linux/drivers/cpufreq/powernv-cpufreq.c
<<
>>
Prefs
   1/*
   2 * POWERNV cpufreq driver for the IBM POWER processors
   3 *
   4 * (C) Copyright IBM 2014
   5 *
   6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 */
  19
  20#define pr_fmt(fmt)     "powernv-cpufreq: " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/sysfs.h>
  24#include <linux/cpumask.h>
  25#include <linux/module.h>
  26#include <linux/cpufreq.h>
  27#include <linux/smp.h>
  28#include <linux/of.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/cpu.h>
  32#include <linux/hashtable.h>
  33#include <trace/events/power.h>
  34
  35#include <asm/cputhreads.h>
  36#include <asm/firmware.h>
  37#include <asm/reg.h>
  38#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
  39#include <asm/opal.h>
  40#include <linux/timer.h>
  41
  42#define POWERNV_MAX_PSTATES_ORDER  8
  43#define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
  44#define PMSR_PSAFE_ENABLE       (1UL << 30)
  45#define PMSR_SPR_EM_DISABLE     (1UL << 31)
  46#define MAX_PSTATE_SHIFT        32
  47#define LPSTATE_SHIFT           48
  48#define GPSTATE_SHIFT           56
  49
  50#define MAX_RAMP_DOWN_TIME                              5120
  51/*
  52 * On an idle system we want the global pstate to ramp-down from max value to
  53 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
  54 * then ramp-down rapidly later on.
  55 *
  56 * This gives a percentage rampdown for time elapsed in milliseconds.
  57 * ramp_down_percentage = ((ms * ms) >> 18)
  58 *                      ~= 3.8 * (sec * sec)
  59 *
  60 * At 0 ms      ramp_down_percent = 0
  61 * At 5120 ms   ramp_down_percent = 100
  62 */
  63#define ramp_down_percent(time)         ((time * time) >> 18)
  64
  65/* Interval after which the timer is queued to bring down global pstate */
  66#define GPSTATE_TIMER_INTERVAL                          2000
  67
  68/**
  69 * struct global_pstate_info -  Per policy data structure to maintain history of
  70 *                              global pstates
  71 * @highest_lpstate_idx:        The local pstate index from which we are
  72 *                              ramping down
  73 * @elapsed_time:               Time in ms spent in ramping down from
  74 *                              highest_lpstate_idx
  75 * @last_sampled_time:          Time from boot in ms when global pstates were
  76 *                              last set
  77 * @last_lpstate_idx,           Last set value of local pstate and global
  78 * last_gpstate_idx             pstate in terms of cpufreq table index
  79 * @timer:                      Is used for ramping down if cpu goes idle for
  80 *                              a long time with global pstate held high
  81 * @gpstate_lock:               A spinlock to maintain synchronization between
  82 *                              routines called by the timer handler and
  83 *                              governer's target_index calls
  84 */
  85struct global_pstate_info {
  86        int highest_lpstate_idx;
  87        unsigned int elapsed_time;
  88        unsigned int last_sampled_time;
  89        int last_lpstate_idx;
  90        int last_gpstate_idx;
  91        spinlock_t gpstate_lock;
  92        struct timer_list timer;
  93        struct cpufreq_policy *policy;
  94};
  95
  96static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
  97
  98DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
  99/**
 100 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
 101 *                                indexed by a function of pstate id.
 102 *
 103 * @pstate_id: pstate id for this entry.
 104 *
 105 * @cpufreq_table_idx: Index into the powernv_freqs
 106 *                     cpufreq_frequency_table for frequency
 107 *                     corresponding to pstate_id.
 108 *
 109 * @hentry: hlist_node that hooks this entry into the pstate_revmap
 110 *          hashtable
 111 */
 112struct pstate_idx_revmap_data {
 113        u8 pstate_id;
 114        unsigned int cpufreq_table_idx;
 115        struct hlist_node hentry;
 116};
 117
 118static bool rebooting, throttled, occ_reset;
 119
 120static const char * const throttle_reason[] = {
 121        "No throttling",
 122        "Power Cap",
 123        "Processor Over Temperature",
 124        "Power Supply Failure",
 125        "Over Current",
 126        "OCC Reset"
 127};
 128
 129enum throttle_reason_type {
 130        NO_THROTTLE = 0,
 131        POWERCAP,
 132        CPU_OVERTEMP,
 133        POWER_SUPPLY_FAILURE,
 134        OVERCURRENT,
 135        OCC_RESET_THROTTLE,
 136        OCC_MAX_REASON
 137};
 138
 139static struct chip {
 140        unsigned int id;
 141        bool throttled;
 142        bool restore;
 143        u8 throttle_reason;
 144        cpumask_t mask;
 145        struct work_struct throttle;
 146        int throttle_turbo;
 147        int throttle_sub_turbo;
 148        int reason[OCC_MAX_REASON];
 149} *chips;
 150
 151static int nr_chips;
 152static DEFINE_PER_CPU(struct chip *, chip_info);
 153
 154/*
 155 * Note:
 156 * The set of pstates consists of contiguous integers.
 157 * powernv_pstate_info stores the index of the frequency table for
 158 * max, min and nominal frequencies. It also stores number of
 159 * available frequencies.
 160 *
 161 * powernv_pstate_info.nominal indicates the index to the highest
 162 * non-turbo frequency.
 163 */
 164static struct powernv_pstate_info {
 165        unsigned int min;
 166        unsigned int max;
 167        unsigned int nominal;
 168        unsigned int nr_pstates;
 169        bool wof_enabled;
 170} powernv_pstate_info;
 171
 172static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
 173{
 174        return ((pmsr_val >> shift) & 0xFF);
 175}
 176
 177#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
 178#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
 179#define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
 180
 181/* Use following functions for conversions between pstate_id and index */
 182
 183/**
 184 * idx_to_pstate : Returns the pstate id corresponding to the
 185 *                 frequency in the cpufreq frequency table
 186 *                 powernv_freqs indexed by @i.
 187 *
 188 *                 If @i is out of bound, this will return the pstate
 189 *                 corresponding to the nominal frequency.
 190 */
 191static inline u8 idx_to_pstate(unsigned int i)
 192{
 193        if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
 194                pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
 195                return powernv_freqs[powernv_pstate_info.nominal].driver_data;
 196        }
 197
 198        return powernv_freqs[i].driver_data;
 199}
 200
 201/**
 202 * pstate_to_idx : Returns the index in the cpufreq frequencytable
 203 *                 powernv_freqs for the frequency whose corresponding
 204 *                 pstate id is @pstate.
 205 *
 206 *                 If no frequency corresponding to @pstate is found,
 207 *                 this will return the index of the nominal
 208 *                 frequency.
 209 */
 210static unsigned int pstate_to_idx(u8 pstate)
 211{
 212        unsigned int key = pstate % POWERNV_MAX_PSTATES;
 213        struct pstate_idx_revmap_data *revmap_data;
 214
 215        hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
 216                if (revmap_data->pstate_id == pstate)
 217                        return revmap_data->cpufreq_table_idx;
 218        }
 219
 220        pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
 221        return powernv_pstate_info.nominal;
 222}
 223
 224static inline void reset_gpstates(struct cpufreq_policy *policy)
 225{
 226        struct global_pstate_info *gpstates = policy->driver_data;
 227
 228        gpstates->highest_lpstate_idx = 0;
 229        gpstates->elapsed_time = 0;
 230        gpstates->last_sampled_time = 0;
 231        gpstates->last_lpstate_idx = 0;
 232        gpstates->last_gpstate_idx = 0;
 233}
 234
 235/*
 236 * Initialize the freq table based on data obtained
 237 * from the firmware passed via device-tree
 238 */
 239static int init_powernv_pstates(void)
 240{
 241        struct device_node *power_mgt;
 242        int i, nr_pstates = 0;
 243        const __be32 *pstate_ids, *pstate_freqs;
 244        u32 len_ids, len_freqs;
 245        u32 pstate_min, pstate_max, pstate_nominal;
 246        u32 pstate_turbo, pstate_ultra_turbo;
 247
 248        power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
 249        if (!power_mgt) {
 250                pr_warn("power-mgt node not found\n");
 251                return -ENODEV;
 252        }
 253
 254        if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
 255                pr_warn("ibm,pstate-min node not found\n");
 256                return -ENODEV;
 257        }
 258
 259        if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
 260                pr_warn("ibm,pstate-max node not found\n");
 261                return -ENODEV;
 262        }
 263
 264        if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
 265                                 &pstate_nominal)) {
 266                pr_warn("ibm,pstate-nominal not found\n");
 267                return -ENODEV;
 268        }
 269
 270        if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
 271                                 &pstate_ultra_turbo)) {
 272                powernv_pstate_info.wof_enabled = false;
 273                goto next;
 274        }
 275
 276        if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
 277                                 &pstate_turbo)) {
 278                powernv_pstate_info.wof_enabled = false;
 279                goto next;
 280        }
 281
 282        if (pstate_turbo == pstate_ultra_turbo)
 283                powernv_pstate_info.wof_enabled = false;
 284        else
 285                powernv_pstate_info.wof_enabled = true;
 286
 287next:
 288        pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
 289                pstate_nominal, pstate_max);
 290        pr_info("Workload Optimized Frequency is %s in the platform\n",
 291                (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
 292
 293        pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
 294        if (!pstate_ids) {
 295                pr_warn("ibm,pstate-ids not found\n");
 296                return -ENODEV;
 297        }
 298
 299        pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
 300                                      &len_freqs);
 301        if (!pstate_freqs) {
 302                pr_warn("ibm,pstate-frequencies-mhz not found\n");
 303                return -ENODEV;
 304        }
 305
 306        if (len_ids != len_freqs) {
 307                pr_warn("Entries in ibm,pstate-ids and "
 308                        "ibm,pstate-frequencies-mhz does not match\n");
 309        }
 310
 311        nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
 312        if (!nr_pstates) {
 313                pr_warn("No PStates found\n");
 314                return -ENODEV;
 315        }
 316
 317        powernv_pstate_info.nr_pstates = nr_pstates;
 318        pr_debug("NR PStates %d\n", nr_pstates);
 319
 320        for (i = 0; i < nr_pstates; i++) {
 321                u32 id = be32_to_cpu(pstate_ids[i]);
 322                u32 freq = be32_to_cpu(pstate_freqs[i]);
 323                struct pstate_idx_revmap_data *revmap_data;
 324                unsigned int key;
 325
 326                pr_debug("PState id %d freq %d MHz\n", id, freq);
 327                powernv_freqs[i].frequency = freq * 1000; /* kHz */
 328                powernv_freqs[i].driver_data = id & 0xFF;
 329
 330                revmap_data = (struct pstate_idx_revmap_data *)
 331                              kmalloc(sizeof(*revmap_data), GFP_KERNEL);
 332
 333                revmap_data->pstate_id = id & 0xFF;
 334                revmap_data->cpufreq_table_idx = i;
 335                key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
 336                hash_add(pstate_revmap, &revmap_data->hentry, key);
 337
 338                if (id == pstate_max)
 339                        powernv_pstate_info.max = i;
 340                if (id == pstate_nominal)
 341                        powernv_pstate_info.nominal = i;
 342                if (id == pstate_min)
 343                        powernv_pstate_info.min = i;
 344
 345                if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
 346                        int j;
 347
 348                        for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
 349                                powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
 350                }
 351        }
 352
 353        /* End of list marker entry */
 354        powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
 355        return 0;
 356}
 357
 358/* Returns the CPU frequency corresponding to the pstate_id. */
 359static unsigned int pstate_id_to_freq(u8 pstate_id)
 360{
 361        int i;
 362
 363        i = pstate_to_idx(pstate_id);
 364        if (i >= powernv_pstate_info.nr_pstates || i < 0) {
 365                pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
 366                        pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
 367                i = powernv_pstate_info.nominal;
 368        }
 369
 370        return powernv_freqs[i].frequency;
 371}
 372
 373/*
 374 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
 375 * the firmware
 376 */
 377static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
 378                                        char *buf)
 379{
 380        return sprintf(buf, "%u\n",
 381                powernv_freqs[powernv_pstate_info.nominal].frequency);
 382}
 383
 384struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
 385        __ATTR_RO(cpuinfo_nominal_freq);
 386
 387#define SCALING_BOOST_FREQS_ATTR_INDEX          2
 388
 389static struct freq_attr *powernv_cpu_freq_attr[] = {
 390        &cpufreq_freq_attr_scaling_available_freqs,
 391        &cpufreq_freq_attr_cpuinfo_nominal_freq,
 392        &cpufreq_freq_attr_scaling_boost_freqs,
 393        NULL,
 394};
 395
 396#define throttle_attr(name, member)                                     \
 397static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
 398{                                                                       \
 399        struct chip *chip = per_cpu(chip_info, policy->cpu);            \
 400                                                                        \
 401        return sprintf(buf, "%u\n", chip->member);                      \
 402}                                                                       \
 403                                                                        \
 404static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
 405
 406throttle_attr(unthrottle, reason[NO_THROTTLE]);
 407throttle_attr(powercap, reason[POWERCAP]);
 408throttle_attr(overtemp, reason[CPU_OVERTEMP]);
 409throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
 410throttle_attr(overcurrent, reason[OVERCURRENT]);
 411throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
 412throttle_attr(turbo_stat, throttle_turbo);
 413throttle_attr(sub_turbo_stat, throttle_sub_turbo);
 414
 415static struct attribute *throttle_attrs[] = {
 416        &throttle_attr_unthrottle.attr,
 417        &throttle_attr_powercap.attr,
 418        &throttle_attr_overtemp.attr,
 419        &throttle_attr_supply_fault.attr,
 420        &throttle_attr_overcurrent.attr,
 421        &throttle_attr_occ_reset.attr,
 422        &throttle_attr_turbo_stat.attr,
 423        &throttle_attr_sub_turbo_stat.attr,
 424        NULL,
 425};
 426
 427static const struct attribute_group throttle_attr_grp = {
 428        .name   = "throttle_stats",
 429        .attrs  = throttle_attrs,
 430};
 431
 432/* Helper routines */
 433
 434/* Access helpers to power mgt SPR */
 435
 436static inline unsigned long get_pmspr(unsigned long sprn)
 437{
 438        switch (sprn) {
 439        case SPRN_PMCR:
 440                return mfspr(SPRN_PMCR);
 441
 442        case SPRN_PMICR:
 443                return mfspr(SPRN_PMICR);
 444
 445        case SPRN_PMSR:
 446                return mfspr(SPRN_PMSR);
 447        }
 448        BUG();
 449}
 450
 451static inline void set_pmspr(unsigned long sprn, unsigned long val)
 452{
 453        switch (sprn) {
 454        case SPRN_PMCR:
 455                mtspr(SPRN_PMCR, val);
 456                return;
 457
 458        case SPRN_PMICR:
 459                mtspr(SPRN_PMICR, val);
 460                return;
 461        }
 462        BUG();
 463}
 464
 465/*
 466 * Use objects of this type to query/update
 467 * pstates on a remote CPU via smp_call_function.
 468 */
 469struct powernv_smp_call_data {
 470        unsigned int freq;
 471        u8 pstate_id;
 472        u8 gpstate_id;
 473};
 474
 475/*
 476 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
 477 *
 478 * Called via smp_call_function.
 479 *
 480 * Note: The caller of the smp_call_function should pass an argument of
 481 * the type 'struct powernv_smp_call_data *' along with this function.
 482 *
 483 * The current frequency on this CPU will be returned via
 484 * ((struct powernv_smp_call_data *)arg)->freq;
 485 */
 486static void powernv_read_cpu_freq(void *arg)
 487{
 488        unsigned long pmspr_val;
 489        struct powernv_smp_call_data *freq_data = arg;
 490
 491        pmspr_val = get_pmspr(SPRN_PMSR);
 492        freq_data->pstate_id = extract_local_pstate(pmspr_val);
 493        freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
 494
 495        pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
 496                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
 497                 freq_data->freq);
 498}
 499
 500/*
 501 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
 502 * firmware for CPU 'cpu'. This value is reported through the sysfs
 503 * file cpuinfo_cur_freq.
 504 */
 505static unsigned int powernv_cpufreq_get(unsigned int cpu)
 506{
 507        struct powernv_smp_call_data freq_data;
 508
 509        smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
 510                        &freq_data, 1);
 511
 512        return freq_data.freq;
 513}
 514
 515/*
 516 * set_pstate: Sets the pstate on this CPU.
 517 *
 518 * This is called via an smp_call_function.
 519 *
 520 * The caller must ensure that freq_data is of the type
 521 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
 522 * on this CPU should be present in freq_data->pstate_id.
 523 */
 524static void set_pstate(void *data)
 525{
 526        unsigned long val;
 527        struct powernv_smp_call_data *freq_data = data;
 528        unsigned long pstate_ul = freq_data->pstate_id;
 529        unsigned long gpstate_ul = freq_data->gpstate_id;
 530
 531        val = get_pmspr(SPRN_PMCR);
 532        val = val & 0x0000FFFFFFFFFFFFULL;
 533
 534        pstate_ul = pstate_ul & 0xFF;
 535        gpstate_ul = gpstate_ul & 0xFF;
 536
 537        /* Set both global(bits 56..63) and local(bits 48..55) PStates */
 538        val = val | (gpstate_ul << 56) | (pstate_ul << 48);
 539
 540        pr_debug("Setting cpu %d pmcr to %016lX\n",
 541                        raw_smp_processor_id(), val);
 542        set_pmspr(SPRN_PMCR, val);
 543}
 544
 545/*
 546 * get_nominal_index: Returns the index corresponding to the nominal
 547 * pstate in the cpufreq table
 548 */
 549static inline unsigned int get_nominal_index(void)
 550{
 551        return powernv_pstate_info.nominal;
 552}
 553
 554static void powernv_cpufreq_throttle_check(void *data)
 555{
 556        struct chip *chip;
 557        unsigned int cpu = smp_processor_id();
 558        unsigned long pmsr;
 559        u8 pmsr_pmax;
 560        unsigned int pmsr_pmax_idx;
 561
 562        pmsr = get_pmspr(SPRN_PMSR);
 563        chip = this_cpu_read(chip_info);
 564
 565        /* Check for Pmax Capping */
 566        pmsr_pmax = extract_max_pstate(pmsr);
 567        pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
 568        if (pmsr_pmax_idx != powernv_pstate_info.max) {
 569                if (chip->throttled)
 570                        goto next;
 571                chip->throttled = true;
 572                if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
 573                        pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
 574                                     cpu, chip->id, pmsr_pmax,
 575                                     idx_to_pstate(powernv_pstate_info.nominal));
 576                        chip->throttle_sub_turbo++;
 577                } else {
 578                        chip->throttle_turbo++;
 579                }
 580                trace_powernv_throttle(chip->id,
 581                                      throttle_reason[chip->throttle_reason],
 582                                      pmsr_pmax);
 583        } else if (chip->throttled) {
 584                chip->throttled = false;
 585                trace_powernv_throttle(chip->id,
 586                                      throttle_reason[chip->throttle_reason],
 587                                      pmsr_pmax);
 588        }
 589
 590        /* Check if Psafe_mode_active is set in PMSR. */
 591next:
 592        if (pmsr & PMSR_PSAFE_ENABLE) {
 593                throttled = true;
 594                pr_info("Pstate set to safe frequency\n");
 595        }
 596
 597        /* Check if SPR_EM_DISABLE is set in PMSR */
 598        if (pmsr & PMSR_SPR_EM_DISABLE) {
 599                throttled = true;
 600                pr_info("Frequency Control disabled from OS\n");
 601        }
 602
 603        if (throttled) {
 604                pr_info("PMSR = %16lx\n", pmsr);
 605                pr_warn("CPU Frequency could be throttled\n");
 606        }
 607}
 608
 609/**
 610 * calc_global_pstate - Calculate global pstate
 611 * @elapsed_time:               Elapsed time in milliseconds
 612 * @local_pstate_idx:           New local pstate
 613 * @highest_lpstate_idx:        pstate from which its ramping down
 614 *
 615 * Finds the appropriate global pstate based on the pstate from which its
 616 * ramping down and the time elapsed in ramping down. It follows a quadratic
 617 * equation which ensures that it reaches ramping down to pmin in 5sec.
 618 */
 619static inline int calc_global_pstate(unsigned int elapsed_time,
 620                                     int highest_lpstate_idx,
 621                                     int local_pstate_idx)
 622{
 623        int index_diff;
 624
 625        /*
 626         * Using ramp_down_percent we get the percentage of rampdown
 627         * that we are expecting to be dropping. Difference between
 628         * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
 629         * number of how many pstates we will drop eventually by the end of
 630         * 5 seconds, then just scale it get the number pstates to be dropped.
 631         */
 632        index_diff =  ((int)ramp_down_percent(elapsed_time) *
 633                        (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
 634
 635        /* Ensure that global pstate is >= to local pstate */
 636        if (highest_lpstate_idx + index_diff >= local_pstate_idx)
 637                return local_pstate_idx;
 638        else
 639                return highest_lpstate_idx + index_diff;
 640}
 641
 642static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
 643{
 644        unsigned int timer_interval;
 645
 646        /*
 647         * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
 648         * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
 649         * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
 650         * seconds of ramp down time.
 651         */
 652        if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
 653             > MAX_RAMP_DOWN_TIME)
 654                timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
 655        else
 656                timer_interval = GPSTATE_TIMER_INTERVAL;
 657
 658        mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
 659}
 660
 661/**
 662 * gpstate_timer_handler
 663 *
 664 * @data: pointer to cpufreq_policy on which timer was queued
 665 *
 666 * This handler brings down the global pstate closer to the local pstate
 667 * according quadratic equation. Queues a new timer if it is still not equal
 668 * to local pstate
 669 */
 670void gpstate_timer_handler(struct timer_list *t)
 671{
 672        struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
 673        struct cpufreq_policy *policy = gpstates->policy;
 674        int gpstate_idx, lpstate_idx;
 675        unsigned long val;
 676        unsigned int time_diff = jiffies_to_msecs(jiffies)
 677                                        - gpstates->last_sampled_time;
 678        struct powernv_smp_call_data freq_data;
 679
 680        if (!spin_trylock(&gpstates->gpstate_lock))
 681                return;
 682        /*
 683         * If the timer has migrated to the different cpu then bring
 684         * it back to one of the policy->cpus
 685         */
 686        if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
 687                gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
 688                add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
 689                spin_unlock(&gpstates->gpstate_lock);
 690                return;
 691        }
 692
 693        /*
 694         * If PMCR was last updated was using fast_swtich then
 695         * We may have wrong in gpstate->last_lpstate_idx
 696         * value. Hence, read from PMCR to get correct data.
 697         */
 698        val = get_pmspr(SPRN_PMCR);
 699        freq_data.gpstate_id = extract_global_pstate(val);
 700        freq_data.pstate_id = extract_local_pstate(val);
 701        if (freq_data.gpstate_id  == freq_data.pstate_id) {
 702                reset_gpstates(policy);
 703                spin_unlock(&gpstates->gpstate_lock);
 704                return;
 705        }
 706
 707        gpstates->last_sampled_time += time_diff;
 708        gpstates->elapsed_time += time_diff;
 709
 710        if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 711                gpstate_idx = pstate_to_idx(freq_data.pstate_id);
 712                lpstate_idx = gpstate_idx;
 713                reset_gpstates(policy);
 714                gpstates->highest_lpstate_idx = gpstate_idx;
 715        } else {
 716                lpstate_idx = pstate_to_idx(freq_data.pstate_id);
 717                gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 718                                                 gpstates->highest_lpstate_idx,
 719                                                 lpstate_idx);
 720        }
 721        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 722        gpstates->last_gpstate_idx = gpstate_idx;
 723        gpstates->last_lpstate_idx = lpstate_idx;
 724        /*
 725         * If local pstate is equal to global pstate, rampdown is over
 726         * So timer is not required to be queued.
 727         */
 728        if (gpstate_idx != gpstates->last_lpstate_idx)
 729                queue_gpstate_timer(gpstates);
 730
 731        set_pstate(&freq_data);
 732        spin_unlock(&gpstates->gpstate_lock);
 733}
 734
 735/*
 736 * powernv_cpufreq_target_index: Sets the frequency corresponding to
 737 * the cpufreq table entry indexed by new_index on the cpus in the
 738 * mask policy->cpus
 739 */
 740static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
 741                                        unsigned int new_index)
 742{
 743        struct powernv_smp_call_data freq_data;
 744        unsigned int cur_msec, gpstate_idx;
 745        struct global_pstate_info *gpstates = policy->driver_data;
 746
 747        if (unlikely(rebooting) && new_index != get_nominal_index())
 748                return 0;
 749
 750        if (!throttled) {
 751                /* we don't want to be preempted while
 752                 * checking if the CPU frequency has been throttled
 753                 */
 754                preempt_disable();
 755                powernv_cpufreq_throttle_check(NULL);
 756                preempt_enable();
 757        }
 758
 759        cur_msec = jiffies_to_msecs(get_jiffies_64());
 760
 761        spin_lock(&gpstates->gpstate_lock);
 762        freq_data.pstate_id = idx_to_pstate(new_index);
 763
 764        if (!gpstates->last_sampled_time) {
 765                gpstate_idx = new_index;
 766                gpstates->highest_lpstate_idx = new_index;
 767                goto gpstates_done;
 768        }
 769
 770        if (gpstates->last_gpstate_idx < new_index) {
 771                gpstates->elapsed_time += cur_msec -
 772                                                 gpstates->last_sampled_time;
 773
 774                /*
 775                 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
 776                 * we should be resetting all global pstate related data. Set it
 777                 * equal to local pstate to start fresh.
 778                 */
 779                if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 780                        reset_gpstates(policy);
 781                        gpstates->highest_lpstate_idx = new_index;
 782                        gpstate_idx = new_index;
 783                } else {
 784                /* Elaspsed_time is less than 5 seconds, continue to rampdown */
 785                        gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 786                                                         gpstates->highest_lpstate_idx,
 787                                                         new_index);
 788                }
 789        } else {
 790                reset_gpstates(policy);
 791                gpstates->highest_lpstate_idx = new_index;
 792                gpstate_idx = new_index;
 793        }
 794
 795        /*
 796         * If local pstate is equal to global pstate, rampdown is over
 797         * So timer is not required to be queued.
 798         */
 799        if (gpstate_idx != new_index)
 800                queue_gpstate_timer(gpstates);
 801        else
 802                del_timer_sync(&gpstates->timer);
 803
 804gpstates_done:
 805        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 806        gpstates->last_sampled_time = cur_msec;
 807        gpstates->last_gpstate_idx = gpstate_idx;
 808        gpstates->last_lpstate_idx = new_index;
 809
 810        spin_unlock(&gpstates->gpstate_lock);
 811
 812        /*
 813         * Use smp_call_function to send IPI and execute the
 814         * mtspr on target CPU.  We could do that without IPI
 815         * if current CPU is within policy->cpus (core)
 816         */
 817        smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 818        return 0;
 819}
 820
 821static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
 822{
 823        int base, i;
 824        struct kernfs_node *kn;
 825        struct global_pstate_info *gpstates;
 826
 827        base = cpu_first_thread_sibling(policy->cpu);
 828
 829        for (i = 0; i < threads_per_core; i++)
 830                cpumask_set_cpu(base + i, policy->cpus);
 831
 832        kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
 833        if (!kn) {
 834                int ret;
 835
 836                ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
 837                if (ret) {
 838                        pr_info("Failed to create throttle stats directory for cpu %d\n",
 839                                policy->cpu);
 840                        return ret;
 841                }
 842        } else {
 843                kernfs_put(kn);
 844        }
 845
 846        gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
 847        if (!gpstates)
 848                return -ENOMEM;
 849
 850        policy->driver_data = gpstates;
 851
 852        /* initialize timer */
 853        gpstates->policy = policy;
 854        timer_setup(&gpstates->timer, gpstate_timer_handler,
 855                    TIMER_PINNED | TIMER_DEFERRABLE);
 856        gpstates->timer.expires = jiffies +
 857                                msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
 858        spin_lock_init(&gpstates->gpstate_lock);
 859
 860        policy->freq_table = powernv_freqs;
 861        policy->fast_switch_possible = true;
 862        return 0;
 863}
 864
 865static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 866{
 867        /* timer is deleted in cpufreq_cpu_stop() */
 868        kfree(policy->driver_data);
 869
 870        return 0;
 871}
 872
 873static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
 874                                unsigned long action, void *unused)
 875{
 876        int cpu;
 877        struct cpufreq_policy cpu_policy;
 878
 879        rebooting = true;
 880        for_each_online_cpu(cpu) {
 881                cpufreq_get_policy(&cpu_policy, cpu);
 882                powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
 883        }
 884
 885        return NOTIFY_DONE;
 886}
 887
 888static struct notifier_block powernv_cpufreq_reboot_nb = {
 889        .notifier_call = powernv_cpufreq_reboot_notifier,
 890};
 891
 892void powernv_cpufreq_work_fn(struct work_struct *work)
 893{
 894        struct chip *chip = container_of(work, struct chip, throttle);
 895        unsigned int cpu;
 896        cpumask_t mask;
 897
 898        get_online_cpus();
 899        cpumask_and(&mask, &chip->mask, cpu_online_mask);
 900        smp_call_function_any(&mask,
 901                              powernv_cpufreq_throttle_check, NULL, 0);
 902
 903        if (!chip->restore)
 904                goto out;
 905
 906        chip->restore = false;
 907        for_each_cpu(cpu, &mask) {
 908                int index;
 909                struct cpufreq_policy policy;
 910
 911                cpufreq_get_policy(&policy, cpu);
 912                index = cpufreq_table_find_index_c(&policy, policy.cur);
 913                powernv_cpufreq_target_index(&policy, index);
 914                cpumask_andnot(&mask, &mask, policy.cpus);
 915        }
 916out:
 917        put_online_cpus();
 918}
 919
 920static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
 921                                   unsigned long msg_type, void *_msg)
 922{
 923        struct opal_msg *msg = _msg;
 924        struct opal_occ_msg omsg;
 925        int i;
 926
 927        if (msg_type != OPAL_MSG_OCC)
 928                return 0;
 929
 930        omsg.type = be64_to_cpu(msg->params[0]);
 931
 932        switch (omsg.type) {
 933        case OCC_RESET:
 934                occ_reset = true;
 935                pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
 936                /*
 937                 * powernv_cpufreq_throttle_check() is called in
 938                 * target() callback which can detect the throttle state
 939                 * for governors like ondemand.
 940                 * But static governors will not call target() often thus
 941                 * report throttling here.
 942                 */
 943                if (!throttled) {
 944                        throttled = true;
 945                        pr_warn("CPU frequency is throttled for duration\n");
 946                }
 947
 948                break;
 949        case OCC_LOAD:
 950                pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
 951                break;
 952        case OCC_THROTTLE:
 953                omsg.chip = be64_to_cpu(msg->params[1]);
 954                omsg.throttle_status = be64_to_cpu(msg->params[2]);
 955
 956                if (occ_reset) {
 957                        occ_reset = false;
 958                        throttled = false;
 959                        pr_info("OCC Active, CPU frequency is no longer throttled\n");
 960
 961                        for (i = 0; i < nr_chips; i++) {
 962                                chips[i].restore = true;
 963                                schedule_work(&chips[i].throttle);
 964                        }
 965
 966                        return 0;
 967                }
 968
 969                for (i = 0; i < nr_chips; i++)
 970                        if (chips[i].id == omsg.chip)
 971                                break;
 972
 973                if (omsg.throttle_status >= 0 &&
 974                    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
 975                        chips[i].throttle_reason = omsg.throttle_status;
 976                        chips[i].reason[omsg.throttle_status]++;
 977                }
 978
 979                if (!omsg.throttle_status)
 980                        chips[i].restore = true;
 981
 982                schedule_work(&chips[i].throttle);
 983        }
 984        return 0;
 985}
 986
 987static struct notifier_block powernv_cpufreq_opal_nb = {
 988        .notifier_call  = powernv_cpufreq_occ_msg,
 989        .next           = NULL,
 990        .priority       = 0,
 991};
 992
 993static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
 994{
 995        struct powernv_smp_call_data freq_data;
 996        struct global_pstate_info *gpstates = policy->driver_data;
 997
 998        freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
 999        freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1000        smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1001        del_timer_sync(&gpstates->timer);
1002}
1003
1004static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1005                                        unsigned int target_freq)
1006{
1007        int index;
1008        struct powernv_smp_call_data freq_data;
1009
1010        index = cpufreq_table_find_index_dl(policy, target_freq);
1011        freq_data.pstate_id = powernv_freqs[index].driver_data;
1012        freq_data.gpstate_id = powernv_freqs[index].driver_data;
1013        set_pstate(&freq_data);
1014
1015        return powernv_freqs[index].frequency;
1016}
1017
1018static struct cpufreq_driver powernv_cpufreq_driver = {
1019        .name           = "powernv-cpufreq",
1020        .flags          = CPUFREQ_CONST_LOOPS,
1021        .init           = powernv_cpufreq_cpu_init,
1022        .exit           = powernv_cpufreq_cpu_exit,
1023        .verify         = cpufreq_generic_frequency_table_verify,
1024        .target_index   = powernv_cpufreq_target_index,
1025        .fast_switch    = powernv_fast_switch,
1026        .get            = powernv_cpufreq_get,
1027        .stop_cpu       = powernv_cpufreq_stop_cpu,
1028        .attr           = powernv_cpu_freq_attr,
1029};
1030
1031static int init_chip_info(void)
1032{
1033        unsigned int chip[256];
1034        unsigned int cpu, i;
1035        unsigned int prev_chip_id = UINT_MAX;
1036
1037        for_each_possible_cpu(cpu) {
1038                unsigned int id = cpu_to_chip_id(cpu);
1039
1040                if (prev_chip_id != id) {
1041                        prev_chip_id = id;
1042                        chip[nr_chips++] = id;
1043                }
1044        }
1045
1046        chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1047        if (!chips)
1048                return -ENOMEM;
1049
1050        for (i = 0; i < nr_chips; i++) {
1051                chips[i].id = chip[i];
1052                cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1053                INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1054                for_each_cpu(cpu, &chips[i].mask)
1055                        per_cpu(chip_info, cpu) =  &chips[i];
1056        }
1057
1058        return 0;
1059}
1060
1061static inline void clean_chip_info(void)
1062{
1063        kfree(chips);
1064}
1065
1066static inline void unregister_all_notifiers(void)
1067{
1068        opal_message_notifier_unregister(OPAL_MSG_OCC,
1069                                         &powernv_cpufreq_opal_nb);
1070        unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1071}
1072
1073static int __init powernv_cpufreq_init(void)
1074{
1075        int rc = 0;
1076
1077        /* Don't probe on pseries (guest) platforms */
1078        if (!firmware_has_feature(FW_FEATURE_OPAL))
1079                return -ENODEV;
1080
1081        /* Discover pstates from device tree and init */
1082        rc = init_powernv_pstates();
1083        if (rc)
1084                goto out;
1085
1086        /* Populate chip info */
1087        rc = init_chip_info();
1088        if (rc)
1089                goto out;
1090
1091        register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1092        opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1093
1094        if (powernv_pstate_info.wof_enabled)
1095                powernv_cpufreq_driver.boost_enabled = true;
1096        else
1097                powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1098
1099        rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1100        if (rc) {
1101                pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1102                goto cleanup_notifiers;
1103        }
1104
1105        if (powernv_pstate_info.wof_enabled)
1106                cpufreq_enable_boost_support();
1107
1108        return 0;
1109cleanup_notifiers:
1110        unregister_all_notifiers();
1111        clean_chip_info();
1112out:
1113        pr_info("Platform driver disabled. System does not support PState control\n");
1114        return rc;
1115}
1116module_init(powernv_cpufreq_init);
1117
1118static void __exit powernv_cpufreq_exit(void)
1119{
1120        cpufreq_unregister_driver(&powernv_cpufreq_driver);
1121        unregister_all_notifiers();
1122        clean_chip_info();
1123}
1124module_exit(powernv_cpufreq_exit);
1125
1126MODULE_LICENSE("GPL");
1127MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1128