linux/drivers/infiniband/hw/hns/hns_roce_mr.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Hisilicon Limited.
   3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/platform_device.h>
  35#include <linux/vmalloc.h>
  36#include <rdma/ib_umem.h>
  37#include "hns_roce_device.h"
  38#include "hns_roce_cmd.h"
  39#include "hns_roce_hem.h"
  40
  41static u32 hw_index_to_key(unsigned long ind)
  42{
  43        return (u32)(ind >> 24) | (ind << 8);
  44}
  45
  46unsigned long key_to_hw_index(u32 key)
  47{
  48        return (key << 24) | (key >> 8);
  49}
  50EXPORT_SYMBOL_GPL(key_to_hw_index);
  51
  52static int hns_roce_sw2hw_mpt(struct hns_roce_dev *hr_dev,
  53                              struct hns_roce_cmd_mailbox *mailbox,
  54                              unsigned long mpt_index)
  55{
  56        return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
  57                                 HNS_ROCE_CMD_SW2HW_MPT,
  58                                 HNS_ROCE_CMD_TIMEOUT_MSECS);
  59}
  60
  61int hns_roce_hw2sw_mpt(struct hns_roce_dev *hr_dev,
  62                              struct hns_roce_cmd_mailbox *mailbox,
  63                              unsigned long mpt_index)
  64{
  65        return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
  66                                 mpt_index, !mailbox, HNS_ROCE_CMD_HW2SW_MPT,
  67                                 HNS_ROCE_CMD_TIMEOUT_MSECS);
  68}
  69EXPORT_SYMBOL_GPL(hns_roce_hw2sw_mpt);
  70
  71static int hns_roce_buddy_alloc(struct hns_roce_buddy *buddy, int order,
  72                                unsigned long *seg)
  73{
  74        int o;
  75        u32 m;
  76
  77        spin_lock(&buddy->lock);
  78
  79        for (o = order; o <= buddy->max_order; ++o) {
  80                if (buddy->num_free[o]) {
  81                        m = 1 << (buddy->max_order - o);
  82                        *seg = find_first_bit(buddy->bits[o], m);
  83                        if (*seg < m)
  84                                goto found;
  85                }
  86        }
  87        spin_unlock(&buddy->lock);
  88        return -1;
  89
  90 found:
  91        clear_bit(*seg, buddy->bits[o]);
  92        --buddy->num_free[o];
  93
  94        while (o > order) {
  95                --o;
  96                *seg <<= 1;
  97                set_bit(*seg ^ 1, buddy->bits[o]);
  98                ++buddy->num_free[o];
  99        }
 100
 101        spin_unlock(&buddy->lock);
 102
 103        *seg <<= order;
 104        return 0;
 105}
 106
 107static void hns_roce_buddy_free(struct hns_roce_buddy *buddy, unsigned long seg,
 108                                int order)
 109{
 110        seg >>= order;
 111
 112        spin_lock(&buddy->lock);
 113
 114        while (test_bit(seg ^ 1, buddy->bits[order])) {
 115                clear_bit(seg ^ 1, buddy->bits[order]);
 116                --buddy->num_free[order];
 117                seg >>= 1;
 118                ++order;
 119        }
 120
 121        set_bit(seg, buddy->bits[order]);
 122        ++buddy->num_free[order];
 123
 124        spin_unlock(&buddy->lock);
 125}
 126
 127static int hns_roce_buddy_init(struct hns_roce_buddy *buddy, int max_order)
 128{
 129        int i, s;
 130
 131        buddy->max_order = max_order;
 132        spin_lock_init(&buddy->lock);
 133        buddy->bits = kcalloc(buddy->max_order + 1,
 134                              sizeof(*buddy->bits),
 135                              GFP_KERNEL);
 136        buddy->num_free = kcalloc(buddy->max_order + 1,
 137                                  sizeof(*buddy->num_free),
 138                                  GFP_KERNEL);
 139        if (!buddy->bits || !buddy->num_free)
 140                goto err_out;
 141
 142        for (i = 0; i <= buddy->max_order; ++i) {
 143                s = BITS_TO_LONGS(1 << (buddy->max_order - i));
 144                buddy->bits[i] = kcalloc(s, sizeof(long), GFP_KERNEL |
 145                                         __GFP_NOWARN);
 146                if (!buddy->bits[i]) {
 147                        buddy->bits[i] = vzalloc(array_size(s, sizeof(long)));
 148                        if (!buddy->bits[i])
 149                                goto err_out_free;
 150                }
 151        }
 152
 153        set_bit(0, buddy->bits[buddy->max_order]);
 154        buddy->num_free[buddy->max_order] = 1;
 155
 156        return 0;
 157
 158err_out_free:
 159        for (i = 0; i <= buddy->max_order; ++i)
 160                kvfree(buddy->bits[i]);
 161
 162err_out:
 163        kfree(buddy->bits);
 164        kfree(buddy->num_free);
 165        return -ENOMEM;
 166}
 167
 168static void hns_roce_buddy_cleanup(struct hns_roce_buddy *buddy)
 169{
 170        int i;
 171
 172        for (i = 0; i <= buddy->max_order; ++i)
 173                kvfree(buddy->bits[i]);
 174
 175        kfree(buddy->bits);
 176        kfree(buddy->num_free);
 177}
 178
 179static int hns_roce_alloc_mtt_range(struct hns_roce_dev *hr_dev, int order,
 180                                    unsigned long *seg, u32 mtt_type)
 181{
 182        struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
 183        struct hns_roce_hem_table *table;
 184        struct hns_roce_buddy *buddy;
 185        int ret;
 186
 187        if (mtt_type == MTT_TYPE_WQE) {
 188                buddy = &mr_table->mtt_buddy;
 189                table = &mr_table->mtt_table;
 190        } else {
 191                buddy = &mr_table->mtt_cqe_buddy;
 192                table = &mr_table->mtt_cqe_table;
 193        }
 194
 195        ret = hns_roce_buddy_alloc(buddy, order, seg);
 196        if (ret == -1)
 197                return -1;
 198
 199        if (hns_roce_table_get_range(hr_dev, table, *seg,
 200                                     *seg + (1 << order) - 1)) {
 201                hns_roce_buddy_free(buddy, *seg, order);
 202                return -1;
 203        }
 204
 205        return 0;
 206}
 207
 208int hns_roce_mtt_init(struct hns_roce_dev *hr_dev, int npages, int page_shift,
 209                      struct hns_roce_mtt *mtt)
 210{
 211        int ret;
 212        int i;
 213
 214        /* Page num is zero, correspond to DMA memory register */
 215        if (!npages) {
 216                mtt->order = -1;
 217                mtt->page_shift = HNS_ROCE_HEM_PAGE_SHIFT;
 218                return 0;
 219        }
 220
 221        /* Note: if page_shift is zero, FAST memory register */
 222        mtt->page_shift = page_shift;
 223
 224        /* Compute MTT entry necessary */
 225        for (mtt->order = 0, i = HNS_ROCE_MTT_ENTRY_PER_SEG; i < npages;
 226             i <<= 1)
 227                ++mtt->order;
 228
 229        /* Allocate MTT entry */
 230        ret = hns_roce_alloc_mtt_range(hr_dev, mtt->order, &mtt->first_seg,
 231                                       mtt->mtt_type);
 232        if (ret == -1)
 233                return -ENOMEM;
 234
 235        return 0;
 236}
 237
 238void hns_roce_mtt_cleanup(struct hns_roce_dev *hr_dev, struct hns_roce_mtt *mtt)
 239{
 240        struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
 241
 242        if (mtt->order < 0)
 243                return;
 244
 245        if (mtt->mtt_type == MTT_TYPE_WQE) {
 246                hns_roce_buddy_free(&mr_table->mtt_buddy, mtt->first_seg,
 247                                    mtt->order);
 248                hns_roce_table_put_range(hr_dev, &mr_table->mtt_table,
 249                                        mtt->first_seg,
 250                                        mtt->first_seg + (1 << mtt->order) - 1);
 251        } else {
 252                hns_roce_buddy_free(&mr_table->mtt_cqe_buddy, mtt->first_seg,
 253                                    mtt->order);
 254                hns_roce_table_put_range(hr_dev, &mr_table->mtt_cqe_table,
 255                                        mtt->first_seg,
 256                                        mtt->first_seg + (1 << mtt->order) - 1);
 257        }
 258}
 259EXPORT_SYMBOL_GPL(hns_roce_mtt_cleanup);
 260
 261static void hns_roce_loop_free(struct hns_roce_dev *hr_dev,
 262                               struct hns_roce_mr *mr, int err_loop_index,
 263                               int loop_i, int loop_j)
 264{
 265        struct device *dev = hr_dev->dev;
 266        u32 mhop_num;
 267        u32 pbl_bt_sz;
 268        u64 bt_idx;
 269        int i, j;
 270
 271        pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
 272        mhop_num = hr_dev->caps.pbl_hop_num;
 273
 274        i = loop_i;
 275        if (mhop_num == 3 && err_loop_index == 2) {
 276                for (; i >= 0; i--) {
 277                        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
 278                                          mr->pbl_l1_dma_addr[i]);
 279
 280                        for (j = 0; j < pbl_bt_sz / 8; j++) {
 281                                if (i == loop_i && j >= loop_j)
 282                                        break;
 283
 284                                bt_idx = i * pbl_bt_sz / 8 + j;
 285                                dma_free_coherent(dev, pbl_bt_sz,
 286                                                  mr->pbl_bt_l2[bt_idx],
 287                                                  mr->pbl_l2_dma_addr[bt_idx]);
 288                        }
 289                }
 290        } else if (mhop_num == 3 && err_loop_index == 1) {
 291                for (i -= 1; i >= 0; i--) {
 292                        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
 293                                          mr->pbl_l1_dma_addr[i]);
 294
 295                        for (j = 0; j < pbl_bt_sz / 8; j++) {
 296                                bt_idx = i * pbl_bt_sz / 8 + j;
 297                                dma_free_coherent(dev, pbl_bt_sz,
 298                                                  mr->pbl_bt_l2[bt_idx],
 299                                                  mr->pbl_l2_dma_addr[bt_idx]);
 300                        }
 301                }
 302        } else if (mhop_num == 2 && err_loop_index == 1) {
 303                for (i -= 1; i >= 0; i--)
 304                        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
 305                                          mr->pbl_l1_dma_addr[i]);
 306        } else {
 307                dev_warn(dev, "not support: mhop_num=%d, err_loop_index=%d.",
 308                         mhop_num, err_loop_index);
 309                return;
 310        }
 311
 312        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0, mr->pbl_l0_dma_addr);
 313        mr->pbl_bt_l0 = NULL;
 314        mr->pbl_l0_dma_addr = 0;
 315}
 316
 317/* PBL multi hop addressing */
 318static int hns_roce_mhop_alloc(struct hns_roce_dev *hr_dev, int npages,
 319                               struct hns_roce_mr *mr)
 320{
 321        struct device *dev = hr_dev->dev;
 322        int mr_alloc_done = 0;
 323        int npages_allocated;
 324        int i = 0, j = 0;
 325        u32 pbl_bt_sz;
 326        u32 mhop_num;
 327        u64 pbl_last_bt_num;
 328        u64 pbl_bt_cnt = 0;
 329        u64 bt_idx;
 330        u64 size;
 331
 332        mhop_num = hr_dev->caps.pbl_hop_num;
 333        pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
 334        pbl_last_bt_num = (npages + pbl_bt_sz / 8 - 1) / (pbl_bt_sz / 8);
 335
 336        if (mhop_num == HNS_ROCE_HOP_NUM_0)
 337                return 0;
 338
 339        /* hop_num = 1 */
 340        if (mhop_num == 1) {
 341                if (npages > pbl_bt_sz / 8) {
 342                        dev_err(dev, "npages %d is larger than buf_pg_sz!",
 343                                npages);
 344                        return -EINVAL;
 345                }
 346                mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
 347                                                 &(mr->pbl_dma_addr),
 348                                                 GFP_KERNEL);
 349                if (!mr->pbl_buf)
 350                        return -ENOMEM;
 351
 352                mr->pbl_size = npages;
 353                mr->pbl_ba = mr->pbl_dma_addr;
 354                mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
 355                mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
 356                mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
 357                return 0;
 358        }
 359
 360        mr->pbl_l1_dma_addr = kcalloc(pbl_bt_sz / 8,
 361                                      sizeof(*mr->pbl_l1_dma_addr),
 362                                      GFP_KERNEL);
 363        if (!mr->pbl_l1_dma_addr)
 364                return -ENOMEM;
 365
 366        mr->pbl_bt_l1 = kcalloc(pbl_bt_sz / 8, sizeof(*mr->pbl_bt_l1),
 367                                GFP_KERNEL);
 368        if (!mr->pbl_bt_l1)
 369                goto err_kcalloc_bt_l1;
 370
 371        if (mhop_num == 3) {
 372                mr->pbl_l2_dma_addr = kcalloc(pbl_last_bt_num,
 373                                              sizeof(*mr->pbl_l2_dma_addr),
 374                                              GFP_KERNEL);
 375                if (!mr->pbl_l2_dma_addr)
 376                        goto err_kcalloc_l2_dma;
 377
 378                mr->pbl_bt_l2 = kcalloc(pbl_last_bt_num,
 379                                        sizeof(*mr->pbl_bt_l2),
 380                                        GFP_KERNEL);
 381                if (!mr->pbl_bt_l2)
 382                        goto err_kcalloc_bt_l2;
 383        }
 384
 385        /* alloc L0 BT */
 386        mr->pbl_bt_l0 = dma_alloc_coherent(dev, pbl_bt_sz,
 387                                           &(mr->pbl_l0_dma_addr),
 388                                           GFP_KERNEL);
 389        if (!mr->pbl_bt_l0)
 390                goto err_dma_alloc_l0;
 391
 392        if (mhop_num == 2) {
 393                /* alloc L1 BT */
 394                for (i = 0; i < pbl_bt_sz / 8; i++) {
 395                        if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
 396                                size = pbl_bt_sz;
 397                        } else {
 398                                npages_allocated = i * (pbl_bt_sz / 8);
 399                                size = (npages - npages_allocated) * 8;
 400                        }
 401                        mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, size,
 402                                                    &(mr->pbl_l1_dma_addr[i]),
 403                                                    GFP_KERNEL);
 404                        if (!mr->pbl_bt_l1[i]) {
 405                                hns_roce_loop_free(hr_dev, mr, 1, i, 0);
 406                                goto err_dma_alloc_l0;
 407                        }
 408
 409                        *(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
 410
 411                        pbl_bt_cnt++;
 412                        if (pbl_bt_cnt >= pbl_last_bt_num)
 413                                break;
 414                }
 415        } else if (mhop_num == 3) {
 416                /* alloc L1, L2 BT */
 417                for (i = 0; i < pbl_bt_sz / 8; i++) {
 418                        mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, pbl_bt_sz,
 419                                                    &(mr->pbl_l1_dma_addr[i]),
 420                                                    GFP_KERNEL);
 421                        if (!mr->pbl_bt_l1[i]) {
 422                                hns_roce_loop_free(hr_dev, mr, 1, i, 0);
 423                                goto err_dma_alloc_l0;
 424                        }
 425
 426                        *(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
 427
 428                        for (j = 0; j < pbl_bt_sz / 8; j++) {
 429                                bt_idx = i * pbl_bt_sz / 8 + j;
 430
 431                                if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
 432                                        size = pbl_bt_sz;
 433                                } else {
 434                                        npages_allocated = bt_idx *
 435                                                           (pbl_bt_sz / 8);
 436                                        size = (npages - npages_allocated) * 8;
 437                                }
 438                                mr->pbl_bt_l2[bt_idx] = dma_alloc_coherent(
 439                                              dev, size,
 440                                              &(mr->pbl_l2_dma_addr[bt_idx]),
 441                                              GFP_KERNEL);
 442                                if (!mr->pbl_bt_l2[bt_idx]) {
 443                                        hns_roce_loop_free(hr_dev, mr, 2, i, j);
 444                                        goto err_dma_alloc_l0;
 445                                }
 446
 447                                *(mr->pbl_bt_l1[i] + j) =
 448                                                mr->pbl_l2_dma_addr[bt_idx];
 449
 450                                pbl_bt_cnt++;
 451                                if (pbl_bt_cnt >= pbl_last_bt_num) {
 452                                        mr_alloc_done = 1;
 453                                        break;
 454                                }
 455                        }
 456
 457                        if (mr_alloc_done)
 458                                break;
 459                }
 460        }
 461
 462        mr->l0_chunk_last_num = i + 1;
 463        if (mhop_num == 3)
 464                mr->l1_chunk_last_num = j + 1;
 465
 466        mr->pbl_size = npages;
 467        mr->pbl_ba = mr->pbl_l0_dma_addr;
 468        mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
 469        mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
 470        mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
 471
 472        return 0;
 473
 474err_dma_alloc_l0:
 475        kfree(mr->pbl_bt_l2);
 476        mr->pbl_bt_l2 = NULL;
 477
 478err_kcalloc_bt_l2:
 479        kfree(mr->pbl_l2_dma_addr);
 480        mr->pbl_l2_dma_addr = NULL;
 481
 482err_kcalloc_l2_dma:
 483        kfree(mr->pbl_bt_l1);
 484        mr->pbl_bt_l1 = NULL;
 485
 486err_kcalloc_bt_l1:
 487        kfree(mr->pbl_l1_dma_addr);
 488        mr->pbl_l1_dma_addr = NULL;
 489
 490        return -ENOMEM;
 491}
 492
 493static int hns_roce_mr_alloc(struct hns_roce_dev *hr_dev, u32 pd, u64 iova,
 494                             u64 size, u32 access, int npages,
 495                             struct hns_roce_mr *mr)
 496{
 497        struct device *dev = hr_dev->dev;
 498        unsigned long index = 0;
 499        int ret = 0;
 500
 501        /* Allocate a key for mr from mr_table */
 502        ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
 503        if (ret == -1)
 504                return -ENOMEM;
 505
 506        mr->iova = iova;                        /* MR va starting addr */
 507        mr->size = size;                        /* MR addr range */
 508        mr->pd = pd;                            /* MR num */
 509        mr->access = access;                    /* MR access permit */
 510        mr->enabled = 0;                        /* MR active status */
 511        mr->key = hw_index_to_key(index);       /* MR key */
 512
 513        if (size == ~0ull) {
 514                mr->type = MR_TYPE_DMA;
 515                mr->pbl_buf = NULL;
 516                mr->pbl_dma_addr = 0;
 517                /* PBL multi-hop addressing parameters */
 518                mr->pbl_bt_l2 = NULL;
 519                mr->pbl_bt_l1 = NULL;
 520                mr->pbl_bt_l0 = NULL;
 521                mr->pbl_l2_dma_addr = NULL;
 522                mr->pbl_l1_dma_addr = NULL;
 523                mr->pbl_l0_dma_addr = 0;
 524        } else {
 525                mr->type = MR_TYPE_MR;
 526                if (!hr_dev->caps.pbl_hop_num) {
 527                        mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
 528                                                         &(mr->pbl_dma_addr),
 529                                                         GFP_KERNEL);
 530                        if (!mr->pbl_buf)
 531                                return -ENOMEM;
 532                } else {
 533                        ret = hns_roce_mhop_alloc(hr_dev, npages, mr);
 534                }
 535        }
 536
 537        return ret;
 538}
 539
 540static void hns_roce_mhop_free(struct hns_roce_dev *hr_dev,
 541                               struct hns_roce_mr *mr)
 542{
 543        struct device *dev = hr_dev->dev;
 544        int npages_allocated;
 545        int npages;
 546        int i, j;
 547        u32 pbl_bt_sz;
 548        u32 mhop_num;
 549        u64 bt_idx;
 550
 551        npages = ib_umem_page_count(mr->umem);
 552        pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
 553        mhop_num = hr_dev->caps.pbl_hop_num;
 554
 555        if (mhop_num == HNS_ROCE_HOP_NUM_0)
 556                return;
 557
 558        /* hop_num = 1 */
 559        if (mhop_num == 1) {
 560                dma_free_coherent(dev, (unsigned int)(npages * 8),
 561                                  mr->pbl_buf, mr->pbl_dma_addr);
 562                return;
 563        }
 564
 565        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0,
 566                          mr->pbl_l0_dma_addr);
 567
 568        if (mhop_num == 2) {
 569                for (i = 0; i < mr->l0_chunk_last_num; i++) {
 570                        if (i == mr->l0_chunk_last_num - 1) {
 571                                npages_allocated = i * (pbl_bt_sz / 8);
 572
 573                                dma_free_coherent(dev,
 574                                              (npages - npages_allocated) * 8,
 575                                              mr->pbl_bt_l1[i],
 576                                              mr->pbl_l1_dma_addr[i]);
 577
 578                                break;
 579                        }
 580
 581                        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
 582                                          mr->pbl_l1_dma_addr[i]);
 583                }
 584        } else if (mhop_num == 3) {
 585                for (i = 0; i < mr->l0_chunk_last_num; i++) {
 586                        dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
 587                                          mr->pbl_l1_dma_addr[i]);
 588
 589                        for (j = 0; j < pbl_bt_sz / 8; j++) {
 590                                bt_idx = i * (pbl_bt_sz / 8) + j;
 591
 592                                if ((i == mr->l0_chunk_last_num - 1)
 593                                    && j == mr->l1_chunk_last_num - 1) {
 594                                        npages_allocated = bt_idx *
 595                                                           (pbl_bt_sz / 8);
 596
 597                                        dma_free_coherent(dev,
 598                                              (npages - npages_allocated) * 8,
 599                                              mr->pbl_bt_l2[bt_idx],
 600                                              mr->pbl_l2_dma_addr[bt_idx]);
 601
 602                                        break;
 603                                }
 604
 605                                dma_free_coherent(dev, pbl_bt_sz,
 606                                                mr->pbl_bt_l2[bt_idx],
 607                                                mr->pbl_l2_dma_addr[bt_idx]);
 608                        }
 609                }
 610        }
 611
 612        kfree(mr->pbl_bt_l1);
 613        kfree(mr->pbl_l1_dma_addr);
 614        mr->pbl_bt_l1 = NULL;
 615        mr->pbl_l1_dma_addr = NULL;
 616        if (mhop_num == 3) {
 617                kfree(mr->pbl_bt_l2);
 618                kfree(mr->pbl_l2_dma_addr);
 619                mr->pbl_bt_l2 = NULL;
 620                mr->pbl_l2_dma_addr = NULL;
 621        }
 622}
 623
 624static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
 625                             struct hns_roce_mr *mr)
 626{
 627        struct device *dev = hr_dev->dev;
 628        int npages = 0;
 629        int ret;
 630
 631        if (mr->enabled) {
 632                ret = hns_roce_hw2sw_mpt(hr_dev, NULL, key_to_hw_index(mr->key)
 633                                         & (hr_dev->caps.num_mtpts - 1));
 634                if (ret)
 635                        dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
 636        }
 637
 638        if (mr->size != ~0ULL) {
 639                npages = ib_umem_page_count(mr->umem);
 640
 641                if (!hr_dev->caps.pbl_hop_num)
 642                        dma_free_coherent(dev, (unsigned int)(npages * 8),
 643                                          mr->pbl_buf, mr->pbl_dma_addr);
 644                else
 645                        hns_roce_mhop_free(hr_dev, mr);
 646        }
 647
 648        if (mr->enabled)
 649                hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
 650                                   key_to_hw_index(mr->key));
 651
 652        hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
 653                             key_to_hw_index(mr->key), BITMAP_NO_RR);
 654}
 655
 656static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
 657                              struct hns_roce_mr *mr)
 658{
 659        int ret;
 660        unsigned long mtpt_idx = key_to_hw_index(mr->key);
 661        struct device *dev = hr_dev->dev;
 662        struct hns_roce_cmd_mailbox *mailbox;
 663        struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
 664
 665        /* Prepare HEM entry memory */
 666        ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
 667        if (ret)
 668                return ret;
 669
 670        /* Allocate mailbox memory */
 671        mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
 672        if (IS_ERR(mailbox)) {
 673                ret = PTR_ERR(mailbox);
 674                goto err_table;
 675        }
 676
 677        ret = hr_dev->hw->write_mtpt(mailbox->buf, mr, mtpt_idx);
 678        if (ret) {
 679                dev_err(dev, "Write mtpt fail!\n");
 680                goto err_page;
 681        }
 682
 683        ret = hns_roce_sw2hw_mpt(hr_dev, mailbox,
 684                                 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
 685        if (ret) {
 686                dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
 687                goto err_page;
 688        }
 689
 690        mr->enabled = 1;
 691        hns_roce_free_cmd_mailbox(hr_dev, mailbox);
 692
 693        return 0;
 694
 695err_page:
 696        hns_roce_free_cmd_mailbox(hr_dev, mailbox);
 697
 698err_table:
 699        hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
 700        return ret;
 701}
 702
 703static int hns_roce_write_mtt_chunk(struct hns_roce_dev *hr_dev,
 704                                    struct hns_roce_mtt *mtt, u32 start_index,
 705                                    u32 npages, u64 *page_list)
 706{
 707        struct hns_roce_hem_table *table;
 708        dma_addr_t dma_handle;
 709        __le64 *mtts;
 710        u32 s = start_index * sizeof(u64);
 711        u32 bt_page_size;
 712        u32 i;
 713
 714        if (mtt->mtt_type == MTT_TYPE_WQE)
 715                bt_page_size = 1 << (hr_dev->caps.mtt_ba_pg_sz + PAGE_SHIFT);
 716        else
 717                bt_page_size = 1 << (hr_dev->caps.cqe_ba_pg_sz + PAGE_SHIFT);
 718
 719        /* All MTTs must fit in the same page */
 720        if (start_index / (bt_page_size / sizeof(u64)) !=
 721                (start_index + npages - 1) / (bt_page_size / sizeof(u64)))
 722                return -EINVAL;
 723
 724        if (start_index & (HNS_ROCE_MTT_ENTRY_PER_SEG - 1))
 725                return -EINVAL;
 726
 727        if (mtt->mtt_type == MTT_TYPE_WQE)
 728                table = &hr_dev->mr_table.mtt_table;
 729        else
 730                table = &hr_dev->mr_table.mtt_cqe_table;
 731
 732        mtts = hns_roce_table_find(hr_dev, table,
 733                                mtt->first_seg + s / hr_dev->caps.mtt_entry_sz,
 734                                &dma_handle);
 735        if (!mtts)
 736                return -ENOMEM;
 737
 738        /* Save page addr, low 12 bits : 0 */
 739        for (i = 0; i < npages; ++i) {
 740                if (!hr_dev->caps.mtt_hop_num)
 741                        mtts[i] = cpu_to_le64(page_list[i] >> PAGE_ADDR_SHIFT);
 742                else
 743                        mtts[i] = cpu_to_le64(page_list[i]);
 744        }
 745
 746        return 0;
 747}
 748
 749static int hns_roce_write_mtt(struct hns_roce_dev *hr_dev,
 750                              struct hns_roce_mtt *mtt, u32 start_index,
 751                              u32 npages, u64 *page_list)
 752{
 753        int chunk;
 754        int ret;
 755        u32 bt_page_size;
 756
 757        if (mtt->order < 0)
 758                return -EINVAL;
 759
 760        if (mtt->mtt_type == MTT_TYPE_WQE)
 761                bt_page_size = 1 << (hr_dev->caps.mtt_ba_pg_sz + PAGE_SHIFT);
 762        else
 763                bt_page_size = 1 << (hr_dev->caps.cqe_ba_pg_sz + PAGE_SHIFT);
 764
 765        while (npages > 0) {
 766                chunk = min_t(int, bt_page_size / sizeof(u64), npages);
 767
 768                ret = hns_roce_write_mtt_chunk(hr_dev, mtt, start_index, chunk,
 769                                               page_list);
 770                if (ret)
 771                        return ret;
 772
 773                npages -= chunk;
 774                start_index += chunk;
 775                page_list += chunk;
 776        }
 777
 778        return 0;
 779}
 780
 781int hns_roce_buf_write_mtt(struct hns_roce_dev *hr_dev,
 782                           struct hns_roce_mtt *mtt, struct hns_roce_buf *buf)
 783{
 784        u64 *page_list;
 785        int ret;
 786        u32 i;
 787
 788        page_list = kmalloc_array(buf->npages, sizeof(*page_list), GFP_KERNEL);
 789        if (!page_list)
 790                return -ENOMEM;
 791
 792        for (i = 0; i < buf->npages; ++i) {
 793                if (buf->nbufs == 1)
 794                        page_list[i] = buf->direct.map + (i << buf->page_shift);
 795                else
 796                        page_list[i] = buf->page_list[i].map;
 797
 798        }
 799        ret = hns_roce_write_mtt(hr_dev, mtt, 0, buf->npages, page_list);
 800
 801        kfree(page_list);
 802
 803        return ret;
 804}
 805
 806int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
 807{
 808        struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
 809        int ret;
 810
 811        ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
 812                                   hr_dev->caps.num_mtpts,
 813                                   hr_dev->caps.num_mtpts - 1,
 814                                   hr_dev->caps.reserved_mrws, 0);
 815        if (ret)
 816                return ret;
 817
 818        ret = hns_roce_buddy_init(&mr_table->mtt_buddy,
 819                                  ilog2(hr_dev->caps.num_mtt_segs));
 820        if (ret)
 821                goto err_buddy;
 822
 823        if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE)) {
 824                ret = hns_roce_buddy_init(&mr_table->mtt_cqe_buddy,
 825                                          ilog2(hr_dev->caps.num_cqe_segs));
 826                if (ret)
 827                        goto err_buddy_cqe;
 828        }
 829        return 0;
 830
 831err_buddy_cqe:
 832        hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
 833
 834err_buddy:
 835        hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
 836        return ret;
 837}
 838
 839void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
 840{
 841        struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
 842
 843        hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
 844        if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE))
 845                hns_roce_buddy_cleanup(&mr_table->mtt_cqe_buddy);
 846        hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
 847}
 848
 849struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
 850{
 851        struct hns_roce_mr *mr;
 852        int ret;
 853
 854        mr = kmalloc(sizeof(*mr), GFP_KERNEL);
 855        if (mr == NULL)
 856                return  ERR_PTR(-ENOMEM);
 857
 858        /* Allocate memory region key */
 859        ret = hns_roce_mr_alloc(to_hr_dev(pd->device), to_hr_pd(pd)->pdn, 0,
 860                                ~0ULL, acc, 0, mr);
 861        if (ret)
 862                goto err_free;
 863
 864        ret = hns_roce_mr_enable(to_hr_dev(pd->device), mr);
 865        if (ret)
 866                goto err_mr;
 867
 868        mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
 869        mr->umem = NULL;
 870
 871        return &mr->ibmr;
 872
 873err_mr:
 874        hns_roce_mr_free(to_hr_dev(pd->device), mr);
 875
 876err_free:
 877        kfree(mr);
 878        return ERR_PTR(ret);
 879}
 880
 881int hns_roce_ib_umem_write_mtt(struct hns_roce_dev *hr_dev,
 882                               struct hns_roce_mtt *mtt, struct ib_umem *umem)
 883{
 884        struct device *dev = hr_dev->dev;
 885        struct scatterlist *sg;
 886        unsigned int order;
 887        int i, k, entry;
 888        int npage = 0;
 889        int ret = 0;
 890        int len;
 891        u64 page_addr;
 892        u64 *pages;
 893        u32 bt_page_size;
 894        u32 n;
 895
 896        order = mtt->mtt_type == MTT_TYPE_WQE ? hr_dev->caps.mtt_ba_pg_sz :
 897                hr_dev->caps.cqe_ba_pg_sz;
 898        bt_page_size = 1 << (order + PAGE_SHIFT);
 899
 900        pages = (u64 *) __get_free_pages(GFP_KERNEL, order);
 901        if (!pages)
 902                return -ENOMEM;
 903
 904        i = n = 0;
 905
 906        for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
 907                len = sg_dma_len(sg) >> PAGE_SHIFT;
 908                for (k = 0; k < len; ++k) {
 909                        page_addr =
 910                                sg_dma_address(sg) + (k << umem->page_shift);
 911                        if (!(npage % (1 << (mtt->page_shift - PAGE_SHIFT)))) {
 912                                if (page_addr & ((1 << mtt->page_shift) - 1)) {
 913                                        dev_err(dev, "page_addr 0x%llx is not page_shift %d alignment!\n",
 914                                                page_addr, mtt->page_shift);
 915                                        ret = -EINVAL;
 916                                        goto out;
 917                                }
 918                                pages[i++] = page_addr;
 919                        }
 920                        npage++;
 921                        if (i == bt_page_size / sizeof(u64)) {
 922                                ret = hns_roce_write_mtt(hr_dev, mtt, n, i,
 923                                                         pages);
 924                                if (ret)
 925                                        goto out;
 926                                n += i;
 927                                i = 0;
 928                        }
 929                }
 930        }
 931
 932        if (i)
 933                ret = hns_roce_write_mtt(hr_dev, mtt, n, i, pages);
 934
 935out:
 936        free_pages((unsigned long) pages, order);
 937        return ret;
 938}
 939
 940static int hns_roce_ib_umem_write_mr(struct hns_roce_dev *hr_dev,
 941                                     struct hns_roce_mr *mr,
 942                                     struct ib_umem *umem)
 943{
 944        struct scatterlist *sg;
 945        int i = 0, j = 0, k;
 946        int entry;
 947        int len;
 948        u64 page_addr;
 949        u32 pbl_bt_sz;
 950
 951        if (hr_dev->caps.pbl_hop_num == HNS_ROCE_HOP_NUM_0)
 952                return 0;
 953
 954        pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
 955        for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
 956                len = sg_dma_len(sg) >> PAGE_SHIFT;
 957                for (k = 0; k < len; ++k) {
 958                        page_addr = sg_dma_address(sg) +
 959                                    (k << umem->page_shift);
 960
 961                        if (!hr_dev->caps.pbl_hop_num) {
 962                                mr->pbl_buf[i++] = page_addr >> 12;
 963                        } else if (hr_dev->caps.pbl_hop_num == 1) {
 964                                mr->pbl_buf[i++] = page_addr;
 965                        } else {
 966                                if (hr_dev->caps.pbl_hop_num == 2)
 967                                        mr->pbl_bt_l1[i][j] = page_addr;
 968                                else if (hr_dev->caps.pbl_hop_num == 3)
 969                                        mr->pbl_bt_l2[i][j] = page_addr;
 970
 971                                j++;
 972                                if (j >= (pbl_bt_sz / 8)) {
 973                                        i++;
 974                                        j = 0;
 975                                }
 976                        }
 977                }
 978        }
 979
 980        /* Memory barrier */
 981        mb();
 982
 983        return 0;
 984}
 985
 986struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
 987                                   u64 virt_addr, int access_flags,
 988                                   struct ib_udata *udata)
 989{
 990        struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
 991        struct device *dev = hr_dev->dev;
 992        struct hns_roce_mr *mr;
 993        int bt_size;
 994        int ret;
 995        int n;
 996        int i;
 997
 998        mr = kmalloc(sizeof(*mr), GFP_KERNEL);
 999        if (!mr)
1000                return ERR_PTR(-ENOMEM);
1001
1002        mr->umem = ib_umem_get(pd->uobject->context, start, length,
1003                               access_flags, 0);
1004        if (IS_ERR(mr->umem)) {
1005                ret = PTR_ERR(mr->umem);
1006                goto err_free;
1007        }
1008
1009        n = ib_umem_page_count(mr->umem);
1010
1011        if (!hr_dev->caps.pbl_hop_num) {
1012                if (n > HNS_ROCE_MAX_MTPT_PBL_NUM) {
1013                        dev_err(dev,
1014                             " MR len %lld err. MR is limited to 4G at most!\n",
1015                             length);
1016                        ret = -EINVAL;
1017                        goto err_umem;
1018                }
1019        } else {
1020                u64 pbl_size = 1;
1021
1022                bt_size = (1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT)) / 8;
1023                for (i = 0; i < hr_dev->caps.pbl_hop_num; i++)
1024                        pbl_size *= bt_size;
1025                if (n > pbl_size) {
1026                        dev_err(dev,
1027                            " MR len %lld err. MR page num is limited to %lld!\n",
1028                            length, pbl_size);
1029                        ret = -EINVAL;
1030                        goto err_umem;
1031                }
1032        }
1033
1034        ret = hns_roce_mr_alloc(hr_dev, to_hr_pd(pd)->pdn, virt_addr, length,
1035                                access_flags, n, mr);
1036        if (ret)
1037                goto err_umem;
1038
1039        ret = hns_roce_ib_umem_write_mr(hr_dev, mr, mr->umem);
1040        if (ret)
1041                goto err_mr;
1042
1043        ret = hns_roce_mr_enable(hr_dev, mr);
1044        if (ret)
1045                goto err_mr;
1046
1047        mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
1048
1049        return &mr->ibmr;
1050
1051err_mr:
1052        hns_roce_mr_free(hr_dev, mr);
1053
1054err_umem:
1055        ib_umem_release(mr->umem);
1056
1057err_free:
1058        kfree(mr);
1059        return ERR_PTR(ret);
1060}
1061
1062int hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, u64 length,
1063                           u64 virt_addr, int mr_access_flags, struct ib_pd *pd,
1064                           struct ib_udata *udata)
1065{
1066        struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
1067        struct hns_roce_mr *mr = to_hr_mr(ibmr);
1068        struct hns_roce_cmd_mailbox *mailbox;
1069        struct device *dev = hr_dev->dev;
1070        unsigned long mtpt_idx;
1071        u32 pdn = 0;
1072        int npages;
1073        int ret;
1074
1075        if (!mr->enabled)
1076                return -EINVAL;
1077
1078        mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
1079        if (IS_ERR(mailbox))
1080                return PTR_ERR(mailbox);
1081
1082        mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
1083        ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0,
1084                                HNS_ROCE_CMD_QUERY_MPT,
1085                                HNS_ROCE_CMD_TIMEOUT_MSECS);
1086        if (ret)
1087                goto free_cmd_mbox;
1088
1089        ret = hns_roce_hw2sw_mpt(hr_dev, NULL, mtpt_idx);
1090        if (ret)
1091                dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
1092
1093        mr->enabled = 0;
1094
1095        if (flags & IB_MR_REREG_PD)
1096                pdn = to_hr_pd(pd)->pdn;
1097
1098        if (flags & IB_MR_REREG_TRANS) {
1099                if (mr->size != ~0ULL) {
1100                        npages = ib_umem_page_count(mr->umem);
1101
1102                        if (hr_dev->caps.pbl_hop_num)
1103                                hns_roce_mhop_free(hr_dev, mr);
1104                        else
1105                                dma_free_coherent(dev, npages * 8, mr->pbl_buf,
1106                                                  mr->pbl_dma_addr);
1107                }
1108                ib_umem_release(mr->umem);
1109
1110                mr->umem = ib_umem_get(ibmr->uobject->context, start, length,
1111                                       mr_access_flags, 0);
1112                if (IS_ERR(mr->umem)) {
1113                        ret = PTR_ERR(mr->umem);
1114                        mr->umem = NULL;
1115                        goto free_cmd_mbox;
1116                }
1117                npages = ib_umem_page_count(mr->umem);
1118
1119                if (hr_dev->caps.pbl_hop_num) {
1120                        ret = hns_roce_mhop_alloc(hr_dev, npages, mr);
1121                        if (ret)
1122                                goto release_umem;
1123                } else {
1124                        mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
1125                                                         &(mr->pbl_dma_addr),
1126                                                         GFP_KERNEL);
1127                        if (!mr->pbl_buf) {
1128                                ret = -ENOMEM;
1129                                goto release_umem;
1130                        }
1131                }
1132        }
1133
1134        ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, pdn,
1135                                           mr_access_flags, virt_addr,
1136                                           length, mailbox->buf);
1137        if (ret) {
1138                if (flags & IB_MR_REREG_TRANS)
1139                        goto release_umem;
1140                else
1141                        goto free_cmd_mbox;
1142        }
1143
1144        if (flags & IB_MR_REREG_TRANS) {
1145                ret = hns_roce_ib_umem_write_mr(hr_dev, mr, mr->umem);
1146                if (ret) {
1147                        if (mr->size != ~0ULL) {
1148                                npages = ib_umem_page_count(mr->umem);
1149
1150                                if (hr_dev->caps.pbl_hop_num)
1151                                        hns_roce_mhop_free(hr_dev, mr);
1152                                else
1153                                        dma_free_coherent(dev, npages * 8,
1154                                                          mr->pbl_buf,
1155                                                          mr->pbl_dma_addr);
1156                        }
1157
1158                        goto release_umem;
1159                }
1160        }
1161
1162        ret = hns_roce_sw2hw_mpt(hr_dev, mailbox, mtpt_idx);
1163        if (ret) {
1164                dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
1165                goto release_umem;
1166        }
1167
1168        mr->enabled = 1;
1169        if (flags & IB_MR_REREG_ACCESS)
1170                mr->access = mr_access_flags;
1171
1172        hns_roce_free_cmd_mailbox(hr_dev, mailbox);
1173
1174        return 0;
1175
1176release_umem:
1177        ib_umem_release(mr->umem);
1178
1179free_cmd_mbox:
1180        hns_roce_free_cmd_mailbox(hr_dev, mailbox);
1181
1182        return ret;
1183}
1184
1185int hns_roce_dereg_mr(struct ib_mr *ibmr)
1186{
1187        struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
1188        struct hns_roce_mr *mr = to_hr_mr(ibmr);
1189        int ret = 0;
1190
1191        if (hr_dev->hw->dereg_mr) {
1192                ret = hr_dev->hw->dereg_mr(hr_dev, mr);
1193        } else {
1194                hns_roce_mr_free(hr_dev, mr);
1195
1196                if (mr->umem)
1197                        ib_umem_release(mr->umem);
1198
1199                kfree(mr);
1200        }
1201
1202        return ret;
1203}
1204