linux/drivers/md/dm-thin-metadata.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "persistent-data/dm-btree.h"
   9#include "persistent-data/dm-space-map.h"
  10#include "persistent-data/dm-space-map-disk.h"
  11#include "persistent-data/dm-transaction-manager.h"
  12
  13#include <linux/list.h>
  14#include <linux/device-mapper.h>
  15#include <linux/workqueue.h>
  16
  17/*--------------------------------------------------------------------------
  18 * As far as the metadata goes, there is:
  19 *
  20 * - A superblock in block zero, taking up fewer than 512 bytes for
  21 *   atomic writes.
  22 *
  23 * - A space map managing the metadata blocks.
  24 *
  25 * - A space map managing the data blocks.
  26 *
  27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  28 *
  29 * - A hierarchical btree, with 2 levels which effectively maps (thin
  30 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
  31 *   field holding the time in the low 24 bits, and block in the top 48
  32 *   bits.
  33 *
  34 * BTrees consist solely of btree_nodes, that fill a block.  Some are
  35 * internal nodes, as such their values are a __le64 pointing to other
  36 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
  37 * smaller than the block size).  The nodes consist of the header,
  38 * followed by an array of keys, followed by an array of values.  We have
  39 * to binary search on the keys so they're all held together to help the
  40 * cpu cache.
  41 *
  42 * Space maps have 2 btrees:
  43 *
  44 * - One maps a uint64_t onto a struct index_entry.  Which points to a
  45 *   bitmap block, and has some details about how many free entries there
  46 *   are etc.
  47 *
  48 * - The bitmap blocks have a header (for the checksum).  Then the rest
  49 *   of the block is pairs of bits.  With the meaning being:
  50 *
  51 *   0 - ref count is 0
  52 *   1 - ref count is 1
  53 *   2 - ref count is 2
  54 *   3 - ref count is higher than 2
  55 *
  56 * - If the count is higher than 2 then the ref count is entered in a
  57 *   second btree that directly maps the block_address to a uint32_t ref
  58 *   count.
  59 *
  60 * The space map metadata variant doesn't have a bitmaps btree.  Instead
  61 * it has one single blocks worth of index_entries.  This avoids
  62 * recursive issues with the bitmap btree needing to allocate space in
  63 * order to insert.  With a small data block size such as 64k the
  64 * metadata support data devices that are hundreds of terrabytes.
  65 *
  66 * The space maps allocate space linearly from front to back.  Space that
  67 * is freed in a transaction is never recycled within that transaction.
  68 * To try and avoid fragmenting _free_ space the allocator always goes
  69 * back and fills in gaps.
  70 *
  71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  72 * from the block manager.
  73 *--------------------------------------------------------------------------*/
  74
  75#define DM_MSG_PREFIX   "thin metadata"
  76
  77#define THIN_SUPERBLOCK_MAGIC 27022010
  78#define THIN_SUPERBLOCK_LOCATION 0
  79#define THIN_VERSION 2
  80#define SECTOR_TO_BLOCK_SHIFT 3
  81
  82/*
  83 * For btree insert:
  84 *  3 for btree insert +
  85 *  2 for btree lookup used within space map
  86 * For btree remove:
  87 *  2 for shadow spine +
  88 *  4 for rebalance 3 child node
  89 */
  90#define THIN_MAX_CONCURRENT_LOCKS 6
  91
  92/* This should be plenty */
  93#define SPACE_MAP_ROOT_SIZE 128
  94
  95/*
  96 * Little endian on-disk superblock and device details.
  97 */
  98struct thin_disk_superblock {
  99        __le32 csum;    /* Checksum of superblock except for this field. */
 100        __le32 flags;
 101        __le64 blocknr; /* This block number, dm_block_t. */
 102
 103        __u8 uuid[16];
 104        __le64 magic;
 105        __le32 version;
 106        __le32 time;
 107
 108        __le64 trans_id;
 109
 110        /*
 111         * Root held by userspace transactions.
 112         */
 113        __le64 held_root;
 114
 115        __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 116        __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 117
 118        /*
 119         * 2-level btree mapping (dev_id, (dev block, time)) -> data block
 120         */
 121        __le64 data_mapping_root;
 122
 123        /*
 124         * Device detail root mapping dev_id -> device_details
 125         */
 126        __le64 device_details_root;
 127
 128        __le32 data_block_size;         /* In 512-byte sectors. */
 129
 130        __le32 metadata_block_size;     /* In 512-byte sectors. */
 131        __le64 metadata_nr_blocks;
 132
 133        __le32 compat_flags;
 134        __le32 compat_ro_flags;
 135        __le32 incompat_flags;
 136} __packed;
 137
 138struct disk_device_details {
 139        __le64 mapped_blocks;
 140        __le64 transaction_id;          /* When created. */
 141        __le32 creation_time;
 142        __le32 snapshotted_time;
 143} __packed;
 144
 145struct dm_pool_metadata {
 146        struct hlist_node hash;
 147
 148        struct block_device *bdev;
 149        struct dm_block_manager *bm;
 150        struct dm_space_map *metadata_sm;
 151        struct dm_space_map *data_sm;
 152        struct dm_transaction_manager *tm;
 153        struct dm_transaction_manager *nb_tm;
 154
 155        /*
 156         * Two-level btree.
 157         * First level holds thin_dev_t.
 158         * Second level holds mappings.
 159         */
 160        struct dm_btree_info info;
 161
 162        /*
 163         * Non-blocking version of the above.
 164         */
 165        struct dm_btree_info nb_info;
 166
 167        /*
 168         * Just the top level for deleting whole devices.
 169         */
 170        struct dm_btree_info tl_info;
 171
 172        /*
 173         * Just the bottom level for creating new devices.
 174         */
 175        struct dm_btree_info bl_info;
 176
 177        /*
 178         * Describes the device details btree.
 179         */
 180        struct dm_btree_info details_info;
 181
 182        struct rw_semaphore root_lock;
 183        uint32_t time;
 184        dm_block_t root;
 185        dm_block_t details_root;
 186        struct list_head thin_devices;
 187        uint64_t trans_id;
 188        unsigned long flags;
 189        sector_t data_block_size;
 190
 191        /*
 192         * We reserve a section of the metadata for commit overhead.
 193         * All reported space does *not* include this.
 194         */
 195        dm_block_t metadata_reserve;
 196
 197        /*
 198         * Set if a transaction has to be aborted but the attempt to roll back
 199         * to the previous (good) transaction failed.  The only pool metadata
 200         * operation possible in this state is the closing of the device.
 201         */
 202        bool fail_io:1;
 203
 204        /*
 205         * Reading the space map roots can fail, so we read it into these
 206         * buffers before the superblock is locked and updated.
 207         */
 208        __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 209        __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 210};
 211
 212struct dm_thin_device {
 213        struct list_head list;
 214        struct dm_pool_metadata *pmd;
 215        dm_thin_id id;
 216
 217        int open_count;
 218        bool changed:1;
 219        bool aborted_with_changes:1;
 220        uint64_t mapped_blocks;
 221        uint64_t transaction_id;
 222        uint32_t creation_time;
 223        uint32_t snapshotted_time;
 224};
 225
 226/*----------------------------------------------------------------
 227 * superblock validator
 228 *--------------------------------------------------------------*/
 229
 230#define SUPERBLOCK_CSUM_XOR 160774
 231
 232static void sb_prepare_for_write(struct dm_block_validator *v,
 233                                 struct dm_block *b,
 234                                 size_t block_size)
 235{
 236        struct thin_disk_superblock *disk_super = dm_block_data(b);
 237
 238        disk_super->blocknr = cpu_to_le64(dm_block_location(b));
 239        disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 240                                                      block_size - sizeof(__le32),
 241                                                      SUPERBLOCK_CSUM_XOR));
 242}
 243
 244static int sb_check(struct dm_block_validator *v,
 245                    struct dm_block *b,
 246                    size_t block_size)
 247{
 248        struct thin_disk_superblock *disk_super = dm_block_data(b);
 249        __le32 csum_le;
 250
 251        if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
 252                DMERR("sb_check failed: blocknr %llu: "
 253                      "wanted %llu", le64_to_cpu(disk_super->blocknr),
 254                      (unsigned long long)dm_block_location(b));
 255                return -ENOTBLK;
 256        }
 257
 258        if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
 259                DMERR("sb_check failed: magic %llu: "
 260                      "wanted %llu", le64_to_cpu(disk_super->magic),
 261                      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
 262                return -EILSEQ;
 263        }
 264
 265        csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 266                                             block_size - sizeof(__le32),
 267                                             SUPERBLOCK_CSUM_XOR));
 268        if (csum_le != disk_super->csum) {
 269                DMERR("sb_check failed: csum %u: wanted %u",
 270                      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
 271                return -EILSEQ;
 272        }
 273
 274        return 0;
 275}
 276
 277static struct dm_block_validator sb_validator = {
 278        .name = "superblock",
 279        .prepare_for_write = sb_prepare_for_write,
 280        .check = sb_check
 281};
 282
 283/*----------------------------------------------------------------
 284 * Methods for the btree value types
 285 *--------------------------------------------------------------*/
 286
 287static uint64_t pack_block_time(dm_block_t b, uint32_t t)
 288{
 289        return (b << 24) | t;
 290}
 291
 292static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
 293{
 294        *b = v >> 24;
 295        *t = v & ((1 << 24) - 1);
 296}
 297
 298static void data_block_inc(void *context, const void *value_le)
 299{
 300        struct dm_space_map *sm = context;
 301        __le64 v_le;
 302        uint64_t b;
 303        uint32_t t;
 304
 305        memcpy(&v_le, value_le, sizeof(v_le));
 306        unpack_block_time(le64_to_cpu(v_le), &b, &t);
 307        dm_sm_inc_block(sm, b);
 308}
 309
 310static void data_block_dec(void *context, const void *value_le)
 311{
 312        struct dm_space_map *sm = context;
 313        __le64 v_le;
 314        uint64_t b;
 315        uint32_t t;
 316
 317        memcpy(&v_le, value_le, sizeof(v_le));
 318        unpack_block_time(le64_to_cpu(v_le), &b, &t);
 319        dm_sm_dec_block(sm, b);
 320}
 321
 322static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
 323{
 324        __le64 v1_le, v2_le;
 325        uint64_t b1, b2;
 326        uint32_t t;
 327
 328        memcpy(&v1_le, value1_le, sizeof(v1_le));
 329        memcpy(&v2_le, value2_le, sizeof(v2_le));
 330        unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
 331        unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
 332
 333        return b1 == b2;
 334}
 335
 336static void subtree_inc(void *context, const void *value)
 337{
 338        struct dm_btree_info *info = context;
 339        __le64 root_le;
 340        uint64_t root;
 341
 342        memcpy(&root_le, value, sizeof(root_le));
 343        root = le64_to_cpu(root_le);
 344        dm_tm_inc(info->tm, root);
 345}
 346
 347static void subtree_dec(void *context, const void *value)
 348{
 349        struct dm_btree_info *info = context;
 350        __le64 root_le;
 351        uint64_t root;
 352
 353        memcpy(&root_le, value, sizeof(root_le));
 354        root = le64_to_cpu(root_le);
 355        if (dm_btree_del(info, root))
 356                DMERR("btree delete failed");
 357}
 358
 359static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
 360{
 361        __le64 v1_le, v2_le;
 362        memcpy(&v1_le, value1_le, sizeof(v1_le));
 363        memcpy(&v2_le, value2_le, sizeof(v2_le));
 364
 365        return v1_le == v2_le;
 366}
 367
 368/*----------------------------------------------------------------*/
 369
 370static int superblock_lock_zero(struct dm_pool_metadata *pmd,
 371                                struct dm_block **sblock)
 372{
 373        return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 374                                     &sb_validator, sblock);
 375}
 376
 377static int superblock_lock(struct dm_pool_metadata *pmd,
 378                           struct dm_block **sblock)
 379{
 380        return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 381                                &sb_validator, sblock);
 382}
 383
 384static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
 385{
 386        int r;
 387        unsigned i;
 388        struct dm_block *b;
 389        __le64 *data_le, zero = cpu_to_le64(0);
 390        unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
 391
 392        /*
 393         * We can't use a validator here - it may be all zeroes.
 394         */
 395        r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
 396        if (r)
 397                return r;
 398
 399        data_le = dm_block_data(b);
 400        *result = 1;
 401        for (i = 0; i < block_size; i++) {
 402                if (data_le[i] != zero) {
 403                        *result = 0;
 404                        break;
 405                }
 406        }
 407
 408        dm_bm_unlock(b);
 409
 410        return 0;
 411}
 412
 413static void __setup_btree_details(struct dm_pool_metadata *pmd)
 414{
 415        pmd->info.tm = pmd->tm;
 416        pmd->info.levels = 2;
 417        pmd->info.value_type.context = pmd->data_sm;
 418        pmd->info.value_type.size = sizeof(__le64);
 419        pmd->info.value_type.inc = data_block_inc;
 420        pmd->info.value_type.dec = data_block_dec;
 421        pmd->info.value_type.equal = data_block_equal;
 422
 423        memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
 424        pmd->nb_info.tm = pmd->nb_tm;
 425
 426        pmd->tl_info.tm = pmd->tm;
 427        pmd->tl_info.levels = 1;
 428        pmd->tl_info.value_type.context = &pmd->bl_info;
 429        pmd->tl_info.value_type.size = sizeof(__le64);
 430        pmd->tl_info.value_type.inc = subtree_inc;
 431        pmd->tl_info.value_type.dec = subtree_dec;
 432        pmd->tl_info.value_type.equal = subtree_equal;
 433
 434        pmd->bl_info.tm = pmd->tm;
 435        pmd->bl_info.levels = 1;
 436        pmd->bl_info.value_type.context = pmd->data_sm;
 437        pmd->bl_info.value_type.size = sizeof(__le64);
 438        pmd->bl_info.value_type.inc = data_block_inc;
 439        pmd->bl_info.value_type.dec = data_block_dec;
 440        pmd->bl_info.value_type.equal = data_block_equal;
 441
 442        pmd->details_info.tm = pmd->tm;
 443        pmd->details_info.levels = 1;
 444        pmd->details_info.value_type.context = NULL;
 445        pmd->details_info.value_type.size = sizeof(struct disk_device_details);
 446        pmd->details_info.value_type.inc = NULL;
 447        pmd->details_info.value_type.dec = NULL;
 448        pmd->details_info.value_type.equal = NULL;
 449}
 450
 451static int save_sm_roots(struct dm_pool_metadata *pmd)
 452{
 453        int r;
 454        size_t len;
 455
 456        r = dm_sm_root_size(pmd->metadata_sm, &len);
 457        if (r < 0)
 458                return r;
 459
 460        r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
 461        if (r < 0)
 462                return r;
 463
 464        r = dm_sm_root_size(pmd->data_sm, &len);
 465        if (r < 0)
 466                return r;
 467
 468        return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
 469}
 470
 471static void copy_sm_roots(struct dm_pool_metadata *pmd,
 472                          struct thin_disk_superblock *disk)
 473{
 474        memcpy(&disk->metadata_space_map_root,
 475               &pmd->metadata_space_map_root,
 476               sizeof(pmd->metadata_space_map_root));
 477
 478        memcpy(&disk->data_space_map_root,
 479               &pmd->data_space_map_root,
 480               sizeof(pmd->data_space_map_root));
 481}
 482
 483static int __write_initial_superblock(struct dm_pool_metadata *pmd)
 484{
 485        int r;
 486        struct dm_block *sblock;
 487        struct thin_disk_superblock *disk_super;
 488        sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
 489
 490        if (bdev_size > THIN_METADATA_MAX_SECTORS)
 491                bdev_size = THIN_METADATA_MAX_SECTORS;
 492
 493        r = dm_sm_commit(pmd->data_sm);
 494        if (r < 0)
 495                return r;
 496
 497        r = dm_tm_pre_commit(pmd->tm);
 498        if (r < 0)
 499                return r;
 500
 501        r = save_sm_roots(pmd);
 502        if (r < 0)
 503                return r;
 504
 505        r = superblock_lock_zero(pmd, &sblock);
 506        if (r)
 507                return r;
 508
 509        disk_super = dm_block_data(sblock);
 510        disk_super->flags = 0;
 511        memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
 512        disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
 513        disk_super->version = cpu_to_le32(THIN_VERSION);
 514        disk_super->time = 0;
 515        disk_super->trans_id = 0;
 516        disk_super->held_root = 0;
 517
 518        copy_sm_roots(pmd, disk_super);
 519
 520        disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 521        disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 522        disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
 523        disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
 524        disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
 525
 526        return dm_tm_commit(pmd->tm, sblock);
 527}
 528
 529static int __format_metadata(struct dm_pool_metadata *pmd)
 530{
 531        int r;
 532
 533        r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 534                                 &pmd->tm, &pmd->metadata_sm);
 535        if (r < 0) {
 536                DMERR("tm_create_with_sm failed");
 537                return r;
 538        }
 539
 540        pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
 541        if (IS_ERR(pmd->data_sm)) {
 542                DMERR("sm_disk_create failed");
 543                r = PTR_ERR(pmd->data_sm);
 544                goto bad_cleanup_tm;
 545        }
 546
 547        pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 548        if (!pmd->nb_tm) {
 549                DMERR("could not create non-blocking clone tm");
 550                r = -ENOMEM;
 551                goto bad_cleanup_data_sm;
 552        }
 553
 554        __setup_btree_details(pmd);
 555
 556        r = dm_btree_empty(&pmd->info, &pmd->root);
 557        if (r < 0)
 558                goto bad_cleanup_nb_tm;
 559
 560        r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
 561        if (r < 0) {
 562                DMERR("couldn't create devices root");
 563                goto bad_cleanup_nb_tm;
 564        }
 565
 566        r = __write_initial_superblock(pmd);
 567        if (r)
 568                goto bad_cleanup_nb_tm;
 569
 570        return 0;
 571
 572bad_cleanup_nb_tm:
 573        dm_tm_destroy(pmd->nb_tm);
 574bad_cleanup_data_sm:
 575        dm_sm_destroy(pmd->data_sm);
 576bad_cleanup_tm:
 577        dm_tm_destroy(pmd->tm);
 578        dm_sm_destroy(pmd->metadata_sm);
 579
 580        return r;
 581}
 582
 583static int __check_incompat_features(struct thin_disk_superblock *disk_super,
 584                                     struct dm_pool_metadata *pmd)
 585{
 586        uint32_t features;
 587
 588        features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
 589        if (features) {
 590                DMERR("could not access metadata due to unsupported optional features (%lx).",
 591                      (unsigned long)features);
 592                return -EINVAL;
 593        }
 594
 595        /*
 596         * Check for read-only metadata to skip the following RDWR checks.
 597         */
 598        if (get_disk_ro(pmd->bdev->bd_disk))
 599                return 0;
 600
 601        features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
 602        if (features) {
 603                DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
 604                      (unsigned long)features);
 605                return -EINVAL;
 606        }
 607
 608        return 0;
 609}
 610
 611static int __open_metadata(struct dm_pool_metadata *pmd)
 612{
 613        int r;
 614        struct dm_block *sblock;
 615        struct thin_disk_superblock *disk_super;
 616
 617        r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 618                            &sb_validator, &sblock);
 619        if (r < 0) {
 620                DMERR("couldn't read superblock");
 621                return r;
 622        }
 623
 624        disk_super = dm_block_data(sblock);
 625
 626        /* Verify the data block size hasn't changed */
 627        if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
 628                DMERR("changing the data block size (from %u to %llu) is not supported",
 629                      le32_to_cpu(disk_super->data_block_size),
 630                      (unsigned long long)pmd->data_block_size);
 631                r = -EINVAL;
 632                goto bad_unlock_sblock;
 633        }
 634
 635        r = __check_incompat_features(disk_super, pmd);
 636        if (r < 0)
 637                goto bad_unlock_sblock;
 638
 639        r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 640                               disk_super->metadata_space_map_root,
 641                               sizeof(disk_super->metadata_space_map_root),
 642                               &pmd->tm, &pmd->metadata_sm);
 643        if (r < 0) {
 644                DMERR("tm_open_with_sm failed");
 645                goto bad_unlock_sblock;
 646        }
 647
 648        pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
 649                                       sizeof(disk_super->data_space_map_root));
 650        if (IS_ERR(pmd->data_sm)) {
 651                DMERR("sm_disk_open failed");
 652                r = PTR_ERR(pmd->data_sm);
 653                goto bad_cleanup_tm;
 654        }
 655
 656        pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 657        if (!pmd->nb_tm) {
 658                DMERR("could not create non-blocking clone tm");
 659                r = -ENOMEM;
 660                goto bad_cleanup_data_sm;
 661        }
 662
 663        __setup_btree_details(pmd);
 664        dm_bm_unlock(sblock);
 665
 666        return 0;
 667
 668bad_cleanup_data_sm:
 669        dm_sm_destroy(pmd->data_sm);
 670bad_cleanup_tm:
 671        dm_tm_destroy(pmd->tm);
 672        dm_sm_destroy(pmd->metadata_sm);
 673bad_unlock_sblock:
 674        dm_bm_unlock(sblock);
 675
 676        return r;
 677}
 678
 679static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
 680{
 681        int r, unformatted;
 682
 683        r = __superblock_all_zeroes(pmd->bm, &unformatted);
 684        if (r)
 685                return r;
 686
 687        if (unformatted)
 688                return format_device ? __format_metadata(pmd) : -EPERM;
 689
 690        return __open_metadata(pmd);
 691}
 692
 693static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
 694{
 695        int r;
 696
 697        pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
 698                                          THIN_MAX_CONCURRENT_LOCKS);
 699        if (IS_ERR(pmd->bm)) {
 700                DMERR("could not create block manager");
 701                return PTR_ERR(pmd->bm);
 702        }
 703
 704        r = __open_or_format_metadata(pmd, format_device);
 705        if (r)
 706                dm_block_manager_destroy(pmd->bm);
 707
 708        return r;
 709}
 710
 711static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
 712{
 713        dm_sm_destroy(pmd->data_sm);
 714        dm_sm_destroy(pmd->metadata_sm);
 715        dm_tm_destroy(pmd->nb_tm);
 716        dm_tm_destroy(pmd->tm);
 717        dm_block_manager_destroy(pmd->bm);
 718}
 719
 720static int __begin_transaction(struct dm_pool_metadata *pmd)
 721{
 722        int r;
 723        struct thin_disk_superblock *disk_super;
 724        struct dm_block *sblock;
 725
 726        /*
 727         * We re-read the superblock every time.  Shouldn't need to do this
 728         * really.
 729         */
 730        r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 731                            &sb_validator, &sblock);
 732        if (r)
 733                return r;
 734
 735        disk_super = dm_block_data(sblock);
 736        pmd->time = le32_to_cpu(disk_super->time);
 737        pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 738        pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 739        pmd->trans_id = le64_to_cpu(disk_super->trans_id);
 740        pmd->flags = le32_to_cpu(disk_super->flags);
 741        pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
 742
 743        dm_bm_unlock(sblock);
 744        return 0;
 745}
 746
 747static int __write_changed_details(struct dm_pool_metadata *pmd)
 748{
 749        int r;
 750        struct dm_thin_device *td, *tmp;
 751        struct disk_device_details details;
 752        uint64_t key;
 753
 754        list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 755                if (!td->changed)
 756                        continue;
 757
 758                key = td->id;
 759
 760                details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
 761                details.transaction_id = cpu_to_le64(td->transaction_id);
 762                details.creation_time = cpu_to_le32(td->creation_time);
 763                details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
 764                __dm_bless_for_disk(&details);
 765
 766                r = dm_btree_insert(&pmd->details_info, pmd->details_root,
 767                                    &key, &details, &pmd->details_root);
 768                if (r)
 769                        return r;
 770
 771                if (td->open_count)
 772                        td->changed = 0;
 773                else {
 774                        list_del(&td->list);
 775                        kfree(td);
 776                }
 777        }
 778
 779        return 0;
 780}
 781
 782static int __commit_transaction(struct dm_pool_metadata *pmd)
 783{
 784        int r;
 785        struct thin_disk_superblock *disk_super;
 786        struct dm_block *sblock;
 787
 788        /*
 789         * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
 790         */
 791        BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
 792
 793        r = __write_changed_details(pmd);
 794        if (r < 0)
 795                return r;
 796
 797        r = dm_sm_commit(pmd->data_sm);
 798        if (r < 0)
 799                return r;
 800
 801        r = dm_tm_pre_commit(pmd->tm);
 802        if (r < 0)
 803                return r;
 804
 805        r = save_sm_roots(pmd);
 806        if (r < 0)
 807                return r;
 808
 809        r = superblock_lock(pmd, &sblock);
 810        if (r)
 811                return r;
 812
 813        disk_super = dm_block_data(sblock);
 814        disk_super->time = cpu_to_le32(pmd->time);
 815        disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 816        disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 817        disk_super->trans_id = cpu_to_le64(pmd->trans_id);
 818        disk_super->flags = cpu_to_le32(pmd->flags);
 819
 820        copy_sm_roots(pmd, disk_super);
 821
 822        return dm_tm_commit(pmd->tm, sblock);
 823}
 824
 825static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
 826{
 827        int r;
 828        dm_block_t total;
 829        dm_block_t max_blocks = 4096; /* 16M */
 830
 831        r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
 832        if (r) {
 833                DMERR("could not get size of metadata device");
 834                pmd->metadata_reserve = max_blocks;
 835        } else
 836                pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
 837}
 838
 839struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
 840                                               sector_t data_block_size,
 841                                               bool format_device)
 842{
 843        int r;
 844        struct dm_pool_metadata *pmd;
 845
 846        pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
 847        if (!pmd) {
 848                DMERR("could not allocate metadata struct");
 849                return ERR_PTR(-ENOMEM);
 850        }
 851
 852        init_rwsem(&pmd->root_lock);
 853        pmd->time = 0;
 854        INIT_LIST_HEAD(&pmd->thin_devices);
 855        pmd->fail_io = false;
 856        pmd->bdev = bdev;
 857        pmd->data_block_size = data_block_size;
 858
 859        r = __create_persistent_data_objects(pmd, format_device);
 860        if (r) {
 861                kfree(pmd);
 862                return ERR_PTR(r);
 863        }
 864
 865        r = __begin_transaction(pmd);
 866        if (r < 0) {
 867                if (dm_pool_metadata_close(pmd) < 0)
 868                        DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 869                return ERR_PTR(r);
 870        }
 871
 872        __set_metadata_reserve(pmd);
 873
 874        return pmd;
 875}
 876
 877int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
 878{
 879        int r;
 880        unsigned open_devices = 0;
 881        struct dm_thin_device *td, *tmp;
 882
 883        down_read(&pmd->root_lock);
 884        list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 885                if (td->open_count)
 886                        open_devices++;
 887                else {
 888                        list_del(&td->list);
 889                        kfree(td);
 890                }
 891        }
 892        up_read(&pmd->root_lock);
 893
 894        if (open_devices) {
 895                DMERR("attempt to close pmd when %u device(s) are still open",
 896                       open_devices);
 897                return -EBUSY;
 898        }
 899
 900        if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
 901                r = __commit_transaction(pmd);
 902                if (r < 0)
 903                        DMWARN("%s: __commit_transaction() failed, error = %d",
 904                               __func__, r);
 905        }
 906
 907        if (!pmd->fail_io)
 908                __destroy_persistent_data_objects(pmd);
 909
 910        kfree(pmd);
 911        return 0;
 912}
 913
 914/*
 915 * __open_device: Returns @td corresponding to device with id @dev,
 916 * creating it if @create is set and incrementing @td->open_count.
 917 * On failure, @td is undefined.
 918 */
 919static int __open_device(struct dm_pool_metadata *pmd,
 920                         dm_thin_id dev, int create,
 921                         struct dm_thin_device **td)
 922{
 923        int r, changed = 0;
 924        struct dm_thin_device *td2;
 925        uint64_t key = dev;
 926        struct disk_device_details details_le;
 927
 928        /*
 929         * If the device is already open, return it.
 930         */
 931        list_for_each_entry(td2, &pmd->thin_devices, list)
 932                if (td2->id == dev) {
 933                        /*
 934                         * May not create an already-open device.
 935                         */
 936                        if (create)
 937                                return -EEXIST;
 938
 939                        td2->open_count++;
 940                        *td = td2;
 941                        return 0;
 942                }
 943
 944        /*
 945         * Check the device exists.
 946         */
 947        r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
 948                            &key, &details_le);
 949        if (r) {
 950                if (r != -ENODATA || !create)
 951                        return r;
 952
 953                /*
 954                 * Create new device.
 955                 */
 956                changed = 1;
 957                details_le.mapped_blocks = 0;
 958                details_le.transaction_id = cpu_to_le64(pmd->trans_id);
 959                details_le.creation_time = cpu_to_le32(pmd->time);
 960                details_le.snapshotted_time = cpu_to_le32(pmd->time);
 961        }
 962
 963        *td = kmalloc(sizeof(**td), GFP_NOIO);
 964        if (!*td)
 965                return -ENOMEM;
 966
 967        (*td)->pmd = pmd;
 968        (*td)->id = dev;
 969        (*td)->open_count = 1;
 970        (*td)->changed = changed;
 971        (*td)->aborted_with_changes = false;
 972        (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
 973        (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
 974        (*td)->creation_time = le32_to_cpu(details_le.creation_time);
 975        (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
 976
 977        list_add(&(*td)->list, &pmd->thin_devices);
 978
 979        return 0;
 980}
 981
 982static void __close_device(struct dm_thin_device *td)
 983{
 984        --td->open_count;
 985}
 986
 987static int __create_thin(struct dm_pool_metadata *pmd,
 988                         dm_thin_id dev)
 989{
 990        int r;
 991        dm_block_t dev_root;
 992        uint64_t key = dev;
 993        struct disk_device_details details_le;
 994        struct dm_thin_device *td;
 995        __le64 value;
 996
 997        r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
 998                            &key, &details_le);
 999        if (!r)
1000                return -EEXIST;
1001
1002        /*
1003         * Create an empty btree for the mappings.
1004         */
1005        r = dm_btree_empty(&pmd->bl_info, &dev_root);
1006        if (r)
1007                return r;
1008
1009        /*
1010         * Insert it into the main mapping tree.
1011         */
1012        value = cpu_to_le64(dev_root);
1013        __dm_bless_for_disk(&value);
1014        r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1015        if (r) {
1016                dm_btree_del(&pmd->bl_info, dev_root);
1017                return r;
1018        }
1019
1020        r = __open_device(pmd, dev, 1, &td);
1021        if (r) {
1022                dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1023                dm_btree_del(&pmd->bl_info, dev_root);
1024                return r;
1025        }
1026        __close_device(td);
1027
1028        return r;
1029}
1030
1031int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1032{
1033        int r = -EINVAL;
1034
1035        down_write(&pmd->root_lock);
1036        if (!pmd->fail_io)
1037                r = __create_thin(pmd, dev);
1038        up_write(&pmd->root_lock);
1039
1040        return r;
1041}
1042
1043static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1044                                  struct dm_thin_device *snap,
1045                                  dm_thin_id origin, uint32_t time)
1046{
1047        int r;
1048        struct dm_thin_device *td;
1049
1050        r = __open_device(pmd, origin, 0, &td);
1051        if (r)
1052                return r;
1053
1054        td->changed = 1;
1055        td->snapshotted_time = time;
1056
1057        snap->mapped_blocks = td->mapped_blocks;
1058        snap->snapshotted_time = time;
1059        __close_device(td);
1060
1061        return 0;
1062}
1063
1064static int __create_snap(struct dm_pool_metadata *pmd,
1065                         dm_thin_id dev, dm_thin_id origin)
1066{
1067        int r;
1068        dm_block_t origin_root;
1069        uint64_t key = origin, dev_key = dev;
1070        struct dm_thin_device *td;
1071        struct disk_device_details details_le;
1072        __le64 value;
1073
1074        /* check this device is unused */
1075        r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1076                            &dev_key, &details_le);
1077        if (!r)
1078                return -EEXIST;
1079
1080        /* find the mapping tree for the origin */
1081        r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1082        if (r)
1083                return r;
1084        origin_root = le64_to_cpu(value);
1085
1086        /* clone the origin, an inc will do */
1087        dm_tm_inc(pmd->tm, origin_root);
1088
1089        /* insert into the main mapping tree */
1090        value = cpu_to_le64(origin_root);
1091        __dm_bless_for_disk(&value);
1092        key = dev;
1093        r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1094        if (r) {
1095                dm_tm_dec(pmd->tm, origin_root);
1096                return r;
1097        }
1098
1099        pmd->time++;
1100
1101        r = __open_device(pmd, dev, 1, &td);
1102        if (r)
1103                goto bad;
1104
1105        r = __set_snapshot_details(pmd, td, origin, pmd->time);
1106        __close_device(td);
1107
1108        if (r)
1109                goto bad;
1110
1111        return 0;
1112
1113bad:
1114        dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1115        dm_btree_remove(&pmd->details_info, pmd->details_root,
1116                        &key, &pmd->details_root);
1117        return r;
1118}
1119
1120int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1121                                 dm_thin_id dev,
1122                                 dm_thin_id origin)
1123{
1124        int r = -EINVAL;
1125
1126        down_write(&pmd->root_lock);
1127        if (!pmd->fail_io)
1128                r = __create_snap(pmd, dev, origin);
1129        up_write(&pmd->root_lock);
1130
1131        return r;
1132}
1133
1134static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1135{
1136        int r;
1137        uint64_t key = dev;
1138        struct dm_thin_device *td;
1139
1140        /* TODO: failure should mark the transaction invalid */
1141        r = __open_device(pmd, dev, 0, &td);
1142        if (r)
1143                return r;
1144
1145        if (td->open_count > 1) {
1146                __close_device(td);
1147                return -EBUSY;
1148        }
1149
1150        list_del(&td->list);
1151        kfree(td);
1152        r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1153                            &key, &pmd->details_root);
1154        if (r)
1155                return r;
1156
1157        r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1158        if (r)
1159                return r;
1160
1161        return 0;
1162}
1163
1164int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1165                               dm_thin_id dev)
1166{
1167        int r = -EINVAL;
1168
1169        down_write(&pmd->root_lock);
1170        if (!pmd->fail_io)
1171                r = __delete_device(pmd, dev);
1172        up_write(&pmd->root_lock);
1173
1174        return r;
1175}
1176
1177int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1178                                        uint64_t current_id,
1179                                        uint64_t new_id)
1180{
1181        int r = -EINVAL;
1182
1183        down_write(&pmd->root_lock);
1184
1185        if (pmd->fail_io)
1186                goto out;
1187
1188        if (pmd->trans_id != current_id) {
1189                DMERR("mismatched transaction id");
1190                goto out;
1191        }
1192
1193        pmd->trans_id = new_id;
1194        r = 0;
1195
1196out:
1197        up_write(&pmd->root_lock);
1198
1199        return r;
1200}
1201
1202int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1203                                        uint64_t *result)
1204{
1205        int r = -EINVAL;
1206
1207        down_read(&pmd->root_lock);
1208        if (!pmd->fail_io) {
1209                *result = pmd->trans_id;
1210                r = 0;
1211        }
1212        up_read(&pmd->root_lock);
1213
1214        return r;
1215}
1216
1217static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1218{
1219        int r, inc;
1220        struct thin_disk_superblock *disk_super;
1221        struct dm_block *copy, *sblock;
1222        dm_block_t held_root;
1223
1224        /*
1225         * We commit to ensure the btree roots which we increment in a
1226         * moment are up to date.
1227         */
1228        __commit_transaction(pmd);
1229
1230        /*
1231         * Copy the superblock.
1232         */
1233        dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1234        r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1235                               &sb_validator, &copy, &inc);
1236        if (r)
1237                return r;
1238
1239        BUG_ON(!inc);
1240
1241        held_root = dm_block_location(copy);
1242        disk_super = dm_block_data(copy);
1243
1244        if (le64_to_cpu(disk_super->held_root)) {
1245                DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1246
1247                dm_tm_dec(pmd->tm, held_root);
1248                dm_tm_unlock(pmd->tm, copy);
1249                return -EBUSY;
1250        }
1251
1252        /*
1253         * Wipe the spacemap since we're not publishing this.
1254         */
1255        memset(&disk_super->data_space_map_root, 0,
1256               sizeof(disk_super->data_space_map_root));
1257        memset(&disk_super->metadata_space_map_root, 0,
1258               sizeof(disk_super->metadata_space_map_root));
1259
1260        /*
1261         * Increment the data structures that need to be preserved.
1262         */
1263        dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1264        dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1265        dm_tm_unlock(pmd->tm, copy);
1266
1267        /*
1268         * Write the held root into the superblock.
1269         */
1270        r = superblock_lock(pmd, &sblock);
1271        if (r) {
1272                dm_tm_dec(pmd->tm, held_root);
1273                return r;
1274        }
1275
1276        disk_super = dm_block_data(sblock);
1277        disk_super->held_root = cpu_to_le64(held_root);
1278        dm_bm_unlock(sblock);
1279        return 0;
1280}
1281
1282int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1283{
1284        int r = -EINVAL;
1285
1286        down_write(&pmd->root_lock);
1287        if (!pmd->fail_io)
1288                r = __reserve_metadata_snap(pmd);
1289        up_write(&pmd->root_lock);
1290
1291        return r;
1292}
1293
1294static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1295{
1296        int r;
1297        struct thin_disk_superblock *disk_super;
1298        struct dm_block *sblock, *copy;
1299        dm_block_t held_root;
1300
1301        r = superblock_lock(pmd, &sblock);
1302        if (r)
1303                return r;
1304
1305        disk_super = dm_block_data(sblock);
1306        held_root = le64_to_cpu(disk_super->held_root);
1307        disk_super->held_root = cpu_to_le64(0);
1308
1309        dm_bm_unlock(sblock);
1310
1311        if (!held_root) {
1312                DMWARN("No pool metadata snapshot found: nothing to release.");
1313                return -EINVAL;
1314        }
1315
1316        r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1317        if (r)
1318                return r;
1319
1320        disk_super = dm_block_data(copy);
1321        dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1322        dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1323        dm_sm_dec_block(pmd->metadata_sm, held_root);
1324
1325        dm_tm_unlock(pmd->tm, copy);
1326
1327        return 0;
1328}
1329
1330int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1331{
1332        int r = -EINVAL;
1333
1334        down_write(&pmd->root_lock);
1335        if (!pmd->fail_io)
1336                r = __release_metadata_snap(pmd);
1337        up_write(&pmd->root_lock);
1338
1339        return r;
1340}
1341
1342static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1343                               dm_block_t *result)
1344{
1345        int r;
1346        struct thin_disk_superblock *disk_super;
1347        struct dm_block *sblock;
1348
1349        r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1350                            &sb_validator, &sblock);
1351        if (r)
1352                return r;
1353
1354        disk_super = dm_block_data(sblock);
1355        *result = le64_to_cpu(disk_super->held_root);
1356
1357        dm_bm_unlock(sblock);
1358
1359        return 0;
1360}
1361
1362int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1363                              dm_block_t *result)
1364{
1365        int r = -EINVAL;
1366
1367        down_read(&pmd->root_lock);
1368        if (!pmd->fail_io)
1369                r = __get_metadata_snap(pmd, result);
1370        up_read(&pmd->root_lock);
1371
1372        return r;
1373}
1374
1375int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1376                             struct dm_thin_device **td)
1377{
1378        int r = -EINVAL;
1379
1380        down_write(&pmd->root_lock);
1381        if (!pmd->fail_io)
1382                r = __open_device(pmd, dev, 0, td);
1383        up_write(&pmd->root_lock);
1384
1385        return r;
1386}
1387
1388int dm_pool_close_thin_device(struct dm_thin_device *td)
1389{
1390        down_write(&td->pmd->root_lock);
1391        __close_device(td);
1392        up_write(&td->pmd->root_lock);
1393
1394        return 0;
1395}
1396
1397dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1398{
1399        return td->id;
1400}
1401
1402/*
1403 * Check whether @time (of block creation) is older than @td's last snapshot.
1404 * If so then the associated block is shared with the last snapshot device.
1405 * Any block on a device created *after* the device last got snapshotted is
1406 * necessarily not shared.
1407 */
1408static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1409{
1410        return td->snapshotted_time > time;
1411}
1412
1413static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1414                                 struct dm_thin_lookup_result *result)
1415{
1416        uint64_t block_time = 0;
1417        dm_block_t exception_block;
1418        uint32_t exception_time;
1419
1420        block_time = le64_to_cpu(value);
1421        unpack_block_time(block_time, &exception_block, &exception_time);
1422        result->block = exception_block;
1423        result->shared = __snapshotted_since(td, exception_time);
1424}
1425
1426static int __find_block(struct dm_thin_device *td, dm_block_t block,
1427                        int can_issue_io, struct dm_thin_lookup_result *result)
1428{
1429        int r;
1430        __le64 value;
1431        struct dm_pool_metadata *pmd = td->pmd;
1432        dm_block_t keys[2] = { td->id, block };
1433        struct dm_btree_info *info;
1434
1435        if (can_issue_io) {
1436                info = &pmd->info;
1437        } else
1438                info = &pmd->nb_info;
1439
1440        r = dm_btree_lookup(info, pmd->root, keys, &value);
1441        if (!r)
1442                unpack_lookup_result(td, value, result);
1443
1444        return r;
1445}
1446
1447int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1448                       int can_issue_io, struct dm_thin_lookup_result *result)
1449{
1450        int r;
1451        struct dm_pool_metadata *pmd = td->pmd;
1452
1453        down_read(&pmd->root_lock);
1454        if (pmd->fail_io) {
1455                up_read(&pmd->root_lock);
1456                return -EINVAL;
1457        }
1458
1459        r = __find_block(td, block, can_issue_io, result);
1460
1461        up_read(&pmd->root_lock);
1462        return r;
1463}
1464
1465static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1466                                          dm_block_t *vblock,
1467                                          struct dm_thin_lookup_result *result)
1468{
1469        int r;
1470        __le64 value;
1471        struct dm_pool_metadata *pmd = td->pmd;
1472        dm_block_t keys[2] = { td->id, block };
1473
1474        r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1475        if (!r)
1476                unpack_lookup_result(td, value, result);
1477
1478        return r;
1479}
1480
1481static int __find_mapped_range(struct dm_thin_device *td,
1482                               dm_block_t begin, dm_block_t end,
1483                               dm_block_t *thin_begin, dm_block_t *thin_end,
1484                               dm_block_t *pool_begin, bool *maybe_shared)
1485{
1486        int r;
1487        dm_block_t pool_end;
1488        struct dm_thin_lookup_result lookup;
1489
1490        if (end < begin)
1491                return -ENODATA;
1492
1493        r = __find_next_mapped_block(td, begin, &begin, &lookup);
1494        if (r)
1495                return r;
1496
1497        if (begin >= end)
1498                return -ENODATA;
1499
1500        *thin_begin = begin;
1501        *pool_begin = lookup.block;
1502        *maybe_shared = lookup.shared;
1503
1504        begin++;
1505        pool_end = *pool_begin + 1;
1506        while (begin != end) {
1507                r = __find_block(td, begin, true, &lookup);
1508                if (r) {
1509                        if (r == -ENODATA)
1510                                break;
1511                        else
1512                                return r;
1513                }
1514
1515                if ((lookup.block != pool_end) ||
1516                    (lookup.shared != *maybe_shared))
1517                        break;
1518
1519                pool_end++;
1520                begin++;
1521        }
1522
1523        *thin_end = begin;
1524        return 0;
1525}
1526
1527int dm_thin_find_mapped_range(struct dm_thin_device *td,
1528                              dm_block_t begin, dm_block_t end,
1529                              dm_block_t *thin_begin, dm_block_t *thin_end,
1530                              dm_block_t *pool_begin, bool *maybe_shared)
1531{
1532        int r = -EINVAL;
1533        struct dm_pool_metadata *pmd = td->pmd;
1534
1535        down_read(&pmd->root_lock);
1536        if (!pmd->fail_io) {
1537                r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1538                                        pool_begin, maybe_shared);
1539        }
1540        up_read(&pmd->root_lock);
1541
1542        return r;
1543}
1544
1545static int __insert(struct dm_thin_device *td, dm_block_t block,
1546                    dm_block_t data_block)
1547{
1548        int r, inserted;
1549        __le64 value;
1550        struct dm_pool_metadata *pmd = td->pmd;
1551        dm_block_t keys[2] = { td->id, block };
1552
1553        value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1554        __dm_bless_for_disk(&value);
1555
1556        r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1557                                   &pmd->root, &inserted);
1558        if (r)
1559                return r;
1560
1561        td->changed = 1;
1562        if (inserted)
1563                td->mapped_blocks++;
1564
1565        return 0;
1566}
1567
1568int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1569                         dm_block_t data_block)
1570{
1571        int r = -EINVAL;
1572
1573        down_write(&td->pmd->root_lock);
1574        if (!td->pmd->fail_io)
1575                r = __insert(td, block, data_block);
1576        up_write(&td->pmd->root_lock);
1577
1578        return r;
1579}
1580
1581static int __remove(struct dm_thin_device *td, dm_block_t block)
1582{
1583        int r;
1584        struct dm_pool_metadata *pmd = td->pmd;
1585        dm_block_t keys[2] = { td->id, block };
1586
1587        r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1588        if (r)
1589                return r;
1590
1591        td->mapped_blocks--;
1592        td->changed = 1;
1593
1594        return 0;
1595}
1596
1597static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1598{
1599        int r;
1600        unsigned count, total_count = 0;
1601        struct dm_pool_metadata *pmd = td->pmd;
1602        dm_block_t keys[1] = { td->id };
1603        __le64 value;
1604        dm_block_t mapping_root;
1605
1606        /*
1607         * Find the mapping tree
1608         */
1609        r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1610        if (r)
1611                return r;
1612
1613        /*
1614         * Remove from the mapping tree, taking care to inc the
1615         * ref count so it doesn't get deleted.
1616         */
1617        mapping_root = le64_to_cpu(value);
1618        dm_tm_inc(pmd->tm, mapping_root);
1619        r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1620        if (r)
1621                return r;
1622
1623        /*
1624         * Remove leaves stops at the first unmapped entry, so we have to
1625         * loop round finding mapped ranges.
1626         */
1627        while (begin < end) {
1628                r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1629                if (r == -ENODATA)
1630                        break;
1631
1632                if (r)
1633                        return r;
1634
1635                if (begin >= end)
1636                        break;
1637
1638                r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1639                if (r)
1640                        return r;
1641
1642                total_count += count;
1643        }
1644
1645        td->mapped_blocks -= total_count;
1646        td->changed = 1;
1647
1648        /*
1649         * Reinsert the mapping tree.
1650         */
1651        value = cpu_to_le64(mapping_root);
1652        __dm_bless_for_disk(&value);
1653        return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1654}
1655
1656int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1657{
1658        int r = -EINVAL;
1659
1660        down_write(&td->pmd->root_lock);
1661        if (!td->pmd->fail_io)
1662                r = __remove(td, block);
1663        up_write(&td->pmd->root_lock);
1664
1665        return r;
1666}
1667
1668int dm_thin_remove_range(struct dm_thin_device *td,
1669                         dm_block_t begin, dm_block_t end)
1670{
1671        int r = -EINVAL;
1672
1673        down_write(&td->pmd->root_lock);
1674        if (!td->pmd->fail_io)
1675                r = __remove_range(td, begin, end);
1676        up_write(&td->pmd->root_lock);
1677
1678        return r;
1679}
1680
1681int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1682{
1683        int r;
1684        uint32_t ref_count;
1685
1686        down_read(&pmd->root_lock);
1687        r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1688        if (!r)
1689                *result = (ref_count > 1);
1690        up_read(&pmd->root_lock);
1691
1692        return r;
1693}
1694
1695int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1696{
1697        int r = 0;
1698
1699        down_write(&pmd->root_lock);
1700        for (; b != e; b++) {
1701                r = dm_sm_inc_block(pmd->data_sm, b);
1702                if (r)
1703                        break;
1704        }
1705        up_write(&pmd->root_lock);
1706
1707        return r;
1708}
1709
1710int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1711{
1712        int r = 0;
1713
1714        down_write(&pmd->root_lock);
1715        for (; b != e; b++) {
1716                r = dm_sm_dec_block(pmd->data_sm, b);
1717                if (r)
1718                        break;
1719        }
1720        up_write(&pmd->root_lock);
1721
1722        return r;
1723}
1724
1725bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1726{
1727        int r;
1728
1729        down_read(&td->pmd->root_lock);
1730        r = td->changed;
1731        up_read(&td->pmd->root_lock);
1732
1733        return r;
1734}
1735
1736bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1737{
1738        bool r = false;
1739        struct dm_thin_device *td, *tmp;
1740
1741        down_read(&pmd->root_lock);
1742        list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1743                if (td->changed) {
1744                        r = td->changed;
1745                        break;
1746                }
1747        }
1748        up_read(&pmd->root_lock);
1749
1750        return r;
1751}
1752
1753bool dm_thin_aborted_changes(struct dm_thin_device *td)
1754{
1755        bool r;
1756
1757        down_read(&td->pmd->root_lock);
1758        r = td->aborted_with_changes;
1759        up_read(&td->pmd->root_lock);
1760
1761        return r;
1762}
1763
1764int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1765{
1766        int r = -EINVAL;
1767
1768        down_write(&pmd->root_lock);
1769        if (!pmd->fail_io)
1770                r = dm_sm_new_block(pmd->data_sm, result);
1771        up_write(&pmd->root_lock);
1772
1773        return r;
1774}
1775
1776int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1777{
1778        int r = -EINVAL;
1779
1780        down_write(&pmd->root_lock);
1781        if (pmd->fail_io)
1782                goto out;
1783
1784        r = __commit_transaction(pmd);
1785        if (r <= 0)
1786                goto out;
1787
1788        /*
1789         * Open the next transaction.
1790         */
1791        r = __begin_transaction(pmd);
1792out:
1793        up_write(&pmd->root_lock);
1794        return r;
1795}
1796
1797static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1798{
1799        struct dm_thin_device *td;
1800
1801        list_for_each_entry(td, &pmd->thin_devices, list)
1802                td->aborted_with_changes = td->changed;
1803}
1804
1805int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1806{
1807        int r = -EINVAL;
1808
1809        down_write(&pmd->root_lock);
1810        if (pmd->fail_io)
1811                goto out;
1812
1813        __set_abort_with_changes_flags(pmd);
1814        __destroy_persistent_data_objects(pmd);
1815        r = __create_persistent_data_objects(pmd, false);
1816        if (r)
1817                pmd->fail_io = true;
1818
1819out:
1820        up_write(&pmd->root_lock);
1821
1822        return r;
1823}
1824
1825int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1826{
1827        int r = -EINVAL;
1828
1829        down_read(&pmd->root_lock);
1830        if (!pmd->fail_io)
1831                r = dm_sm_get_nr_free(pmd->data_sm, result);
1832        up_read(&pmd->root_lock);
1833
1834        return r;
1835}
1836
1837int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1838                                          dm_block_t *result)
1839{
1840        int r = -EINVAL;
1841
1842        down_read(&pmd->root_lock);
1843        if (!pmd->fail_io)
1844                r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1845
1846        if (!r) {
1847                if (*result < pmd->metadata_reserve)
1848                        *result = 0;
1849                else
1850                        *result -= pmd->metadata_reserve;
1851        }
1852        up_read(&pmd->root_lock);
1853
1854        return r;
1855}
1856
1857int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1858                                  dm_block_t *result)
1859{
1860        int r = -EINVAL;
1861
1862        down_read(&pmd->root_lock);
1863        if (!pmd->fail_io)
1864                r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1865        up_read(&pmd->root_lock);
1866
1867        return r;
1868}
1869
1870int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1871{
1872        int r = -EINVAL;
1873
1874        down_read(&pmd->root_lock);
1875        if (!pmd->fail_io)
1876                r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1877        up_read(&pmd->root_lock);
1878
1879        return r;
1880}
1881
1882int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1883{
1884        int r = -EINVAL;
1885        struct dm_pool_metadata *pmd = td->pmd;
1886
1887        down_read(&pmd->root_lock);
1888        if (!pmd->fail_io) {
1889                *result = td->mapped_blocks;
1890                r = 0;
1891        }
1892        up_read(&pmd->root_lock);
1893
1894        return r;
1895}
1896
1897static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1898{
1899        int r;
1900        __le64 value_le;
1901        dm_block_t thin_root;
1902        struct dm_pool_metadata *pmd = td->pmd;
1903
1904        r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1905        if (r)
1906                return r;
1907
1908        thin_root = le64_to_cpu(value_le);
1909
1910        return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1911}
1912
1913int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1914                                     dm_block_t *result)
1915{
1916        int r = -EINVAL;
1917        struct dm_pool_metadata *pmd = td->pmd;
1918
1919        down_read(&pmd->root_lock);
1920        if (!pmd->fail_io)
1921                r = __highest_block(td, result);
1922        up_read(&pmd->root_lock);
1923
1924        return r;
1925}
1926
1927static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1928{
1929        int r;
1930        dm_block_t old_count;
1931
1932        r = dm_sm_get_nr_blocks(sm, &old_count);
1933        if (r)
1934                return r;
1935
1936        if (new_count == old_count)
1937                return 0;
1938
1939        if (new_count < old_count) {
1940                DMERR("cannot reduce size of space map");
1941                return -EINVAL;
1942        }
1943
1944        return dm_sm_extend(sm, new_count - old_count);
1945}
1946
1947int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1948{
1949        int r = -EINVAL;
1950
1951        down_write(&pmd->root_lock);
1952        if (!pmd->fail_io)
1953                r = __resize_space_map(pmd->data_sm, new_count);
1954        up_write(&pmd->root_lock);
1955
1956        return r;
1957}
1958
1959int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1960{
1961        int r = -EINVAL;
1962
1963        down_write(&pmd->root_lock);
1964        if (!pmd->fail_io) {
1965                r = __resize_space_map(pmd->metadata_sm, new_count);
1966                if (!r)
1967                        __set_metadata_reserve(pmd);
1968        }
1969        up_write(&pmd->root_lock);
1970
1971        return r;
1972}
1973
1974void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1975{
1976        down_write(&pmd->root_lock);
1977        dm_bm_set_read_only(pmd->bm);
1978        up_write(&pmd->root_lock);
1979}
1980
1981void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1982{
1983        down_write(&pmd->root_lock);
1984        dm_bm_set_read_write(pmd->bm);
1985        up_write(&pmd->root_lock);
1986}
1987
1988int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1989                                        dm_block_t threshold,
1990                                        dm_sm_threshold_fn fn,
1991                                        void *context)
1992{
1993        int r;
1994
1995        down_write(&pmd->root_lock);
1996        r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1997        up_write(&pmd->root_lock);
1998
1999        return r;
2000}
2001
2002int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2003{
2004        int r;
2005        struct dm_block *sblock;
2006        struct thin_disk_superblock *disk_super;
2007
2008        down_write(&pmd->root_lock);
2009        pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2010
2011        r = superblock_lock(pmd, &sblock);
2012        if (r) {
2013                DMERR("couldn't read superblock");
2014                goto out;
2015        }
2016
2017        disk_super = dm_block_data(sblock);
2018        disk_super->flags = cpu_to_le32(pmd->flags);
2019
2020        dm_bm_unlock(sblock);
2021out:
2022        up_write(&pmd->root_lock);
2023        return r;
2024}
2025
2026bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2027{
2028        bool needs_check;
2029
2030        down_read(&pmd->root_lock);
2031        needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2032        up_read(&pmd->root_lock);
2033
2034        return needs_check;
2035}
2036
2037void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2038{
2039        down_read(&pmd->root_lock);
2040        if (!pmd->fail_io)
2041                dm_tm_issue_prefetches(pmd->tm);
2042        up_read(&pmd->root_lock);
2043}
2044