linux/arch/x86/kernel/process_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *      Gareth Hughes <gareth@valinux.com>, May 2000
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/task.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/fs.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/elfcore.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/reboot.h>
  29#include <linux/mc146818rtc.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/ptrace.h>
  33#include <linux/personality.h>
  34#include <linux/percpu.h>
  35#include <linux/prctl.h>
  36#include <linux/ftrace.h>
  37#include <linux/uaccess.h>
  38#include <linux/io.h>
  39#include <linux/kdebug.h>
  40#include <linux/syscalls.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/ldt.h>
  44#include <asm/processor.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/desc.h>
  47#ifdef CONFIG_MATH_EMULATION
  48#include <asm/math_emu.h>
  49#endif
  50
  51#include <linux/err.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/cpu.h>
  55#include <asm/syscalls.h>
  56#include <asm/debugreg.h>
  57#include <asm/switch_to.h>
  58#include <asm/vm86.h>
  59#include <asm/intel_rdt_sched.h>
  60#include <asm/proto.h>
  61
  62#include "process.h"
  63
  64void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
  65{
  66        unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  67        unsigned long d0, d1, d2, d3, d6, d7;
  68        unsigned long sp;
  69        unsigned short ss, gs;
  70
  71        if (user_mode(regs)) {
  72                sp = regs->sp;
  73                ss = regs->ss;
  74                gs = get_user_gs(regs);
  75        } else {
  76                sp = kernel_stack_pointer(regs);
  77                savesegment(ss, ss);
  78                savesegment(gs, gs);
  79        }
  80
  81        show_ip(regs, KERN_DEFAULT);
  82
  83        printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  84                regs->ax, regs->bx, regs->cx, regs->dx);
  85        printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  86                regs->si, regs->di, regs->bp, sp);
  87        printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
  88               (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
  89
  90        if (mode != SHOW_REGS_ALL)
  91                return;
  92
  93        cr0 = read_cr0();
  94        cr2 = read_cr2();
  95        cr3 = __read_cr3();
  96        cr4 = __read_cr4();
  97        printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  98                        cr0, cr2, cr3, cr4);
  99
 100        get_debugreg(d0, 0);
 101        get_debugreg(d1, 1);
 102        get_debugreg(d2, 2);
 103        get_debugreg(d3, 3);
 104        get_debugreg(d6, 6);
 105        get_debugreg(d7, 7);
 106
 107        /* Only print out debug registers if they are in their non-default state. */
 108        if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 109            (d6 == DR6_RESERVED) && (d7 == 0x400))
 110                return;
 111
 112        printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 113                        d0, d1, d2, d3);
 114        printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
 115                        d6, d7);
 116}
 117
 118void release_thread(struct task_struct *dead_task)
 119{
 120        BUG_ON(dead_task->mm);
 121        release_vm86_irqs(dead_task);
 122}
 123
 124int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
 125        unsigned long arg, struct task_struct *p, unsigned long tls)
 126{
 127        struct pt_regs *childregs = task_pt_regs(p);
 128        struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
 129        struct inactive_task_frame *frame = &fork_frame->frame;
 130        struct task_struct *tsk;
 131        int err;
 132
 133        frame->bp = 0;
 134        frame->ret_addr = (unsigned long) ret_from_fork;
 135        p->thread.sp = (unsigned long) fork_frame;
 136        p->thread.sp0 = (unsigned long) (childregs+1);
 137        memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 138
 139        if (unlikely(p->flags & PF_KTHREAD)) {
 140                /* kernel thread */
 141                memset(childregs, 0, sizeof(struct pt_regs));
 142                frame->bx = sp;         /* function */
 143                frame->di = arg;
 144                p->thread.io_bitmap_ptr = NULL;
 145                return 0;
 146        }
 147        frame->bx = 0;
 148        *childregs = *current_pt_regs();
 149        childregs->ax = 0;
 150        if (sp)
 151                childregs->sp = sp;
 152
 153        task_user_gs(p) = get_user_gs(current_pt_regs());
 154
 155        p->thread.io_bitmap_ptr = NULL;
 156        tsk = current;
 157        err = -ENOMEM;
 158
 159        if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 160                p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 161                                                IO_BITMAP_BYTES, GFP_KERNEL);
 162                if (!p->thread.io_bitmap_ptr) {
 163                        p->thread.io_bitmap_max = 0;
 164                        return -ENOMEM;
 165                }
 166                set_tsk_thread_flag(p, TIF_IO_BITMAP);
 167        }
 168
 169        err = 0;
 170
 171        /*
 172         * Set a new TLS for the child thread?
 173         */
 174        if (clone_flags & CLONE_SETTLS)
 175                err = do_set_thread_area(p, -1,
 176                        (struct user_desc __user *)tls, 0);
 177
 178        if (err && p->thread.io_bitmap_ptr) {
 179                kfree(p->thread.io_bitmap_ptr);
 180                p->thread.io_bitmap_max = 0;
 181        }
 182        return err;
 183}
 184
 185void
 186start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 187{
 188        set_user_gs(regs, 0);
 189        regs->fs                = 0;
 190        regs->ds                = __USER_DS;
 191        regs->es                = __USER_DS;
 192        regs->ss                = __USER_DS;
 193        regs->cs                = __USER_CS;
 194        regs->ip                = new_ip;
 195        regs->sp                = new_sp;
 196        regs->flags             = X86_EFLAGS_IF;
 197        force_iret();
 198}
 199EXPORT_SYMBOL_GPL(start_thread);
 200
 201
 202/*
 203 *      switch_to(x,y) should switch tasks from x to y.
 204 *
 205 * We fsave/fwait so that an exception goes off at the right time
 206 * (as a call from the fsave or fwait in effect) rather than to
 207 * the wrong process. Lazy FP saving no longer makes any sense
 208 * with modern CPU's, and this simplifies a lot of things (SMP
 209 * and UP become the same).
 210 *
 211 * NOTE! We used to use the x86 hardware context switching. The
 212 * reason for not using it any more becomes apparent when you
 213 * try to recover gracefully from saved state that is no longer
 214 * valid (stale segment register values in particular). With the
 215 * hardware task-switch, there is no way to fix up bad state in
 216 * a reasonable manner.
 217 *
 218 * The fact that Intel documents the hardware task-switching to
 219 * be slow is a fairly red herring - this code is not noticeably
 220 * faster. However, there _is_ some room for improvement here,
 221 * so the performance issues may eventually be a valid point.
 222 * More important, however, is the fact that this allows us much
 223 * more flexibility.
 224 *
 225 * The return value (in %ax) will be the "prev" task after
 226 * the task-switch, and shows up in ret_from_fork in entry.S,
 227 * for example.
 228 */
 229__visible __notrace_funcgraph struct task_struct *
 230__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 231{
 232        struct thread_struct *prev = &prev_p->thread,
 233                             *next = &next_p->thread;
 234        struct fpu *prev_fpu = &prev->fpu;
 235        struct fpu *next_fpu = &next->fpu;
 236        int cpu = smp_processor_id();
 237
 238        /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 239
 240        switch_fpu_prepare(prev_fpu, cpu);
 241
 242        /*
 243         * Save away %gs. No need to save %fs, as it was saved on the
 244         * stack on entry.  No need to save %es and %ds, as those are
 245         * always kernel segments while inside the kernel.  Doing this
 246         * before setting the new TLS descriptors avoids the situation
 247         * where we temporarily have non-reloadable segments in %fs
 248         * and %gs.  This could be an issue if the NMI handler ever
 249         * used %fs or %gs (it does not today), or if the kernel is
 250         * running inside of a hypervisor layer.
 251         */
 252        lazy_save_gs(prev->gs);
 253
 254        /*
 255         * Load the per-thread Thread-Local Storage descriptor.
 256         */
 257        load_TLS(next, cpu);
 258
 259        /*
 260         * Restore IOPL if needed.  In normal use, the flags restore
 261         * in the switch assembly will handle this.  But if the kernel
 262         * is running virtualized at a non-zero CPL, the popf will
 263         * not restore flags, so it must be done in a separate step.
 264         */
 265        if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 266                set_iopl_mask(next->iopl);
 267
 268        switch_to_extra(prev_p, next_p);
 269
 270        /*
 271         * Leave lazy mode, flushing any hypercalls made here.
 272         * This must be done before restoring TLS segments so
 273         * the GDT and LDT are properly updated, and must be
 274         * done before fpu__restore(), so the TS bit is up
 275         * to date.
 276         */
 277        arch_end_context_switch(next_p);
 278
 279        /*
 280         * Reload esp0 and cpu_current_top_of_stack.  This changes
 281         * current_thread_info().  Refresh the SYSENTER configuration in
 282         * case prev or next is vm86.
 283         */
 284        update_sp0(next_p);
 285        refresh_sysenter_cs(next);
 286        this_cpu_write(cpu_current_top_of_stack,
 287                       (unsigned long)task_stack_page(next_p) +
 288                       THREAD_SIZE);
 289
 290        /*
 291         * Restore %gs if needed (which is common)
 292         */
 293        if (prev->gs | next->gs)
 294                lazy_load_gs(next->gs);
 295
 296        switch_fpu_finish(next_fpu, cpu);
 297
 298        this_cpu_write(current_task, next_p);
 299
 300        /* Load the Intel cache allocation PQR MSR. */
 301        intel_rdt_sched_in();
 302
 303        return prev_p;
 304}
 305
 306SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 307{
 308        return do_arch_prctl_common(current, option, arg2);
 309}
 310