linux/drivers/md/bcache/alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Primary bucket allocation code
   4 *
   5 * Copyright 2012 Google, Inc.
   6 *
   7 * Allocation in bcache is done in terms of buckets:
   8 *
   9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  10 * btree pointers - they must match for the pointer to be considered valid.
  11 *
  12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  13 * bucket simply by incrementing its gen.
  14 *
  15 * The gens (along with the priorities; it's really the gens are important but
  16 * the code is named as if it's the priorities) are written in an arbitrary list
  17 * of buckets on disk, with a pointer to them in the journal header.
  18 *
  19 * When we invalidate a bucket, we have to write its new gen to disk and wait
  20 * for that write to complete before we use it - otherwise after a crash we
  21 * could have pointers that appeared to be good but pointed to data that had
  22 * been overwritten.
  23 *
  24 * Since the gens and priorities are all stored contiguously on disk, we can
  25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  26 * call prio_write(), and when prio_write() finishes we pull buckets off the
  27 * free_inc list and optionally discard them.
  28 *
  29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
  30 * priorities and gens were being written before we could allocate. c->free is a
  31 * smaller freelist, and buckets on that list are always ready to be used.
  32 *
  33 * If we've got discards enabled, that happens when a bucket moves from the
  34 * free_inc list to the free list.
  35 *
  36 * There is another freelist, because sometimes we have buckets that we know
  37 * have nothing pointing into them - these we can reuse without waiting for
  38 * priorities to be rewritten. These come from freed btree nodes and buckets
  39 * that garbage collection discovered no longer had valid keys pointing into
  40 * them (because they were overwritten). That's the unused list - buckets on the
  41 * unused list move to the free list, optionally being discarded in the process.
  42 *
  43 * It's also important to ensure that gens don't wrap around - with respect to
  44 * either the oldest gen in the btree or the gen on disk. This is quite
  45 * difficult to do in practice, but we explicitly guard against it anyways - if
  46 * a bucket is in danger of wrapping around we simply skip invalidating it that
  47 * time around, and we garbage collect or rewrite the priorities sooner than we
  48 * would have otherwise.
  49 *
  50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
  51 *
  52 * bch_bucket_alloc_set() allocates one or more buckets from different caches
  53 * out of a cache set.
  54 *
  55 * free_some_buckets() drives all the processes described above. It's called
  56 * from bch_bucket_alloc() and a few other places that need to make sure free
  57 * buckets are ready.
  58 *
  59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  60 * invalidated, and then invalidate them and stick them on the free_inc list -
  61 * in either lru or fifo order.
  62 */
  63
  64#include "bcache.h"
  65#include "btree.h"
  66
  67#include <linux/blkdev.h>
  68#include <linux/kthread.h>
  69#include <linux/random.h>
  70#include <trace/events/bcache.h>
  71
  72#define MAX_OPEN_BUCKETS 128
  73
  74/* Bucket heap / gen */
  75
  76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  77{
  78        uint8_t ret = ++b->gen;
  79
  80        ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  81        WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  82
  83        return ret;
  84}
  85
  86void bch_rescale_priorities(struct cache_set *c, int sectors)
  87{
  88        struct cache *ca;
  89        struct bucket *b;
  90        unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
  91        unsigned i;
  92        int r;
  93
  94        atomic_sub(sectors, &c->rescale);
  95
  96        do {
  97                r = atomic_read(&c->rescale);
  98
  99                if (r >= 0)
 100                        return;
 101        } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
 102
 103        mutex_lock(&c->bucket_lock);
 104
 105        c->min_prio = USHRT_MAX;
 106
 107        for_each_cache(ca, c, i)
 108                for_each_bucket(b, ca)
 109                        if (b->prio &&
 110                            b->prio != BTREE_PRIO &&
 111                            !atomic_read(&b->pin)) {
 112                                b->prio--;
 113                                c->min_prio = min(c->min_prio, b->prio);
 114                        }
 115
 116        mutex_unlock(&c->bucket_lock);
 117}
 118
 119/*
 120 * Background allocation thread: scans for buckets to be invalidated,
 121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
 122 * then optionally issues discard commands to the newly free buckets, then puts
 123 * them on the various freelists.
 124 */
 125
 126static inline bool can_inc_bucket_gen(struct bucket *b)
 127{
 128        return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
 129}
 130
 131bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
 132{
 133        BUG_ON(!ca->set->gc_mark_valid);
 134
 135        return (!GC_MARK(b) ||
 136                GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
 137                !atomic_read(&b->pin) &&
 138                can_inc_bucket_gen(b);
 139}
 140
 141void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 142{
 143        lockdep_assert_held(&ca->set->bucket_lock);
 144        BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
 145
 146        if (GC_SECTORS_USED(b))
 147                trace_bcache_invalidate(ca, b - ca->buckets);
 148
 149        bch_inc_gen(ca, b);
 150        b->prio = INITIAL_PRIO;
 151        atomic_inc(&b->pin);
 152}
 153
 154static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 155{
 156        __bch_invalidate_one_bucket(ca, b);
 157
 158        fifo_push(&ca->free_inc, b - ca->buckets);
 159}
 160
 161/*
 162 * Determines what order we're going to reuse buckets, smallest bucket_prio()
 163 * first: we also take into account the number of sectors of live data in that
 164 * bucket, and in order for that multiply to make sense we have to scale bucket
 165 *
 166 * Thus, we scale the bucket priorities so that the bucket with the smallest
 167 * prio is worth 1/8th of what INITIAL_PRIO is worth.
 168 */
 169
 170#define bucket_prio(b)                                                  \
 171({                                                                      \
 172        unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;     \
 173                                                                        \
 174        (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);  \
 175})
 176
 177#define bucket_max_cmp(l, r)    (bucket_prio(l) < bucket_prio(r))
 178#define bucket_min_cmp(l, r)    (bucket_prio(l) > bucket_prio(r))
 179
 180static void invalidate_buckets_lru(struct cache *ca)
 181{
 182        struct bucket *b;
 183        ssize_t i;
 184
 185        ca->heap.used = 0;
 186
 187        for_each_bucket(b, ca) {
 188                if (!bch_can_invalidate_bucket(ca, b))
 189                        continue;
 190
 191                if (!heap_full(&ca->heap))
 192                        heap_add(&ca->heap, b, bucket_max_cmp);
 193                else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
 194                        ca->heap.data[0] = b;
 195                        heap_sift(&ca->heap, 0, bucket_max_cmp);
 196                }
 197        }
 198
 199        for (i = ca->heap.used / 2 - 1; i >= 0; --i)
 200                heap_sift(&ca->heap, i, bucket_min_cmp);
 201
 202        while (!fifo_full(&ca->free_inc)) {
 203                if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
 204                        /*
 205                         * We don't want to be calling invalidate_buckets()
 206                         * multiple times when it can't do anything
 207                         */
 208                        ca->invalidate_needs_gc = 1;
 209                        wake_up_gc(ca->set);
 210                        return;
 211                }
 212
 213                bch_invalidate_one_bucket(ca, b);
 214        }
 215}
 216
 217static void invalidate_buckets_fifo(struct cache *ca)
 218{
 219        struct bucket *b;
 220        size_t checked = 0;
 221
 222        while (!fifo_full(&ca->free_inc)) {
 223                if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
 224                    ca->fifo_last_bucket >= ca->sb.nbuckets)
 225                        ca->fifo_last_bucket = ca->sb.first_bucket;
 226
 227                b = ca->buckets + ca->fifo_last_bucket++;
 228
 229                if (bch_can_invalidate_bucket(ca, b))
 230                        bch_invalidate_one_bucket(ca, b);
 231
 232                if (++checked >= ca->sb.nbuckets) {
 233                        ca->invalidate_needs_gc = 1;
 234                        wake_up_gc(ca->set);
 235                        return;
 236                }
 237        }
 238}
 239
 240static void invalidate_buckets_random(struct cache *ca)
 241{
 242        struct bucket *b;
 243        size_t checked = 0;
 244
 245        while (!fifo_full(&ca->free_inc)) {
 246                size_t n;
 247                get_random_bytes(&n, sizeof(n));
 248
 249                n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
 250                n += ca->sb.first_bucket;
 251
 252                b = ca->buckets + n;
 253
 254                if (bch_can_invalidate_bucket(ca, b))
 255                        bch_invalidate_one_bucket(ca, b);
 256
 257                if (++checked >= ca->sb.nbuckets / 2) {
 258                        ca->invalidate_needs_gc = 1;
 259                        wake_up_gc(ca->set);
 260                        return;
 261                }
 262        }
 263}
 264
 265static void invalidate_buckets(struct cache *ca)
 266{
 267        BUG_ON(ca->invalidate_needs_gc);
 268
 269        switch (CACHE_REPLACEMENT(&ca->sb)) {
 270        case CACHE_REPLACEMENT_LRU:
 271                invalidate_buckets_lru(ca);
 272                break;
 273        case CACHE_REPLACEMENT_FIFO:
 274                invalidate_buckets_fifo(ca);
 275                break;
 276        case CACHE_REPLACEMENT_RANDOM:
 277                invalidate_buckets_random(ca);
 278                break;
 279        }
 280}
 281
 282#define allocator_wait(ca, cond)                                        \
 283do {                                                                    \
 284        while (1) {                                                     \
 285                set_current_state(TASK_INTERRUPTIBLE);                  \
 286                if (cond)                                               \
 287                        break;                                          \
 288                                                                        \
 289                mutex_unlock(&(ca)->set->bucket_lock);                  \
 290                if (kthread_should_stop() ||                            \
 291                    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {  \
 292                        set_current_state(TASK_RUNNING);                \
 293                        goto out;                                       \
 294                }                                                       \
 295                                                                        \
 296                schedule();                                             \
 297                mutex_lock(&(ca)->set->bucket_lock);                    \
 298        }                                                               \
 299        __set_current_state(TASK_RUNNING);                              \
 300} while (0)
 301
 302static int bch_allocator_push(struct cache *ca, long bucket)
 303{
 304        unsigned i;
 305
 306        /* Prios/gens are actually the most important reserve */
 307        if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
 308                return true;
 309
 310        for (i = 0; i < RESERVE_NR; i++)
 311                if (fifo_push(&ca->free[i], bucket))
 312                        return true;
 313
 314        return false;
 315}
 316
 317static int bch_allocator_thread(void *arg)
 318{
 319        struct cache *ca = arg;
 320
 321        mutex_lock(&ca->set->bucket_lock);
 322
 323        while (1) {
 324                /*
 325                 * First, we pull buckets off of the unused and free_inc lists,
 326                 * possibly issue discards to them, then we add the bucket to
 327                 * the free list:
 328                 */
 329                while (!fifo_empty(&ca->free_inc)) {
 330                        long bucket;
 331
 332                        fifo_pop(&ca->free_inc, bucket);
 333
 334                        if (ca->discard) {
 335                                mutex_unlock(&ca->set->bucket_lock);
 336                                blkdev_issue_discard(ca->bdev,
 337                                        bucket_to_sector(ca->set, bucket),
 338                                        ca->sb.bucket_size, GFP_KERNEL, 0);
 339                                mutex_lock(&ca->set->bucket_lock);
 340                        }
 341
 342                        allocator_wait(ca, bch_allocator_push(ca, bucket));
 343                        wake_up(&ca->set->btree_cache_wait);
 344                        wake_up(&ca->set->bucket_wait);
 345                }
 346
 347                /*
 348                 * We've run out of free buckets, we need to find some buckets
 349                 * we can invalidate. First, invalidate them in memory and add
 350                 * them to the free_inc list:
 351                 */
 352
 353retry_invalidate:
 354                allocator_wait(ca, ca->set->gc_mark_valid &&
 355                               !ca->invalidate_needs_gc);
 356                invalidate_buckets(ca);
 357
 358                /*
 359                 * Now, we write their new gens to disk so we can start writing
 360                 * new stuff to them:
 361                 */
 362                allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
 363                if (CACHE_SYNC(&ca->set->sb)) {
 364                        /*
 365                         * This could deadlock if an allocation with a btree
 366                         * node locked ever blocked - having the btree node
 367                         * locked would block garbage collection, but here we're
 368                         * waiting on garbage collection before we invalidate
 369                         * and free anything.
 370                         *
 371                         * But this should be safe since the btree code always
 372                         * uses btree_check_reserve() before allocating now, and
 373                         * if it fails it blocks without btree nodes locked.
 374                         */
 375                        if (!fifo_full(&ca->free_inc))
 376                                goto retry_invalidate;
 377
 378                        bch_prio_write(ca);
 379                }
 380        }
 381out:
 382        wait_for_kthread_stop();
 383        return 0;
 384}
 385
 386/* Allocation */
 387
 388long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
 389{
 390        DEFINE_WAIT(w);
 391        struct bucket *b;
 392        long r;
 393
 394        /* fastpath */
 395        if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
 396            fifo_pop(&ca->free[reserve], r))
 397                goto out;
 398
 399        if (!wait) {
 400                trace_bcache_alloc_fail(ca, reserve);
 401                return -1;
 402        }
 403
 404        do {
 405                prepare_to_wait(&ca->set->bucket_wait, &w,
 406                                TASK_UNINTERRUPTIBLE);
 407
 408                mutex_unlock(&ca->set->bucket_lock);
 409                schedule();
 410                mutex_lock(&ca->set->bucket_lock);
 411        } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
 412                 !fifo_pop(&ca->free[reserve], r));
 413
 414        finish_wait(&ca->set->bucket_wait, &w);
 415out:
 416        if (ca->alloc_thread)
 417                wake_up_process(ca->alloc_thread);
 418
 419        trace_bcache_alloc(ca, reserve);
 420
 421        if (expensive_debug_checks(ca->set)) {
 422                size_t iter;
 423                long i;
 424                unsigned j;
 425
 426                for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
 427                        BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
 428
 429                for (j = 0; j < RESERVE_NR; j++)
 430                        fifo_for_each(i, &ca->free[j], iter)
 431                                BUG_ON(i == r);
 432                fifo_for_each(i, &ca->free_inc, iter)
 433                        BUG_ON(i == r);
 434        }
 435
 436        b = ca->buckets + r;
 437
 438        BUG_ON(atomic_read(&b->pin) != 1);
 439
 440        SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
 441
 442        if (reserve <= RESERVE_PRIO) {
 443                SET_GC_MARK(b, GC_MARK_METADATA);
 444                SET_GC_MOVE(b, 0);
 445                b->prio = BTREE_PRIO;
 446        } else {
 447                SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
 448                SET_GC_MOVE(b, 0);
 449                b->prio = INITIAL_PRIO;
 450        }
 451
 452        if (ca->set->avail_nbuckets > 0) {
 453                ca->set->avail_nbuckets--;
 454                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 455        }
 456
 457        return r;
 458}
 459
 460void __bch_bucket_free(struct cache *ca, struct bucket *b)
 461{
 462        SET_GC_MARK(b, 0);
 463        SET_GC_SECTORS_USED(b, 0);
 464
 465        if (ca->set->avail_nbuckets < ca->set->nbuckets) {
 466                ca->set->avail_nbuckets++;
 467                bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 468        }
 469}
 470
 471void bch_bucket_free(struct cache_set *c, struct bkey *k)
 472{
 473        unsigned i;
 474
 475        for (i = 0; i < KEY_PTRS(k); i++)
 476                __bch_bucket_free(PTR_CACHE(c, k, i),
 477                                  PTR_BUCKET(c, k, i));
 478}
 479
 480int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
 481                           struct bkey *k, int n, bool wait)
 482{
 483        int i;
 484
 485        lockdep_assert_held(&c->bucket_lock);
 486        BUG_ON(!n || n > c->caches_loaded || n > 8);
 487
 488        bkey_init(k);
 489
 490        /* sort by free space/prio of oldest data in caches */
 491
 492        for (i = 0; i < n; i++) {
 493                struct cache *ca = c->cache_by_alloc[i];
 494                long b = bch_bucket_alloc(ca, reserve, wait);
 495
 496                if (b == -1)
 497                        goto err;
 498
 499                k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
 500                                bucket_to_sector(c, b),
 501                                ca->sb.nr_this_dev);
 502
 503                SET_KEY_PTRS(k, i + 1);
 504        }
 505
 506        return 0;
 507err:
 508        bch_bucket_free(c, k);
 509        bkey_put(c, k);
 510        return -1;
 511}
 512
 513int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
 514                         struct bkey *k, int n, bool wait)
 515{
 516        int ret;
 517        mutex_lock(&c->bucket_lock);
 518        ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
 519        mutex_unlock(&c->bucket_lock);
 520        return ret;
 521}
 522
 523/* Sector allocator */
 524
 525struct open_bucket {
 526        struct list_head        list;
 527        unsigned                last_write_point;
 528        unsigned                sectors_free;
 529        BKEY_PADDED(key);
 530};
 531
 532/*
 533 * We keep multiple buckets open for writes, and try to segregate different
 534 * write streams for better cache utilization: first we try to segregate flash
 535 * only volume write streams from cached devices, secondly we look for a bucket
 536 * where the last write to it was sequential with the current write, and
 537 * failing that we look for a bucket that was last used by the same task.
 538 *
 539 * The ideas is if you've got multiple tasks pulling data into the cache at the
 540 * same time, you'll get better cache utilization if you try to segregate their
 541 * data and preserve locality.
 542 *
 543 * For example, dirty sectors of flash only volume is not reclaimable, if their
 544 * dirty sectors mixed with dirty sectors of cached device, such buckets will
 545 * be marked as dirty and won't be reclaimed, though the dirty data of cached
 546 * device have been written back to backend device.
 547 *
 548 * And say you've starting Firefox at the same time you're copying a
 549 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 550 * cache awhile, but the data you copied might not be; if you wrote all that
 551 * data to the same buckets it'd get invalidated at the same time.
 552 *
 553 * Both of those tasks will be doing fairly random IO so we can't rely on
 554 * detecting sequential IO to segregate their data, but going off of the task
 555 * should be a sane heuristic.
 556 */
 557static struct open_bucket *pick_data_bucket(struct cache_set *c,
 558                                            const struct bkey *search,
 559                                            unsigned write_point,
 560                                            struct bkey *alloc)
 561{
 562        struct open_bucket *ret, *ret_task = NULL;
 563
 564        list_for_each_entry_reverse(ret, &c->data_buckets, list)
 565                if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
 566                    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
 567                        continue;
 568                else if (!bkey_cmp(&ret->key, search))
 569                        goto found;
 570                else if (ret->last_write_point == write_point)
 571                        ret_task = ret;
 572
 573        ret = ret_task ?: list_first_entry(&c->data_buckets,
 574                                           struct open_bucket, list);
 575found:
 576        if (!ret->sectors_free && KEY_PTRS(alloc)) {
 577                ret->sectors_free = c->sb.bucket_size;
 578                bkey_copy(&ret->key, alloc);
 579                bkey_init(alloc);
 580        }
 581
 582        if (!ret->sectors_free)
 583                ret = NULL;
 584
 585        return ret;
 586}
 587
 588/*
 589 * Allocates some space in the cache to write to, and k to point to the newly
 590 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 591 * end of the newly allocated space).
 592 *
 593 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 594 * sectors were actually allocated.
 595 *
 596 * If s->writeback is true, will not fail.
 597 */
 598bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
 599                       unsigned write_point, unsigned write_prio, bool wait)
 600{
 601        struct open_bucket *b;
 602        BKEY_PADDED(key) alloc;
 603        unsigned i;
 604
 605        /*
 606         * We might have to allocate a new bucket, which we can't do with a
 607         * spinlock held. So if we have to allocate, we drop the lock, allocate
 608         * and then retry. KEY_PTRS() indicates whether alloc points to
 609         * allocated bucket(s).
 610         */
 611
 612        bkey_init(&alloc.key);
 613        spin_lock(&c->data_bucket_lock);
 614
 615        while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
 616                unsigned watermark = write_prio
 617                        ? RESERVE_MOVINGGC
 618                        : RESERVE_NONE;
 619
 620                spin_unlock(&c->data_bucket_lock);
 621
 622                if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
 623                        return false;
 624
 625                spin_lock(&c->data_bucket_lock);
 626        }
 627
 628        /*
 629         * If we had to allocate, we might race and not need to allocate the
 630         * second time we call pick_data_bucket(). If we allocated a bucket but
 631         * didn't use it, drop the refcount bch_bucket_alloc_set() took:
 632         */
 633        if (KEY_PTRS(&alloc.key))
 634                bkey_put(c, &alloc.key);
 635
 636        for (i = 0; i < KEY_PTRS(&b->key); i++)
 637                EBUG_ON(ptr_stale(c, &b->key, i));
 638
 639        /* Set up the pointer to the space we're allocating: */
 640
 641        for (i = 0; i < KEY_PTRS(&b->key); i++)
 642                k->ptr[i] = b->key.ptr[i];
 643
 644        sectors = min(sectors, b->sectors_free);
 645
 646        SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
 647        SET_KEY_SIZE(k, sectors);
 648        SET_KEY_PTRS(k, KEY_PTRS(&b->key));
 649
 650        /*
 651         * Move b to the end of the lru, and keep track of what this bucket was
 652         * last used for:
 653         */
 654        list_move_tail(&b->list, &c->data_buckets);
 655        bkey_copy_key(&b->key, k);
 656        b->last_write_point = write_point;
 657
 658        b->sectors_free -= sectors;
 659
 660        for (i = 0; i < KEY_PTRS(&b->key); i++) {
 661                SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
 662
 663                atomic_long_add(sectors,
 664                                &PTR_CACHE(c, &b->key, i)->sectors_written);
 665        }
 666
 667        if (b->sectors_free < c->sb.block_size)
 668                b->sectors_free = 0;
 669
 670        /*
 671         * k takes refcounts on the buckets it points to until it's inserted
 672         * into the btree, but if we're done with this bucket we just transfer
 673         * get_data_bucket()'s refcount.
 674         */
 675        if (b->sectors_free)
 676                for (i = 0; i < KEY_PTRS(&b->key); i++)
 677                        atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
 678
 679        spin_unlock(&c->data_bucket_lock);
 680        return true;
 681}
 682
 683/* Init */
 684
 685void bch_open_buckets_free(struct cache_set *c)
 686{
 687        struct open_bucket *b;
 688
 689        while (!list_empty(&c->data_buckets)) {
 690                b = list_first_entry(&c->data_buckets,
 691                                     struct open_bucket, list);
 692                list_del(&b->list);
 693                kfree(b);
 694        }
 695}
 696
 697int bch_open_buckets_alloc(struct cache_set *c)
 698{
 699        int i;
 700
 701        spin_lock_init(&c->data_bucket_lock);
 702
 703        for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
 704                struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 705                if (!b)
 706                        return -ENOMEM;
 707
 708                list_add(&b->list, &c->data_buckets);
 709        }
 710
 711        return 0;
 712}
 713
 714int bch_cache_allocator_start(struct cache *ca)
 715{
 716        struct task_struct *k = kthread_run(bch_allocator_thread,
 717                                            ca, "bcache_allocator");
 718        if (IS_ERR(k))
 719                return PTR_ERR(k);
 720
 721        ca->alloc_thread = k;
 722        return 0;
 723}
 724