1
2
3
4
5
6
7
8
9
10
11#include <linux/platform_device.h>
12#include <linux/dmaengine.h>
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
15#include <linux/gpio/consumer.h>
16#include <linux/module.h>
17#include <linux/interrupt.h>
18#include <linux/jiffies.h>
19#include <linux/sched.h>
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/rawnand.h>
22#include <linux/mtd/partitions.h>
23#include <linux/omap-dma.h>
24#include <linux/io.h>
25#include <linux/slab.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include <linux/mtd/nand_bch.h>
30#include <linux/platform_data/elm.h>
31
32#include <linux/omap-gpmc.h>
33#include <linux/platform_data/mtd-nand-omap2.h>
34
35#define DRIVER_NAME "omap2-nand"
36#define OMAP_NAND_TIMEOUT_MS 5000
37
38#define NAND_Ecc_P1e (1 << 0)
39#define NAND_Ecc_P2e (1 << 1)
40#define NAND_Ecc_P4e (1 << 2)
41#define NAND_Ecc_P8e (1 << 3)
42#define NAND_Ecc_P16e (1 << 4)
43#define NAND_Ecc_P32e (1 << 5)
44#define NAND_Ecc_P64e (1 << 6)
45#define NAND_Ecc_P128e (1 << 7)
46#define NAND_Ecc_P256e (1 << 8)
47#define NAND_Ecc_P512e (1 << 9)
48#define NAND_Ecc_P1024e (1 << 10)
49#define NAND_Ecc_P2048e (1 << 11)
50
51#define NAND_Ecc_P1o (1 << 16)
52#define NAND_Ecc_P2o (1 << 17)
53#define NAND_Ecc_P4o (1 << 18)
54#define NAND_Ecc_P8o (1 << 19)
55#define NAND_Ecc_P16o (1 << 20)
56#define NAND_Ecc_P32o (1 << 21)
57#define NAND_Ecc_P64o (1 << 22)
58#define NAND_Ecc_P128o (1 << 23)
59#define NAND_Ecc_P256o (1 << 24)
60#define NAND_Ecc_P512o (1 << 25)
61#define NAND_Ecc_P1024o (1 << 26)
62#define NAND_Ecc_P2048o (1 << 27)
63
64#define TF(value) (value ? 1 : 0)
65
66#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
105#define PREFETCH_CONFIG1_CS_SHIFT 24
106#define ECC_CONFIG_CS_SHIFT 1
107#define CS_MASK 0x7
108#define ENABLE_PREFETCH (0x1 << 7)
109#define DMA_MPU_MODE_SHIFT 2
110#define ECCSIZE0_SHIFT 12
111#define ECCSIZE1_SHIFT 22
112#define ECC1RESULTSIZE 0x1
113#define ECCCLEAR 0x100
114#define ECC1 0x1
115#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119#define STATUS_BUFF_EMPTY 0x00000001
120
121#define SECTOR_BYTES 512
122
123#define BCH4_BIT_PAD 4
124
125
126#define BCH_WRAPMODE_1 1
127#define BCH8R_ECC_SIZE0 0x1a
128#define BCH8R_ECC_SIZE1 0x2
129#define BCH4R_ECC_SIZE0 0xd
130#define BCH4R_ECC_SIZE1 0x3
131
132
133#define BCH_WRAPMODE_6 6
134#define BCH_ECC_SIZE0 0x0
135#define BCH_ECC_SIZE1 0x20
136
137#define BADBLOCK_MARKER_LENGTH 2
138
139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 0x07, 0x0e};
143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146
147
148static struct nand_hw_control omap_gpmc_controller = {
149 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
151};
152
153struct omap_nand_info {
154 struct nand_chip nand;
155 struct platform_device *pdev;
156
157 int gpmc_cs;
158 bool dev_ready;
159 enum nand_io xfer_type;
160 int devsize;
161 enum omap_ecc ecc_opt;
162 struct device_node *elm_of_node;
163
164 unsigned long phys_base;
165 struct completion comp;
166 struct dma_chan *dma;
167 int gpmc_irq_fifo;
168 int gpmc_irq_count;
169 enum {
170 OMAP_NAND_IO_READ = 0,
171 OMAP_NAND_IO_WRITE,
172 } iomode;
173 u_char *buf;
174 int buf_len;
175
176 struct gpmc_nand_regs reg;
177 struct gpmc_nand_ops *ops;
178 bool flash_bbt;
179
180 struct device *elm_dev;
181
182 struct gpio_desc *ready_gpiod;
183};
184
185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
186{
187 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
188}
189
190
191
192
193
194
195
196
197
198static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
199 unsigned int u32_count, int is_write, struct omap_nand_info *info)
200{
201 u32 val;
202
203 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
204 return -1;
205
206 if (readl(info->reg.gpmc_prefetch_control))
207 return -EBUSY;
208
209
210 writel(u32_count, info->reg.gpmc_prefetch_config2);
211
212
213
214
215 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
216 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
217 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
218 writel(val, info->reg.gpmc_prefetch_config1);
219
220
221 writel(0x1, info->reg.gpmc_prefetch_control);
222
223 return 0;
224}
225
226
227
228
229static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
230{
231 u32 config1;
232
233
234 config1 = readl(info->reg.gpmc_prefetch_config1);
235 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
236 return -EINVAL;
237
238
239 writel(0x0, info->reg.gpmc_prefetch_control);
240
241
242 writel(0x0, info->reg.gpmc_prefetch_config1);
243
244 return 0;
245}
246
247
248
249
250
251
252
253
254
255
256
257
258static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
259{
260 struct omap_nand_info *info = mtd_to_omap(mtd);
261
262 if (cmd != NAND_CMD_NONE) {
263 if (ctrl & NAND_CLE)
264 writeb(cmd, info->reg.gpmc_nand_command);
265
266 else if (ctrl & NAND_ALE)
267 writeb(cmd, info->reg.gpmc_nand_address);
268
269 else
270 writeb(cmd, info->reg.gpmc_nand_data);
271 }
272}
273
274
275
276
277
278
279
280static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
281{
282 struct nand_chip *nand = mtd_to_nand(mtd);
283
284 ioread8_rep(nand->IO_ADDR_R, buf, len);
285}
286
287
288
289
290
291
292
293static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
294{
295 struct omap_nand_info *info = mtd_to_omap(mtd);
296 u_char *p = (u_char *)buf;
297 bool status;
298
299 while (len--) {
300 iowrite8(*p++, info->nand.IO_ADDR_W);
301
302 do {
303 status = info->ops->nand_writebuffer_empty();
304 } while (!status);
305 }
306}
307
308
309
310
311
312
313
314static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
315{
316 struct nand_chip *nand = mtd_to_nand(mtd);
317
318 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
319}
320
321
322
323
324
325
326
327static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
328{
329 struct omap_nand_info *info = mtd_to_omap(mtd);
330 u16 *p = (u16 *) buf;
331 bool status;
332
333 len >>= 1;
334
335 while (len--) {
336 iowrite16(*p++, info->nand.IO_ADDR_W);
337
338 do {
339 status = info->ops->nand_writebuffer_empty();
340 } while (!status);
341 }
342}
343
344
345
346
347
348
349
350static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
351{
352 struct omap_nand_info *info = mtd_to_omap(mtd);
353 uint32_t r_count = 0;
354 int ret = 0;
355 u32 *p = (u32 *)buf;
356
357
358 if (len % 4) {
359 if (info->nand.options & NAND_BUSWIDTH_16)
360 omap_read_buf16(mtd, buf, len % 4);
361 else
362 omap_read_buf8(mtd, buf, len % 4);
363 p = (u32 *) (buf + len % 4);
364 len -= len % 4;
365 }
366
367
368 ret = omap_prefetch_enable(info->gpmc_cs,
369 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
370 if (ret) {
371
372 if (info->nand.options & NAND_BUSWIDTH_16)
373 omap_read_buf16(mtd, (u_char *)p, len);
374 else
375 omap_read_buf8(mtd, (u_char *)p, len);
376 } else {
377 do {
378 r_count = readl(info->reg.gpmc_prefetch_status);
379 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
380 r_count = r_count >> 2;
381 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
382 p += r_count;
383 len -= r_count << 2;
384 } while (len);
385
386 omap_prefetch_reset(info->gpmc_cs, info);
387 }
388}
389
390
391
392
393
394
395
396static void omap_write_buf_pref(struct mtd_info *mtd,
397 const u_char *buf, int len)
398{
399 struct omap_nand_info *info = mtd_to_omap(mtd);
400 uint32_t w_count = 0;
401 int i = 0, ret = 0;
402 u16 *p = (u16 *)buf;
403 unsigned long tim, limit;
404 u32 val;
405
406
407 if (len % 2 != 0) {
408 writeb(*buf, info->nand.IO_ADDR_W);
409 p = (u16 *)(buf + 1);
410 len--;
411 }
412
413
414 ret = omap_prefetch_enable(info->gpmc_cs,
415 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
416 if (ret) {
417
418 if (info->nand.options & NAND_BUSWIDTH_16)
419 omap_write_buf16(mtd, (u_char *)p, len);
420 else
421 omap_write_buf8(mtd, (u_char *)p, len);
422 } else {
423 while (len) {
424 w_count = readl(info->reg.gpmc_prefetch_status);
425 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
426 w_count = w_count >> 1;
427 for (i = 0; (i < w_count) && len; i++, len -= 2)
428 iowrite16(*p++, info->nand.IO_ADDR_W);
429 }
430
431 tim = 0;
432 limit = (loops_per_jiffy *
433 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
434 do {
435 cpu_relax();
436 val = readl(info->reg.gpmc_prefetch_status);
437 val = PREFETCH_STATUS_COUNT(val);
438 } while (val && (tim++ < limit));
439
440
441 omap_prefetch_reset(info->gpmc_cs, info);
442 }
443}
444
445
446
447
448
449static void omap_nand_dma_callback(void *data)
450{
451 complete((struct completion *) data);
452}
453
454
455
456
457
458
459
460
461static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
462 unsigned int len, int is_write)
463{
464 struct omap_nand_info *info = mtd_to_omap(mtd);
465 struct dma_async_tx_descriptor *tx;
466 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
467 DMA_FROM_DEVICE;
468 struct scatterlist sg;
469 unsigned long tim, limit;
470 unsigned n;
471 int ret;
472 u32 val;
473
474 if (!virt_addr_valid(addr))
475 goto out_copy;
476
477 sg_init_one(&sg, addr, len);
478 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
479 if (n == 0) {
480 dev_err(&info->pdev->dev,
481 "Couldn't DMA map a %d byte buffer\n", len);
482 goto out_copy;
483 }
484
485 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
486 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
487 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
488 if (!tx)
489 goto out_copy_unmap;
490
491 tx->callback = omap_nand_dma_callback;
492 tx->callback_param = &info->comp;
493 dmaengine_submit(tx);
494
495 init_completion(&info->comp);
496
497
498 dma_async_issue_pending(info->dma);
499
500
501 ret = omap_prefetch_enable(info->gpmc_cs,
502 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503 if (ret)
504
505 goto out_copy_unmap;
506
507 wait_for_completion(&info->comp);
508 tim = 0;
509 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
510
511 do {
512 cpu_relax();
513 val = readl(info->reg.gpmc_prefetch_status);
514 val = PREFETCH_STATUS_COUNT(val);
515 } while (val && (tim++ < limit));
516
517
518 omap_prefetch_reset(info->gpmc_cs, info);
519
520 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
521 return 0;
522
523out_copy_unmap:
524 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525out_copy:
526 if (info->nand.options & NAND_BUSWIDTH_16)
527 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
528 : omap_write_buf16(mtd, (u_char *) addr, len);
529 else
530 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
531 : omap_write_buf8(mtd, (u_char *) addr, len);
532 return 0;
533}
534
535
536
537
538
539
540
541static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
542{
543 if (len <= mtd->oobsize)
544 omap_read_buf_pref(mtd, buf, len);
545 else
546
547 omap_nand_dma_transfer(mtd, buf, len, 0x0);
548}
549
550
551
552
553
554
555
556static void omap_write_buf_dma_pref(struct mtd_info *mtd,
557 const u_char *buf, int len)
558{
559 if (len <= mtd->oobsize)
560 omap_write_buf_pref(mtd, buf, len);
561 else
562
563 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
564}
565
566
567
568
569
570
571static irqreturn_t omap_nand_irq(int this_irq, void *dev)
572{
573 struct omap_nand_info *info = (struct omap_nand_info *) dev;
574 u32 bytes;
575
576 bytes = readl(info->reg.gpmc_prefetch_status);
577 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
578 bytes = bytes & 0xFFFC;
579 if (info->iomode == OMAP_NAND_IO_WRITE) {
580 if (this_irq == info->gpmc_irq_count)
581 goto done;
582
583 if (info->buf_len && (info->buf_len < bytes))
584 bytes = info->buf_len;
585 else if (!info->buf_len)
586 bytes = 0;
587 iowrite32_rep(info->nand.IO_ADDR_W,
588 (u32 *)info->buf, bytes >> 2);
589 info->buf = info->buf + bytes;
590 info->buf_len -= bytes;
591
592 } else {
593 ioread32_rep(info->nand.IO_ADDR_R,
594 (u32 *)info->buf, bytes >> 2);
595 info->buf = info->buf + bytes;
596
597 if (this_irq == info->gpmc_irq_count)
598 goto done;
599 }
600
601 return IRQ_HANDLED;
602
603done:
604 complete(&info->comp);
605
606 disable_irq_nosync(info->gpmc_irq_fifo);
607 disable_irq_nosync(info->gpmc_irq_count);
608
609 return IRQ_HANDLED;
610}
611
612
613
614
615
616
617
618static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
619{
620 struct omap_nand_info *info = mtd_to_omap(mtd);
621 int ret = 0;
622
623 if (len <= mtd->oobsize) {
624 omap_read_buf_pref(mtd, buf, len);
625 return;
626 }
627
628 info->iomode = OMAP_NAND_IO_READ;
629 info->buf = buf;
630 init_completion(&info->comp);
631
632
633 ret = omap_prefetch_enable(info->gpmc_cs,
634 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
635 if (ret)
636
637 goto out_copy;
638
639 info->buf_len = len;
640
641 enable_irq(info->gpmc_irq_count);
642 enable_irq(info->gpmc_irq_fifo);
643
644
645 wait_for_completion(&info->comp);
646
647
648 omap_prefetch_reset(info->gpmc_cs, info);
649 return;
650
651out_copy:
652 if (info->nand.options & NAND_BUSWIDTH_16)
653 omap_read_buf16(mtd, buf, len);
654 else
655 omap_read_buf8(mtd, buf, len);
656}
657
658
659
660
661
662
663
664static void omap_write_buf_irq_pref(struct mtd_info *mtd,
665 const u_char *buf, int len)
666{
667 struct omap_nand_info *info = mtd_to_omap(mtd);
668 int ret = 0;
669 unsigned long tim, limit;
670 u32 val;
671
672 if (len <= mtd->oobsize) {
673 omap_write_buf_pref(mtd, buf, len);
674 return;
675 }
676
677 info->iomode = OMAP_NAND_IO_WRITE;
678 info->buf = (u_char *) buf;
679 init_completion(&info->comp);
680
681
682 ret = omap_prefetch_enable(info->gpmc_cs,
683 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
684 if (ret)
685
686 goto out_copy;
687
688 info->buf_len = len;
689
690 enable_irq(info->gpmc_irq_count);
691 enable_irq(info->gpmc_irq_fifo);
692
693
694 wait_for_completion(&info->comp);
695
696
697 tim = 0;
698 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
699 do {
700 val = readl(info->reg.gpmc_prefetch_status);
701 val = PREFETCH_STATUS_COUNT(val);
702 cpu_relax();
703 } while (val && (tim++ < limit));
704
705
706 omap_prefetch_reset(info->gpmc_cs, info);
707 return;
708
709out_copy:
710 if (info->nand.options & NAND_BUSWIDTH_16)
711 omap_write_buf16(mtd, buf, len);
712 else
713 omap_write_buf8(mtd, buf, len);
714}
715
716
717
718
719
720
721
722
723static void gen_true_ecc(u8 *ecc_buf)
724{
725 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
726 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
727
728 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
729 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
730 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
731 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
732 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
733 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
734}
735
736
737
738
739
740
741
742
743
744
745
746
747static int omap_compare_ecc(u8 *ecc_data1,
748 u8 *ecc_data2,
749 u8 *page_data)
750{
751 uint i;
752 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
753 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
754 u8 ecc_bit[24];
755 u8 ecc_sum = 0;
756 u8 find_bit = 0;
757 uint find_byte = 0;
758 int isEccFF;
759
760 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
761
762 gen_true_ecc(ecc_data1);
763 gen_true_ecc(ecc_data2);
764
765 for (i = 0; i <= 2; i++) {
766 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
767 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
768 }
769
770 for (i = 0; i < 8; i++) {
771 tmp0_bit[i] = *ecc_data1 % 2;
772 *ecc_data1 = *ecc_data1 / 2;
773 }
774
775 for (i = 0; i < 8; i++) {
776 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
777 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
778 }
779
780 for (i = 0; i < 8; i++) {
781 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
782 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
783 }
784
785 for (i = 0; i < 8; i++) {
786 comp0_bit[i] = *ecc_data2 % 2;
787 *ecc_data2 = *ecc_data2 / 2;
788 }
789
790 for (i = 0; i < 8; i++) {
791 comp1_bit[i] = *(ecc_data2 + 1) % 2;
792 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
793 }
794
795 for (i = 0; i < 8; i++) {
796 comp2_bit[i] = *(ecc_data2 + 2) % 2;
797 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
798 }
799
800 for (i = 0; i < 6; i++)
801 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
802
803 for (i = 0; i < 8; i++)
804 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
805
806 for (i = 0; i < 8; i++)
807 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
808
809 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
810 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
811
812 for (i = 0; i < 24; i++)
813 ecc_sum += ecc_bit[i];
814
815 switch (ecc_sum) {
816 case 0:
817
818
819
820 return 0;
821
822 case 1:
823
824 pr_debug("ECC UNCORRECTED_ERROR 1\n");
825 return -EBADMSG;
826
827 case 11:
828
829 pr_debug("ECC UNCORRECTED_ERROR B\n");
830 return -EBADMSG;
831
832 case 12:
833
834 find_byte = (ecc_bit[23] << 8) +
835 (ecc_bit[21] << 7) +
836 (ecc_bit[19] << 6) +
837 (ecc_bit[17] << 5) +
838 (ecc_bit[15] << 4) +
839 (ecc_bit[13] << 3) +
840 (ecc_bit[11] << 2) +
841 (ecc_bit[9] << 1) +
842 ecc_bit[7];
843
844 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
845
846 pr_debug("Correcting single bit ECC error at offset: "
847 "%d, bit: %d\n", find_byte, find_bit);
848
849 page_data[find_byte] ^= (1 << find_bit);
850
851 return 1;
852 default:
853 if (isEccFF) {
854 if (ecc_data2[0] == 0 &&
855 ecc_data2[1] == 0 &&
856 ecc_data2[2] == 0)
857 return 0;
858 }
859 pr_debug("UNCORRECTED_ERROR default\n");
860 return -EBADMSG;
861 }
862}
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
879 u_char *read_ecc, u_char *calc_ecc)
880{
881 struct omap_nand_info *info = mtd_to_omap(mtd);
882 int blockCnt = 0, i = 0, ret = 0;
883 int stat = 0;
884
885
886 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
887 (info->nand.ecc.size == 2048))
888 blockCnt = 4;
889 else
890 blockCnt = 1;
891
892 for (i = 0; i < blockCnt; i++) {
893 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
894 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
895 if (ret < 0)
896 return ret;
897
898 stat += ret;
899 }
900 read_ecc += 3;
901 calc_ecc += 3;
902 dat += 512;
903 }
904 return stat;
905}
906
907
908
909
910
911
912
913
914
915
916
917
918
919static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
920 u_char *ecc_code)
921{
922 struct omap_nand_info *info = mtd_to_omap(mtd);
923 u32 val;
924
925 val = readl(info->reg.gpmc_ecc_config);
926 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
927 return -EINVAL;
928
929
930 val = readl(info->reg.gpmc_ecc1_result);
931 *ecc_code++ = val;
932 *ecc_code++ = val >> 16;
933
934 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
935
936 return 0;
937}
938
939
940
941
942
943
944static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
945{
946 struct omap_nand_info *info = mtd_to_omap(mtd);
947 struct nand_chip *chip = mtd_to_nand(mtd);
948 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
949 u32 val;
950
951
952 val = ECCCLEAR | ECC1;
953 writel(val, info->reg.gpmc_ecc_control);
954
955
956 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
957 ECC1RESULTSIZE);
958 writel(val, info->reg.gpmc_ecc_size_config);
959
960 switch (mode) {
961 case NAND_ECC_READ:
962 case NAND_ECC_WRITE:
963 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
964 break;
965 case NAND_ECC_READSYN:
966 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
967 break;
968 default:
969 dev_info(&info->pdev->dev,
970 "error: unrecognized Mode[%d]!\n", mode);
971 break;
972 }
973
974
975 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
976 writel(val, info->reg.gpmc_ecc_config);
977}
978
979
980
981
982
983
984
985
986
987
988
989
990
991static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
992{
993 struct nand_chip *this = mtd_to_nand(mtd);
994 struct omap_nand_info *info = mtd_to_omap(mtd);
995 unsigned long timeo = jiffies;
996 int status, state = this->state;
997
998 if (state == FL_ERASING)
999 timeo += msecs_to_jiffies(400);
1000 else
1001 timeo += msecs_to_jiffies(20);
1002
1003 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004 while (time_before(jiffies, timeo)) {
1005 status = readb(info->reg.gpmc_nand_data);
1006 if (status & NAND_STATUS_READY)
1007 break;
1008 cond_resched();
1009 }
1010
1011 status = readb(info->reg.gpmc_nand_data);
1012 return status;
1013}
1014
1015
1016
1017
1018
1019
1020
1021static int omap_dev_ready(struct mtd_info *mtd)
1022{
1023 struct omap_nand_info *info = mtd_to_omap(mtd);
1024
1025 return gpiod_get_value(info->ready_gpiod);
1026}
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1040{
1041 unsigned int bch_type;
1042 unsigned int dev_width, nsectors;
1043 struct omap_nand_info *info = mtd_to_omap(mtd);
1044 enum omap_ecc ecc_opt = info->ecc_opt;
1045 struct nand_chip *chip = mtd_to_nand(mtd);
1046 u32 val, wr_mode;
1047 unsigned int ecc_size1, ecc_size0;
1048
1049
1050 switch (ecc_opt) {
1051 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052 bch_type = 0;
1053 nsectors = 1;
1054 wr_mode = BCH_WRAPMODE_6;
1055 ecc_size0 = BCH_ECC_SIZE0;
1056 ecc_size1 = BCH_ECC_SIZE1;
1057 break;
1058 case OMAP_ECC_BCH4_CODE_HW:
1059 bch_type = 0;
1060 nsectors = chip->ecc.steps;
1061 if (mode == NAND_ECC_READ) {
1062 wr_mode = BCH_WRAPMODE_1;
1063 ecc_size0 = BCH4R_ECC_SIZE0;
1064 ecc_size1 = BCH4R_ECC_SIZE1;
1065 } else {
1066 wr_mode = BCH_WRAPMODE_6;
1067 ecc_size0 = BCH_ECC_SIZE0;
1068 ecc_size1 = BCH_ECC_SIZE1;
1069 }
1070 break;
1071 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072 bch_type = 1;
1073 nsectors = 1;
1074 wr_mode = BCH_WRAPMODE_6;
1075 ecc_size0 = BCH_ECC_SIZE0;
1076 ecc_size1 = BCH_ECC_SIZE1;
1077 break;
1078 case OMAP_ECC_BCH8_CODE_HW:
1079 bch_type = 1;
1080 nsectors = chip->ecc.steps;
1081 if (mode == NAND_ECC_READ) {
1082 wr_mode = BCH_WRAPMODE_1;
1083 ecc_size0 = BCH8R_ECC_SIZE0;
1084 ecc_size1 = BCH8R_ECC_SIZE1;
1085 } else {
1086 wr_mode = BCH_WRAPMODE_6;
1087 ecc_size0 = BCH_ECC_SIZE0;
1088 ecc_size1 = BCH_ECC_SIZE1;
1089 }
1090 break;
1091 case OMAP_ECC_BCH16_CODE_HW:
1092 bch_type = 0x2;
1093 nsectors = chip->ecc.steps;
1094 if (mode == NAND_ECC_READ) {
1095 wr_mode = 0x01;
1096 ecc_size0 = 52;
1097 ecc_size1 = 0;
1098 } else {
1099 wr_mode = 0x01;
1100 ecc_size0 = 0;
1101 ecc_size1 = 52;
1102 }
1103 break;
1104 default:
1105 return;
1106 }
1107
1108 writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110
1111 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112 writel(val, info->reg.gpmc_ecc_size_config);
1113
1114 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116
1117 val = ((1 << 16) |
1118 (bch_type << 12) |
1119 (wr_mode << 8) |
1120 (dev_width << 7) |
1121 (((nsectors-1) & 0x7) << 4) |
1122 (info->gpmc_cs << 1) |
1123 (0x1));
1124
1125 writel(val, info->reg.gpmc_ecc_config);
1126
1127
1128 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129}
1130
1131static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133 0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146 const u_char *dat, u_char *ecc_calc, int i)
1147{
1148 struct omap_nand_info *info = mtd_to_omap(mtd);
1149 int eccbytes = info->nand.ecc.bytes;
1150 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1151 u8 *ecc_code;
1152 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153 u32 val;
1154 int j;
1155
1156 ecc_code = ecc_calc;
1157 switch (info->ecc_opt) {
1158 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159 case OMAP_ECC_BCH8_CODE_HW:
1160 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164 *ecc_code++ = (bch_val4 & 0xFF);
1165 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168 *ecc_code++ = (bch_val3 & 0xFF);
1169 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172 *ecc_code++ = (bch_val2 & 0xFF);
1173 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176 *ecc_code++ = (bch_val1 & 0xFF);
1177 break;
1178 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179 case OMAP_ECC_BCH4_CODE_HW:
1180 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185 ((bch_val1 >> 28) & 0xF);
1186 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190 break;
1191 case OMAP_ECC_BCH16_CODE_HW:
1192 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193 ecc_code[0] = ((val >> 8) & 0xFF);
1194 ecc_code[1] = ((val >> 0) & 0xFF);
1195 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196 ecc_code[2] = ((val >> 24) & 0xFF);
1197 ecc_code[3] = ((val >> 16) & 0xFF);
1198 ecc_code[4] = ((val >> 8) & 0xFF);
1199 ecc_code[5] = ((val >> 0) & 0xFF);
1200 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201 ecc_code[6] = ((val >> 24) & 0xFF);
1202 ecc_code[7] = ((val >> 16) & 0xFF);
1203 ecc_code[8] = ((val >> 8) & 0xFF);
1204 ecc_code[9] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206 ecc_code[10] = ((val >> 24) & 0xFF);
1207 ecc_code[11] = ((val >> 16) & 0xFF);
1208 ecc_code[12] = ((val >> 8) & 0xFF);
1209 ecc_code[13] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211 ecc_code[14] = ((val >> 24) & 0xFF);
1212 ecc_code[15] = ((val >> 16) & 0xFF);
1213 ecc_code[16] = ((val >> 8) & 0xFF);
1214 ecc_code[17] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216 ecc_code[18] = ((val >> 24) & 0xFF);
1217 ecc_code[19] = ((val >> 16) & 0xFF);
1218 ecc_code[20] = ((val >> 8) & 0xFF);
1219 ecc_code[21] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221 ecc_code[22] = ((val >> 24) & 0xFF);
1222 ecc_code[23] = ((val >> 16) & 0xFF);
1223 ecc_code[24] = ((val >> 8) & 0xFF);
1224 ecc_code[25] = ((val >> 0) & 0xFF);
1225 break;
1226 default:
1227 return -EINVAL;
1228 }
1229
1230
1231 switch (info->ecc_opt) {
1232 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233
1234
1235
1236 for (j = 0; j < eccbytes; j++)
1237 ecc_calc[j] ^= bch4_polynomial[j];
1238 break;
1239 case OMAP_ECC_BCH4_CODE_HW:
1240
1241 ecc_calc[eccbytes - 1] = 0x0;
1242 break;
1243 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244
1245
1246
1247 for (j = 0; j < eccbytes; j++)
1248 ecc_calc[j] ^= bch8_polynomial[j];
1249 break;
1250 case OMAP_ECC_BCH8_CODE_HW:
1251
1252 ecc_calc[eccbytes - 1] = 0x0;
1253 break;
1254 case OMAP_ECC_BCH16_CODE_HW:
1255 break;
1256 default:
1257 return -EINVAL;
1258 }
1259
1260 return 0;
1261}
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
1274 const u_char *dat, u_char *ecc_calc)
1275{
1276 return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
1277}
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288 const u_char *dat, u_char *ecc_calc)
1289{
1290 struct omap_nand_info *info = mtd_to_omap(mtd);
1291 int eccbytes = info->nand.ecc.bytes;
1292 unsigned long nsectors;
1293 int i, ret;
1294
1295 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296 for (i = 0; i < nsectors; i++) {
1297 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298 if (ret)
1299 return ret;
1300
1301 ecc_calc += eccbytes;
1302 }
1303
1304 return 0;
1305}
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317static int erased_sector_bitflips(u_char *data, u_char *oob,
1318 struct omap_nand_info *info)
1319{
1320 int flip_bits = 0, i;
1321
1322 for (i = 0; i < info->nand.ecc.size; i++) {
1323 flip_bits += hweight8(~data[i]);
1324 if (flip_bits > info->nand.ecc.strength)
1325 return 0;
1326 }
1327
1328 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329 flip_bits += hweight8(~oob[i]);
1330 if (flip_bits > info->nand.ecc.strength)
1331 return 0;
1332 }
1333
1334
1335
1336
1337
1338 if (flip_bits) {
1339 memset(data, 0xFF, info->nand.ecc.size);
1340 memset(oob, 0xFF, info->nand.ecc.bytes);
1341 }
1342
1343 return flip_bits;
1344}
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1358 u_char *read_ecc, u_char *calc_ecc)
1359{
1360 struct omap_nand_info *info = mtd_to_omap(mtd);
1361 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362 int eccsteps = info->nand.ecc.steps;
1363 int i , j, stat = 0;
1364 int eccflag, actual_eccbytes;
1365 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366 u_char *ecc_vec = calc_ecc;
1367 u_char *spare_ecc = read_ecc;
1368 u_char *erased_ecc_vec;
1369 u_char *buf;
1370 int bitflip_count;
1371 bool is_error_reported = false;
1372 u32 bit_pos, byte_pos, error_max, pos;
1373 int err;
1374
1375 switch (info->ecc_opt) {
1376 case OMAP_ECC_BCH4_CODE_HW:
1377
1378 actual_eccbytes = ecc->bytes - 1;
1379 erased_ecc_vec = bch4_vector;
1380 break;
1381 case OMAP_ECC_BCH8_CODE_HW:
1382
1383 actual_eccbytes = ecc->bytes - 1;
1384 erased_ecc_vec = bch8_vector;
1385 break;
1386 case OMAP_ECC_BCH16_CODE_HW:
1387 actual_eccbytes = ecc->bytes;
1388 erased_ecc_vec = bch16_vector;
1389 break;
1390 default:
1391 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392 return -EINVAL;
1393 }
1394
1395
1396 memset(err_vec, 0, sizeof(err_vec));
1397
1398 for (i = 0; i < eccsteps ; i++) {
1399 eccflag = 0;
1400
1401
1402
1403
1404
1405 for (j = 0; j < actual_eccbytes; j++) {
1406 if (calc_ecc[j] != 0) {
1407 eccflag = 1;
1408 break;
1409 }
1410 }
1411
1412 if (eccflag == 1) {
1413 if (memcmp(calc_ecc, erased_ecc_vec,
1414 actual_eccbytes) == 0) {
1415
1416
1417
1418
1419 } else {
1420 buf = &data[info->nand.ecc.size * i];
1421
1422
1423
1424
1425
1426 bitflip_count = erased_sector_bitflips(
1427 buf, read_ecc, info);
1428 if (bitflip_count) {
1429
1430
1431
1432
1433 stat += bitflip_count;
1434 } else {
1435
1436
1437
1438
1439
1440
1441 err_vec[i].error_reported = true;
1442 is_error_reported = true;
1443 }
1444 }
1445 }
1446
1447
1448 calc_ecc += ecc->bytes;
1449 read_ecc += ecc->bytes;
1450 }
1451
1452
1453 if (!is_error_reported)
1454 return stat;
1455
1456
1457 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1458
1459 err = 0;
1460 for (i = 0; i < eccsteps; i++) {
1461 if (err_vec[i].error_uncorrectable) {
1462 dev_err(&info->pdev->dev,
1463 "uncorrectable bit-flips found\n");
1464 err = -EBADMSG;
1465 } else if (err_vec[i].error_reported) {
1466 for (j = 0; j < err_vec[i].error_count; j++) {
1467 switch (info->ecc_opt) {
1468 case OMAP_ECC_BCH4_CODE_HW:
1469
1470 pos = err_vec[i].error_loc[j] +
1471 BCH4_BIT_PAD;
1472 break;
1473 case OMAP_ECC_BCH8_CODE_HW:
1474 case OMAP_ECC_BCH16_CODE_HW:
1475 pos = err_vec[i].error_loc[j];
1476 break;
1477 default:
1478 return -EINVAL;
1479 }
1480 error_max = (ecc->size + actual_eccbytes) * 8;
1481
1482 bit_pos = pos % 8;
1483
1484
1485 byte_pos = (error_max - pos - 1) / 8;
1486
1487 if (pos < error_max) {
1488 if (byte_pos < 512) {
1489 pr_debug("bitflip@dat[%d]=%x\n",
1490 byte_pos, data[byte_pos]);
1491 data[byte_pos] ^= 1 << bit_pos;
1492 } else {
1493 pr_debug("bitflip@oob[%d]=%x\n",
1494 (byte_pos - 512),
1495 spare_ecc[byte_pos - 512]);
1496 spare_ecc[byte_pos - 512] ^=
1497 1 << bit_pos;
1498 }
1499 } else {
1500 dev_err(&info->pdev->dev,
1501 "invalid bit-flip @ %d:%d\n",
1502 byte_pos, bit_pos);
1503 err = -EBADMSG;
1504 }
1505 }
1506 }
1507
1508
1509 stat += err_vec[i].error_count;
1510
1511
1512 data += ecc->size;
1513 spare_ecc += ecc->bytes;
1514 }
1515
1516 return (err) ? err : stat;
1517}
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1530 const uint8_t *buf, int oob_required, int page)
1531{
1532 int ret;
1533 uint8_t *ecc_calc = chip->ecc.calc_buf;
1534
1535 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1536
1537
1538 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1539
1540
1541 chip->write_buf(mtd, buf, mtd->writesize);
1542
1543
1544 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1545
1546 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1547 chip->ecc.total);
1548 if (ret)
1549 return ret;
1550
1551
1552 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1553
1554 return nand_prog_page_end_op(chip);
1555}
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569static int omap_write_subpage_bch(struct mtd_info *mtd,
1570 struct nand_chip *chip, u32 offset,
1571 u32 data_len, const u8 *buf,
1572 int oob_required, int page)
1573{
1574 u8 *ecc_calc = chip->ecc.calc_buf;
1575 int ecc_size = chip->ecc.size;
1576 int ecc_bytes = chip->ecc.bytes;
1577 int ecc_steps = chip->ecc.steps;
1578 u32 start_step = offset / ecc_size;
1579 u32 end_step = (offset + data_len - 1) / ecc_size;
1580 int step, ret = 0;
1581
1582
1583
1584
1585
1586
1587
1588 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1589
1590
1591 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1592
1593
1594 chip->write_buf(mtd, buf, mtd->writesize);
1595
1596 for (step = 0; step < ecc_steps; step++) {
1597
1598 if (step < start_step || step > end_step)
1599 memset(ecc_calc, 0xff, ecc_bytes);
1600 else
1601 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1602
1603 if (ret)
1604 return ret;
1605
1606 buf += ecc_size;
1607 ecc_calc += ecc_bytes;
1608 }
1609
1610
1611
1612 ecc_calc = chip->ecc.calc_buf;
1613 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1614 chip->ecc.total);
1615 if (ret)
1616 return ret;
1617
1618
1619 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1620
1621 return nand_prog_page_end_op(chip);
1622}
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1640 uint8_t *buf, int oob_required, int page)
1641{
1642 uint8_t *ecc_calc = chip->ecc.calc_buf;
1643 uint8_t *ecc_code = chip->ecc.code_buf;
1644 int stat, ret;
1645 unsigned int max_bitflips = 0;
1646
1647 nand_read_page_op(chip, page, 0, NULL, 0);
1648
1649
1650 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1651
1652
1653 chip->read_buf(mtd, buf, mtd->writesize);
1654
1655
1656 nand_change_read_column_op(chip,
1657 mtd->writesize + BADBLOCK_MARKER_LENGTH,
1658 chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1659 chip->ecc.total, false);
1660
1661
1662 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1663
1664 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1665 chip->ecc.total);
1666 if (ret)
1667 return ret;
1668
1669 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1670
1671 if (stat < 0) {
1672 mtd->ecc_stats.failed++;
1673 } else {
1674 mtd->ecc_stats.corrected += stat;
1675 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1676 }
1677
1678 return max_bitflips;
1679}
1680
1681
1682
1683
1684
1685static bool is_elm_present(struct omap_nand_info *info,
1686 struct device_node *elm_node)
1687{
1688 struct platform_device *pdev;
1689
1690
1691 if (!elm_node) {
1692 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1693 return false;
1694 }
1695 pdev = of_find_device_by_node(elm_node);
1696
1697 if (!pdev) {
1698 dev_err(&info->pdev->dev, "ELM device not found\n");
1699 return false;
1700 }
1701
1702 info->elm_dev = &pdev->dev;
1703 return true;
1704}
1705
1706static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1707{
1708 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1709
1710 switch (info->ecc_opt) {
1711 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1712 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1713 ecc_needs_omap_bch = false;
1714 ecc_needs_bch = true;
1715 ecc_needs_elm = false;
1716 break;
1717 case OMAP_ECC_BCH4_CODE_HW:
1718 case OMAP_ECC_BCH8_CODE_HW:
1719 case OMAP_ECC_BCH16_CODE_HW:
1720 ecc_needs_omap_bch = true;
1721 ecc_needs_bch = false;
1722 ecc_needs_elm = true;
1723 break;
1724 default:
1725 ecc_needs_omap_bch = false;
1726 ecc_needs_bch = false;
1727 ecc_needs_elm = false;
1728 break;
1729 }
1730
1731 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1732 dev_err(&info->pdev->dev,
1733 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1734 return false;
1735 }
1736 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1737 dev_err(&info->pdev->dev,
1738 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1739 return false;
1740 }
1741 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1742 dev_err(&info->pdev->dev, "ELM not available\n");
1743 return false;
1744 }
1745
1746 return true;
1747}
1748
1749static const char * const nand_xfer_types[] = {
1750 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1751 [NAND_OMAP_POLLED] = "polled",
1752 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1753 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1754};
1755
1756static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1757{
1758 struct device_node *child = dev->of_node;
1759 int i;
1760 const char *s;
1761 u32 cs;
1762
1763 if (of_property_read_u32(child, "reg", &cs) < 0) {
1764 dev_err(dev, "reg not found in DT\n");
1765 return -EINVAL;
1766 }
1767
1768 info->gpmc_cs = cs;
1769
1770
1771 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1772 if (!info->elm_of_node) {
1773 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1774 if (!info->elm_of_node)
1775 dev_dbg(dev, "ti,elm-id not in DT\n");
1776 }
1777
1778
1779 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1780 dev_err(dev, "ti,nand-ecc-opt not found\n");
1781 return -EINVAL;
1782 }
1783
1784 if (!strcmp(s, "sw")) {
1785 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1786 } else if (!strcmp(s, "ham1") ||
1787 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1788 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1789 } else if (!strcmp(s, "bch4")) {
1790 if (info->elm_of_node)
1791 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1792 else
1793 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1794 } else if (!strcmp(s, "bch8")) {
1795 if (info->elm_of_node)
1796 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1797 else
1798 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1799 } else if (!strcmp(s, "bch16")) {
1800 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1801 } else {
1802 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1803 return -EINVAL;
1804 }
1805
1806
1807 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1808 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1809 if (!strcasecmp(s, nand_xfer_types[i])) {
1810 info->xfer_type = i;
1811 return 0;
1812 }
1813 }
1814
1815 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1816 return -EINVAL;
1817 }
1818
1819 return 0;
1820}
1821
1822static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1823 struct mtd_oob_region *oobregion)
1824{
1825 struct omap_nand_info *info = mtd_to_omap(mtd);
1826 struct nand_chip *chip = &info->nand;
1827 int off = BADBLOCK_MARKER_LENGTH;
1828
1829 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1830 !(chip->options & NAND_BUSWIDTH_16))
1831 off = 1;
1832
1833 if (section)
1834 return -ERANGE;
1835
1836 oobregion->offset = off;
1837 oobregion->length = chip->ecc.total;
1838
1839 return 0;
1840}
1841
1842static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1843 struct mtd_oob_region *oobregion)
1844{
1845 struct omap_nand_info *info = mtd_to_omap(mtd);
1846 struct nand_chip *chip = &info->nand;
1847 int off = BADBLOCK_MARKER_LENGTH;
1848
1849 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1850 !(chip->options & NAND_BUSWIDTH_16))
1851 off = 1;
1852
1853 if (section)
1854 return -ERANGE;
1855
1856 off += chip->ecc.total;
1857 if (off >= mtd->oobsize)
1858 return -ERANGE;
1859
1860 oobregion->offset = off;
1861 oobregion->length = mtd->oobsize - off;
1862
1863 return 0;
1864}
1865
1866static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1867 .ecc = omap_ooblayout_ecc,
1868 .free = omap_ooblayout_free,
1869};
1870
1871static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1872 struct mtd_oob_region *oobregion)
1873{
1874 struct nand_chip *chip = mtd_to_nand(mtd);
1875 int off = BADBLOCK_MARKER_LENGTH;
1876
1877 if (section >= chip->ecc.steps)
1878 return -ERANGE;
1879
1880
1881
1882
1883
1884 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1885 oobregion->length = chip->ecc.bytes;
1886
1887 return 0;
1888}
1889
1890static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1891 struct mtd_oob_region *oobregion)
1892{
1893 struct nand_chip *chip = mtd_to_nand(mtd);
1894 int off = BADBLOCK_MARKER_LENGTH;
1895
1896 if (section)
1897 return -ERANGE;
1898
1899
1900
1901
1902
1903 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1904 if (off >= mtd->oobsize)
1905 return -ERANGE;
1906
1907 oobregion->offset = off;
1908 oobregion->length = mtd->oobsize - off;
1909
1910 return 0;
1911}
1912
1913static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1914 .ecc = omap_sw_ooblayout_ecc,
1915 .free = omap_sw_ooblayout_free,
1916};
1917
1918static int omap_nand_probe(struct platform_device *pdev)
1919{
1920 struct omap_nand_info *info;
1921 struct mtd_info *mtd;
1922 struct nand_chip *nand_chip;
1923 int err;
1924 dma_cap_mask_t mask;
1925 struct resource *res;
1926 struct device *dev = &pdev->dev;
1927 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1928 int oobbytes_per_step;
1929
1930 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1931 GFP_KERNEL);
1932 if (!info)
1933 return -ENOMEM;
1934
1935 info->pdev = pdev;
1936
1937 err = omap_get_dt_info(dev, info);
1938 if (err)
1939 return err;
1940
1941 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1942 if (!info->ops) {
1943 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1944 return -ENODEV;
1945 }
1946
1947 nand_chip = &info->nand;
1948 mtd = nand_to_mtd(nand_chip);
1949 mtd->dev.parent = &pdev->dev;
1950 nand_chip->ecc.priv = NULL;
1951 nand_set_flash_node(nand_chip, dev->of_node);
1952
1953 if (!mtd->name) {
1954 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1955 "omap2-nand.%d", info->gpmc_cs);
1956 if (!mtd->name) {
1957 dev_err(&pdev->dev, "Failed to set MTD name\n");
1958 return -ENOMEM;
1959 }
1960 }
1961
1962 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1963 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1964 if (IS_ERR(nand_chip->IO_ADDR_R))
1965 return PTR_ERR(nand_chip->IO_ADDR_R);
1966
1967 info->phys_base = res->start;
1968
1969 nand_chip->controller = &omap_gpmc_controller;
1970
1971 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1972 nand_chip->cmd_ctrl = omap_hwcontrol;
1973
1974 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1975 GPIOD_IN);
1976 if (IS_ERR(info->ready_gpiod)) {
1977 dev_err(dev, "failed to get ready gpio\n");
1978 return PTR_ERR(info->ready_gpiod);
1979 }
1980
1981
1982
1983
1984
1985
1986
1987
1988 if (info->ready_gpiod) {
1989 nand_chip->dev_ready = omap_dev_ready;
1990 nand_chip->chip_delay = 0;
1991 } else {
1992 nand_chip->waitfunc = omap_wait;
1993 nand_chip->chip_delay = 50;
1994 }
1995
1996 if (info->flash_bbt)
1997 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1998
1999
2000 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2001 err = nand_scan_ident(mtd, 1, NULL);
2002 if (err) {
2003 dev_err(&info->pdev->dev,
2004 "scan failed, may be bus-width mismatch\n");
2005 goto return_error;
2006 }
2007
2008 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
2009 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
2010 else
2011 nand_chip->options |= NAND_SKIP_BBTSCAN;
2012
2013
2014 switch (info->xfer_type) {
2015 case NAND_OMAP_PREFETCH_POLLED:
2016 nand_chip->read_buf = omap_read_buf_pref;
2017 nand_chip->write_buf = omap_write_buf_pref;
2018 break;
2019
2020 case NAND_OMAP_POLLED:
2021
2022 break;
2023
2024 case NAND_OMAP_PREFETCH_DMA:
2025 dma_cap_zero(mask);
2026 dma_cap_set(DMA_SLAVE, mask);
2027 info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
2028
2029 if (IS_ERR(info->dma)) {
2030 dev_err(&pdev->dev, "DMA engine request failed\n");
2031 err = PTR_ERR(info->dma);
2032 goto return_error;
2033 } else {
2034 struct dma_slave_config cfg;
2035
2036 memset(&cfg, 0, sizeof(cfg));
2037 cfg.src_addr = info->phys_base;
2038 cfg.dst_addr = info->phys_base;
2039 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2040 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2041 cfg.src_maxburst = 16;
2042 cfg.dst_maxburst = 16;
2043 err = dmaengine_slave_config(info->dma, &cfg);
2044 if (err) {
2045 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
2046 err);
2047 goto return_error;
2048 }
2049 nand_chip->read_buf = omap_read_buf_dma_pref;
2050 nand_chip->write_buf = omap_write_buf_dma_pref;
2051 }
2052 break;
2053
2054 case NAND_OMAP_PREFETCH_IRQ:
2055 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
2056 if (info->gpmc_irq_fifo <= 0) {
2057 dev_err(&pdev->dev, "error getting fifo irq\n");
2058 err = -ENODEV;
2059 goto return_error;
2060 }
2061 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
2062 omap_nand_irq, IRQF_SHARED,
2063 "gpmc-nand-fifo", info);
2064 if (err) {
2065 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2066 info->gpmc_irq_fifo, err);
2067 info->gpmc_irq_fifo = 0;
2068 goto return_error;
2069 }
2070
2071 info->gpmc_irq_count = platform_get_irq(pdev, 1);
2072 if (info->gpmc_irq_count <= 0) {
2073 dev_err(&pdev->dev, "error getting count irq\n");
2074 err = -ENODEV;
2075 goto return_error;
2076 }
2077 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
2078 omap_nand_irq, IRQF_SHARED,
2079 "gpmc-nand-count", info);
2080 if (err) {
2081 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2082 info->gpmc_irq_count, err);
2083 info->gpmc_irq_count = 0;
2084 goto return_error;
2085 }
2086
2087 nand_chip->read_buf = omap_read_buf_irq_pref;
2088 nand_chip->write_buf = omap_write_buf_irq_pref;
2089
2090 break;
2091
2092 default:
2093 dev_err(&pdev->dev,
2094 "xfer_type(%d) not supported!\n", info->xfer_type);
2095 err = -EINVAL;
2096 goto return_error;
2097 }
2098
2099 if (!omap2_nand_ecc_check(info)) {
2100 err = -EINVAL;
2101 goto return_error;
2102 }
2103
2104
2105
2106
2107
2108 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2109 nand_chip->ecc.mode = NAND_ECC_SOFT;
2110 nand_chip->ecc.algo = NAND_ECC_HAMMING;
2111 goto scan_tail;
2112 }
2113
2114
2115 switch (info->ecc_opt) {
2116 case OMAP_ECC_HAM1_CODE_HW:
2117 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2118 nand_chip->ecc.mode = NAND_ECC_HW;
2119 nand_chip->ecc.bytes = 3;
2120 nand_chip->ecc.size = 512;
2121 nand_chip->ecc.strength = 1;
2122 nand_chip->ecc.calculate = omap_calculate_ecc;
2123 nand_chip->ecc.hwctl = omap_enable_hwecc;
2124 nand_chip->ecc.correct = omap_correct_data;
2125 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2126 oobbytes_per_step = nand_chip->ecc.bytes;
2127
2128 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2129 min_oobbytes = 1;
2130
2131 break;
2132
2133 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2134 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2135 nand_chip->ecc.mode = NAND_ECC_HW;
2136 nand_chip->ecc.size = 512;
2137 nand_chip->ecc.bytes = 7;
2138 nand_chip->ecc.strength = 4;
2139 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2140 nand_chip->ecc.correct = nand_bch_correct_data;
2141 nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2142 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2143
2144 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2145
2146 nand_chip->ecc.priv = nand_bch_init(mtd);
2147 if (!nand_chip->ecc.priv) {
2148 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2149 err = -EINVAL;
2150 goto return_error;
2151 }
2152 break;
2153
2154 case OMAP_ECC_BCH4_CODE_HW:
2155 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2156 nand_chip->ecc.mode = NAND_ECC_HW;
2157 nand_chip->ecc.size = 512;
2158
2159 nand_chip->ecc.bytes = 7 + 1;
2160 nand_chip->ecc.strength = 4;
2161 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2162 nand_chip->ecc.correct = omap_elm_correct_data;
2163 nand_chip->ecc.read_page = omap_read_page_bch;
2164 nand_chip->ecc.write_page = omap_write_page_bch;
2165 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2166 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2167 oobbytes_per_step = nand_chip->ecc.bytes;
2168
2169 err = elm_config(info->elm_dev, BCH4_ECC,
2170 mtd->writesize / nand_chip->ecc.size,
2171 nand_chip->ecc.size, nand_chip->ecc.bytes);
2172 if (err < 0)
2173 goto return_error;
2174 break;
2175
2176 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2177 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2178 nand_chip->ecc.mode = NAND_ECC_HW;
2179 nand_chip->ecc.size = 512;
2180 nand_chip->ecc.bytes = 13;
2181 nand_chip->ecc.strength = 8;
2182 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2183 nand_chip->ecc.correct = nand_bch_correct_data;
2184 nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2185 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2186
2187 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2188
2189 nand_chip->ecc.priv = nand_bch_init(mtd);
2190 if (!nand_chip->ecc.priv) {
2191 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2192 err = -EINVAL;
2193 goto return_error;
2194 }
2195 break;
2196
2197 case OMAP_ECC_BCH8_CODE_HW:
2198 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2199 nand_chip->ecc.mode = NAND_ECC_HW;
2200 nand_chip->ecc.size = 512;
2201
2202 nand_chip->ecc.bytes = 13 + 1;
2203 nand_chip->ecc.strength = 8;
2204 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2205 nand_chip->ecc.correct = omap_elm_correct_data;
2206 nand_chip->ecc.read_page = omap_read_page_bch;
2207 nand_chip->ecc.write_page = omap_write_page_bch;
2208 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2209 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2210 oobbytes_per_step = nand_chip->ecc.bytes;
2211
2212 err = elm_config(info->elm_dev, BCH8_ECC,
2213 mtd->writesize / nand_chip->ecc.size,
2214 nand_chip->ecc.size, nand_chip->ecc.bytes);
2215 if (err < 0)
2216 goto return_error;
2217
2218 break;
2219
2220 case OMAP_ECC_BCH16_CODE_HW:
2221 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2222 nand_chip->ecc.mode = NAND_ECC_HW;
2223 nand_chip->ecc.size = 512;
2224 nand_chip->ecc.bytes = 26;
2225 nand_chip->ecc.strength = 16;
2226 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2227 nand_chip->ecc.correct = omap_elm_correct_data;
2228 nand_chip->ecc.read_page = omap_read_page_bch;
2229 nand_chip->ecc.write_page = omap_write_page_bch;
2230 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2231 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2232 oobbytes_per_step = nand_chip->ecc.bytes;
2233
2234 err = elm_config(info->elm_dev, BCH16_ECC,
2235 mtd->writesize / nand_chip->ecc.size,
2236 nand_chip->ecc.size, nand_chip->ecc.bytes);
2237 if (err < 0)
2238 goto return_error;
2239
2240 break;
2241 default:
2242 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2243 err = -EINVAL;
2244 goto return_error;
2245 }
2246
2247
2248 min_oobbytes += (oobbytes_per_step *
2249 (mtd->writesize / nand_chip->ecc.size));
2250 if (mtd->oobsize < min_oobbytes) {
2251 dev_err(&info->pdev->dev,
2252 "not enough OOB bytes required = %d, available=%d\n",
2253 min_oobbytes, mtd->oobsize);
2254 err = -EINVAL;
2255 goto return_error;
2256 }
2257
2258scan_tail:
2259
2260 err = nand_scan_tail(mtd);
2261 if (err)
2262 goto return_error;
2263
2264 err = mtd_device_register(mtd, NULL, 0);
2265 if (err)
2266 goto cleanup_nand;
2267
2268 platform_set_drvdata(pdev, mtd);
2269
2270 return 0;
2271
2272cleanup_nand:
2273 nand_cleanup(nand_chip);
2274
2275return_error:
2276 if (!IS_ERR_OR_NULL(info->dma))
2277 dma_release_channel(info->dma);
2278 if (nand_chip->ecc.priv) {
2279 nand_bch_free(nand_chip->ecc.priv);
2280 nand_chip->ecc.priv = NULL;
2281 }
2282 return err;
2283}
2284
2285static int omap_nand_remove(struct platform_device *pdev)
2286{
2287 struct mtd_info *mtd = platform_get_drvdata(pdev);
2288 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2289 struct omap_nand_info *info = mtd_to_omap(mtd);
2290 if (nand_chip->ecc.priv) {
2291 nand_bch_free(nand_chip->ecc.priv);
2292 nand_chip->ecc.priv = NULL;
2293 }
2294 if (info->dma)
2295 dma_release_channel(info->dma);
2296 nand_release(mtd);
2297 return 0;
2298}
2299
2300static const struct of_device_id omap_nand_ids[] = {
2301 { .compatible = "ti,omap2-nand", },
2302 {},
2303};
2304MODULE_DEVICE_TABLE(of, omap_nand_ids);
2305
2306static struct platform_driver omap_nand_driver = {
2307 .probe = omap_nand_probe,
2308 .remove = omap_nand_remove,
2309 .driver = {
2310 .name = DRIVER_NAME,
2311 .of_match_table = of_match_ptr(omap_nand_ids),
2312 },
2313};
2314
2315module_platform_driver(omap_nand_driver);
2316
2317MODULE_ALIAS("platform:" DRIVER_NAME);
2318MODULE_LICENSE("GPL");
2319MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2320