linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/parisc/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright 1999 SuSE GmbH
   7 *    changed by Philipp Rumpf
   8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  11 *
  12 */
  13
  14
  15#include <linux/module.h>
  16#include <linux/mm.h>
  17#include <linux/bootmem.h>
  18#include <linux/memblock.h>
  19#include <linux/gfp.h>
  20#include <linux/delay.h>
  21#include <linux/init.h>
  22#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  23#include <linux/initrd.h>
  24#include <linux/swap.h>
  25#include <linux/unistd.h>
  26#include <linux/nodemask.h>     /* for node_online_map */
  27#include <linux/pagemap.h>      /* for release_pages */
  28#include <linux/compat.h>
  29
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/tlb.h>
  33#include <asm/pdc_chassis.h>
  34#include <asm/mmzone.h>
  35#include <asm/sections.h>
  36#include <asm/msgbuf.h>
  37
  38extern int  data_start;
  39extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
  40
  41#if CONFIG_PGTABLE_LEVELS == 3
  42/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  43 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  44 * guarantee that global objects will be laid out in memory in the same order
  45 * as the order of declaration, so put these in different sections and use
  46 * the linker script to order them. */
  47pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  48#endif
  49
  50pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  51pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  52
  53#ifdef CONFIG_DISCONTIGMEM
  54struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  55signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  56#endif
  57
  58static struct resource data_resource = {
  59        .name   = "Kernel data",
  60        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  61};
  62
  63static struct resource code_resource = {
  64        .name   = "Kernel code",
  65        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  66};
  67
  68static struct resource pdcdata_resource = {
  69        .name   = "PDC data (Page Zero)",
  70        .start  = 0,
  71        .end    = 0x9ff,
  72        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  73};
  74
  75static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  76
  77/* The following array is initialized from the firmware specific
  78 * information retrieved in kernel/inventory.c.
  79 */
  80
  81physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  82int npmem_ranges __read_mostly;
  83
  84/*
  85 * get_memblock() allocates pages via memblock.
  86 * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it
  87 * doesn't allocate from bottom to top which is needed because we only created
  88 * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code.
  89 */
  90static void * __init get_memblock(unsigned long size)
  91{
  92        static phys_addr_t search_addr __initdata;
  93        phys_addr_t phys;
  94
  95        if (!search_addr)
  96                search_addr = PAGE_ALIGN(__pa((unsigned long) &_end));
  97        search_addr = ALIGN(search_addr, size);
  98        while (!memblock_is_region_memory(search_addr, size) ||
  99                memblock_is_region_reserved(search_addr, size)) {
 100                search_addr += size;
 101        }
 102        phys = search_addr;
 103
 104        if (phys)
 105                memblock_reserve(phys, size);
 106        else
 107                panic("get_memblock() failed.\n");
 108
 109        memset(__va(phys), 0, size);
 110
 111        return __va(phys);
 112}
 113
 114#ifdef CONFIG_64BIT
 115#define MAX_MEM         (~0UL)
 116#else /* !CONFIG_64BIT */
 117#define MAX_MEM         (3584U*1024U*1024U)
 118#endif /* !CONFIG_64BIT */
 119
 120static unsigned long mem_limit __read_mostly = MAX_MEM;
 121
 122static void __init mem_limit_func(void)
 123{
 124        char *cp, *end;
 125        unsigned long limit;
 126
 127        /* We need this before __setup() functions are called */
 128
 129        limit = MAX_MEM;
 130        for (cp = boot_command_line; *cp; ) {
 131                if (memcmp(cp, "mem=", 4) == 0) {
 132                        cp += 4;
 133                        limit = memparse(cp, &end);
 134                        if (end != cp)
 135                                break;
 136                        cp = end;
 137                } else {
 138                        while (*cp != ' ' && *cp)
 139                                ++cp;
 140                        while (*cp == ' ')
 141                                ++cp;
 142                }
 143        }
 144
 145        if (limit < mem_limit)
 146                mem_limit = limit;
 147}
 148
 149#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 150
 151static void __init setup_bootmem(void)
 152{
 153        unsigned long mem_max;
 154#ifndef CONFIG_DISCONTIGMEM
 155        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 156        int npmem_holes;
 157#endif
 158        int i, sysram_resource_count;
 159
 160        disable_sr_hashing(); /* Turn off space register hashing */
 161
 162        /*
 163         * Sort the ranges. Since the number of ranges is typically
 164         * small, and performance is not an issue here, just do
 165         * a simple insertion sort.
 166         */
 167
 168        for (i = 1; i < npmem_ranges; i++) {
 169                int j;
 170
 171                for (j = i; j > 0; j--) {
 172                        unsigned long tmp;
 173
 174                        if (pmem_ranges[j-1].start_pfn <
 175                            pmem_ranges[j].start_pfn) {
 176
 177                                break;
 178                        }
 179                        tmp = pmem_ranges[j-1].start_pfn;
 180                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 181                        pmem_ranges[j].start_pfn = tmp;
 182                        tmp = pmem_ranges[j-1].pages;
 183                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 184                        pmem_ranges[j].pages = tmp;
 185                }
 186        }
 187
 188#ifndef CONFIG_DISCONTIGMEM
 189        /*
 190         * Throw out ranges that are too far apart (controlled by
 191         * MAX_GAP).
 192         */
 193
 194        for (i = 1; i < npmem_ranges; i++) {
 195                if (pmem_ranges[i].start_pfn -
 196                        (pmem_ranges[i-1].start_pfn +
 197                         pmem_ranges[i-1].pages) > MAX_GAP) {
 198                        npmem_ranges = i;
 199                        printk("Large gap in memory detected (%ld pages). "
 200                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 201                               pmem_ranges[i].start_pfn -
 202                               (pmem_ranges[i-1].start_pfn +
 203                                pmem_ranges[i-1].pages));
 204                        break;
 205                }
 206        }
 207#endif
 208
 209        /* Print the memory ranges */
 210        pr_info("Memory Ranges:\n");
 211
 212        for (i = 0; i < npmem_ranges; i++) {
 213                struct resource *res = &sysram_resources[i];
 214                unsigned long start;
 215                unsigned long size;
 216
 217                size = (pmem_ranges[i].pages << PAGE_SHIFT);
 218                start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 219                pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 220                        i, start, start + (size - 1), size >> 20);
 221
 222                /* request memory resource */
 223                res->name = "System RAM";
 224                res->start = start;
 225                res->end = start + size - 1;
 226                res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 227                request_resource(&iomem_resource, res);
 228        }
 229
 230        sysram_resource_count = npmem_ranges;
 231
 232        /*
 233         * For 32 bit kernels we limit the amount of memory we can
 234         * support, in order to preserve enough kernel address space
 235         * for other purposes. For 64 bit kernels we don't normally
 236         * limit the memory, but this mechanism can be used to
 237         * artificially limit the amount of memory (and it is written
 238         * to work with multiple memory ranges).
 239         */
 240
 241        mem_limit_func();       /* check for "mem=" argument */
 242
 243        mem_max = 0;
 244        for (i = 0; i < npmem_ranges; i++) {
 245                unsigned long rsize;
 246
 247                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 248                if ((mem_max + rsize) > mem_limit) {
 249                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 250                        if (mem_max == mem_limit)
 251                                npmem_ranges = i;
 252                        else {
 253                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 254                                                       - (mem_max >> PAGE_SHIFT);
 255                                npmem_ranges = i + 1;
 256                                mem_max = mem_limit;
 257                        }
 258                        break;
 259                }
 260                mem_max += rsize;
 261        }
 262
 263        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 264
 265#ifndef CONFIG_DISCONTIGMEM
 266        /* Merge the ranges, keeping track of the holes */
 267
 268        {
 269                unsigned long end_pfn;
 270                unsigned long hole_pages;
 271
 272                npmem_holes = 0;
 273                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 274                for (i = 1; i < npmem_ranges; i++) {
 275
 276                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 277                        if (hole_pages) {
 278                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 279                                pmem_holes[npmem_holes++].pages = hole_pages;
 280                                end_pfn += hole_pages;
 281                        }
 282                        end_pfn += pmem_ranges[i].pages;
 283                }
 284
 285                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 286                npmem_ranges = 1;
 287        }
 288#endif
 289
 290#ifdef CONFIG_DISCONTIGMEM
 291        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 292                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 293        }
 294        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 295
 296        for (i = 0; i < npmem_ranges; i++) {
 297                node_set_state(i, N_NORMAL_MEMORY);
 298                node_set_online(i);
 299        }
 300#endif
 301
 302        /*
 303         * Initialize and free the full range of memory in each range.
 304         */
 305
 306        max_pfn = 0;
 307        for (i = 0; i < npmem_ranges; i++) {
 308                unsigned long start_pfn;
 309                unsigned long npages;
 310                unsigned long start;
 311                unsigned long size;
 312
 313                start_pfn = pmem_ranges[i].start_pfn;
 314                npages = pmem_ranges[i].pages;
 315
 316                start = start_pfn << PAGE_SHIFT;
 317                size = npages << PAGE_SHIFT;
 318
 319                /* add system RAM memblock */
 320                memblock_add(start, size);
 321
 322                if ((start_pfn + npages) > max_pfn)
 323                        max_pfn = start_pfn + npages;
 324        }
 325
 326        /* IOMMU is always used to access "high mem" on those boxes
 327         * that can support enough mem that a PCI device couldn't
 328         * directly DMA to any physical addresses.
 329         * ISA DMA support will need to revisit this.
 330         */
 331        max_low_pfn = max_pfn;
 332
 333        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 334
 335#define PDC_CONSOLE_IO_IODC_SIZE 32768
 336
 337        memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
 338                                PDC_CONSOLE_IO_IODC_SIZE));
 339        memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
 340                        (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 341
 342#ifndef CONFIG_DISCONTIGMEM
 343
 344        /* reserve the holes */
 345
 346        for (i = 0; i < npmem_holes; i++) {
 347                memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
 348                                (pmem_holes[i].pages << PAGE_SHIFT));
 349        }
 350#endif
 351
 352#ifdef CONFIG_BLK_DEV_INITRD
 353        if (initrd_start) {
 354                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 355                if (__pa(initrd_start) < mem_max) {
 356                        unsigned long initrd_reserve;
 357
 358                        if (__pa(initrd_end) > mem_max) {
 359                                initrd_reserve = mem_max - __pa(initrd_start);
 360                        } else {
 361                                initrd_reserve = initrd_end - initrd_start;
 362                        }
 363                        initrd_below_start_ok = 1;
 364                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 365
 366                        memblock_reserve(__pa(initrd_start), initrd_reserve);
 367                }
 368        }
 369#endif
 370
 371        data_resource.start =  virt_to_phys(&data_start);
 372        data_resource.end = virt_to_phys(_end) - 1;
 373        code_resource.start = virt_to_phys(_text);
 374        code_resource.end = virt_to_phys(&data_start)-1;
 375
 376        /* We don't know which region the kernel will be in, so try
 377         * all of them.
 378         */
 379        for (i = 0; i < sysram_resource_count; i++) {
 380                struct resource *res = &sysram_resources[i];
 381                request_resource(res, &code_resource);
 382                request_resource(res, &data_resource);
 383        }
 384        request_resource(&sysram_resources[0], &pdcdata_resource);
 385
 386        /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
 387        pdc_pdt_init();
 388}
 389
 390static int __init parisc_text_address(unsigned long vaddr)
 391{
 392        static unsigned long head_ptr __initdata;
 393
 394        if (!head_ptr)
 395                head_ptr = PAGE_MASK & (unsigned long)
 396                        dereference_function_descriptor(&parisc_kernel_start);
 397
 398        return core_kernel_text(vaddr) || vaddr == head_ptr;
 399}
 400
 401static void __init map_pages(unsigned long start_vaddr,
 402                             unsigned long start_paddr, unsigned long size,
 403                             pgprot_t pgprot, int force)
 404{
 405        pgd_t *pg_dir;
 406        pmd_t *pmd;
 407        pte_t *pg_table;
 408        unsigned long end_paddr;
 409        unsigned long start_pmd;
 410        unsigned long start_pte;
 411        unsigned long tmp1;
 412        unsigned long tmp2;
 413        unsigned long address;
 414        unsigned long vaddr;
 415        unsigned long ro_start;
 416        unsigned long ro_end;
 417        unsigned long kernel_end;
 418
 419        ro_start = __pa((unsigned long)_text);
 420        ro_end   = __pa((unsigned long)&data_start);
 421        kernel_end  = __pa((unsigned long)&_end);
 422
 423        end_paddr = start_paddr + size;
 424
 425        pg_dir = pgd_offset_k(start_vaddr);
 426
 427#if PTRS_PER_PMD == 1
 428        start_pmd = 0;
 429#else
 430        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 431#endif
 432        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 433
 434        address = start_paddr;
 435        vaddr = start_vaddr;
 436        while (address < end_paddr) {
 437#if PTRS_PER_PMD == 1
 438                pmd = (pmd_t *)__pa(pg_dir);
 439#else
 440                pmd = (pmd_t *)pgd_address(*pg_dir);
 441
 442                /*
 443                 * pmd is physical at this point
 444                 */
 445
 446                if (!pmd) {
 447                        pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER);
 448                        pmd = (pmd_t *) __pa(pmd);
 449                }
 450
 451                pgd_populate(NULL, pg_dir, __va(pmd));
 452#endif
 453                pg_dir++;
 454
 455                /* now change pmd to kernel virtual addresses */
 456
 457                pmd = (pmd_t *)__va(pmd) + start_pmd;
 458                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 459
 460                        /*
 461                         * pg_table is physical at this point
 462                         */
 463
 464                        pg_table = (pte_t *)pmd_address(*pmd);
 465                        if (!pg_table) {
 466                                pg_table = (pte_t *) get_memblock(PAGE_SIZE);
 467                                pg_table = (pte_t *) __pa(pg_table);
 468                        }
 469
 470                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 471
 472                        /* now change pg_table to kernel virtual addresses */
 473
 474                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 475                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 476                                pte_t pte;
 477
 478                                if (force)
 479                                        pte =  __mk_pte(address, pgprot);
 480                                else if (parisc_text_address(vaddr)) {
 481                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 482                                        if (address >= ro_start && address < kernel_end)
 483                                                pte = pte_mkhuge(pte);
 484                                }
 485                                else
 486#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 487                                if (address >= ro_start && address < ro_end) {
 488                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 489                                        pte = pte_mkhuge(pte);
 490                                } else
 491#endif
 492                                {
 493                                        pte = __mk_pte(address, pgprot);
 494                                        if (address >= ro_start && address < kernel_end)
 495                                                pte = pte_mkhuge(pte);
 496                                }
 497
 498                                if (address >= end_paddr) {
 499                                        if (force)
 500                                                break;
 501                                        else
 502                                                pte_val(pte) = 0;
 503                                }
 504
 505                                set_pte(pg_table, pte);
 506
 507                                address += PAGE_SIZE;
 508                                vaddr += PAGE_SIZE;
 509                        }
 510                        start_pte = 0;
 511
 512                        if (address >= end_paddr)
 513                            break;
 514                }
 515                start_pmd = 0;
 516        }
 517}
 518
 519void __ref free_initmem(void)
 520{
 521        unsigned long init_begin = (unsigned long)__init_begin;
 522        unsigned long init_end = (unsigned long)__init_end;
 523
 524        /* The init text pages are marked R-X.  We have to
 525         * flush the icache and mark them RW-
 526         *
 527         * This is tricky, because map_pages is in the init section.
 528         * Do a dummy remap of the data section first (the data
 529         * section is already PAGE_KERNEL) to pull in the TLB entries
 530         * for map_kernel */
 531        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 532                  PAGE_KERNEL_RWX, 1);
 533        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 534         * map_pages */
 535        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 536                  PAGE_KERNEL, 1);
 537
 538        /* force the kernel to see the new TLB entries */
 539        __flush_tlb_range(0, init_begin, init_end);
 540
 541        /* finally dump all the instructions which were cached, since the
 542         * pages are no-longer executable */
 543        flush_icache_range(init_begin, init_end);
 544        
 545        free_initmem_default(POISON_FREE_INITMEM);
 546
 547        /* set up a new led state on systems shipped LED State panel */
 548        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 549}
 550
 551
 552#ifdef CONFIG_STRICT_KERNEL_RWX
 553void mark_rodata_ro(void)
 554{
 555        /* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582                                     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 593        /* Do sanity checks on IPC (compat) structures */
 594        BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
 595#ifndef CONFIG_64BIT
 596        BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
 597        BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
 598        BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
 599#endif
 600#ifdef CONFIG_COMPAT
 601        BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
 602        BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
 603        BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
 604        BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
 605#endif
 606
 607        /* Do sanity checks on page table constants */
 608        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 609        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 610        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 611        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 612                        > BITS_PER_LONG);
 613
 614        high_memory = __va((max_pfn << PAGE_SHIFT));
 615        set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 616        free_all_bootmem();
 617
 618#ifdef CONFIG_PA11
 619        if (hppa_dma_ops == &pcxl_dma_ops) {
 620                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 621                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 622                                                + PCXL_DMA_MAP_SIZE);
 623        } else {
 624                pcxl_dma_start = 0;
 625                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 626        }
 627#else
 628        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 629#endif
 630
 631        mem_init_print_info(NULL);
 632
 633#if 0
 634        /*
 635         * Do not expose the virtual kernel memory layout to userspace.
 636         * But keep code for debugging purposes.
 637         */
 638        printk("virtual kernel memory layout:\n"
 639               "    vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
 640               "    memory  : 0x%px - 0x%px   (%4ld MB)\n"
 641               "      .init : 0x%px - 0x%px   (%4ld kB)\n"
 642               "      .data : 0x%px - 0x%px   (%4ld kB)\n"
 643               "      .text : 0x%px - 0x%px   (%4ld kB)\n",
 644
 645               (void*)VMALLOC_START, (void*)VMALLOC_END,
 646               (VMALLOC_END - VMALLOC_START) >> 20,
 647
 648               __va(0), high_memory,
 649               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 650
 651               __init_begin, __init_end,
 652               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 653
 654               _etext, _edata,
 655               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 656
 657               _text, _etext,
 658               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 659#endif
 660}
 661
 662unsigned long *empty_zero_page __read_mostly;
 663EXPORT_SYMBOL(empty_zero_page);
 664
 665/*
 666 * pagetable_init() sets up the page tables
 667 *
 668 * Note that gateway_init() places the Linux gateway page at page 0.
 669 * Since gateway pages cannot be dereferenced this has the desirable
 670 * side effect of trapping those pesky NULL-reference errors in the
 671 * kernel.
 672 */
 673static void __init pagetable_init(void)
 674{
 675        int range;
 676
 677        /* Map each physical memory range to its kernel vaddr */
 678
 679        for (range = 0; range < npmem_ranges; range++) {
 680                unsigned long start_paddr;
 681                unsigned long end_paddr;
 682                unsigned long size;
 683
 684                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 685                size = pmem_ranges[range].pages << PAGE_SHIFT;
 686                end_paddr = start_paddr + size;
 687
 688                map_pages((unsigned long)__va(start_paddr), start_paddr,
 689                          size, PAGE_KERNEL, 0);
 690        }
 691
 692#ifdef CONFIG_BLK_DEV_INITRD
 693        if (initrd_end && initrd_end > mem_limit) {
 694                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 695                map_pages(initrd_start, __pa(initrd_start),
 696                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 697        }
 698#endif
 699
 700        empty_zero_page = get_memblock(PAGE_SIZE);
 701}
 702
 703static void __init gateway_init(void)
 704{
 705        unsigned long linux_gateway_page_addr;
 706        /* FIXME: This is 'const' in order to trick the compiler
 707           into not treating it as DP-relative data. */
 708        extern void * const linux_gateway_page;
 709
 710        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 711
 712        /*
 713         * Setup Linux Gateway page.
 714         *
 715         * The Linux gateway page will reside in kernel space (on virtual
 716         * page 0), so it doesn't need to be aliased into user space.
 717         */
 718
 719        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 720                  PAGE_SIZE, PAGE_GATEWAY, 1);
 721}
 722
 723void __init paging_init(void)
 724{
 725        int i;
 726
 727        setup_bootmem();
 728        pagetable_init();
 729        gateway_init();
 730        flush_cache_all_local(); /* start with known state */
 731        flush_tlb_all_local(NULL);
 732
 733        for (i = 0; i < npmem_ranges; i++) {
 734                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 735
 736                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 737
 738#ifdef CONFIG_DISCONTIGMEM
 739                /* Need to initialize the pfnnid_map before we can initialize
 740                   the zone */
 741                {
 742                    int j;
 743                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 744                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 745                         j++) {
 746                        pfnnid_map[j] = i;
 747                    }
 748                }
 749#endif
 750
 751                free_area_init_node(i, zones_size,
 752                                pmem_ranges[i].start_pfn, NULL);
 753        }
 754}
 755
 756#ifdef CONFIG_PA20
 757
 758/*
 759 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 760 * limiting factor (space ids are 32 bits).
 761 */
 762
 763#define NR_SPACE_IDS 262144
 764
 765#else
 766
 767/*
 768 * Currently we have a one-to-one relationship between space IDs and
 769 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 770 * support 15 bit protection IDs, so that is the limiting factor.
 771 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 772 * probably not worth the effort for a special case here.
 773 */
 774
 775#define NR_SPACE_IDS 32768
 776
 777#endif  /* !CONFIG_PA20 */
 778
 779#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 780#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 781
 782static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 783static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 784static unsigned long space_id_index;
 785static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 786static unsigned long dirty_space_ids = 0;
 787
 788static DEFINE_SPINLOCK(sid_lock);
 789
 790unsigned long alloc_sid(void)
 791{
 792        unsigned long index;
 793
 794        spin_lock(&sid_lock);
 795
 796        if (free_space_ids == 0) {
 797                if (dirty_space_ids != 0) {
 798                        spin_unlock(&sid_lock);
 799                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 800                        spin_lock(&sid_lock);
 801                }
 802                BUG_ON(free_space_ids == 0);
 803        }
 804
 805        free_space_ids--;
 806
 807        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 808        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 809        space_id_index = index;
 810
 811        spin_unlock(&sid_lock);
 812
 813        return index << SPACEID_SHIFT;
 814}
 815
 816void free_sid(unsigned long spaceid)
 817{
 818        unsigned long index = spaceid >> SPACEID_SHIFT;
 819        unsigned long *dirty_space_offset;
 820
 821        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 822        index &= (BITS_PER_LONG - 1);
 823
 824        spin_lock(&sid_lock);
 825
 826        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 827
 828        *dirty_space_offset |= (1L << index);
 829        dirty_space_ids++;
 830
 831        spin_unlock(&sid_lock);
 832}
 833
 834
 835#ifdef CONFIG_SMP
 836static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 837{
 838        int i;
 839
 840        /* NOTE: sid_lock must be held upon entry */
 841
 842        *ndirtyptr = dirty_space_ids;
 843        if (dirty_space_ids != 0) {
 844            for (i = 0; i < SID_ARRAY_SIZE; i++) {
 845                dirty_array[i] = dirty_space_id[i];
 846                dirty_space_id[i] = 0;
 847            }
 848            dirty_space_ids = 0;
 849        }
 850
 851        return;
 852}
 853
 854static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 855{
 856        int i;
 857
 858        /* NOTE: sid_lock must be held upon entry */
 859
 860        if (ndirty != 0) {
 861                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 862                        space_id[i] ^= dirty_array[i];
 863                }
 864
 865                free_space_ids += ndirty;
 866                space_id_index = 0;
 867        }
 868}
 869
 870#else /* CONFIG_SMP */
 871
 872static void recycle_sids(void)
 873{
 874        int i;
 875
 876        /* NOTE: sid_lock must be held upon entry */
 877
 878        if (dirty_space_ids != 0) {
 879                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 880                        space_id[i] ^= dirty_space_id[i];
 881                        dirty_space_id[i] = 0;
 882                }
 883
 884                free_space_ids += dirty_space_ids;
 885                dirty_space_ids = 0;
 886                space_id_index = 0;
 887        }
 888}
 889#endif
 890
 891/*
 892 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 893 * purged, we can safely reuse the space ids that were released but
 894 * not flushed from the tlb.
 895 */
 896
 897#ifdef CONFIG_SMP
 898
 899static unsigned long recycle_ndirty;
 900static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
 901static unsigned int recycle_inuse;
 902
 903void flush_tlb_all(void)
 904{
 905        int do_recycle;
 906
 907        __inc_irq_stat(irq_tlb_count);
 908        do_recycle = 0;
 909        spin_lock(&sid_lock);
 910        if (dirty_space_ids > RECYCLE_THRESHOLD) {
 911            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
 912            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
 913            recycle_inuse++;
 914            do_recycle++;
 915        }
 916        spin_unlock(&sid_lock);
 917        on_each_cpu(flush_tlb_all_local, NULL, 1);
 918        if (do_recycle) {
 919            spin_lock(&sid_lock);
 920            recycle_sids(recycle_ndirty,recycle_dirty_array);
 921            recycle_inuse = 0;
 922            spin_unlock(&sid_lock);
 923        }
 924}
 925#else
 926void flush_tlb_all(void)
 927{
 928        __inc_irq_stat(irq_tlb_count);
 929        spin_lock(&sid_lock);
 930        flush_tlb_all_local(NULL);
 931        recycle_sids();
 932        spin_unlock(&sid_lock);
 933}
 934#endif
 935
 936#ifdef CONFIG_BLK_DEV_INITRD
 937void free_initrd_mem(unsigned long start, unsigned long end)
 938{
 939        free_reserved_area((void *)start, (void *)end, -1, "initrd");
 940}
 941#endif
 942