linux/drivers/mtd/nand/raw/omap2.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/delay.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/module.h>
  17#include <linux/interrupt.h>
  18#include <linux/jiffies.h>
  19#include <linux/sched.h>
  20#include <linux/mtd/mtd.h>
  21#include <linux/mtd/rawnand.h>
  22#include <linux/mtd/partitions.h>
  23#include <linux/omap-dma.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include <linux/mtd/nand_bch.h>
  30#include <linux/platform_data/elm.h>
  31
  32#include <linux/omap-gpmc.h>
  33#include <linux/platform_data/mtd-nand-omap2.h>
  34
  35#define DRIVER_NAME     "omap2-nand"
  36#define OMAP_NAND_TIMEOUT_MS    5000
  37
  38#define NAND_Ecc_P1e            (1 << 0)
  39#define NAND_Ecc_P2e            (1 << 1)
  40#define NAND_Ecc_P4e            (1 << 2)
  41#define NAND_Ecc_P8e            (1 << 3)
  42#define NAND_Ecc_P16e           (1 << 4)
  43#define NAND_Ecc_P32e           (1 << 5)
  44#define NAND_Ecc_P64e           (1 << 6)
  45#define NAND_Ecc_P128e          (1 << 7)
  46#define NAND_Ecc_P256e          (1 << 8)
  47#define NAND_Ecc_P512e          (1 << 9)
  48#define NAND_Ecc_P1024e         (1 << 10)
  49#define NAND_Ecc_P2048e         (1 << 11)
  50
  51#define NAND_Ecc_P1o            (1 << 16)
  52#define NAND_Ecc_P2o            (1 << 17)
  53#define NAND_Ecc_P4o            (1 << 18)
  54#define NAND_Ecc_P8o            (1 << 19)
  55#define NAND_Ecc_P16o           (1 << 20)
  56#define NAND_Ecc_P32o           (1 << 21)
  57#define NAND_Ecc_P64o           (1 << 22)
  58#define NAND_Ecc_P128o          (1 << 23)
  59#define NAND_Ecc_P256o          (1 << 24)
  60#define NAND_Ecc_P512o          (1 << 25)
  61#define NAND_Ecc_P1024o         (1 << 26)
  62#define NAND_Ecc_P2048o         (1 << 27)
  63
  64#define TF(value)       (value ? 1 : 0)
  65
  66#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  67#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  68#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  69#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  70#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  71#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  72#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  73#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  74
  75#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  76#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  77#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  78#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  79#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  80#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  81#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  82#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  83
  84#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  85#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  86#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  87#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  88#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  89#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  90#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  91#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  92
  93#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  94#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  95#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  96#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  97#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  98#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  99#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
 100#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
 101
 102#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 103#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 104
 105#define PREFETCH_CONFIG1_CS_SHIFT       24
 106#define ECC_CONFIG_CS_SHIFT             1
 107#define CS_MASK                         0x7
 108#define ENABLE_PREFETCH                 (0x1 << 7)
 109#define DMA_MPU_MODE_SHIFT              2
 110#define ECCSIZE0_SHIFT                  12
 111#define ECCSIZE1_SHIFT                  22
 112#define ECC1RESULTSIZE                  0x1
 113#define ECCCLEAR                        0x100
 114#define ECC1                            0x1
 115#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 116#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 117#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 118#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 119#define STATUS_BUFF_EMPTY               0x00000001
 120
 121#define SECTOR_BYTES            512
 122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 123#define BCH4_BIT_PAD            4
 124
 125/* GPMC ecc engine settings for read */
 126#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
 127#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
 128#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
 129#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
 130#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
 131
 132/* GPMC ecc engine settings for write */
 133#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
 134#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
 135#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
 136
 137#define BADBLOCK_MARKER_LENGTH          2
 138
 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 140                                0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 141                                0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 142                                0x07, 0x0e};
 143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 144        0xac, 0x6b, 0xff, 0x99, 0x7b};
 145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 146
 147/* Shared among all NAND instances to synchronize access to the ECC Engine */
 148static struct nand_hw_control omap_gpmc_controller = {
 149        .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
 150        .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
 151};
 152
 153struct omap_nand_info {
 154        struct nand_chip                nand;
 155        struct platform_device          *pdev;
 156
 157        int                             gpmc_cs;
 158        bool                            dev_ready;
 159        enum nand_io                    xfer_type;
 160        int                             devsize;
 161        enum omap_ecc                   ecc_opt;
 162        struct device_node              *elm_of_node;
 163
 164        unsigned long                   phys_base;
 165        struct completion               comp;
 166        struct dma_chan                 *dma;
 167        int                             gpmc_irq_fifo;
 168        int                             gpmc_irq_count;
 169        enum {
 170                OMAP_NAND_IO_READ = 0,  /* read */
 171                OMAP_NAND_IO_WRITE,     /* write */
 172        } iomode;
 173        u_char                          *buf;
 174        int                                     buf_len;
 175        /* Interface to GPMC */
 176        struct gpmc_nand_regs           reg;
 177        struct gpmc_nand_ops            *ops;
 178        bool                            flash_bbt;
 179        /* fields specific for BCHx_HW ECC scheme */
 180        struct device                   *elm_dev;
 181        /* NAND ready gpio */
 182        struct gpio_desc                *ready_gpiod;
 183};
 184
 185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 186{
 187        return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 188}
 189
 190/**
 191 * omap_prefetch_enable - configures and starts prefetch transfer
 192 * @cs: cs (chip select) number
 193 * @fifo_th: fifo threshold to be used for read/ write
 194 * @dma_mode: dma mode enable (1) or disable (0)
 195 * @u32_count: number of bytes to be transferred
 196 * @is_write: prefetch read(0) or write post(1) mode
 197 */
 198static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 199        unsigned int u32_count, int is_write, struct omap_nand_info *info)
 200{
 201        u32 val;
 202
 203        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 204                return -1;
 205
 206        if (readl(info->reg.gpmc_prefetch_control))
 207                return -EBUSY;
 208
 209        /* Set the amount of bytes to be prefetched */
 210        writel(u32_count, info->reg.gpmc_prefetch_config2);
 211
 212        /* Set dma/mpu mode, the prefetch read / post write and
 213         * enable the engine. Set which cs is has requested for.
 214         */
 215        val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 216                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 217                (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 218        writel(val, info->reg.gpmc_prefetch_config1);
 219
 220        /*  Start the prefetch engine */
 221        writel(0x1, info->reg.gpmc_prefetch_control);
 222
 223        return 0;
 224}
 225
 226/**
 227 * omap_prefetch_reset - disables and stops the prefetch engine
 228 */
 229static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 230{
 231        u32 config1;
 232
 233        /* check if the same module/cs is trying to reset */
 234        config1 = readl(info->reg.gpmc_prefetch_config1);
 235        if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 236                return -EINVAL;
 237
 238        /* Stop the PFPW engine */
 239        writel(0x0, info->reg.gpmc_prefetch_control);
 240
 241        /* Reset/disable the PFPW engine */
 242        writel(0x0, info->reg.gpmc_prefetch_config1);
 243
 244        return 0;
 245}
 246
 247/**
 248 * omap_hwcontrol - hardware specific access to control-lines
 249 * @mtd: MTD device structure
 250 * @cmd: command to device
 251 * @ctrl:
 252 * NAND_NCE: bit 0 -> don't care
 253 * NAND_CLE: bit 1 -> Command Latch
 254 * NAND_ALE: bit 2 -> Address Latch
 255 *
 256 * NOTE: boards may use different bits for these!!
 257 */
 258static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 259{
 260        struct omap_nand_info *info = mtd_to_omap(mtd);
 261
 262        if (cmd != NAND_CMD_NONE) {
 263                if (ctrl & NAND_CLE)
 264                        writeb(cmd, info->reg.gpmc_nand_command);
 265
 266                else if (ctrl & NAND_ALE)
 267                        writeb(cmd, info->reg.gpmc_nand_address);
 268
 269                else /* NAND_NCE */
 270                        writeb(cmd, info->reg.gpmc_nand_data);
 271        }
 272}
 273
 274/**
 275 * omap_read_buf8 - read data from NAND controller into buffer
 276 * @mtd: MTD device structure
 277 * @buf: buffer to store date
 278 * @len: number of bytes to read
 279 */
 280static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 281{
 282        struct nand_chip *nand = mtd_to_nand(mtd);
 283
 284        ioread8_rep(nand->IO_ADDR_R, buf, len);
 285}
 286
 287/**
 288 * omap_write_buf8 - write buffer to NAND controller
 289 * @mtd: MTD device structure
 290 * @buf: data buffer
 291 * @len: number of bytes to write
 292 */
 293static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 294{
 295        struct omap_nand_info *info = mtd_to_omap(mtd);
 296        u_char *p = (u_char *)buf;
 297        bool status;
 298
 299        while (len--) {
 300                iowrite8(*p++, info->nand.IO_ADDR_W);
 301                /* wait until buffer is available for write */
 302                do {
 303                        status = info->ops->nand_writebuffer_empty();
 304                } while (!status);
 305        }
 306}
 307
 308/**
 309 * omap_read_buf16 - read data from NAND controller into buffer
 310 * @mtd: MTD device structure
 311 * @buf: buffer to store date
 312 * @len: number of bytes to read
 313 */
 314static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 315{
 316        struct nand_chip *nand = mtd_to_nand(mtd);
 317
 318        ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 319}
 320
 321/**
 322 * omap_write_buf16 - write buffer to NAND controller
 323 * @mtd: MTD device structure
 324 * @buf: data buffer
 325 * @len: number of bytes to write
 326 */
 327static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 328{
 329        struct omap_nand_info *info = mtd_to_omap(mtd);
 330        u16 *p = (u16 *) buf;
 331        bool status;
 332        /* FIXME try bursts of writesw() or DMA ... */
 333        len >>= 1;
 334
 335        while (len--) {
 336                iowrite16(*p++, info->nand.IO_ADDR_W);
 337                /* wait until buffer is available for write */
 338                do {
 339                        status = info->ops->nand_writebuffer_empty();
 340                } while (!status);
 341        }
 342}
 343
 344/**
 345 * omap_read_buf_pref - read data from NAND controller into buffer
 346 * @mtd: MTD device structure
 347 * @buf: buffer to store date
 348 * @len: number of bytes to read
 349 */
 350static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 351{
 352        struct omap_nand_info *info = mtd_to_omap(mtd);
 353        uint32_t r_count = 0;
 354        int ret = 0;
 355        u32 *p = (u32 *)buf;
 356
 357        /* take care of subpage reads */
 358        if (len % 4) {
 359                if (info->nand.options & NAND_BUSWIDTH_16)
 360                        omap_read_buf16(mtd, buf, len % 4);
 361                else
 362                        omap_read_buf8(mtd, buf, len % 4);
 363                p = (u32 *) (buf + len % 4);
 364                len -= len % 4;
 365        }
 366
 367        /* configure and start prefetch transfer */
 368        ret = omap_prefetch_enable(info->gpmc_cs,
 369                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 370        if (ret) {
 371                /* PFPW engine is busy, use cpu copy method */
 372                if (info->nand.options & NAND_BUSWIDTH_16)
 373                        omap_read_buf16(mtd, (u_char *)p, len);
 374                else
 375                        omap_read_buf8(mtd, (u_char *)p, len);
 376        } else {
 377                do {
 378                        r_count = readl(info->reg.gpmc_prefetch_status);
 379                        r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 380                        r_count = r_count >> 2;
 381                        ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 382                        p += r_count;
 383                        len -= r_count << 2;
 384                } while (len);
 385                /* disable and stop the PFPW engine */
 386                omap_prefetch_reset(info->gpmc_cs, info);
 387        }
 388}
 389
 390/**
 391 * omap_write_buf_pref - write buffer to NAND controller
 392 * @mtd: MTD device structure
 393 * @buf: data buffer
 394 * @len: number of bytes to write
 395 */
 396static void omap_write_buf_pref(struct mtd_info *mtd,
 397                                        const u_char *buf, int len)
 398{
 399        struct omap_nand_info *info = mtd_to_omap(mtd);
 400        uint32_t w_count = 0;
 401        int i = 0, ret = 0;
 402        u16 *p = (u16 *)buf;
 403        unsigned long tim, limit;
 404        u32 val;
 405
 406        /* take care of subpage writes */
 407        if (len % 2 != 0) {
 408                writeb(*buf, info->nand.IO_ADDR_W);
 409                p = (u16 *)(buf + 1);
 410                len--;
 411        }
 412
 413        /*  configure and start prefetch transfer */
 414        ret = omap_prefetch_enable(info->gpmc_cs,
 415                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 416        if (ret) {
 417                /* PFPW engine is busy, use cpu copy method */
 418                if (info->nand.options & NAND_BUSWIDTH_16)
 419                        omap_write_buf16(mtd, (u_char *)p, len);
 420                else
 421                        omap_write_buf8(mtd, (u_char *)p, len);
 422        } else {
 423                while (len) {
 424                        w_count = readl(info->reg.gpmc_prefetch_status);
 425                        w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 426                        w_count = w_count >> 1;
 427                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 428                                iowrite16(*p++, info->nand.IO_ADDR_W);
 429                }
 430                /* wait for data to flushed-out before reset the prefetch */
 431                tim = 0;
 432                limit = (loops_per_jiffy *
 433                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 434                do {
 435                        cpu_relax();
 436                        val = readl(info->reg.gpmc_prefetch_status);
 437                        val = PREFETCH_STATUS_COUNT(val);
 438                } while (val && (tim++ < limit));
 439
 440                /* disable and stop the PFPW engine */
 441                omap_prefetch_reset(info->gpmc_cs, info);
 442        }
 443}
 444
 445/*
 446 * omap_nand_dma_callback: callback on the completion of dma transfer
 447 * @data: pointer to completion data structure
 448 */
 449static void omap_nand_dma_callback(void *data)
 450{
 451        complete((struct completion *) data);
 452}
 453
 454/*
 455 * omap_nand_dma_transfer: configure and start dma transfer
 456 * @mtd: MTD device structure
 457 * @addr: virtual address in RAM of source/destination
 458 * @len: number of data bytes to be transferred
 459 * @is_write: flag for read/write operation
 460 */
 461static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 462                                        unsigned int len, int is_write)
 463{
 464        struct omap_nand_info *info = mtd_to_omap(mtd);
 465        struct dma_async_tx_descriptor *tx;
 466        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 467                                                        DMA_FROM_DEVICE;
 468        struct scatterlist sg;
 469        unsigned long tim, limit;
 470        unsigned n;
 471        int ret;
 472        u32 val;
 473
 474        if (!virt_addr_valid(addr))
 475                goto out_copy;
 476
 477        sg_init_one(&sg, addr, len);
 478        n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 479        if (n == 0) {
 480                dev_err(&info->pdev->dev,
 481                        "Couldn't DMA map a %d byte buffer\n", len);
 482                goto out_copy;
 483        }
 484
 485        tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 486                is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 487                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 488        if (!tx)
 489                goto out_copy_unmap;
 490
 491        tx->callback = omap_nand_dma_callback;
 492        tx->callback_param = &info->comp;
 493        dmaengine_submit(tx);
 494
 495        init_completion(&info->comp);
 496
 497        /* setup and start DMA using dma_addr */
 498        dma_async_issue_pending(info->dma);
 499
 500        /*  configure and start prefetch transfer */
 501        ret = omap_prefetch_enable(info->gpmc_cs,
 502                PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 503        if (ret)
 504                /* PFPW engine is busy, use cpu copy method */
 505                goto out_copy_unmap;
 506
 507        wait_for_completion(&info->comp);
 508        tim = 0;
 509        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 510
 511        do {
 512                cpu_relax();
 513                val = readl(info->reg.gpmc_prefetch_status);
 514                val = PREFETCH_STATUS_COUNT(val);
 515        } while (val && (tim++ < limit));
 516
 517        /* disable and stop the PFPW engine */
 518        omap_prefetch_reset(info->gpmc_cs, info);
 519
 520        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 521        return 0;
 522
 523out_copy_unmap:
 524        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 525out_copy:
 526        if (info->nand.options & NAND_BUSWIDTH_16)
 527                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 528                        : omap_write_buf16(mtd, (u_char *) addr, len);
 529        else
 530                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 531                        : omap_write_buf8(mtd, (u_char *) addr, len);
 532        return 0;
 533}
 534
 535/**
 536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 537 * @mtd: MTD device structure
 538 * @buf: buffer to store date
 539 * @len: number of bytes to read
 540 */
 541static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 542{
 543        if (len <= mtd->oobsize)
 544                omap_read_buf_pref(mtd, buf, len);
 545        else
 546                /* start transfer in DMA mode */
 547                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 548}
 549
 550/**
 551 * omap_write_buf_dma_pref - write buffer to NAND controller
 552 * @mtd: MTD device structure
 553 * @buf: data buffer
 554 * @len: number of bytes to write
 555 */
 556static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 557                                        const u_char *buf, int len)
 558{
 559        if (len <= mtd->oobsize)
 560                omap_write_buf_pref(mtd, buf, len);
 561        else
 562                /* start transfer in DMA mode */
 563                omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 564}
 565
 566/*
 567 * omap_nand_irq - GPMC irq handler
 568 * @this_irq: gpmc irq number
 569 * @dev: omap_nand_info structure pointer is passed here
 570 */
 571static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 572{
 573        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 574        u32 bytes;
 575
 576        bytes = readl(info->reg.gpmc_prefetch_status);
 577        bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 578        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 579        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 580                if (this_irq == info->gpmc_irq_count)
 581                        goto done;
 582
 583                if (info->buf_len && (info->buf_len < bytes))
 584                        bytes = info->buf_len;
 585                else if (!info->buf_len)
 586                        bytes = 0;
 587                iowrite32_rep(info->nand.IO_ADDR_W,
 588                                                (u32 *)info->buf, bytes >> 2);
 589                info->buf = info->buf + bytes;
 590                info->buf_len -= bytes;
 591
 592        } else {
 593                ioread32_rep(info->nand.IO_ADDR_R,
 594                                                (u32 *)info->buf, bytes >> 2);
 595                info->buf = info->buf + bytes;
 596
 597                if (this_irq == info->gpmc_irq_count)
 598                        goto done;
 599        }
 600
 601        return IRQ_HANDLED;
 602
 603done:
 604        complete(&info->comp);
 605
 606        disable_irq_nosync(info->gpmc_irq_fifo);
 607        disable_irq_nosync(info->gpmc_irq_count);
 608
 609        return IRQ_HANDLED;
 610}
 611
 612/*
 613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 614 * @mtd: MTD device structure
 615 * @buf: buffer to store date
 616 * @len: number of bytes to read
 617 */
 618static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 619{
 620        struct omap_nand_info *info = mtd_to_omap(mtd);
 621        int ret = 0;
 622
 623        if (len <= mtd->oobsize) {
 624                omap_read_buf_pref(mtd, buf, len);
 625                return;
 626        }
 627
 628        info->iomode = OMAP_NAND_IO_READ;
 629        info->buf = buf;
 630        init_completion(&info->comp);
 631
 632        /*  configure and start prefetch transfer */
 633        ret = omap_prefetch_enable(info->gpmc_cs,
 634                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 635        if (ret)
 636                /* PFPW engine is busy, use cpu copy method */
 637                goto out_copy;
 638
 639        info->buf_len = len;
 640
 641        enable_irq(info->gpmc_irq_count);
 642        enable_irq(info->gpmc_irq_fifo);
 643
 644        /* waiting for read to complete */
 645        wait_for_completion(&info->comp);
 646
 647        /* disable and stop the PFPW engine */
 648        omap_prefetch_reset(info->gpmc_cs, info);
 649        return;
 650
 651out_copy:
 652        if (info->nand.options & NAND_BUSWIDTH_16)
 653                omap_read_buf16(mtd, buf, len);
 654        else
 655                omap_read_buf8(mtd, buf, len);
 656}
 657
 658/*
 659 * omap_write_buf_irq_pref - write buffer to NAND controller
 660 * @mtd: MTD device structure
 661 * @buf: data buffer
 662 * @len: number of bytes to write
 663 */
 664static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 665                                        const u_char *buf, int len)
 666{
 667        struct omap_nand_info *info = mtd_to_omap(mtd);
 668        int ret = 0;
 669        unsigned long tim, limit;
 670        u32 val;
 671
 672        if (len <= mtd->oobsize) {
 673                omap_write_buf_pref(mtd, buf, len);
 674                return;
 675        }
 676
 677        info->iomode = OMAP_NAND_IO_WRITE;
 678        info->buf = (u_char *) buf;
 679        init_completion(&info->comp);
 680
 681        /* configure and start prefetch transfer : size=24 */
 682        ret = omap_prefetch_enable(info->gpmc_cs,
 683                (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 684        if (ret)
 685                /* PFPW engine is busy, use cpu copy method */
 686                goto out_copy;
 687
 688        info->buf_len = len;
 689
 690        enable_irq(info->gpmc_irq_count);
 691        enable_irq(info->gpmc_irq_fifo);
 692
 693        /* waiting for write to complete */
 694        wait_for_completion(&info->comp);
 695
 696        /* wait for data to flushed-out before reset the prefetch */
 697        tim = 0;
 698        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 699        do {
 700                val = readl(info->reg.gpmc_prefetch_status);
 701                val = PREFETCH_STATUS_COUNT(val);
 702                cpu_relax();
 703        } while (val && (tim++ < limit));
 704
 705        /* disable and stop the PFPW engine */
 706        omap_prefetch_reset(info->gpmc_cs, info);
 707        return;
 708
 709out_copy:
 710        if (info->nand.options & NAND_BUSWIDTH_16)
 711                omap_write_buf16(mtd, buf, len);
 712        else
 713                omap_write_buf8(mtd, buf, len);
 714}
 715
 716/**
 717 * gen_true_ecc - This function will generate true ECC value
 718 * @ecc_buf: buffer to store ecc code
 719 *
 720 * This generated true ECC value can be used when correcting
 721 * data read from NAND flash memory core
 722 */
 723static void gen_true_ecc(u8 *ecc_buf)
 724{
 725        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 726                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 727
 728        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 729                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 730        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 731                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 732        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 733                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 734}
 735
 736/**
 737 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 738 * @ecc_data1:  ecc code from nand spare area
 739 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 740 * @page_data:  page data
 741 *
 742 * This function compares two ECC's and indicates if there is an error.
 743 * If the error can be corrected it will be corrected to the buffer.
 744 * If there is no error, %0 is returned. If there is an error but it
 745 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 746 */
 747static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 748                            u8 *ecc_data2,      /* read from register */
 749                            u8 *page_data)
 750{
 751        uint    i;
 752        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 753        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 754        u8      ecc_bit[24];
 755        u8      ecc_sum = 0;
 756        u8      find_bit = 0;
 757        uint    find_byte = 0;
 758        int     isEccFF;
 759
 760        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 761
 762        gen_true_ecc(ecc_data1);
 763        gen_true_ecc(ecc_data2);
 764
 765        for (i = 0; i <= 2; i++) {
 766                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 767                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 768        }
 769
 770        for (i = 0; i < 8; i++) {
 771                tmp0_bit[i]     = *ecc_data1 % 2;
 772                *ecc_data1      = *ecc_data1 / 2;
 773        }
 774
 775        for (i = 0; i < 8; i++) {
 776                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 777                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 778        }
 779
 780        for (i = 0; i < 8; i++) {
 781                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 782                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 783        }
 784
 785        for (i = 0; i < 8; i++) {
 786                comp0_bit[i]     = *ecc_data2 % 2;
 787                *ecc_data2       = *ecc_data2 / 2;
 788        }
 789
 790        for (i = 0; i < 8; i++) {
 791                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 792                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 793        }
 794
 795        for (i = 0; i < 8; i++) {
 796                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 797                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 798        }
 799
 800        for (i = 0; i < 6; i++)
 801                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 802
 803        for (i = 0; i < 8; i++)
 804                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 805
 806        for (i = 0; i < 8; i++)
 807                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 808
 809        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 810        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 811
 812        for (i = 0; i < 24; i++)
 813                ecc_sum += ecc_bit[i];
 814
 815        switch (ecc_sum) {
 816        case 0:
 817                /* Not reached because this function is not called if
 818                 *  ECC values are equal
 819                 */
 820                return 0;
 821
 822        case 1:
 823                /* Uncorrectable error */
 824                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 825                return -EBADMSG;
 826
 827        case 11:
 828                /* UN-Correctable error */
 829                pr_debug("ECC UNCORRECTED_ERROR B\n");
 830                return -EBADMSG;
 831
 832        case 12:
 833                /* Correctable error */
 834                find_byte = (ecc_bit[23] << 8) +
 835                            (ecc_bit[21] << 7) +
 836                            (ecc_bit[19] << 6) +
 837                            (ecc_bit[17] << 5) +
 838                            (ecc_bit[15] << 4) +
 839                            (ecc_bit[13] << 3) +
 840                            (ecc_bit[11] << 2) +
 841                            (ecc_bit[9]  << 1) +
 842                            ecc_bit[7];
 843
 844                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 845
 846                pr_debug("Correcting single bit ECC error at offset: "
 847                                "%d, bit: %d\n", find_byte, find_bit);
 848
 849                page_data[find_byte] ^= (1 << find_bit);
 850
 851                return 1;
 852        default:
 853                if (isEccFF) {
 854                        if (ecc_data2[0] == 0 &&
 855                            ecc_data2[1] == 0 &&
 856                            ecc_data2[2] == 0)
 857                                return 0;
 858                }
 859                pr_debug("UNCORRECTED_ERROR default\n");
 860                return -EBADMSG;
 861        }
 862}
 863
 864/**
 865 * omap_correct_data - Compares the ECC read with HW generated ECC
 866 * @mtd: MTD device structure
 867 * @dat: page data
 868 * @read_ecc: ecc read from nand flash
 869 * @calc_ecc: ecc read from HW ECC registers
 870 *
 871 * Compares the ecc read from nand spare area with ECC registers values
 872 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 873 * detection and correction. If there are no errors, %0 is returned. If
 874 * there were errors and all of the errors were corrected, the number of
 875 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 876 * returned.
 877 */
 878static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 879                                u_char *read_ecc, u_char *calc_ecc)
 880{
 881        struct omap_nand_info *info = mtd_to_omap(mtd);
 882        int blockCnt = 0, i = 0, ret = 0;
 883        int stat = 0;
 884
 885        /* Ex NAND_ECC_HW12_2048 */
 886        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 887                        (info->nand.ecc.size  == 2048))
 888                blockCnt = 4;
 889        else
 890                blockCnt = 1;
 891
 892        for (i = 0; i < blockCnt; i++) {
 893                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 894                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 895                        if (ret < 0)
 896                                return ret;
 897                        /* keep track of the number of corrected errors */
 898                        stat += ret;
 899                }
 900                read_ecc += 3;
 901                calc_ecc += 3;
 902                dat      += 512;
 903        }
 904        return stat;
 905}
 906
 907/**
 908 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 909 * @mtd: MTD device structure
 910 * @dat: The pointer to data on which ecc is computed
 911 * @ecc_code: The ecc_code buffer
 912 *
 913 * Using noninverted ECC can be considered ugly since writing a blank
 914 * page ie. padding will clear the ECC bytes. This is no problem as long
 915 * nobody is trying to write data on the seemingly unused page. Reading
 916 * an erased page will produce an ECC mismatch between generated and read
 917 * ECC bytes that has to be dealt with separately.
 918 */
 919static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 920                                u_char *ecc_code)
 921{
 922        struct omap_nand_info *info = mtd_to_omap(mtd);
 923        u32 val;
 924
 925        val = readl(info->reg.gpmc_ecc_config);
 926        if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 927                return -EINVAL;
 928
 929        /* read ecc result */
 930        val = readl(info->reg.gpmc_ecc1_result);
 931        *ecc_code++ = val;          /* P128e, ..., P1e */
 932        *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 933        /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 934        *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 935
 936        return 0;
 937}
 938
 939/**
 940 * omap_enable_hwecc - This function enables the hardware ecc functionality
 941 * @mtd: MTD device structure
 942 * @mode: Read/Write mode
 943 */
 944static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 945{
 946        struct omap_nand_info *info = mtd_to_omap(mtd);
 947        struct nand_chip *chip = mtd_to_nand(mtd);
 948        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 949        u32 val;
 950
 951        /* clear ecc and enable bits */
 952        val = ECCCLEAR | ECC1;
 953        writel(val, info->reg.gpmc_ecc_control);
 954
 955        /* program ecc and result sizes */
 956        val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 957                         ECC1RESULTSIZE);
 958        writel(val, info->reg.gpmc_ecc_size_config);
 959
 960        switch (mode) {
 961        case NAND_ECC_READ:
 962        case NAND_ECC_WRITE:
 963                writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 964                break;
 965        case NAND_ECC_READSYN:
 966                writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 967                break;
 968        default:
 969                dev_info(&info->pdev->dev,
 970                        "error: unrecognized Mode[%d]!\n", mode);
 971                break;
 972        }
 973
 974        /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 975        val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 976        writel(val, info->reg.gpmc_ecc_config);
 977}
 978
 979/**
 980 * omap_wait - wait until the command is done
 981 * @mtd: MTD device structure
 982 * @chip: NAND Chip structure
 983 *
 984 * Wait function is called during Program and erase operations and
 985 * the way it is called from MTD layer, we should wait till the NAND
 986 * chip is ready after the programming/erase operation has completed.
 987 *
 988 * Erase can take up to 400ms and program up to 20ms according to
 989 * general NAND and SmartMedia specs
 990 */
 991static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 992{
 993        struct nand_chip *this = mtd_to_nand(mtd);
 994        struct omap_nand_info *info = mtd_to_omap(mtd);
 995        unsigned long timeo = jiffies;
 996        int status, state = this->state;
 997
 998        if (state == FL_ERASING)
 999                timeo += msecs_to_jiffies(400);
1000        else
1001                timeo += msecs_to_jiffies(20);
1002
1003        writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004        while (time_before(jiffies, timeo)) {
1005                status = readb(info->reg.gpmc_nand_data);
1006                if (status & NAND_STATUS_READY)
1007                        break;
1008                cond_resched();
1009        }
1010
1011        status = readb(info->reg.gpmc_nand_data);
1012        return status;
1013}
1014
1015/**
1016 * omap_dev_ready - checks the NAND Ready GPIO line
1017 * @mtd: MTD device structure
1018 *
1019 * Returns true if ready and false if busy.
1020 */
1021static int omap_dev_ready(struct mtd_info *mtd)
1022{
1023        struct omap_nand_info *info = mtd_to_omap(mtd);
1024
1025        return gpiod_get_value(info->ready_gpiod);
1026}
1027
1028/**
1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 * @mtd: MTD device structure
1031 * @mode: Read/Write mode
1032 *
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
1036 * eccsize0 = 0  (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1038 */
1039static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1040{
1041        unsigned int bch_type;
1042        unsigned int dev_width, nsectors;
1043        struct omap_nand_info *info = mtd_to_omap(mtd);
1044        enum omap_ecc ecc_opt = info->ecc_opt;
1045        struct nand_chip *chip = mtd_to_nand(mtd);
1046        u32 val, wr_mode;
1047        unsigned int ecc_size1, ecc_size0;
1048
1049        /* GPMC configurations for calculating ECC */
1050        switch (ecc_opt) {
1051        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052                bch_type = 0;
1053                nsectors = 1;
1054                wr_mode   = BCH_WRAPMODE_6;
1055                ecc_size0 = BCH_ECC_SIZE0;
1056                ecc_size1 = BCH_ECC_SIZE1;
1057                break;
1058        case OMAP_ECC_BCH4_CODE_HW:
1059                bch_type = 0;
1060                nsectors = chip->ecc.steps;
1061                if (mode == NAND_ECC_READ) {
1062                        wr_mode   = BCH_WRAPMODE_1;
1063                        ecc_size0 = BCH4R_ECC_SIZE0;
1064                        ecc_size1 = BCH4R_ECC_SIZE1;
1065                } else {
1066                        wr_mode   = BCH_WRAPMODE_6;
1067                        ecc_size0 = BCH_ECC_SIZE0;
1068                        ecc_size1 = BCH_ECC_SIZE1;
1069                }
1070                break;
1071        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072                bch_type = 1;
1073                nsectors = 1;
1074                wr_mode   = BCH_WRAPMODE_6;
1075                ecc_size0 = BCH_ECC_SIZE0;
1076                ecc_size1 = BCH_ECC_SIZE1;
1077                break;
1078        case OMAP_ECC_BCH8_CODE_HW:
1079                bch_type = 1;
1080                nsectors = chip->ecc.steps;
1081                if (mode == NAND_ECC_READ) {
1082                        wr_mode   = BCH_WRAPMODE_1;
1083                        ecc_size0 = BCH8R_ECC_SIZE0;
1084                        ecc_size1 = BCH8R_ECC_SIZE1;
1085                } else {
1086                        wr_mode   = BCH_WRAPMODE_6;
1087                        ecc_size0 = BCH_ECC_SIZE0;
1088                        ecc_size1 = BCH_ECC_SIZE1;
1089                }
1090                break;
1091        case OMAP_ECC_BCH16_CODE_HW:
1092                bch_type = 0x2;
1093                nsectors = chip->ecc.steps;
1094                if (mode == NAND_ECC_READ) {
1095                        wr_mode   = 0x01;
1096                        ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097                        ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1098                } else {
1099                        wr_mode   = 0x01;
1100                        ecc_size0 = 0;  /* extra bits in nibbles per sector */
1101                        ecc_size1 = 52; /* OOB bits in nibbles per sector */
1102                }
1103                break;
1104        default:
1105                return;
1106        }
1107
1108        writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110        /* Configure ecc size for BCH */
1111        val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112        writel(val, info->reg.gpmc_ecc_size_config);
1113
1114        dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116        /* BCH configuration */
1117        val = ((1                        << 16) | /* enable BCH */
1118               (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1119               (wr_mode                  <<  8) | /* wrap mode */
1120               (dev_width                <<  7) | /* bus width */
1121               (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1122               (info->gpmc_cs            <<  1) | /* ECC CS */
1123               (0x1));                            /* enable ECC */
1124
1125        writel(val, info->reg.gpmc_ecc_config);
1126
1127        /* Clear ecc and enable bits */
1128        writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129}
1130
1131static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133                                0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135/**
1136 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1137 * @mtd:        MTD device structure
1138 * @dat:        The pointer to data on which ecc is computed
1139 * @ecc_code:   The ecc_code buffer
1140 * @i:          The sector number (for a multi sector page)
1141 *
1142 * Support calculating of BCH4/8/16 ECC vectors for one sector
1143 * within a page. Sector number is in @i.
1144 */
1145static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146                                   const u_char *dat, u_char *ecc_calc, int i)
1147{
1148        struct omap_nand_info *info = mtd_to_omap(mtd);
1149        int eccbytes    = info->nand.ecc.bytes;
1150        struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1151        u8 *ecc_code;
1152        unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153        u32 val;
1154        int j;
1155
1156        ecc_code = ecc_calc;
1157        switch (info->ecc_opt) {
1158        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159        case OMAP_ECC_BCH8_CODE_HW:
1160                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162                bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163                bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164                *ecc_code++ = (bch_val4 & 0xFF);
1165                *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166                *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167                *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168                *ecc_code++ = (bch_val3 & 0xFF);
1169                *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170                *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171                *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172                *ecc_code++ = (bch_val2 & 0xFF);
1173                *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174                *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175                *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176                *ecc_code++ = (bch_val1 & 0xFF);
1177                break;
1178        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179        case OMAP_ECC_BCH4_CODE_HW:
1180                bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181                bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182                *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183                *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184                *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185                        ((bch_val1 >> 28) & 0xF);
1186                *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187                *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188                *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189                *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190                break;
1191        case OMAP_ECC_BCH16_CODE_HW:
1192                val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193                ecc_code[0]  = ((val >>  8) & 0xFF);
1194                ecc_code[1]  = ((val >>  0) & 0xFF);
1195                val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196                ecc_code[2]  = ((val >> 24) & 0xFF);
1197                ecc_code[3]  = ((val >> 16) & 0xFF);
1198                ecc_code[4]  = ((val >>  8) & 0xFF);
1199                ecc_code[5]  = ((val >>  0) & 0xFF);
1200                val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201                ecc_code[6]  = ((val >> 24) & 0xFF);
1202                ecc_code[7]  = ((val >> 16) & 0xFF);
1203                ecc_code[8]  = ((val >>  8) & 0xFF);
1204                ecc_code[9]  = ((val >>  0) & 0xFF);
1205                val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206                ecc_code[10] = ((val >> 24) & 0xFF);
1207                ecc_code[11] = ((val >> 16) & 0xFF);
1208                ecc_code[12] = ((val >>  8) & 0xFF);
1209                ecc_code[13] = ((val >>  0) & 0xFF);
1210                val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211                ecc_code[14] = ((val >> 24) & 0xFF);
1212                ecc_code[15] = ((val >> 16) & 0xFF);
1213                ecc_code[16] = ((val >>  8) & 0xFF);
1214                ecc_code[17] = ((val >>  0) & 0xFF);
1215                val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216                ecc_code[18] = ((val >> 24) & 0xFF);
1217                ecc_code[19] = ((val >> 16) & 0xFF);
1218                ecc_code[20] = ((val >>  8) & 0xFF);
1219                ecc_code[21] = ((val >>  0) & 0xFF);
1220                val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221                ecc_code[22] = ((val >> 24) & 0xFF);
1222                ecc_code[23] = ((val >> 16) & 0xFF);
1223                ecc_code[24] = ((val >>  8) & 0xFF);
1224                ecc_code[25] = ((val >>  0) & 0xFF);
1225                break;
1226        default:
1227                return -EINVAL;
1228        }
1229
1230        /* ECC scheme specific syndrome customizations */
1231        switch (info->ecc_opt) {
1232        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233                /* Add constant polynomial to remainder, so that
1234                 * ECC of blank pages results in 0x0 on reading back
1235                 */
1236                for (j = 0; j < eccbytes; j++)
1237                        ecc_calc[j] ^= bch4_polynomial[j];
1238                break;
1239        case OMAP_ECC_BCH4_CODE_HW:
1240                /* Set  8th ECC byte as 0x0 for ROM compatibility */
1241                ecc_calc[eccbytes - 1] = 0x0;
1242                break;
1243        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244                /* Add constant polynomial to remainder, so that
1245                 * ECC of blank pages results in 0x0 on reading back
1246                 */
1247                for (j = 0; j < eccbytes; j++)
1248                        ecc_calc[j] ^= bch8_polynomial[j];
1249                break;
1250        case OMAP_ECC_BCH8_CODE_HW:
1251                /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252                ecc_calc[eccbytes - 1] = 0x0;
1253                break;
1254        case OMAP_ECC_BCH16_CODE_HW:
1255                break;
1256        default:
1257                return -EINVAL;
1258        }
1259
1260        return 0;
1261}
1262
1263/**
1264 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1265 * @mtd:        MTD device structure
1266 * @dat:        The pointer to data on which ecc is computed
1267 * @ecc_code:   The ecc_code buffer
1268 *
1269 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1270 * when SW based correction is required as ECC is required for one sector
1271 * at a time.
1272 */
1273static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
1274                                     const u_char *dat, u_char *ecc_calc)
1275{
1276        return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
1277}
1278
1279/**
1280 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1281 * @mtd:        MTD device structure
1282 * @dat:        The pointer to data on which ecc is computed
1283 * @ecc_code:   The ecc_code buffer
1284 *
1285 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1286 */
1287static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288                                        const u_char *dat, u_char *ecc_calc)
1289{
1290        struct omap_nand_info *info = mtd_to_omap(mtd);
1291        int eccbytes = info->nand.ecc.bytes;
1292        unsigned long nsectors;
1293        int i, ret;
1294
1295        nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296        for (i = 0; i < nsectors; i++) {
1297                ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298                if (ret)
1299                        return ret;
1300
1301                ecc_calc += eccbytes;
1302        }
1303
1304        return 0;
1305}
1306
1307/**
1308 * erased_sector_bitflips - count bit flips
1309 * @data:       data sector buffer
1310 * @oob:        oob buffer
1311 * @info:       omap_nand_info
1312 *
1313 * Check the bit flips in erased page falls below correctable level.
1314 * If falls below, report the page as erased with correctable bit
1315 * flip, else report as uncorrectable page.
1316 */
1317static int erased_sector_bitflips(u_char *data, u_char *oob,
1318                struct omap_nand_info *info)
1319{
1320        int flip_bits = 0, i;
1321
1322        for (i = 0; i < info->nand.ecc.size; i++) {
1323                flip_bits += hweight8(~data[i]);
1324                if (flip_bits > info->nand.ecc.strength)
1325                        return 0;
1326        }
1327
1328        for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329                flip_bits += hweight8(~oob[i]);
1330                if (flip_bits > info->nand.ecc.strength)
1331                        return 0;
1332        }
1333
1334        /*
1335         * Bit flips falls in correctable level.
1336         * Fill data area with 0xFF
1337         */
1338        if (flip_bits) {
1339                memset(data, 0xFF, info->nand.ecc.size);
1340                memset(oob, 0xFF, info->nand.ecc.bytes);
1341        }
1342
1343        return flip_bits;
1344}
1345
1346/**
1347 * omap_elm_correct_data - corrects page data area in case error reported
1348 * @mtd:        MTD device structure
1349 * @data:       page data
1350 * @read_ecc:   ecc read from nand flash
1351 * @calc_ecc:   ecc read from HW ECC registers
1352 *
1353 * Calculated ecc vector reported as zero in case of non-error pages.
1354 * In case of non-zero ecc vector, first filter out erased-pages, and
1355 * then process data via ELM to detect bit-flips.
1356 */
1357static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1358                                u_char *read_ecc, u_char *calc_ecc)
1359{
1360        struct omap_nand_info *info = mtd_to_omap(mtd);
1361        struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362        int eccsteps = info->nand.ecc.steps;
1363        int i , j, stat = 0;
1364        int eccflag, actual_eccbytes;
1365        struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366        u_char *ecc_vec = calc_ecc;
1367        u_char *spare_ecc = read_ecc;
1368        u_char *erased_ecc_vec;
1369        u_char *buf;
1370        int bitflip_count;
1371        bool is_error_reported = false;
1372        u32 bit_pos, byte_pos, error_max, pos;
1373        int err;
1374
1375        switch (info->ecc_opt) {
1376        case OMAP_ECC_BCH4_CODE_HW:
1377                /* omit  7th ECC byte reserved for ROM code compatibility */
1378                actual_eccbytes = ecc->bytes - 1;
1379                erased_ecc_vec = bch4_vector;
1380                break;
1381        case OMAP_ECC_BCH8_CODE_HW:
1382                /* omit 14th ECC byte reserved for ROM code compatibility */
1383                actual_eccbytes = ecc->bytes - 1;
1384                erased_ecc_vec = bch8_vector;
1385                break;
1386        case OMAP_ECC_BCH16_CODE_HW:
1387                actual_eccbytes = ecc->bytes;
1388                erased_ecc_vec = bch16_vector;
1389                break;
1390        default:
1391                dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392                return -EINVAL;
1393        }
1394
1395        /* Initialize elm error vector to zero */
1396        memset(err_vec, 0, sizeof(err_vec));
1397
1398        for (i = 0; i < eccsteps ; i++) {
1399                eccflag = 0;    /* initialize eccflag */
1400
1401                /*
1402                 * Check any error reported,
1403                 * In case of error, non zero ecc reported.
1404                 */
1405                for (j = 0; j < actual_eccbytes; j++) {
1406                        if (calc_ecc[j] != 0) {
1407                                eccflag = 1; /* non zero ecc, error present */
1408                                break;
1409                        }
1410                }
1411
1412                if (eccflag == 1) {
1413                        if (memcmp(calc_ecc, erased_ecc_vec,
1414                                                actual_eccbytes) == 0) {
1415                                /*
1416                                 * calc_ecc[] matches pattern for ECC(all 0xff)
1417                                 * so this is definitely an erased-page
1418                                 */
1419                        } else {
1420                                buf = &data[info->nand.ecc.size * i];
1421                                /*
1422                                 * count number of 0-bits in read_buf.
1423                                 * This check can be removed once a similar
1424                                 * check is introduced in generic NAND driver
1425                                 */
1426                                bitflip_count = erased_sector_bitflips(
1427                                                buf, read_ecc, info);
1428                                if (bitflip_count) {
1429                                        /*
1430                                         * number of 0-bits within ECC limits
1431                                         * So this may be an erased-page
1432                                         */
1433                                        stat += bitflip_count;
1434                                } else {
1435                                        /*
1436                                         * Too many 0-bits. It may be a
1437                                         * - programmed-page, OR
1438                                         * - erased-page with many bit-flips
1439                                         * So this page requires check by ELM
1440                                         */
1441                                        err_vec[i].error_reported = true;
1442                                        is_error_reported = true;
1443                                }
1444                        }
1445                }
1446
1447                /* Update the ecc vector */
1448                calc_ecc += ecc->bytes;
1449                read_ecc += ecc->bytes;
1450        }
1451
1452        /* Check if any error reported */
1453        if (!is_error_reported)
1454                return stat;
1455
1456        /* Decode BCH error using ELM module */
1457        elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1458
1459        err = 0;
1460        for (i = 0; i < eccsteps; i++) {
1461                if (err_vec[i].error_uncorrectable) {
1462                        dev_err(&info->pdev->dev,
1463                                "uncorrectable bit-flips found\n");
1464                        err = -EBADMSG;
1465                } else if (err_vec[i].error_reported) {
1466                        for (j = 0; j < err_vec[i].error_count; j++) {
1467                                switch (info->ecc_opt) {
1468                                case OMAP_ECC_BCH4_CODE_HW:
1469                                        /* Add 4 bits to take care of padding */
1470                                        pos = err_vec[i].error_loc[j] +
1471                                                BCH4_BIT_PAD;
1472                                        break;
1473                                case OMAP_ECC_BCH8_CODE_HW:
1474                                case OMAP_ECC_BCH16_CODE_HW:
1475                                        pos = err_vec[i].error_loc[j];
1476                                        break;
1477                                default:
1478                                        return -EINVAL;
1479                                }
1480                                error_max = (ecc->size + actual_eccbytes) * 8;
1481                                /* Calculate bit position of error */
1482                                bit_pos = pos % 8;
1483
1484                                /* Calculate byte position of error */
1485                                byte_pos = (error_max - pos - 1) / 8;
1486
1487                                if (pos < error_max) {
1488                                        if (byte_pos < 512) {
1489                                                pr_debug("bitflip@dat[%d]=%x\n",
1490                                                     byte_pos, data[byte_pos]);
1491                                                data[byte_pos] ^= 1 << bit_pos;
1492                                        } else {
1493                                                pr_debug("bitflip@oob[%d]=%x\n",
1494                                                        (byte_pos - 512),
1495                                                     spare_ecc[byte_pos - 512]);
1496                                                spare_ecc[byte_pos - 512] ^=
1497                                                        1 << bit_pos;
1498                                        }
1499                                } else {
1500                                        dev_err(&info->pdev->dev,
1501                                                "invalid bit-flip @ %d:%d\n",
1502                                                byte_pos, bit_pos);
1503                                        err = -EBADMSG;
1504                                }
1505                        }
1506                }
1507
1508                /* Update number of correctable errors */
1509                stat += err_vec[i].error_count;
1510
1511                /* Update page data with sector size */
1512                data += ecc->size;
1513                spare_ecc += ecc->bytes;
1514        }
1515
1516        return (err) ? err : stat;
1517}
1518
1519/**
1520 * omap_write_page_bch - BCH ecc based write page function for entire page
1521 * @mtd:                mtd info structure
1522 * @chip:               nand chip info structure
1523 * @buf:                data buffer
1524 * @oob_required:       must write chip->oob_poi to OOB
1525 * @page:               page
1526 *
1527 * Custom write page method evolved to support multi sector writing in one shot
1528 */
1529static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1530                               const uint8_t *buf, int oob_required, int page)
1531{
1532        int ret;
1533        uint8_t *ecc_calc = chip->ecc.calc_buf;
1534
1535        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1536
1537        /* Enable GPMC ecc engine */
1538        chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1539
1540        /* Write data */
1541        chip->write_buf(mtd, buf, mtd->writesize);
1542
1543        /* Update ecc vector from GPMC result registers */
1544        omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1545
1546        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1547                                         chip->ecc.total);
1548        if (ret)
1549                return ret;
1550
1551        /* Write ecc vector to OOB area */
1552        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1553
1554        return nand_prog_page_end_op(chip);
1555}
1556
1557/**
1558 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1559 * @mtd:        mtd info structure
1560 * @chip:       nand chip info structure
1561 * @offset:     column address of subpage within the page
1562 * @data_len:   data length
1563 * @buf:        data buffer
1564 * @oob_required: must write chip->oob_poi to OOB
1565 * @page: page number to write
1566 *
1567 * OMAP optimized subpage write method.
1568 */
1569static int omap_write_subpage_bch(struct mtd_info *mtd,
1570                                  struct nand_chip *chip, u32 offset,
1571                                  u32 data_len, const u8 *buf,
1572                                  int oob_required, int page)
1573{
1574        u8 *ecc_calc = chip->ecc.calc_buf;
1575        int ecc_size      = chip->ecc.size;
1576        int ecc_bytes     = chip->ecc.bytes;
1577        int ecc_steps     = chip->ecc.steps;
1578        u32 start_step = offset / ecc_size;
1579        u32 end_step   = (offset + data_len - 1) / ecc_size;
1580        int step, ret = 0;
1581
1582        /*
1583         * Write entire page at one go as it would be optimal
1584         * as ECC is calculated by hardware.
1585         * ECC is calculated for all subpages but we choose
1586         * only what we want.
1587         */
1588        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1589
1590        /* Enable GPMC ECC engine */
1591        chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1592
1593        /* Write data */
1594        chip->write_buf(mtd, buf, mtd->writesize);
1595
1596        for (step = 0; step < ecc_steps; step++) {
1597                /* mask ECC of un-touched subpages by padding 0xFF */
1598                if (step < start_step || step > end_step)
1599                        memset(ecc_calc, 0xff, ecc_bytes);
1600                else
1601                        ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1602
1603                if (ret)
1604                        return ret;
1605
1606                buf += ecc_size;
1607                ecc_calc += ecc_bytes;
1608        }
1609
1610        /* copy calculated ECC for whole page to chip->buffer->oob */
1611        /* this include masked-value(0xFF) for unwritten subpages */
1612        ecc_calc = chip->ecc.calc_buf;
1613        ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1614                                         chip->ecc.total);
1615        if (ret)
1616                return ret;
1617
1618        /* write OOB buffer to NAND device */
1619        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1620
1621        return nand_prog_page_end_op(chip);
1622}
1623
1624/**
1625 * omap_read_page_bch - BCH ecc based page read function for entire page
1626 * @mtd:                mtd info structure
1627 * @chip:               nand chip info structure
1628 * @buf:                buffer to store read data
1629 * @oob_required:       caller requires OOB data read to chip->oob_poi
1630 * @page:               page number to read
1631 *
1632 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1633 * used for error correction.
1634 * Custom method evolved to support ELM error correction & multi sector
1635 * reading. On reading page data area is read along with OOB data with
1636 * ecc engine enabled. ecc vector updated after read of OOB data.
1637 * For non error pages ecc vector reported as zero.
1638 */
1639static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1640                                uint8_t *buf, int oob_required, int page)
1641{
1642        uint8_t *ecc_calc = chip->ecc.calc_buf;
1643        uint8_t *ecc_code = chip->ecc.code_buf;
1644        int stat, ret;
1645        unsigned int max_bitflips = 0;
1646
1647        nand_read_page_op(chip, page, 0, NULL, 0);
1648
1649        /* Enable GPMC ecc engine */
1650        chip->ecc.hwctl(mtd, NAND_ECC_READ);
1651
1652        /* Read data */
1653        chip->read_buf(mtd, buf, mtd->writesize);
1654
1655        /* Read oob bytes */
1656        nand_change_read_column_op(chip,
1657                                   mtd->writesize + BADBLOCK_MARKER_LENGTH,
1658                                   chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1659                                   chip->ecc.total, false);
1660
1661        /* Calculate ecc bytes */
1662        omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1663
1664        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1665                                         chip->ecc.total);
1666        if (ret)
1667                return ret;
1668
1669        stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1670
1671        if (stat < 0) {
1672                mtd->ecc_stats.failed++;
1673        } else {
1674                mtd->ecc_stats.corrected += stat;
1675                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1676        }
1677
1678        return max_bitflips;
1679}
1680
1681/**
1682 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1683 * @omap_nand_info: NAND device structure containing platform data
1684 */
1685static bool is_elm_present(struct omap_nand_info *info,
1686                           struct device_node *elm_node)
1687{
1688        struct platform_device *pdev;
1689
1690        /* check whether elm-id is passed via DT */
1691        if (!elm_node) {
1692                dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1693                return false;
1694        }
1695        pdev = of_find_device_by_node(elm_node);
1696        /* check whether ELM device is registered */
1697        if (!pdev) {
1698                dev_err(&info->pdev->dev, "ELM device not found\n");
1699                return false;
1700        }
1701        /* ELM module available, now configure it */
1702        info->elm_dev = &pdev->dev;
1703        return true;
1704}
1705
1706static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1707{
1708        bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1709
1710        switch (info->ecc_opt) {
1711        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1712        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1713                ecc_needs_omap_bch = false;
1714                ecc_needs_bch = true;
1715                ecc_needs_elm = false;
1716                break;
1717        case OMAP_ECC_BCH4_CODE_HW:
1718        case OMAP_ECC_BCH8_CODE_HW:
1719        case OMAP_ECC_BCH16_CODE_HW:
1720                ecc_needs_omap_bch = true;
1721                ecc_needs_bch = false;
1722                ecc_needs_elm = true;
1723                break;
1724        default:
1725                ecc_needs_omap_bch = false;
1726                ecc_needs_bch = false;
1727                ecc_needs_elm = false;
1728                break;
1729        }
1730
1731        if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1732                dev_err(&info->pdev->dev,
1733                        "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1734                return false;
1735        }
1736        if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1737                dev_err(&info->pdev->dev,
1738                        "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1739                return false;
1740        }
1741        if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1742                dev_err(&info->pdev->dev, "ELM not available\n");
1743                return false;
1744        }
1745
1746        return true;
1747}
1748
1749static const char * const nand_xfer_types[] = {
1750        [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1751        [NAND_OMAP_POLLED] = "polled",
1752        [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1753        [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1754};
1755
1756static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1757{
1758        struct device_node *child = dev->of_node;
1759        int i;
1760        const char *s;
1761        u32 cs;
1762
1763        if (of_property_read_u32(child, "reg", &cs) < 0) {
1764                dev_err(dev, "reg not found in DT\n");
1765                return -EINVAL;
1766        }
1767
1768        info->gpmc_cs = cs;
1769
1770        /* detect availability of ELM module. Won't be present pre-OMAP4 */
1771        info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1772        if (!info->elm_of_node) {
1773                info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1774                if (!info->elm_of_node)
1775                        dev_dbg(dev, "ti,elm-id not in DT\n");
1776        }
1777
1778        /* select ecc-scheme for NAND */
1779        if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1780                dev_err(dev, "ti,nand-ecc-opt not found\n");
1781                return -EINVAL;
1782        }
1783
1784        if (!strcmp(s, "sw")) {
1785                info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1786        } else if (!strcmp(s, "ham1") ||
1787                   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1788                info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1789        } else if (!strcmp(s, "bch4")) {
1790                if (info->elm_of_node)
1791                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1792                else
1793                        info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1794        } else if (!strcmp(s, "bch8")) {
1795                if (info->elm_of_node)
1796                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1797                else
1798                        info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1799        } else if (!strcmp(s, "bch16")) {
1800                info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1801        } else {
1802                dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1803                return -EINVAL;
1804        }
1805
1806        /* select data transfer mode */
1807        if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1808                for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1809                        if (!strcasecmp(s, nand_xfer_types[i])) {
1810                                info->xfer_type = i;
1811                                return 0;
1812                        }
1813                }
1814
1815                dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1816                return -EINVAL;
1817        }
1818
1819        return 0;
1820}
1821
1822static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1823                              struct mtd_oob_region *oobregion)
1824{
1825        struct omap_nand_info *info = mtd_to_omap(mtd);
1826        struct nand_chip *chip = &info->nand;
1827        int off = BADBLOCK_MARKER_LENGTH;
1828
1829        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1830            !(chip->options & NAND_BUSWIDTH_16))
1831                off = 1;
1832
1833        if (section)
1834                return -ERANGE;
1835
1836        oobregion->offset = off;
1837        oobregion->length = chip->ecc.total;
1838
1839        return 0;
1840}
1841
1842static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1843                               struct mtd_oob_region *oobregion)
1844{
1845        struct omap_nand_info *info = mtd_to_omap(mtd);
1846        struct nand_chip *chip = &info->nand;
1847        int off = BADBLOCK_MARKER_LENGTH;
1848
1849        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1850            !(chip->options & NAND_BUSWIDTH_16))
1851                off = 1;
1852
1853        if (section)
1854                return -ERANGE;
1855
1856        off += chip->ecc.total;
1857        if (off >= mtd->oobsize)
1858                return -ERANGE;
1859
1860        oobregion->offset = off;
1861        oobregion->length = mtd->oobsize - off;
1862
1863        return 0;
1864}
1865
1866static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1867        .ecc = omap_ooblayout_ecc,
1868        .free = omap_ooblayout_free,
1869};
1870
1871static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1872                                 struct mtd_oob_region *oobregion)
1873{
1874        struct nand_chip *chip = mtd_to_nand(mtd);
1875        int off = BADBLOCK_MARKER_LENGTH;
1876
1877        if (section >= chip->ecc.steps)
1878                return -ERANGE;
1879
1880        /*
1881         * When SW correction is employed, one OMAP specific marker byte is
1882         * reserved after each ECC step.
1883         */
1884        oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1885        oobregion->length = chip->ecc.bytes;
1886
1887        return 0;
1888}
1889
1890static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1891                                  struct mtd_oob_region *oobregion)
1892{
1893        struct nand_chip *chip = mtd_to_nand(mtd);
1894        int off = BADBLOCK_MARKER_LENGTH;
1895
1896        if (section)
1897                return -ERANGE;
1898
1899        /*
1900         * When SW correction is employed, one OMAP specific marker byte is
1901         * reserved after each ECC step.
1902         */
1903        off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1904        if (off >= mtd->oobsize)
1905                return -ERANGE;
1906
1907        oobregion->offset = off;
1908        oobregion->length = mtd->oobsize - off;
1909
1910        return 0;
1911}
1912
1913static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1914        .ecc = omap_sw_ooblayout_ecc,
1915        .free = omap_sw_ooblayout_free,
1916};
1917
1918static int omap_nand_probe(struct platform_device *pdev)
1919{
1920        struct omap_nand_info           *info;
1921        struct mtd_info                 *mtd;
1922        struct nand_chip                *nand_chip;
1923        int                             err;
1924        dma_cap_mask_t                  mask;
1925        struct resource                 *res;
1926        struct device                   *dev = &pdev->dev;
1927        int                             min_oobbytes = BADBLOCK_MARKER_LENGTH;
1928        int                             oobbytes_per_step;
1929
1930        info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1931                                GFP_KERNEL);
1932        if (!info)
1933                return -ENOMEM;
1934
1935        info->pdev = pdev;
1936
1937        err = omap_get_dt_info(dev, info);
1938        if (err)
1939                return err;
1940
1941        info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1942        if (!info->ops) {
1943                dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1944                return -ENODEV;
1945        }
1946
1947        nand_chip               = &info->nand;
1948        mtd                     = nand_to_mtd(nand_chip);
1949        mtd->dev.parent         = &pdev->dev;
1950        nand_chip->ecc.priv     = NULL;
1951        nand_set_flash_node(nand_chip, dev->of_node);
1952
1953        if (!mtd->name) {
1954                mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1955                                           "omap2-nand.%d", info->gpmc_cs);
1956                if (!mtd->name) {
1957                        dev_err(&pdev->dev, "Failed to set MTD name\n");
1958                        return -ENOMEM;
1959                }
1960        }
1961
1962        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1963        nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1964        if (IS_ERR(nand_chip->IO_ADDR_R))
1965                return PTR_ERR(nand_chip->IO_ADDR_R);
1966
1967        info->phys_base = res->start;
1968
1969        nand_chip->controller = &omap_gpmc_controller;
1970
1971        nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1972        nand_chip->cmd_ctrl  = omap_hwcontrol;
1973
1974        info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1975                                                    GPIOD_IN);
1976        if (IS_ERR(info->ready_gpiod)) {
1977                dev_err(dev, "failed to get ready gpio\n");
1978                return PTR_ERR(info->ready_gpiod);
1979        }
1980
1981        /*
1982         * If RDY/BSY line is connected to OMAP then use the omap ready
1983         * function and the generic nand_wait function which reads the status
1984         * register after monitoring the RDY/BSY line. Otherwise use a standard
1985         * chip delay which is slightly more than tR (AC Timing) of the NAND
1986         * device and read status register until you get a failure or success
1987         */
1988        if (info->ready_gpiod) {
1989                nand_chip->dev_ready = omap_dev_ready;
1990                nand_chip->chip_delay = 0;
1991        } else {
1992                nand_chip->waitfunc = omap_wait;
1993                nand_chip->chip_delay = 50;
1994        }
1995
1996        if (info->flash_bbt)
1997                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1998
1999        /* scan NAND device connected to chip controller */
2000        nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2001        err = nand_scan_ident(mtd, 1, NULL);
2002        if (err) {
2003                dev_err(&info->pdev->dev,
2004                        "scan failed, may be bus-width mismatch\n");
2005                goto return_error;
2006        }
2007
2008        if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
2009                nand_chip->bbt_options |= NAND_BBT_NO_OOB;
2010        else
2011                nand_chip->options |= NAND_SKIP_BBTSCAN;
2012
2013        /* re-populate low-level callbacks based on xfer modes */
2014        switch (info->xfer_type) {
2015        case NAND_OMAP_PREFETCH_POLLED:
2016                nand_chip->read_buf   = omap_read_buf_pref;
2017                nand_chip->write_buf  = omap_write_buf_pref;
2018                break;
2019
2020        case NAND_OMAP_POLLED:
2021                /* Use nand_base defaults for {read,write}_buf */
2022                break;
2023
2024        case NAND_OMAP_PREFETCH_DMA:
2025                dma_cap_zero(mask);
2026                dma_cap_set(DMA_SLAVE, mask);
2027                info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
2028
2029                if (IS_ERR(info->dma)) {
2030                        dev_err(&pdev->dev, "DMA engine request failed\n");
2031                        err = PTR_ERR(info->dma);
2032                        goto return_error;
2033                } else {
2034                        struct dma_slave_config cfg;
2035
2036                        memset(&cfg, 0, sizeof(cfg));
2037                        cfg.src_addr = info->phys_base;
2038                        cfg.dst_addr = info->phys_base;
2039                        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2040                        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2041                        cfg.src_maxburst = 16;
2042                        cfg.dst_maxburst = 16;
2043                        err = dmaengine_slave_config(info->dma, &cfg);
2044                        if (err) {
2045                                dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
2046                                        err);
2047                                goto return_error;
2048                        }
2049                        nand_chip->read_buf   = omap_read_buf_dma_pref;
2050                        nand_chip->write_buf  = omap_write_buf_dma_pref;
2051                }
2052                break;
2053
2054        case NAND_OMAP_PREFETCH_IRQ:
2055                info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
2056                if (info->gpmc_irq_fifo <= 0) {
2057                        dev_err(&pdev->dev, "error getting fifo irq\n");
2058                        err = -ENODEV;
2059                        goto return_error;
2060                }
2061                err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
2062                                        omap_nand_irq, IRQF_SHARED,
2063                                        "gpmc-nand-fifo", info);
2064                if (err) {
2065                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2066                                                info->gpmc_irq_fifo, err);
2067                        info->gpmc_irq_fifo = 0;
2068                        goto return_error;
2069                }
2070
2071                info->gpmc_irq_count = platform_get_irq(pdev, 1);
2072                if (info->gpmc_irq_count <= 0) {
2073                        dev_err(&pdev->dev, "error getting count irq\n");
2074                        err = -ENODEV;
2075                        goto return_error;
2076                }
2077                err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
2078                                        omap_nand_irq, IRQF_SHARED,
2079                                        "gpmc-nand-count", info);
2080                if (err) {
2081                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2082                                                info->gpmc_irq_count, err);
2083                        info->gpmc_irq_count = 0;
2084                        goto return_error;
2085                }
2086
2087                nand_chip->read_buf  = omap_read_buf_irq_pref;
2088                nand_chip->write_buf = omap_write_buf_irq_pref;
2089
2090                break;
2091
2092        default:
2093                dev_err(&pdev->dev,
2094                        "xfer_type(%d) not supported!\n", info->xfer_type);
2095                err = -EINVAL;
2096                goto return_error;
2097        }
2098
2099        if (!omap2_nand_ecc_check(info)) {
2100                err = -EINVAL;
2101                goto return_error;
2102        }
2103
2104        /*
2105         * Bail out earlier to let NAND_ECC_SOFT code create its own
2106         * ooblayout instead of using ours.
2107         */
2108        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2109                nand_chip->ecc.mode = NAND_ECC_SOFT;
2110                nand_chip->ecc.algo = NAND_ECC_HAMMING;
2111                goto scan_tail;
2112        }
2113
2114        /* populate MTD interface based on ECC scheme */
2115        switch (info->ecc_opt) {
2116        case OMAP_ECC_HAM1_CODE_HW:
2117                pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2118                nand_chip->ecc.mode             = NAND_ECC_HW;
2119                nand_chip->ecc.bytes            = 3;
2120                nand_chip->ecc.size             = 512;
2121                nand_chip->ecc.strength         = 1;
2122                nand_chip->ecc.calculate        = omap_calculate_ecc;
2123                nand_chip->ecc.hwctl            = omap_enable_hwecc;
2124                nand_chip->ecc.correct          = omap_correct_data;
2125                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2126                oobbytes_per_step               = nand_chip->ecc.bytes;
2127
2128                if (!(nand_chip->options & NAND_BUSWIDTH_16))
2129                        min_oobbytes            = 1;
2130
2131                break;
2132
2133        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2134                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2135                nand_chip->ecc.mode             = NAND_ECC_HW;
2136                nand_chip->ecc.size             = 512;
2137                nand_chip->ecc.bytes            = 7;
2138                nand_chip->ecc.strength         = 4;
2139                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
2140                nand_chip->ecc.correct          = nand_bch_correct_data;
2141                nand_chip->ecc.calculate        = omap_calculate_ecc_bch_sw;
2142                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2143                /* Reserve one byte for the OMAP marker */
2144                oobbytes_per_step               = nand_chip->ecc.bytes + 1;
2145                /* software bch library is used for locating errors */
2146                nand_chip->ecc.priv             = nand_bch_init(mtd);
2147                if (!nand_chip->ecc.priv) {
2148                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
2149                        err = -EINVAL;
2150                        goto return_error;
2151                }
2152                break;
2153
2154        case OMAP_ECC_BCH4_CODE_HW:
2155                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2156                nand_chip->ecc.mode             = NAND_ECC_HW;
2157                nand_chip->ecc.size             = 512;
2158                /* 14th bit is kept reserved for ROM-code compatibility */
2159                nand_chip->ecc.bytes            = 7 + 1;
2160                nand_chip->ecc.strength         = 4;
2161                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
2162                nand_chip->ecc.correct          = omap_elm_correct_data;
2163                nand_chip->ecc.read_page        = omap_read_page_bch;
2164                nand_chip->ecc.write_page       = omap_write_page_bch;
2165                nand_chip->ecc.write_subpage    = omap_write_subpage_bch;
2166                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2167                oobbytes_per_step               = nand_chip->ecc.bytes;
2168
2169                err = elm_config(info->elm_dev, BCH4_ECC,
2170                                 mtd->writesize / nand_chip->ecc.size,
2171                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
2172                if (err < 0)
2173                        goto return_error;
2174                break;
2175
2176        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2177                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2178                nand_chip->ecc.mode             = NAND_ECC_HW;
2179                nand_chip->ecc.size             = 512;
2180                nand_chip->ecc.bytes            = 13;
2181                nand_chip->ecc.strength         = 8;
2182                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
2183                nand_chip->ecc.correct          = nand_bch_correct_data;
2184                nand_chip->ecc.calculate        = omap_calculate_ecc_bch_sw;
2185                mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2186                /* Reserve one byte for the OMAP marker */
2187                oobbytes_per_step               = nand_chip->ecc.bytes + 1;
2188                /* software bch library is used for locating errors */
2189                nand_chip->ecc.priv             = nand_bch_init(mtd);
2190                if (!nand_chip->ecc.priv) {
2191                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
2192                        err = -EINVAL;
2193                        goto return_error;
2194                }
2195                break;
2196
2197        case OMAP_ECC_BCH8_CODE_HW:
2198                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2199                nand_chip->ecc.mode             = NAND_ECC_HW;
2200                nand_chip->ecc.size             = 512;
2201                /* 14th bit is kept reserved for ROM-code compatibility */
2202                nand_chip->ecc.bytes            = 13 + 1;
2203                nand_chip->ecc.strength         = 8;
2204                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
2205                nand_chip->ecc.correct          = omap_elm_correct_data;
2206                nand_chip->ecc.read_page        = omap_read_page_bch;
2207                nand_chip->ecc.write_page       = omap_write_page_bch;
2208                nand_chip->ecc.write_subpage    = omap_write_subpage_bch;
2209                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2210                oobbytes_per_step               = nand_chip->ecc.bytes;
2211
2212                err = elm_config(info->elm_dev, BCH8_ECC,
2213                                 mtd->writesize / nand_chip->ecc.size,
2214                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
2215                if (err < 0)
2216                        goto return_error;
2217
2218                break;
2219
2220        case OMAP_ECC_BCH16_CODE_HW:
2221                pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2222                nand_chip->ecc.mode             = NAND_ECC_HW;
2223                nand_chip->ecc.size             = 512;
2224                nand_chip->ecc.bytes            = 26;
2225                nand_chip->ecc.strength         = 16;
2226                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
2227                nand_chip->ecc.correct          = omap_elm_correct_data;
2228                nand_chip->ecc.read_page        = omap_read_page_bch;
2229                nand_chip->ecc.write_page       = omap_write_page_bch;
2230                nand_chip->ecc.write_subpage    = omap_write_subpage_bch;
2231                mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2232                oobbytes_per_step               = nand_chip->ecc.bytes;
2233
2234                err = elm_config(info->elm_dev, BCH16_ECC,
2235                                 mtd->writesize / nand_chip->ecc.size,
2236                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
2237                if (err < 0)
2238                        goto return_error;
2239
2240                break;
2241        default:
2242                dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2243                err = -EINVAL;
2244                goto return_error;
2245        }
2246
2247        /* check if NAND device's OOB is enough to store ECC signatures */
2248        min_oobbytes += (oobbytes_per_step *
2249                         (mtd->writesize / nand_chip->ecc.size));
2250        if (mtd->oobsize < min_oobbytes) {
2251                dev_err(&info->pdev->dev,
2252                        "not enough OOB bytes required = %d, available=%d\n",
2253                        min_oobbytes, mtd->oobsize);
2254                err = -EINVAL;
2255                goto return_error;
2256        }
2257
2258scan_tail:
2259        /* second phase scan */
2260        err = nand_scan_tail(mtd);
2261        if (err)
2262                goto return_error;
2263
2264        err = mtd_device_register(mtd, NULL, 0);
2265        if (err)
2266                goto cleanup_nand;
2267
2268        platform_set_drvdata(pdev, mtd);
2269
2270        return 0;
2271
2272cleanup_nand:
2273        nand_cleanup(nand_chip);
2274
2275return_error:
2276        if (!IS_ERR_OR_NULL(info->dma))
2277                dma_release_channel(info->dma);
2278        if (nand_chip->ecc.priv) {
2279                nand_bch_free(nand_chip->ecc.priv);
2280                nand_chip->ecc.priv = NULL;
2281        }
2282        return err;
2283}
2284
2285static int omap_nand_remove(struct platform_device *pdev)
2286{
2287        struct mtd_info *mtd = platform_get_drvdata(pdev);
2288        struct nand_chip *nand_chip = mtd_to_nand(mtd);
2289        struct omap_nand_info *info = mtd_to_omap(mtd);
2290        if (nand_chip->ecc.priv) {
2291                nand_bch_free(nand_chip->ecc.priv);
2292                nand_chip->ecc.priv = NULL;
2293        }
2294        if (info->dma)
2295                dma_release_channel(info->dma);
2296        nand_release(mtd);
2297        return 0;
2298}
2299
2300static const struct of_device_id omap_nand_ids[] = {
2301        { .compatible = "ti,omap2-nand", },
2302        {},
2303};
2304MODULE_DEVICE_TABLE(of, omap_nand_ids);
2305
2306static struct platform_driver omap_nand_driver = {
2307        .probe          = omap_nand_probe,
2308        .remove         = omap_nand_remove,
2309        .driver         = {
2310                .name   = DRIVER_NAME,
2311                .of_match_table = of_match_ptr(omap_nand_ids),
2312        },
2313};
2314
2315module_platform_driver(omap_nand_driver);
2316
2317MODULE_ALIAS("platform:" DRIVER_NAME);
2318MODULE_LICENSE("GPL");
2319MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2320