAIN) {
 274                cache_make_negative(detail, h);
 275                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 276                                   detail);
 277                rv = -ENOENT;
 278        }
 279        spin_unlock(&detail->hash_lock);
 280        cache_fresh_unlocked(h, detail);
 281        return rv;
 282}
 283
 284/*
 285 * This is the generic cache management routine for all
 286 * the authentication caches.
 287 * It checks the currency of a cache item and will (later)
 288 * initiate an upcall to fill it if needed.
 289 *
 290 *
 291 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 292 * -EAGAIN if upcall is pending and request has been queued
 293 * -ETIMEDOUT if upcall failed or request could not be queue or
 294 *           upcall completed but item is still invalid (implying that
 295 *           the cache item has been replaced with a newer one).
 296 * -ENOENT if cache entry was negative
 297 */
 298int cache_check(struct cache_detail *detail,
 299                    struct cache_head *h, struct cache_req *rqstp)
 300{
 301        int rv;
 302        time64_t refresh_age, age;
 303
 304        /* First decide return status as best we can */
 305        rv = cache_is_valid(h);
 306
 307        /* now see if we want to start an upcall */
 308        refresh_age = (h->expiry_time - h->last_refresh);
 309        age = seconds_since_boot() - h->last_refresh;
 310
 311        if (rqstp == NULL) {
 312                if (rv == -EAGAIN)
 313                        rv = -ENOENT;
 314        } else if (rv == -EAGAIN ||
 315                   (h->expiry_time != 0 && age > refresh_age/2)) {
 316                dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
 317                                refresh_age, age);
 318                switch (detail->cache_upcall(detail, h)) {
 319                case -EINVAL:
 320                        rv = try_to_negate_entry(detail, h);
 321                        break;
 322                case -EAGAIN:
 323                        cache_fresh_unlocked(h, detail);
 324                        break;
 325                }
 326        }
 327
 328        if (rv == -EAGAIN) {
 329                if (!cache_defer_req(rqstp, h)) {
 330                        /*
 331                         * Request was not deferred; handle it as best
 332                         * we can ourselves:
 333                         */
 334                        rv = cache_is_valid(h);
 335                        if (rv == -EAGAIN)
 336                                rv = -ETIMEDOUT;
 337                }
 338        }
 339        if (rv)
 340                cache_put(h, detail);
 341        return rv;
 342}
 343EXPORT_SYMBOL_GPL(cache_check);
 344
 345/*
 346 * caches need to be periodically cleaned.
 347 * For this we maintain a list of cache_detail and
 348 * a current pointer into that list and into the table
 349 * for that entry.
 350 *
 351 * Each time cache_clean is called it finds the next non-empty entry
 352 * in the current table and walks the list in that entry
 353 * looking for entries that can be removed.
 354 *
 355 * An entry gets removed if:
 356 * - The expiry is before current time
 357 * - The last_refresh time is before the flush_time for that cache
 358 *
 359 * later we might drop old entries with non-NEVER expiry if that table
 360 * is getting 'full' for some definition of 'full'
 361 *
 362 * The question of "how often to scan a table" is an interesting one
 363 * and is answered in part by the use of the "nextcheck" field in the
 364 * cache_detail.
 365 * When a scan of a table begins, the nextcheck field is set to a time
 366 * that is well into the future.
 367 * While scanning, if an expiry time is found that is earlier than the
 368 * current nextcheck time, nextcheck is set to that expiry time.
 369 * If the flush_time is ever set to a time earlier than the nextcheck
 370 * time, the nextcheck time is then set to that flush_time.
 371 *
 372 * A table is then only scanned if the current time is at least
 373 * the nextcheck time.
 374 *
 375 */
 376
 377static LIST_HEAD(cache_list);
 378static DEFINE_SPINLOCK(cache_list_lock);
 379static struct cache_detail *current_detail;
 380static int current_index;
 381
 382static void do_cache_clean(struct work_struct *work);
 383static struct delayed_work cache_cleaner;
 384
 385void sunrpc_init_cache_detail(struct cache_detail *cd)
 386{
 387        spin_lock_init(&cd->hash_lock);
 388        INIT_LIST_HEAD(&cd->queue);
 389        spin_lock(&cache_list_lock);
 390        cd->nextcheck = 0;
 391        cd->entries = 0;
 392        atomic_set(&cd->writers, 0);
 393        cd->last_close = 0;
 394        cd->last_warn = -1;
 395        list_add(&cd->others, &cache_list);
 396        spin_unlock(&cache_list_lock);
 397
 398        /* start the cleaning process */
 399        queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
 400}
 401EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 402
 403void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 404{
 405        cache_purge(cd);
 406        spin_lock(&cache_list_lock);
 407        spin_lock(&cd->hash_lock);
 408        if (current_detail == cd)
 409                current_detail = NULL;
 410        list_del_init(&cd->others);
 411        spin_unlock(&cd->hash_lock);
 412        spin_unlock(&cache_list_lock);
 413        if (list_empty(&cache_list)) {
 414                /* module must be being unloaded so its safe to kill the worker */
 415                cancel_delayed_work_sync(&cache_cleaner);
 416        }
 417}
 418EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 419
 420/* clean cache tries to find something to clean
 421 * and cleans it.
 422 * It returns 1 if it cleaned something,
 423 *            0 if it didn't find anything this time
 424 *           -1 if it fell off the end of the list.
 425 */
 426static int cache_clean(void)
 427{
 428        int rv = 0;
 429        struct list_head *next;
 430
 431        spin_lock(&cache_list_lock);
 432
 433        /* find a suitable table if we don't already have one */
 434        while (current_detail == NULL ||
 435            current_index >= current_detail->hash_size) {
 436                if (current_detail)
 437                        next = current_detail->others.next;
 438                else
 439                        next = cache_list.next;
 440                if (next == &cache_list) {
 441                        current_detail = NULL;
 442                        spin_unlock(&cache_list_lock);
 443                        return -1;
 444                }
 445                current_detail = list_entry(next, struct cache_detail, others);
 446                if (current_detail->nextcheck > seconds_since_boot())
 447                        current_index = current_detail->hash_size;
 448                else {
 449                        current_index = 0;
 450                        current_detail->nextcheck = seconds_since_boot()+30*60;
 451                }
 452        }
 453
 454        /* find a non-empty bucket in the table */
 455        while (current_detail &&
 456               current_index < current_detail->hash_size &&
 457               hlist_empty(&current_detail->hash_table[current_index]))
 458                current_index++;
 459
 460        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 461
 462        if (current_detail && current_index < current_detail->hash_size) {
 463                struct cache_head *ch = NULL;
 464                struct cache_detail *d;
 465                struct hlist_head *head;
 466                struct hlist_node *tmp;
 467
 468                spin_lock(&current_detail->hash_lock);
 469
 470                /* Ok, now to clean this strand */
 471
 472                head = &current_detail->hash_table[current_index];
 473                hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 474                        if (current_detail->nextcheck > ch->expiry_time)
 475                                current_detail->nextcheck = ch->expiry_time+1;
 476                        if (!cache_is_expired(current_detail, ch))
 477                                continue;
 478
 479                        sunrpc_begin_cache_remove_entry(ch, current_detail);
 480                        trace_cache_entry_expired(current_detail, ch);
 481                        rv = 1;
 482                        break;
 483                }
 484
 485                spin_unlock(&current_detail->hash_lock);
 486                d = current_detail;
 487                if (!ch)
 488                        current_index ++;
 489                spin_unlock(&cache_list_lock);
 490                if (ch)
 491                        sunrpc_end_cache_remove_entry(ch, d);
 492        } else
 493                spin_unlock(&cache_list_lock);
 494
 495        return rv;
 496}
 497
 498/*
 499 * We want to regularly clean the cache, so we need to schedule some work ...
 500 */
 501static void do_cache_clean(struct work_struct *work)
 502{
 503        int delay;
 504
 505        if (list_empty(&cache_list))
 506                return;
 507
 508        if (cache_clean() == -1)
 509                delay = round_jiffies_relative(30*HZ);
 510        else
 511                delay = 5;
 512
 513        queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
 514}
 515
 516
 517/*
 518 * Clean all caches promptly.  This just calls cache_clean
 519 * repeatedly until we are sure that every cache has had a chance to
 520 * be fully cleaned
 521 */
 522void cache_flush(void)
 523{
 524        while (cache_clean() != -1)
 525                cond_resched();
 526        while (cache_clean() != -1)
 527                cond_resched();
 528}
 529EXPORT_SYMBOL_GPL(cache_flush);
 530
 531void cache_purge(struct cache_detail *detail)
 532{
 533        struct cache_head *ch = NULL;
 534        struct hlist_head *head = NULL;
 535        int i = 0;
 536
 537        spin_lock(&detail->hash_lock);
 538        if (!detail->entries) {
 539                spin_unlock(&detail->hash_lock);
 540                return;
 541        }
 542
 543        dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
 544        for (i = 0; i < detail->hash_size; i++) {
 545                head = &detail->hash_table[i];
 546                while (!hlist_empty(head)) {
 547                        ch = hlist_entry(head->first, struct cache_head,
 548                                         cache_list);
 549                        sunrpc_begin_cache_remove_entry(ch, detail);
 550                        spin_unlock(&detail->hash_lock);
 551                        sunrpc_end_cache_remove_entry(ch, detail);
 552                        spin_lock(&detail->hash_lock);
 553                }
 554        }
 555        spin_unlock(&detail->hash_lock);
 556}
 557EXPORT_SYMBOL_GPL(cache_purge);
 558
 559
 560/*
 561 * Deferral and Revisiting of Requests.
 562 *
 563 * If a cache lookup finds a pending entry, we
 564 * need to defer the request and revisit it later.
 565 * All deferred requests are stored in a hash table,
 566 * indexed by "struct cache_head *".
 567 * As it may be wasteful to store a whole request
 568 * structure, we allow the request to provide a
 569 * deferred form, which must contain a
 570 * 'struct cache_deferred_req'
 571 * This cache_deferred_req contains a method to allow
 572 * it to be revisited when cache info is available
 573 */
 574
 575#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 576#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 577
 578#define DFR_MAX 300     /* ??? */
 579
 580static DEFINE_SPINLOCK(cache_defer_lock);
 581static LIST_HEAD(cache_defer_list);
 582static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 583static int cache_defer_cnt;
 584
 585static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 586{
 587        hlist_del_init(&dreq->hash);
 588        if (!list_empty(&dreq->recent)) {
 589                list_del_init(&dreq->recent);
 590                cache_defer_cnt--;
 591        }
 592}
 593
 594static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 595{
 596        int hash = DFR_HASH(item);
 597
 598        INIT_LIST_HEAD(&dreq->recent);
 599        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 600}
 601
 602static void setup_deferral(struct cache_deferred_req *dreq,
 603                           struct cache_head *item,
 604                           int count_me)
 605{
 606
 607        dreq->item = item;
 608
 609        spin_lock(&cache_defer_lock);
 610
 611        __hash_deferred_req(dreq, item);
 612
 613        if (count_me) {
 614                cache_defer_cnt++;
 615                list_add(&dreq->recent, &cache_defer_list);
 616        }
 617
 618        spin_unlock(&cache_defer_lock);
 619
 620}
 621
 622struct thread_deferred_req {
 623        struct cache_deferred_req handle;
 624        struct completion completion;
 625};
 626
 627static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 628{
 629        struct thread_deferred_req *dr =
 630                container_of(dreq, struct thread_deferred_req, handle);
 631        complete(&dr->completion);
 632}
 633
 634static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 635{
 636        struct thread_deferred_req sleeper;
 637        struct cache_deferred_req *dreq = &sleeper.handle;
 638
 639        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 640        dreq->revisit = cache_restart_thread;
 641
 642        setup_deferral(dreq, item, 0);
 643
 644        if (!test_bit(CACHE_PENDING, &item->flags) ||
 645            wait_for_completion_interruptible_timeout(
 646                    &sleeper.completion, req->thread_wait) <= 0) {
 647                /* The completion wasn't completed, so we need
 648                 * to clean up
 649                 */
 650                spin_lock(&cache_defer_lock);
 651                if (!hlist_unhashed(&sleeper.handle.hash)) {
 652                        __unhash_deferred_req(&sleeper.handle);
 653                        spin_unlock(&cache_defer_lock);
 654                } else {
 655                        /* cache_revisit_request already removed
 656                         * this from the hash table, but hasn't
 657                         * called ->revisit yet.  It will very soon
 658                         * and we need to wait for it.
 659                         */
 660                        spin_unlock(&cache_defer_lock);
 661                        wait_for_completion(&sleeper.completion);
 662                }
 663        }
 664}
 665
 666static void cache_limit_defers(void)
 667{
 668        /* Make sure we haven't exceed the limit of allowed deferred
 669         * requests.
 670         */
 671        struct cache_deferred_req *discard = NULL;
 672
 673        if (cache_defer_cnt <= DFR_MAX)
 674                return;
 675
 676        spin_lock(&cache_defer_lock);
 677
 678        /* Consider removing either the first or the last */
 679        if (cache_defer_cnt > DFR_MAX) {
 680                if (prandom_u32() & 1)
 681                        discard = list_entry(cache_defer_list.next,
 682                                             struct cache_deferred_req, recent);
 683                else
 684                        discard = list_entry(cache_defer_list.prev,
 685                                             struct cache_deferred_req, recent);
 686                __unhash_deferred_req(discard);
 687        }
 688        spin_unlock(&cache_defer_lock);
 689        if (discard)
 690                discard->revisit(discard, 1);
 691}
 692
 693/* Return true if and only if a deferred request is queued. */
 694static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 695{
 696        struct cache_deferred_req *dreq;
 697
 698        if (req->thread_wait) {
 699                cache_wait_req(req, item);
 700                if (!test_bit(CACHE_PENDING, &item->flags))
 701                        return false;
 702        }
 703        dreq = req->defer(req);
 704        if (dreq == NULL)
 705                return false;
 706        setup_deferral(dreq, item, 1);
 707        if (!test_bit(CACHE_PENDING, &item->flags))
 708                /* Bit could have been cleared before we managed to
 709                 * set up the deferral, so need to revisit just in case
 710                 */
 711                cache_revisit_request(item);
 712
 713        cache_limit_defers();
 714        return true;
 715}
 716
 717static void cache_revisit_request(struct cache_head *item)
 718{
 719        struct cache_deferred_req *dreq;
 720        struct list_head pending;
 721        struct hlist_node *tmp;
 722        int hash = DFR_HASH(item);
 723
 724        INIT_LIST_HEAD(&pending);
 725        spin_lock(&cache_defer_lock);
 726
 727        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 728                if (dreq->item == item) {
 729                        __unhash_deferred_req(dreq);
 730                        list_add(&dreq->recent, &pending);
 731                }
 732
 733        spin_unlock(&cache_defer_lock);
 734
 735        while (!list_empty(&pending)) {
 736                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 737                list_del_init(&dreq->recent);
 738                dreq->revisit(dreq, 0);
 739        }
 740}
 741
 742void cache_clean_deferred(void *owner)
 743{
 744        struct cache_deferred_req *dreq, *tmp;
 745        struct list_head pending;
 746
 747
 748        INIT_LIST_HEAD(&pending);
 749        spin_lock(&cache_defer_lock);
 750
 751        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 752                if (dreq->owner == owner) {
 753                        __unhash_deferred_req(dreq);
 754                        list_add(&dreq->recent, &pending);
 755                }
 756        }
 757        spin_unlock(&cache_defer_lock);
 758
 759        while (!list_empty(&pending)) {
 760                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 761                list_del_init(&dreq->recent);
 762                dreq->revisit(dreq, 1);
 763        }
 764}
 765
 766/*
 767 * communicate with user-space
 768 *
 769 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
 770 * On read, you get a full request, or block.
 771 * On write, an update request is processed.
 772 * Poll works if anything to read, and always allows write.
 773 *
 774 * Implemented by linked list of requests.  Each open file has
 775 * a ->private that also exists in this list.  New requests are added
 776 * to the end and may wakeup and preceding readers.
 777 * New readers are added to the head.  If, on read, an item is found with
 778 * CACHE_UPCALLING clear, we free it from the list.
 779 *
 780 */
 781
 782static DEFINE_SPINLOCK(queue_lock);
 783
 784struct cache_queue {
 785        struct list_head        list;
 786        int                     reader; /* if 0, then request */
 787};
 788struct cache_request {
 789        struct cache_queue      q;
 790        struct cache_head       *item;
 791        char                    * buf;
 792        int                     len;
 793        int                     readers;
 794};
 795struct cache_reader {
 796        struct cache_queue      q;
 797        int                     offset; /* if non-0, we have a refcnt on next request */
 798};
 799
 800static int cache_request(struct cache_detail *detail,
 801                               struct cache_request *crq)
 802{
 803        char *bp = crq->buf;
 804        int len = PAGE_SIZE;
 805
 806        detail->cache_request(detail, crq->item, &bp, &len);
 807        if (len < 0)
 808                return -EAGAIN;
 809        return PAGE_SIZE - len;
 810}
 811
 812static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 813                          loff_t *ppos, struct cache_detail *cd)
 814{
 815        struct cache_reader *rp = filp->private_data;
 816        struct cache_request *rq;
 817        struct inode *inode = file_inode(filp);
 818        int err;
 819
 820        if (count == 0)
 821                return 0;
 822
 823        inode_lock(inode); /* protect against multiple concurrent
 824                              * readers on this file */
 825 again:
 826        spin_lock(&queue_lock);
 827        /* need to find next request */
 828        while (rp->q.list.next != &cd->queue &&
 829               list_entry(rp->q.list.next, struct cache_queue, list)
 830               ->reader) {
 831                struct list_head *next = rp->q.list.next;
 832                list_move(&rp->q.list, next);
 833        }
 834        if (rp->q.list.next == &cd->queue) {
 835                spin_unlock(&queue_lock);
 836                inode_unlock(inode);
 837                WARN_ON_ONCE(rp->offset);
 838                return 0;
 839        }
 840        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 841        WARN_ON_ONCE(rq->q.reader);
 842        if (rp->offset == 0)
 843                rq->readers++;
 844        spin_unlock(&queue_lock);
 845
 846        if (rq->len == 0) {
 847                err = cache_request(cd, rq);
 848                if (err < 0)
 849                        goto out;
 850                rq->len = err;
 851        }
 852
 853        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 854                err = -EAGAIN;
 855                spin_lock(&queue_lock);
 856                list_move(&rp->q.list, &rq->q.list);
 857                spin_unlock(&queue_lock);
 858        } else {
 859                if (rp->offset + count > rq->len)
 860                        count = rq->len - rp->offset;
 861                err = -EFAULT;
 862                if (copy_to_user(buf, rq->buf + rp->offset, count))
 863                        goto out;
 864                rp->offset += count;
 865                if (rp->offset >= rq->len) {
 866                        rp->offset = 0;
 867                        spin_lock(&queue_lock);
 868                        list_move(&rp->q.list, &rq->q.list);
 869                        spin_unlock(&queue_lock);
 870                }
 871                err = 0;
 872        }
 873 out:
 874        if (rp->offset == 0) {
 875                /* need to release rq */
 876                spin_lock(&queue_lock);
 877                rq->readers--;
 878                if (rq->readers == 0 &&
 879                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 880                        list_del(&rq->q.list);
 881                        spin_unlock(&queue_lock);
 882                        cache_put(rq->item, cd);
 883                        kfree(rq->buf);
 884                        kfree(rq);
 885                } else
 886                        spin_unlock(&queue_lock);
 887        }
 888        if (err == -EAGAIN)
 889                goto again;
 890        inode_unlock(inode);
 891        return err ? err :  count;
 892}
 893
 894static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 895                                 size_t count, struct cache_detail *cd)
 896{
 897        ssize_t ret;
 898
 899        if (count == 0)
 900                return -EINVAL;
 901        if (copy_from_user(kaddr, buf, count))
 902                return -EFAULT;
 903        kaddr[count] = '\0';
 904        ret = cd->cache_parse(cd, kaddr, count);
 905        if (!ret)
 906                ret = count;
 907        return ret;
 908}
 909
 910static ssize_t cache_downcall(struct address_space *mapping,
 911                              const char __user *buf,
 912                              size_t count, struct cache_detail *cd)
 913{
 914        char *write_buf;
 915        ssize_t ret = -ENOMEM;
 916
 917        if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */
 918                ret = -EINVAL;
 919                goto out;
 920        }
 921
 922        write_buf = kvmalloc(count + 1, GFP_KERNEL);
 923        if (!write_buf)
 924                goto out;
 925
 926        ret = cache_do_downcall(write_buf, buf, count, cd);
 927        kvfree(write_buf);
 928out:
 929        return ret;
 930}
 931
 932static ssize_t cache_write(struct file *filp, const char __user *buf,
 933                           size_t count, loff_t *ppos,
 934                           struct cache_detail *cd)
 935{
 936        struct address_space *mapping = filp->f_mapping;
 937        struct inode *inode = file_inode(filp);
 938        ssize_t ret = -EINVAL;
 939
 940        if (!cd->cache_parse)
 941                goto out;
 942
 943        inode_lock(inode);
 944        ret = cache_downcall(mapping, buf, count, cd);
 945        inode_unlock(inode);
 946out:
 947        return ret;
 948}
 949
 950static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 951
 952static __poll_t cache_poll(struct file *filp, poll_table *wait,
 953                               struct cache_detail *cd)
 954{
 955        __poll_t mask;
 956        struct cache_reader *rp = filp->private_data;
 957        struct cache_queue *cq;
 958
 959        poll_wait(filp, &queue_wait, wait);
 960
 961        /* alway allow write */
 962        mask = EPOLLOUT | EPOLLWRNORM;
 963
 964        if (!rp)
 965                return mask;
 966
 967        spin_lock(&queue_lock);
 968
 969        for (cq= &rp->q; &cq->list != &cd->queue;
 970             cq = list_entry(cq->list.next, struct cache_queue, list))
 971                if (!cq->reader) {
 972                        mask |= EPOLLIN | EPOLLRDNORM;
 973                        break;
 974                }
 975        spin_unlock(&queue_lock);
 976        return mask;
 977}
 978
 979static int cache_ioctl(struct inode *ino, struct file *filp,
 980                       unsigned int cmd, unsigned long arg,
 981                       struct cache_detail *cd)
 982{
 983        int len = 0;
 984        struct cache_reader *rp = filp->private_data;
 985        struct cache_queue *cq;
 986
 987        if (cmd != FIONREAD || !rp)
 988                return -EINVAL;
 989
 990        spin_lock(&queue_lock);
 991
 992        /* only find the length remaining in current request,
 993         * or the length of the next request
 994         */
 995        for (cq= &rp->q; &cq->list != &cd->queue;
 996             cq = list_entry(cq->list.next, struct cache_queue, list))
 997                if (!cq->reader) {
 998                        struct cache_request *cr =
 999                                container_of(cq, struct cache_request, q);
1000                        len = cr->len - rp->offset;
1001                        break;
1002                }
1003        spin_unlock(&queue_lock);
1004
1005        return put_user(len, (int __user *)arg);
1006}
1007
1008static int cache_open(struct inode *inode, struct file *filp,
1009                      struct cache_detail *cd)
1010{
1011        struct cache_reader *rp = NULL;
1012
1013        if (!cd || !try_module_get(cd->owner))
1014                return -EACCES;
1015        nonseekable_open(inode, filp);
1016        if (filp->f_mode & FMODE_READ) {
1017                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1018                if (!rp) {
1019                        module_put(cd->owner);
1020                        return -ENOMEM;
1021                }
1022                rp->offset = 0;
1023                rp->q.reader = 1;
1024
1025                spin_lock(&queue_lock);
1026                list_add(&rp->q.list, &cd->queue);
1027                spin_unlock(&queue_lock);
1028        }
1029        if (filp->f_mode & FMODE_WRITE)
1030                atomic_inc(&cd->writers);
1031        filp->private_data = rp;
1032        return 0;
1033}
1034
1035static int cache_release(struct inode *inode, struct file *filp,
1036                         struct cache_detail *cd)
1037{
1038        struct cache_reader *rp = filp->private_data;
1039
1040        if (rp) {
1041                spin_lock(&queue_lock);
1042                if (rp->offset) {
1043                        struct cache_queue *cq;
1044                        for (cq= &rp->q; &cq->list != &cd->queue;
1045                             cq = list_entry(cq->list.next, struct cache_queue, list))
1046                                if (!cq->reader) {
1047                                        container_of(cq, struct cache_request, q)
1048                                                ->readers--;
1049                                        break;
1050                                }
1051                        rp->offset = 0;
1052                }
1053                list_del(&rp->q.list);
1054                spin_unlock(&queue_lock);
1055
1056                filp->private_data = NULL;
1057                kfree(rp);
1058
1059        }
1060        if (filp->f_mode & FMODE_WRITE) {
1061                atomic_dec(&cd->writers);
1062                cd->last_close = seconds_since_boot();
1063        }
1064        module_put(cd->owner);
1065        return 0;
1066}
1067
1068
1069
1070static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1071{
1072        struct cache_queue *cq, *tmp;
1073        struct cache_request *cr;
1074        struct list_head dequeued;
1075
1076        INIT_LIST_HEAD(&dequeued);
1077        spin_lock(&queue_lock);
1078        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1079                if (!cq->reader) {
1080                        cr = container_of(cq, struct cache_request, q);
1081                        if (cr->item != ch)
1082                                continue;
1083                        if (test_bit(CACHE_PENDING, &ch->flags))
1084                                /* Lost a race and it is pending again */
1085                                break;
1086                        if (cr->readers != 0)
1087                                continue;
1088                        list_move(&cr->q.list, &dequeued);
1089                }
1090        spin_unlock(&queue_lock);
1091        while (!list_empty(&dequeued)) {
1092                cr = list_entry(dequeued.next, struct cache_request, q.list);
1093                list_del(&cr->q.list);
1094                cache_put(cr->item, detail);
1095                kfree(cr->buf);
1096                kfree(cr);
1097        }
1098}
1099
1100/*
1101 * Support routines for text-based upcalls.
1102 * Fields are separated by spaces.
1103 * Fields are either mangled to quote space tab newline slosh with slosh
1104 * or a hexified with a leading \x
1105 * Record is terminated with newline.
1106 *
1107 */
1108
1109void qword_add(char **bpp, int *lp, char *str)
1110{
1111        char *bp = *bpp;
1112        int len = *lp;
1113        int ret;
1114
1115        if (len < 0) return;
1116
1117        ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1118        if (ret >= len) {
1119                bp += len;
1120                len = -1;
1121        } else {
1122                bp += ret;
1123                len -= ret;
1124                *bp++ = ' ';
1125                len--;
1126        }
1127        *bpp = bp;
1128        *lp = len;
1129}
1130EXPORT_SYMBOL_GPL(qword_add);
1131
1132void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1133{
1134        char *bp = *bpp;
1135        int len = *lp;
1136
1137        if (len < 0) return;
1138
1139        if (len > 2) {
1140                *bp++ = '\\';
1141                *bp++ = 'x';
1142                len -= 2;
1143                while (blen && len >= 2) {
1144                        bp = hex_byte_pack(bp, *buf++);
1145                        len -= 2;
1146                        blen--;
1147                }
1148        }
1149        if (blen || len<1) len = -1;
1150        else {
1151                *bp++ = ' ';
1152                len--;
1153        }
1154        *bpp = bp;
1155        *lp = len;
1156}
1157EXPORT_SYMBOL_GPL(qword_addhex);
1158
1159static void warn_no_listener(struct cache_detail *detail)
1160{
1161        if (detail->last_warn != detail->last_close) {
1162                detail->last_warn = detail->last_close;
1163                if (detail->warn_no_listener)
1164                        detail->warn_no_listener(detail, detail->last_close != 0);
1165        }
1166}
1167
1168static bool cache_listeners_exist(struct cache_detail *detail)
1169{
1170        if (atomic_read(&detail->writers))
1171                return true;
1172        if (detail->last_close == 0)
1173                /* This cache was never opened */
1174                return false;
1175        if (detail->last_close < seconds_since_boot() - 30)
1176                /*
1177                 * We allow for the possibility that someone might
1178                 * restart a userspace daemon without restarting the
1179                 * server; but after 30 seconds, we give up.
1180                 */
1181                 return false;
1182        return true;
1183}
1184
1185/*
1186 * register an upcall request to user-space and queue it up for read() by the
1187 * upcall daemon.
1188 *
1189 * Each request is at most one page long.
1190 */
1191static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1192{
1193        char *buf;
1194        struct cache_request *crq;
1195        int ret = 0;
1196
1197        if (test_bit(CACHE_CLEANED, &h->flags))
1198                /* Too late to make an upcall */
1199                return -EAGAIN;
1200
1201        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1202        if (!buf)
1203                return -EAGAIN;
1204
1205        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1206        if (!crq) {
1207                kfree(buf);
1208                return -EAGAIN;
1209        }
1210
1211        crq->q.reader = 0;
1212        crq->buf = buf;
1213        crq->len = 0;
1214        crq->readers = 0;
1215        spin_lock(&queue_lock);
1216        if (test_bit(CACHE_PENDING, &h->flags)) {
1217                crq->item = cache_get(h);
1218                list_add_tail(&crq->q.list, &detail->queue);
1219                trace_cache_entry_upcall(detail, h);
1220        } else
1221                /* Lost a race, no longer PENDING, so don't enqueue */
1222                ret = -EAGAIN;
1223        spin_unlock(&queue_lock);
1224        wake_up(&queue_wait);
1225        if (ret == -EAGAIN) {
1226                kfree(buf);
1227                kfree(crq);
1228        }
1229        return ret;
1230}
1231
1232int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1233{
1234        if (test_and_set_bit(CACHE_PENDING, &h->flags))
1235                return 0;
1236        return cache_pipe_upcall(detail, h);
1237}
1238EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1239
1240int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1241                                     struct cache_head *h)
1242{
1243        if (!cache_listeners_exist(detail)) {
1244                warn_no_listener(detail);
1245                trace_cache_entry_no_listener(detail, h);
1246                return -EINVAL;
1247        }
1248        return sunrpc_cache_pipe_upcall(detail, h);
1249}
1250EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1251
1252/*
1253 * parse a message from user-space and pass it
1254 * to an appropriate cache
1255 * Messages are, like requests, separated into fields by
1256 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1257 *
1258 * Message is
1259 *   reply cachename expiry key ... content....
1260 *
1261 * key and content are both parsed by cache
1262 */
1263
1264int qword_get(char **bpp, char *dest, int bufsize)
1265{
1266        /* return bytes copied, or -1 on error */
1267        char *bp = *bpp;
1268        int len = 0;
1269
1270        while (*bp == ' ') bp++;
1271
1272        if (bp[0] == '\\' && bp[1] == 'x') {
1273                /* HEX STRING */
1274                bp += 2;
1275                while (len < bufsize - 1) {
1276                        int h, l;
1277
1278                        h = hex_to_bin(bp[0]);
1279                        if (h < 0)
1280                                break;
1281
1282                        l = hex_to_bin(bp[1]);
1283                        if (l < 0)
1284                                break;
1285
1286                        *dest++ = (h << 4) | l;
1287                        bp += 2;
1288                        len++;
1289                }
1290        } else {
1291                /* text with \nnn octal quoting */
1292                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1293                        if (*bp == '\\' &&
1294                            isodigit(bp[1]) && (bp[1] <= '3') &&
1295                            isodigit(bp[2]) &&
1296                            isodigit(bp[3])) {
1297                                int byte = (*++bp -'0');
1298                                bp++;
1299                                byte = (byte << 3) | (*bp++ - '0');
1300                                byte = (byte << 3) | (*bp++ - '0');
1301                                *dest++ = byte;
1302                                len++;
1303                        } else {
1304                                *dest++ = *bp++;
1305                                len++;
1306                        }
1307                }
1308        }
1309
1310        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1311                return -1;
1312        while (*bp == ' ') bp++;
1313        *bpp = bp;
1314        *dest = '\0';
1315        return len;
1316}
1317EXPORT_SYMBOL_GPL(qword_get);
1318
1319
1320/*
1321 * support /proc/net/rpc/$CACHENAME/content
1322 * as a seqfile.
1323 * We call ->cache_show passing NULL for the item to
1324 * get a header, then pass each real item in the cache
1325 */
1326
1327static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1328{
1329        loff_t n = *pos;
1330        unsigned int hash, entry;
1331        struct cache_head *ch;
1332        struct cache_detail *cd = m->private;
1333
1334        if (!n--)
1335                return SEQ_START_TOKEN;
1336        hash = n >> 32;
1337        entry = n & ((1LL<<32) - 1);
1338
1339        hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1340                if (!entry--)
1341                        return ch;
1342        n &= ~((1LL<<32) - 1);
1343        do {
1344                hash++;
1345                n += 1LL<<32;
1346        } while(hash < cd->hash_size &&
1347                hlist_empty(&cd->hash_table[hash]));
1348        if (hash >= cd->hash_size)
1349                return NULL;
1350        *pos = n+1;
1351        return hlist_entry_safe(rcu_dereference_raw(
1352                                hlist_first_rcu(&cd->hash_table[hash])),
1353                                struct cache_head, cache_list);
1354}
1355
1356static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1357{
1358        struct cache_head *ch = p;
1359        int hash = (*pos >> 32);
1360        struct cache_detail *cd = m->private;
1361
1362        if (p == SEQ_START_TOKEN)
1363                hash = 0;
1364        else if (ch->cache_list.next == NULL) {
1365                hash++;
1366                *pos += 1LL<<32;
1367        } else {
1368                ++*pos;
1369                return hlist_entry_safe(rcu_dereference_raw(
1370                                        hlist_next_rcu(&ch->cache_list)),
1371                                        struct cache_head, cache_list);
1372        }
1373        *pos &= ~((1LL<<32) - 1);
1374        while (hash < cd->hash_size &&
1375               hlist_empty(&cd->hash_table[hash])) {
1376                hash++;
1377                *pos += 1LL<<32;
1378        }
1379        if (hash >= cd->hash_size)
1380                return NULL;
1381        ++*pos;
1382        return hlist_entry_safe(rcu_dereference_raw(
1383                                hlist_first_rcu(&cd->hash_table[hash])),
1384                                struct cache_head, cache_list);
1385}
1386
1387void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1388        __acquires(RCU)
1389{
1390        rcu_read_lock();
1391        return __cache_seq_start(m, pos);
1392}
1393EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1394
1395void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1396{
1397        return cache_seq_next(file, p, pos);
1398}
1399EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1400
1401void cache_seq_stop_rcu(struct seq_file *m, void *p)
1402        __releases(RCU)
1403{
1404        rcu_read_unlock();
1405}
1406EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1407
1408static int c_show(struct seq_file *m, void *p)
1409{
1410        struct cache_head *cp = p;
1411        struct cache_detail *cd = m->private;
1412
1413        if (p == SEQ_START_TOKEN)
1414                return cd->cache_show(m, cd, NULL);
1415
1416        ifdebug(CACHE)
1417                seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1418                           convert_to_wallclock(cp->expiry_time),
1419                           kref_read(&cp->ref), cp->flags);
1420        cache_get(cp);
1421        if (cache_check(cd, cp, NULL))
1422                /* cache_check does a cache_put on failure */
1423                seq_puts(m, "# ");
1424        else {
1425                if (cache_is_expired(cd, cp))
1426                        seq_puts(m, "# ");
1427                cache_put(cp, cd);
1428        }
1429
1430        return cd->cache_show(m, cd, cp);
1431}
1432
1433static const struct seq_operations cache_content_op = {
1434        .start  = cache_seq_start_rcu,
1435        .next   = cache_seq_next_rcu,
1436        .stop   = cache_seq_stop_rcu,
1437        .show   = c_show,
1438};
1439
1440static int content_open(struct inode *inode, struct file *file,
1441                        struct cache_detail *cd)
1442{
1443        struct seq_file *seq;
1444        int err;
1445
1446        if (!cd || !try_module_get(cd->owner))
1447                return -EACCES;
1448
1449        err = seq_open(file, &cache_content_op);
1450        if (err) {
1451                module_put(cd->owner);
1452                return err;
1453        }
1454
1455        seq = file->private_data;
1456        seq->private = cd;
1457        return 0;
1458}
1459
1460static int content_release(struct inode *inode, struct file *file,
1461                struct cache_detail *cd)
1462{
1463        int ret = seq_release(inode, file);
1464        module_put(cd->owner);
1465        return ret;
1466}
1467
1468static int open_flush(struct inode *inode, struct file *file,
1469                        struct cache_detail *cd)
1470{
1471        if (!cd || !try_module_get(cd->owner))
1472                return -EACCES;
1473        return nonseekable_open(inode, file);
1474}
1475
1476static int release_flush(struct inode *inode, struct file *file,
1477                        struct cache_detail *cd)
1478{
1479        module_put(cd->owner);
1480        return 0;
1481}
1482
1483static ssize_t read_flush(struct file *file, char __user *buf,
1484                          size_t count, loff_t *ppos,
1485                          struct cache_detail *cd)
1486{
1487        char tbuf[22];
1488        size_t len;
1489
1490        len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1491                        convert_to_wallclock(cd->flush_time));
1492        return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1493}
1494
1495static ssize_t write_flush(struct file *file, const char __user *buf,
1496                           size_t count, loff_t *ppos,
1497                           struct cache_detail *cd)
1498{
1499        char tbuf[20];
1500        char *ep;
1501        time64_t now;
1502
1503        if (*ppos || count > sizeof(tbuf)-1)
1504                return -EINVAL;
1505        if (copy_from_user(tbuf, buf, count))
1506                return -EFAULT;
1507        tbuf[count] = 0;
1508        simple_strtoul(tbuf, &ep, 0);
1509        if (*ep && *ep != '\n')
1510                return -EINVAL;
1511        /* Note that while we check that 'buf' holds a valid number,
1512         * we always ignore the value and just flush everything.
1513         * Making use of the number leads to races.
1514         */
1515
1516        now = seconds_since_boot();
1517        /* Always flush everything, so behave like cache_purge()
1518         * Do this by advancing flush_time to the current time,
1519         * or by one second if it has already reached the current time.
1520         * Newly added cache entries will always have ->last_refresh greater
1521         * that ->flush_time, so they don't get flushed prematurely.
1522         */
1523
1524        if (cd->flush_time >= now)
1525                now = cd->flush_time + 1;
1526
1527        cd->flush_time = now;
1528        cd->nextcheck = now;
1529        cache_flush();
1530
1531        *ppos += count;
1532        return count;
1533}
1534
1535static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1536                                 size_t count, loff_t *ppos)
1537{
1538        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1539
1540        return cache_read(filp, buf, count, ppos, cd);
1541}
1542
1543static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1544                                  size_t count, loff_t *ppos)
1545{
1546        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1547
1548        return cache_write(filp, buf, count, ppos, cd);
1549}
1550
1551static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1552{
1553        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1554
1555        return cache_poll(filp, wait, cd);
1556}
1557
1558static long cache_ioctl_procfs(struct file *filp,
1559                               unsigned int cmd, unsigned long arg)
1560{
1561        struct inode *inode = file_inode(filp);
1562        struct cache_detail *cd = PDE_DATA(inode);
1563
1564        return cache_ioctl(inode, filp, cmd, arg, cd);
1565}
1566
1567static int cache_open_procfs(struct inode *inode, struct file *filp)
1568{
1569        struct cache_detail *cd = PDE_DATA(inode);
1570
1571        return cache_open(inode, filp, cd);
1572}
1573
1574static int cache_release_procfs(struct inode *inode, struct file *filp)
1575{
1576        struct cache_detail *cd = PDE_DATA(inode);
1577
1578        return cache_release(inode, filp, cd);
1579}
1580
1581static const struct file_operations cache_file_operations_procfs = {
1582        .owner          = THIS_MODULE,
1583        .llseek         = no_llseek,
1584        .read           = cache_read_procfs,
1585        .write          = cache_write_procfs,
1586        .poll           = cache_poll_procfs,
1587        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1588        .open           = cache_open_procfs,
1589        .release        = cache_release_procfs,
1590};
1591
1592static int content_open_procfs(struct inode *inode, struct file *filp)
1593{
1594        struct cache_detail *cd = PDE_DATA(inode);
1595
1596        return content_open(inode, filp, cd);
1597}
1598
1599static int content_release_procfs(struct inode *inode, struct file *filp)
1600{
1601        struct cache_detail *cd = PDE_DATA(inode);
1602
1603        return content_release(inode, filp, cd);
1604}
1605
1606static const struct file_operations content_file_operations_procfs = {
1607        .open           = content_open_procfs,
1608        .read           = seq_read,
1609        .llseek         = seq_lseek,
1610        .release        = content_release_procfs,
1611};
1612
1613static int open_flush_procfs(struct inode *inode, struct file *filp)
1614{
1615        struct cache_detail *cd = PDE_DATA(inode);
1616
1617        return open_flush(inode, filp, cd);
1618}
1619
1620static int release_flush_procfs(struct inode *inode, struct file *filp)
1621{
1622        struct cache_detail *cd = PDE_DATA(inode);
1623
1624        return release_flush(inode, filp, cd);
1625}
1626
1627static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1628                            size_t count, loff_t *ppos)
1629{
1630        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1631
1632        return read_flush(filp, buf, count, ppos, cd);
1633}
1634
1635static ssize_t write_flush_procfs(struct file *filp,
1636                                  const char __user *buf,
1637                                  size_t count, loff_t *ppos)
1638{
1639        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1640
1641        return write_flush(filp, buf, count, ppos, cd);
1642}
1643
1644static const struct file_operations cache_flush_operations_procfs = {
1645        .open           = open_flush_procfs,
1646        .read           = read_flush_procfs,
1647        .write          = write_flush_procfs,
1648        .release        = release_flush_procfs,
1649        .llseek         = no_llseek,
1650};
1651
1652static void remove_cache_proc_entries(struct cache_detail *cd)
1653{
1654        if (cd->procfs) {
1655                proc_remove(cd->procfs);
1656                cd->procfs = NULL;
1657        }
1658}
1659
1660#ifdef CONFIG_PROC_FS
1661static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662{
1663        struct proc_dir_entry *p;
1664        struct sunrpc_net *sn;
1665
1666        sn = net_generic(net, sunrpc_net_id);
1667        cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1668        if (cd->procfs == NULL)
1669                goto out_nomem;
1670
1671        p = proc_create_data("flush", S_IFREG | 0600,
1672                             cd->procfs, &cache_flush_operations_procfs, cd);
1673        if (p == NULL)
1674                goto out_nomem;
1675
1676        if (cd->cache_request || cd->cache_parse) {
1677                p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1678                                     &cache_file_operations_procfs, cd);
1679                if (p == NULL)
1680                        goto out_nomem;
1681        }
1682        if (cd->cache_show) {
1683                p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1684                                     &content_file_operations_procfs, cd);
1685                if (p == NULL)
1686                        goto out_nomem;
1687        }
1688        return 0;
1689out_nomem:
1690        remove_cache_proc_entries(cd);
1691        return -ENOMEM;
1692}
1693#else /* CONFIG_PROC_FS */
1694static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1695{
1696        return 0;
1697}
1698#endif
1699
1700void __init cache_initialize(void)
1701{
1702        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1703}
1704
1705int cache_register_net(struct cache_detail *cd, struct net *net)
1706{
1707        int ret;
1708
1709        sunrpc_init_cache_detail(cd);
1710        ret = create_cache_proc_entries(cd, net);
1711        if (ret)
1712                sunrpc_destroy_cache_detail(cd);
1713        return ret;
1714}
1715EXPORT_SYMBOL_GPL(cache_register_net);
1716
1717void cache_unregister_net(struct cache_detail *cd, struct net *net)
1718{
1719        remove_cache_proc_entries(cd);
1720        sunrpc_destroy_cache_detail(cd);
1721}
1722EXPORT_SYMBOL_GPL(cache_unregister_net);
1723
1724struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1725{
1726        struct cache_detail *cd;
1727        int i;
1728
1729        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1730        if (cd == NULL)
1731                return ERR_PTR(-ENOMEM);
1732
1733        cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1734                                 GFP_KERNEL);
1735        if (cd->hash_table == NULL) {
1736                kfree(cd);
1737                return ERR_PTR(-ENOMEM);
1738        }
1739
1740        for (i = 0; i < cd->hash_size; i++)
1741                INIT_HLIST_HEAD(&cd->hash_table[i]);
1742        cd->net = net;
1743        return cd;
1744}
1745EXPORT_SYMBOL_GPL(cache_create_net);
1746
1747void cache_destroy_net(struct cache_detail *cd, struct net *net)
1748{
1749        kfree(cd->hash_table);
1750        kfree(cd);
1751}
1752EXPORT_SYMBOL_GPL(cache_destroy_net);
1753
1754static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1755                                 size_t count, loff_t *ppos)
1756{
1757        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1758
1759        return cache_read(filp, buf, count, ppos, cd);
1760}
1761
1762static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1763                                  size_t count, loff_t *ppos)
1764{
1765        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766
1767        return cache_write(filp, buf, count, ppos, cd);
1768}
1769
1770static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1771{
1772        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1773
1774        return cache_poll(filp, wait, cd);
1775}
1776
1777static long cache_ioctl_pipefs(struct file *filp,
1778                              unsigned int cmd, unsigned long arg)
1779{
1780        struct inode *inode = file_inode(filp);
1781        struct cache_detail *cd = RPC_I(inode)->private;
1782
1783        return cache_ioctl(inode, filp, cmd, arg, cd);
1784}
1785
1786static int cache_open_pipefs(struct inode *inode, struct file *filp)
1787{
1788        struct cache_detail *cd = RPC_I(inode)->private;
1789
1790        return cache_open(inode, filp, cd);
1791}
1792
1793static int cache_release_pipefs(struct inode *inode, struct file *filp)
1794{
1795        struct cache_detail *cd = RPC_I(inode)->private;
1796
1797        return cache_release(inode, filp, cd);
1798}
1799
1800const struct file_operations cache_file_operations_pipefs = {
1801        .owner          = THIS_MODULE,
1802        .llseek         = no_llseek,
1803        .read           = cache_read_pipefs,
1804        .write          = cache_write_pipefs,
1805        .poll           = cache_poll_pipefs,
1806        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1807        .open           = cache_open_pipefs,
1808        .release        = cache_release_pipefs,
1809};
1810
1811static int content_open_pipefs(struct inode *inode, struct file *filp)
1812{
1813        struct cache_detail *cd = RPC_I(inode)->private;
1814
1815        return content_open(inode, filp, cd);
1816}
1817
1818static int content_release_pipefs(struct inode *inode, struct file *filp)
1819{
1820        struct cache_detail *cd = RPC_I(inode)->private;
1821
1822        return content_release(inode, filp, cd);
1823}
1824
1825const struct file_operations content_file_operations_pipefs = {
1826        .open           = content_open_pipefs,
1827        .read           = seq_read,
1828        .llseek         = seq_lseek,
1829        .release        = content_release_pipefs,
1830};
1831
1832static int open_flush_pipefs(struct inode *inode, struct file *filp)
1833{
1834        struct cache_detail *cd = RPC_I(inode)->private;
1835
1836        return open_flush(inode, filp, cd);
1837}
1838
1839static int release_flush_pipefs(struct inode *inode, struct file *filp)
1840{
1841        struct cache_detail *cd = RPC_I(inode)->private;
1842
1843        return release_flush(inode, filp, cd);
1844}
1845
1846static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1847                            size_t count, loff_t *ppos)
1848{
1849        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1850
1851        return read_flush(filp, buf, count, ppos, cd);
1852}
1853
1854static ssize_t write_flush_pipefs(struct file *filp,
1855                                  const char __user *buf,
1856                                  size_t count, loff_t *ppos)
1857{
1858        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1859
1860        return write_flush(filp, buf, count, ppos, cd);
1861}
1862
1863const struct file_operations cache_flush_operations_pipefs = {
1864        .open           = open_flush_pipefs,
1865        .read           = read_flush_pipefs,
1866        .write          = write_flush_pipefs,
1867        .release        = release_flush_pipefs,
1868        .llseek         = no_llseek,
1869};
1870
1871int sunrpc_cache_register_pipefs(struct dentry *parent,
1872                                 const char *name, umode_t umode,
1873                                 struct cache_detail *cd)
1874{
1875        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1876        if (IS_ERR(dir))
1877                return PTR_ERR(dir);
1878        cd->pipefs = dir;
1879        return 0;
1880}
1881EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1882
1883void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1884{
1885        if (cd->pipefs) {
1886                rpc_remove_cache_dir(cd->pipefs);
1887                cd->pipefs = NULL;
1888        }
1889}
1890EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1891
1892void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1893{
1894        spin_lock(&cd->hash_lock);
1895        if (!hlist_unhashed(&h->cache_list)){
1896                sunrpc_begin_cache_remove_entry(h, cd);
1897                spin_unlock(&cd->hash_lock);
1898                sunrpc_end_cache_remove_entry(h, cd);
1899        } else
1900                spin_unlock(&cd->hash_lock);
1901}
1902EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1903