linux/drivers/net/ethernet/intel/i40e/i40e_txrx.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#ifndef _I40E_TXRX_H_
   5#define _I40E_TXRX_H_
   6
   7#include <net/xdp.h>
   8
   9/* Interrupt Throttling and Rate Limiting Goodies */
  10#define I40E_DEFAULT_IRQ_WORK      256
  11
  12/* The datasheet for the X710 and XL710 indicate that the maximum value for
  13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  15 * the register value which is divided by 2 lets use the actual values and
  16 * avoid an excessive amount of translation.
  17 */
  18#define I40E_ITR_DYNAMIC        0x8000  /* use top bit as a flag */
  19#define I40E_ITR_MASK           0x1FFE  /* mask for ITR register value */
  20#define I40E_MIN_ITR                 2  /* reg uses 2 usec resolution */
  21#define I40E_ITR_100K               10  /* all values below must be even */
  22#define I40E_ITR_50K                20
  23#define I40E_ITR_20K                50
  24#define I40E_ITR_18K                60
  25#define I40E_ITR_8K                122
  26#define I40E_MAX_ITR              8160  /* maximum value as per datasheet */
  27#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
  28#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
  29#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
  30
  31#define I40E_ITR_RX_DEF         (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  32#define I40E_ITR_TX_DEF         (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  33
  34/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  35 * the value of the rate limit is non-zero
  36 */
  37#define INTRL_ENA                  BIT(6)
  38#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
  39#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  40
  41/**
  42 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  43 * @intrl: interrupt rate limit to convert
  44 *
  45 * This function converts a decimal interrupt rate limit to the appropriate
  46 * register format expected by the firmware when setting interrupt rate limit.
  47 */
  48static inline u16 i40e_intrl_usec_to_reg(int intrl)
  49{
  50        if (intrl >> 2)
  51                return ((intrl >> 2) | INTRL_ENA);
  52        else
  53                return 0;
  54}
  55#define I40E_INTRL_8K              125     /* 8000 ints/sec */
  56#define I40E_INTRL_62K             16      /* 62500 ints/sec */
  57#define I40E_INTRL_83K             12      /* 83333 ints/sec */
  58
  59#define I40E_QUEUE_END_OF_LIST 0x7FF
  60
  61/* this enum matches hardware bits and is meant to be used by DYN_CTLN
  62 * registers and QINT registers or more generally anywhere in the manual
  63 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  64 * register but instead is a special value meaning "don't update" ITR0/1/2.
  65 */
  66enum i40e_dyn_idx_t {
  67        I40E_IDX_ITR0 = 0,
  68        I40E_IDX_ITR1 = 1,
  69        I40E_IDX_ITR2 = 2,
  70        I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
  71};
  72
  73/* these are indexes into ITRN registers */
  74#define I40E_RX_ITR    I40E_IDX_ITR0
  75#define I40E_TX_ITR    I40E_IDX_ITR1
  76#define I40E_PE_ITR    I40E_IDX_ITR2
  77
  78/* Supported RSS offloads */
  79#define I40E_DEFAULT_RSS_HENA ( \
  80        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  81        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  82        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  83        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  84        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  85        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  86        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  87        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  88        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  89        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  90        BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  91
  92#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  93        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  94        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  95        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  96        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  97        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  98        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  99
 100#define i40e_pf_get_default_rss_hena(pf) \
 101        (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
 102          I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
 103
 104/* Supported Rx Buffer Sizes (a multiple of 128) */
 105#define I40E_RXBUFFER_256   256
 106#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
 107#define I40E_RXBUFFER_2048  2048
 108#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 109#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 110
 111/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 112 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 113 * this adds up to 512 bytes of extra data meaning the smallest allocation
 114 * we could have is 1K.
 115 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 116 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 117 */
 118#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
 119#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
 120#define i40e_rx_desc i40e_32byte_rx_desc
 121
 122#define I40E_RX_DMA_ATTR \
 123        (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
 124
 125/* Attempt to maximize the headroom available for incoming frames.  We
 126 * use a 2K buffer for receives and need 1536/1534 to store the data for
 127 * the frame.  This leaves us with 512 bytes of room.  From that we need
 128 * to deduct the space needed for the shared info and the padding needed
 129 * to IP align the frame.
 130 *
 131 * Note: For cache line sizes 256 or larger this value is going to end
 132 *       up negative.  In these cases we should fall back to the legacy
 133 *       receive path.
 134 */
 135#if (PAGE_SIZE < 8192)
 136#define I40E_2K_TOO_SMALL_WITH_PADDING \
 137((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
 138
 139static inline int i40e_compute_pad(int rx_buf_len)
 140{
 141        int page_size, pad_size;
 142
 143        page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 144        pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
 145
 146        return pad_size;
 147}
 148
 149static inline int i40e_skb_pad(void)
 150{
 151        int rx_buf_len;
 152
 153        /* If a 2K buffer cannot handle a standard Ethernet frame then
 154         * optimize padding for a 3K buffer instead of a 1.5K buffer.
 155         *
 156         * For a 3K buffer we need to add enough padding to allow for
 157         * tailroom due to NET_IP_ALIGN possibly shifting us out of
 158         * cache-line alignment.
 159         */
 160        if (I40E_2K_TOO_SMALL_WITH_PADDING)
 161                rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 162        else
 163                rx_buf_len = I40E_RXBUFFER_1536;
 164
 165        /* if needed make room for NET_IP_ALIGN */
 166        rx_buf_len -= NET_IP_ALIGN;
 167
 168        return i40e_compute_pad(rx_buf_len);
 169}
 170
 171#define I40E_SKB_PAD i40e_skb_pad()
 172#else
 173#define I40E_2K_TOO_SMALL_WITH_PADDING false
 174#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 175#endif
 176
 177/**
 178 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
 179 * @rx_desc: pointer to receive descriptor (in le64 format)
 180 * @stat_err_bits: value to mask
 181 *
 182 * This function does some fast chicanery in order to return the
 183 * value of the mask which is really only used for boolean tests.
 184 * The status_error_len doesn't need to be shifted because it begins
 185 * at offset zero.
 186 */
 187static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
 188                                     const u64 stat_err_bits)
 189{
 190        return !!(rx_desc->wb.qword1.status_error_len &
 191                  cpu_to_le64(stat_err_bits));
 192}
 193
 194/* How many Rx Buffers do we bundle into one write to the hardware ? */
 195#define I40E_RX_BUFFER_WRITE    32      /* Must be power of 2 */
 196#define I40E_RX_INCREMENT(r, i) \
 197        do {                                    \
 198                (i)++;                          \
 199                if ((i) == (r)->count)          \
 200                        i = 0;                  \
 201                r->next_to_clean = i;           \
 202        } while (0)
 203
 204#define I40E_RX_NEXT_DESC(r, i, n)              \
 205        do {                                    \
 206                (i)++;                          \
 207                if ((i) == (r)->count)          \
 208                        i = 0;                  \
 209                (n) = I40E_RX_DESC((r), (i));   \
 210        } while (0)
 211
 212#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
 213        do {                                            \
 214                I40E_RX_NEXT_DESC((r), (i), (n));       \
 215                prefetch((n));                          \
 216        } while (0)
 217
 218#define I40E_MAX_BUFFER_TXD     8
 219#define I40E_MIN_TX_LEN         17
 220
 221/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 222 * In order to align with the read requests we will align the value to
 223 * the nearest 4K which represents our maximum read request size.
 224 */
 225#define I40E_MAX_READ_REQ_SIZE          4096
 226#define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
 227#define I40E_MAX_DATA_PER_TXD_ALIGNED \
 228        (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
 229
 230/**
 231 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
 232 * @size: transmit request size in bytes
 233 *
 234 * Due to hardware alignment restrictions (4K alignment), we need to
 235 * assume that we can have no more than 12K of data per descriptor, even
 236 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 237 * Thus, we need to divide by 12K. But division is slow! Instead,
 238 * we decompose the operation into shifts and one relatively cheap
 239 * multiply operation.
 240 *
 241 * To divide by 12K, we first divide by 4K, then divide by 3:
 242 *     To divide by 4K, shift right by 12 bits
 243 *     To divide by 3, multiply by 85, then divide by 256
 244 *     (Divide by 256 is done by shifting right by 8 bits)
 245 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 246 * 3, we'll underestimate near each multiple of 12K. This is actually more
 247 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 248 * segment.  For our purposes this is accurate out to 1M which is orders of
 249 * magnitude greater than our largest possible GSO size.
 250 *
 251 * This would then be implemented as:
 252 *     return (((size >> 12) * 85) >> 8) + 1;
 253 *
 254 * Since multiplication and division are commutative, we can reorder
 255 * operations into:
 256 *     return ((size * 85) >> 20) + 1;
 257 */
 258static inline unsigned int i40e_txd_use_count(unsigned int size)
 259{
 260        return ((size * 85) >> 20) + 1;
 261}
 262
 263/* Tx Descriptors needed, worst case */
 264#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
 265#define I40E_MIN_DESC_PENDING   4
 266
 267#define I40E_TX_FLAGS_HW_VLAN           BIT(1)
 268#define I40E_TX_FLAGS_SW_VLAN           BIT(2)
 269#define I40E_TX_FLAGS_TSO               BIT(3)
 270#define I40E_TX_FLAGS_IPV4              BIT(4)
 271#define I40E_TX_FLAGS_IPV6              BIT(5)
 272#define I40E_TX_FLAGS_FCCRC             BIT(6)
 273#define I40E_TX_FLAGS_FSO               BIT(7)
 274#define I40E_TX_FLAGS_TSYN              BIT(8)
 275#define I40E_TX_FLAGS_FD_SB             BIT(9)
 276#define I40E_TX_FLAGS_UDP_TUNNEL        BIT(10)
 277#define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
 278#define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
 279#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
 280#define I40E_TX_FLAGS_VLAN_SHIFT        16
 281
 282struct i40e_tx_buffer {
 283        struct i40e_tx_desc *next_to_watch;
 284        union {
 285                struct xdp_frame *xdpf;
 286                struct sk_buff *skb;
 287                void *raw_buf;
 288        };
 289        unsigned int bytecount;
 290        unsigned short gso_segs;
 291
 292        DEFINE_DMA_UNMAP_ADDR(dma);
 293        DEFINE_DMA_UNMAP_LEN(len);
 294        u32 tx_flags;
 295};
 296
 297struct i40e_rx_buffer {
 298        dma_addr_t dma;
 299        union {
 300                struct {
 301                        struct page *page;
 302                        __u32 page_offset;
 303                        __u16 pagecnt_bias;
 304                };
 305                struct {
 306                        void *addr;
 307                        u64 handle;
 308                };
 309        };
 310};
 311
 312struct i40e_queue_stats {
 313        u64 packets;
 314        u64 bytes;
 315};
 316
 317struct i40e_tx_queue_stats {
 318        u64 restart_queue;
 319        u64 tx_busy;
 320        u64 tx_done_old;
 321        u64 tx_linearize;
 322        u64 tx_force_wb;
 323        int prev_pkt_ctr;
 324};
 325
 326struct i40e_rx_queue_stats {
 327        u64 non_eop_descs;
 328        u64 alloc_page_failed;
 329        u64 alloc_buff_failed;
 330        u64 page_reuse_count;
 331        u64 realloc_count;
 332};
 333
 334enum i40e_ring_state_t {
 335        __I40E_TX_FDIR_INIT_DONE,
 336        __I40E_TX_XPS_INIT_DONE,
 337        __I40E_RING_STATE_NBITS /* must be last */
 338};
 339
 340/* some useful defines for virtchannel interface, which
 341 * is the only remaining user of header split
 342 */
 343#define I40E_RX_DTYPE_NO_SPLIT      0
 344#define I40E_RX_DTYPE_HEADER_SPLIT  1
 345#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
 346#define I40E_RX_SPLIT_L2      0x1
 347#define I40E_RX_SPLIT_IP      0x2
 348#define I40E_RX_SPLIT_TCP_UDP 0x4
 349#define I40E_RX_SPLIT_SCTP    0x8
 350
 351/* struct that defines a descriptor ring, associated with a VSI */
 352struct i40e_ring {
 353        struct i40e_ring *next;         /* pointer to next ring in q_vector */
 354        void *desc;                     /* Descriptor ring memory */
 355        struct device *dev;             /* Used for DMA mapping */
 356        struct net_device *netdev;      /* netdev ring maps to */
 357        struct bpf_prog *xdp_prog;
 358        union {
 359                struct i40e_tx_buffer *tx_bi;
 360                struct i40e_rx_buffer *rx_bi;
 361        };
 362        DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
 363        u16 queue_index;                /* Queue number of ring */
 364        u8 dcb_tc;                      /* Traffic class of ring */
 365        u8 __iomem *tail;
 366
 367        /* high bit set means dynamic, use accessor routines to read/write.
 368         * hardware only supports 2us resolution for the ITR registers.
 369         * these values always store the USER setting, and must be converted
 370         * before programming to a register.
 371         */
 372        u16 itr_setting;
 373
 374        u16 count;                      /* Number of descriptors */
 375        u16 reg_idx;                    /* HW register index of the ring */
 376        u16 rx_buf_len;
 377
 378        /* used in interrupt processing */
 379        u16 next_to_use;
 380        u16 next_to_clean;
 381
 382        u8 atr_sample_rate;
 383        u8 atr_count;
 384
 385        bool ring_active;               /* is ring online or not */
 386        bool arm_wb;            /* do something to arm write back */
 387        u8 packet_stride;
 388
 389        u16 flags;
 390#define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
 391#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
 392#define I40E_TXR_FLAGS_XDP                      BIT(2)
 393
 394        /* stats structs */
 395        struct i40e_queue_stats stats;
 396        struct u64_stats_sync syncp;
 397        union {
 398                struct i40e_tx_queue_stats tx_stats;
 399                struct i40e_rx_queue_stats rx_stats;
 400        };
 401
 402        unsigned int size;              /* length of descriptor ring in bytes */
 403        dma_addr_t dma;                 /* physical address of ring */
 404
 405        struct i40e_vsi *vsi;           /* Backreference to associated VSI */
 406        struct i40e_q_vector *q_vector; /* Backreference to associated vector */
 407
 408        struct rcu_head rcu;            /* to avoid race on free */
 409        u16 next_to_alloc;
 410        struct sk_buff *skb;            /* When i40e_clean_rx_ring_irq() must
 411                                         * return before it sees the EOP for
 412                                         * the current packet, we save that skb
 413                                         * here and resume receiving this
 414                                         * packet the next time
 415                                         * i40e_clean_rx_ring_irq() is called
 416                                         * for this ring.
 417                                         */
 418
 419        struct i40e_channel *ch;
 420        struct xdp_rxq_info xdp_rxq;
 421        struct xdp_umem *xsk_umem;
 422        struct zero_copy_allocator zca; /* ZC allocator anchor */
 423} ____cacheline_internodealigned_in_smp;
 424
 425static inline bool ring_uses_build_skb(struct i40e_ring *ring)
 426{
 427        return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
 428}
 429
 430static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
 431{
 432        ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 433}
 434
 435static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
 436{
 437        ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 438}
 439
 440static inline bool ring_is_xdp(struct i40e_ring *ring)
 441{
 442        return !!(ring->flags & I40E_TXR_FLAGS_XDP);
 443}
 444
 445static inline void set_ring_xdp(struct i40e_ring *ring)
 446{
 447        ring->flags |= I40E_TXR_FLAGS_XDP;
 448}
 449
 450#define I40E_ITR_ADAPTIVE_MIN_INC       0x0002
 451#define I40E_ITR_ADAPTIVE_MIN_USECS     0x0002
 452#define I40E_ITR_ADAPTIVE_MAX_USECS     0x007e
 453#define I40E_ITR_ADAPTIVE_LATENCY       0x8000
 454#define I40E_ITR_ADAPTIVE_BULK          0x0000
 455#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
 456
 457struct i40e_ring_container {
 458        struct i40e_ring *ring;         /* pointer to linked list of ring(s) */
 459        unsigned long next_update;      /* jiffies value of next update */
 460        unsigned int total_bytes;       /* total bytes processed this int */
 461        unsigned int total_packets;     /* total packets processed this int */
 462        u16 count;
 463        u16 target_itr;                 /* target ITR setting for ring(s) */
 464        u16 current_itr;                /* current ITR setting for ring(s) */
 465};
 466
 467/* iterator for handling rings in ring container */
 468#define i40e_for_each_ring(pos, head) \
 469        for (pos = (head).ring; pos != NULL; pos = pos->next)
 470
 471static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
 472{
 473#if (PAGE_SIZE < 8192)
 474        if (ring->rx_buf_len > (PAGE_SIZE / 2))
 475                return 1;
 476#endif
 477        return 0;
 478}
 479
 480#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
 481
 482bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
 483netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 484void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
 485void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
 486int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
 487int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
 488void i40e_free_tx_resources(struct i40e_ring *tx_ring);
 489void i40e_free_rx_resources(struct i40e_ring *rx_ring);
 490int i40e_napi_poll(struct napi_struct *napi, int budget);
 491void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
 492u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
 493void i40e_detect_recover_hung(struct i40e_vsi *vsi);
 494int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
 495bool __i40e_chk_linearize(struct sk_buff *skb);
 496int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 497                  u32 flags);
 498
 499/**
 500 * i40e_get_head - Retrieve head from head writeback
 501 * @tx_ring:  tx ring to fetch head of
 502 *
 503 * Returns value of Tx ring head based on value stored
 504 * in head write-back location
 505 **/
 506static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 507{
 508        void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 509
 510        return le32_to_cpu(*(volatile __le32 *)head);
 511}
 512
 513/**
 514 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
 515 * @skb:     send buffer
 516 * @tx_ring: ring to send buffer on
 517 *
 518 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 519 * there is not enough descriptors available in this ring since we need at least
 520 * one descriptor.
 521 **/
 522static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
 523{
 524        const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 525        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 526        int count = 0, size = skb_headlen(skb);
 527
 528        for (;;) {
 529                count += i40e_txd_use_count(size);
 530
 531                if (!nr_frags--)
 532                        break;
 533
 534                size = skb_frag_size(frag++);
 535        }
 536
 537        return count;
 538}
 539
 540/**
 541 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
 542 * @tx_ring: the ring to be checked
 543 * @size:    the size buffer we want to assure is available
 544 *
 545 * Returns 0 if stop is not needed
 546 **/
 547static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 548{
 549        if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
 550                return 0;
 551        return __i40e_maybe_stop_tx(tx_ring, size);
 552}
 553
 554/**
 555 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 556 * @skb:      send buffer
 557 * @count:    number of buffers used
 558 *
 559 * Note: Our HW can't scatter-gather more than 8 fragments to build
 560 * a packet on the wire and so we need to figure out the cases where we
 561 * need to linearize the skb.
 562 **/
 563static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
 564{
 565        /* Both TSO and single send will work if count is less than 8 */
 566        if (likely(count < I40E_MAX_BUFFER_TXD))
 567                return false;
 568
 569        if (skb_is_gso(skb))
 570                return __i40e_chk_linearize(skb);
 571
 572        /* we can support up to 8 data buffers for a single send */
 573        return count != I40E_MAX_BUFFER_TXD;
 574}
 575
 576/**
 577 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
 578 * @ring: Tx ring to find the netdev equivalent of
 579 **/
 580static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
 581{
 582        return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 583}
 584#endif /* _I40E_TXRX_H_ */
 585