linux/drivers/net/ethernet/intel/ice/ice_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7
   8#define ICE_PF_RESET_WAIT_COUNT 200
   9
  10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
  11        wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
  12             ((ICE_RX_OPC_MDID << \
  13               GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
  14              GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
  15             (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
  16              GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
  17
  18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
  19        wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
  20             (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
  21              GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
  22             (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
  23              GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
  24             (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
  25              GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
  26             (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
  27              GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
  28
  29/**
  30 * ice_set_mac_type - Sets MAC type
  31 * @hw: pointer to the HW structure
  32 *
  33 * This function sets the MAC type of the adapter based on the
  34 * vendor ID and device ID stored in the hw structure.
  35 */
  36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  37{
  38        if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  39                return ICE_ERR_DEVICE_NOT_SUPPORTED;
  40
  41        hw->mac_type = ICE_MAC_GENERIC;
  42        return 0;
  43}
  44
  45/**
  46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
  47 * @hw: pointer to the HW structure
  48 *
  49 * This function provides temporary workarounds for certain issues
  50 * that are expected to be fixed in the HW/FW.
  51 */
  52void ice_dev_onetime_setup(struct ice_hw *hw)
  53{
  54        /* configure Rx - set non pxe mode */
  55        wr32(hw, GLLAN_RCTL_0, 0x1);
  56
  57#define MBX_PF_VT_PFALLOC       0x00231E80
  58        /* set VFs per PF */
  59        wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
  60}
  61
  62/**
  63 * ice_clear_pf_cfg - Clear PF configuration
  64 * @hw: pointer to the hardware structure
  65 *
  66 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  67 * configuration, flow director filters, etc.).
  68 */
  69enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  70{
  71        struct ice_aq_desc desc;
  72
  73        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  74
  75        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  76}
  77
  78/**
  79 * ice_aq_manage_mac_read - manage MAC address read command
  80 * @hw: pointer to the hw struct
  81 * @buf: a virtual buffer to hold the manage MAC read response
  82 * @buf_size: Size of the virtual buffer
  83 * @cd: pointer to command details structure or NULL
  84 *
  85 * This function is used to return per PF station MAC address (0x0107).
  86 * NOTE: Upon successful completion of this command, MAC address information
  87 * is returned in user specified buffer. Please interpret user specified
  88 * buffer as "manage_mac_read" response.
  89 * Response such as various MAC addresses are stored in HW struct (port.mac)
  90 * ice_aq_discover_caps is expected to be called before this function is called.
  91 */
  92static enum ice_status
  93ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
  94                       struct ice_sq_cd *cd)
  95{
  96        struct ice_aqc_manage_mac_read_resp *resp;
  97        struct ice_aqc_manage_mac_read *cmd;
  98        struct ice_aq_desc desc;
  99        enum ice_status status;
 100        u16 flags;
 101        u8 i;
 102
 103        cmd = &desc.params.mac_read;
 104
 105        if (buf_size < sizeof(*resp))
 106                return ICE_ERR_BUF_TOO_SHORT;
 107
 108        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 109
 110        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 111        if (status)
 112                return status;
 113
 114        resp = (struct ice_aqc_manage_mac_read_resp *)buf;
 115        flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 116
 117        if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 118                ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 119                return ICE_ERR_CFG;
 120        }
 121
 122        /* A single port can report up to two (LAN and WoL) addresses */
 123        for (i = 0; i < cmd->num_addr; i++)
 124                if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 125                        ether_addr_copy(hw->port_info->mac.lan_addr,
 126                                        resp[i].mac_addr);
 127                        ether_addr_copy(hw->port_info->mac.perm_addr,
 128                                        resp[i].mac_addr);
 129                        break;
 130                }
 131
 132        return 0;
 133}
 134
 135/**
 136 * ice_aq_get_phy_caps - returns PHY capabilities
 137 * @pi: port information structure
 138 * @qual_mods: report qualified modules
 139 * @report_mode: report mode capabilities
 140 * @pcaps: structure for PHY capabilities to be filled
 141 * @cd: pointer to command details structure or NULL
 142 *
 143 * Returns the various PHY capabilities supported on the Port (0x0600)
 144 */
 145enum ice_status
 146ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 147                    struct ice_aqc_get_phy_caps_data *pcaps,
 148                    struct ice_sq_cd *cd)
 149{
 150        struct ice_aqc_get_phy_caps *cmd;
 151        u16 pcaps_size = sizeof(*pcaps);
 152        struct ice_aq_desc desc;
 153        enum ice_status status;
 154
 155        cmd = &desc.params.get_phy;
 156
 157        if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 158                return ICE_ERR_PARAM;
 159
 160        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 161
 162        if (qual_mods)
 163                cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 164
 165        cmd->param0 |= cpu_to_le16(report_mode);
 166        status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
 167
 168        if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
 169                pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 170
 171        return status;
 172}
 173
 174/**
 175 * ice_get_media_type - Gets media type
 176 * @pi: port information structure
 177 */
 178static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 179{
 180        struct ice_link_status *hw_link_info;
 181
 182        if (!pi)
 183                return ICE_MEDIA_UNKNOWN;
 184
 185        hw_link_info = &pi->phy.link_info;
 186
 187        if (hw_link_info->phy_type_low) {
 188                switch (hw_link_info->phy_type_low) {
 189                case ICE_PHY_TYPE_LOW_1000BASE_SX:
 190                case ICE_PHY_TYPE_LOW_1000BASE_LX:
 191                case ICE_PHY_TYPE_LOW_10GBASE_SR:
 192                case ICE_PHY_TYPE_LOW_10GBASE_LR:
 193                case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 194                case ICE_PHY_TYPE_LOW_25GBASE_SR:
 195                case ICE_PHY_TYPE_LOW_25GBASE_LR:
 196                case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 197                case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 198                case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 199                        return ICE_MEDIA_FIBER;
 200                case ICE_PHY_TYPE_LOW_100BASE_TX:
 201                case ICE_PHY_TYPE_LOW_1000BASE_T:
 202                case ICE_PHY_TYPE_LOW_2500BASE_T:
 203                case ICE_PHY_TYPE_LOW_5GBASE_T:
 204                case ICE_PHY_TYPE_LOW_10GBASE_T:
 205                case ICE_PHY_TYPE_LOW_25GBASE_T:
 206                        return ICE_MEDIA_BASET;
 207                case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 208                case ICE_PHY_TYPE_LOW_25GBASE_CR:
 209                case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 210                case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 211                case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 212                        return ICE_MEDIA_DA;
 213                case ICE_PHY_TYPE_LOW_1000BASE_KX:
 214                case ICE_PHY_TYPE_LOW_2500BASE_KX:
 215                case ICE_PHY_TYPE_LOW_2500BASE_X:
 216                case ICE_PHY_TYPE_LOW_5GBASE_KR:
 217                case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 218                case ICE_PHY_TYPE_LOW_25GBASE_KR:
 219                case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 220                case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 221                case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 222                        return ICE_MEDIA_BACKPLANE;
 223                }
 224        }
 225
 226        return ICE_MEDIA_UNKNOWN;
 227}
 228
 229/**
 230 * ice_aq_get_link_info
 231 * @pi: port information structure
 232 * @ena_lse: enable/disable LinkStatusEvent reporting
 233 * @link: pointer to link status structure - optional
 234 * @cd: pointer to command details structure or NULL
 235 *
 236 * Get Link Status (0x607). Returns the link status of the adapter.
 237 */
 238static enum ice_status
 239ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 240                     struct ice_link_status *link, struct ice_sq_cd *cd)
 241{
 242        struct ice_link_status *hw_link_info_old, *hw_link_info;
 243        struct ice_aqc_get_link_status_data link_data = { 0 };
 244        struct ice_aqc_get_link_status *resp;
 245        enum ice_media_type *hw_media_type;
 246        struct ice_fc_info *hw_fc_info;
 247        bool tx_pause, rx_pause;
 248        struct ice_aq_desc desc;
 249        enum ice_status status;
 250        u16 cmd_flags;
 251
 252        if (!pi)
 253                return ICE_ERR_PARAM;
 254        hw_link_info_old = &pi->phy.link_info_old;
 255        hw_media_type = &pi->phy.media_type;
 256        hw_link_info = &pi->phy.link_info;
 257        hw_fc_info = &pi->fc;
 258
 259        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 260        cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 261        resp = &desc.params.get_link_status;
 262        resp->cmd_flags = cpu_to_le16(cmd_flags);
 263        resp->lport_num = pi->lport;
 264
 265        status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
 266                                 cd);
 267
 268        if (status)
 269                return status;
 270
 271        /* save off old link status information */
 272        *hw_link_info_old = *hw_link_info;
 273
 274        /* update current link status information */
 275        hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
 276        hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 277        *hw_media_type = ice_get_media_type(pi);
 278        hw_link_info->link_info = link_data.link_info;
 279        hw_link_info->an_info = link_data.an_info;
 280        hw_link_info->ext_info = link_data.ext_info;
 281        hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 282        hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
 283
 284        /* update fc info */
 285        tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 286        rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 287        if (tx_pause && rx_pause)
 288                hw_fc_info->current_mode = ICE_FC_FULL;
 289        else if (tx_pause)
 290                hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 291        else if (rx_pause)
 292                hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 293        else
 294                hw_fc_info->current_mode = ICE_FC_NONE;
 295
 296        hw_link_info->lse_ena =
 297                !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 298
 299        /* save link status information */
 300        if (link)
 301                *link = *hw_link_info;
 302
 303        /* flag cleared so calling functions don't call AQ again */
 304        pi->phy.get_link_info = false;
 305
 306        return status;
 307}
 308
 309/**
 310 * ice_init_flex_flags
 311 * @hw: pointer to the hardware structure
 312 * @prof_id: Rx Descriptor Builder profile ID
 313 *
 314 * Function to initialize Rx flex flags
 315 */
 316static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
 317{
 318        u8 idx = 0;
 319
 320        /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
 321         * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
 322         * flexiflags1[3:0] - Not used for flag programming
 323         * flexiflags2[7:0] - Tunnel and VLAN types
 324         * 2 invalid fields in last index
 325         */
 326        switch (prof_id) {
 327        /* Rx flex flags are currently programmed for the NIC profiles only.
 328         * Different flag bit programming configurations can be added per
 329         * profile as needed.
 330         */
 331        case ICE_RXDID_FLEX_NIC:
 332        case ICE_RXDID_FLEX_NIC_2:
 333                ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
 334                                   ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
 335                                   ICE_RXFLG_FIN, idx++);
 336                /* flex flag 1 is not used for flexi-flag programming, skipping
 337                 * these four FLG64 bits.
 338                 */
 339                ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
 340                                   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
 341                ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
 342                                   ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
 343                                   ICE_RXFLG_EVLAN_x9100, idx++);
 344                ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
 345                                   ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
 346                                   ICE_RXFLG_TNL0, idx++);
 347                ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
 348                                   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
 349                break;
 350
 351        default:
 352                ice_debug(hw, ICE_DBG_INIT,
 353                          "Flag programming for profile ID %d not supported\n",
 354                          prof_id);
 355        }
 356}
 357
 358/**
 359 * ice_init_flex_flds
 360 * @hw: pointer to the hardware structure
 361 * @prof_id: Rx Descriptor Builder profile ID
 362 *
 363 * Function to initialize flex descriptors
 364 */
 365static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
 366{
 367        enum ice_flex_rx_mdid mdid;
 368
 369        switch (prof_id) {
 370        case ICE_RXDID_FLEX_NIC:
 371        case ICE_RXDID_FLEX_NIC_2:
 372                ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
 373                ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
 374                ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
 375
 376                mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
 377                        ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
 378
 379                ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
 380
 381                ice_init_flex_flags(hw, prof_id);
 382                break;
 383
 384        default:
 385                ice_debug(hw, ICE_DBG_INIT,
 386                          "Field init for profile ID %d not supported\n",
 387                          prof_id);
 388        }
 389}
 390
 391/**
 392 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 393 * @hw: pointer to the hw struct
 394 */
 395static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 396{
 397        struct ice_switch_info *sw;
 398
 399        hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 400                                       sizeof(*hw->switch_info), GFP_KERNEL);
 401        sw = hw->switch_info;
 402
 403        if (!sw)
 404                return ICE_ERR_NO_MEMORY;
 405
 406        INIT_LIST_HEAD(&sw->vsi_list_map_head);
 407
 408        ice_init_def_sw_recp(hw);
 409
 410        return 0;
 411}
 412
 413/**
 414 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 415 * @hw: pointer to the hw struct
 416 */
 417static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 418{
 419        struct ice_switch_info *sw = hw->switch_info;
 420        struct ice_vsi_list_map_info *v_pos_map;
 421        struct ice_vsi_list_map_info *v_tmp_map;
 422        struct ice_sw_recipe *recps;
 423        u8 i;
 424
 425        list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 426                                 list_entry) {
 427                list_del(&v_pos_map->list_entry);
 428                devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 429        }
 430        recps = hw->switch_info->recp_list;
 431        for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
 432                struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 433
 434                recps[i].root_rid = i;
 435                mutex_destroy(&recps[i].filt_rule_lock);
 436                list_for_each_entry_safe(lst_itr, tmp_entry,
 437                                         &recps[i].filt_rules, list_entry) {
 438                        list_del(&lst_itr->list_entry);
 439                        devm_kfree(ice_hw_to_dev(hw), lst_itr);
 440                }
 441        }
 442        ice_rm_all_sw_replay_rule_info(hw);
 443        devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 444        devm_kfree(ice_hw_to_dev(hw), sw);
 445}
 446
 447#define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \
 448        (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
 449#define ICE_FW_LOG_DESC_SIZE_MAX        \
 450        ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
 451
 452/**
 453 * ice_cfg_fw_log - configure FW logging
 454 * @hw: pointer to the hw struct
 455 * @enable: enable certain FW logging events if true, disable all if false
 456 *
 457 * This function enables/disables the FW logging via Rx CQ events and a UART
 458 * port based on predetermined configurations. FW logging via the Rx CQ can be
 459 * enabled/disabled for individual PF's. However, FW logging via the UART can
 460 * only be enabled/disabled for all PFs on the same device.
 461 *
 462 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 463 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 464 * before initializing the device.
 465 *
 466 * When re/configuring FW logging, callers need to update the "cfg" elements of
 467 * the hw->fw_log.evnts array with the desired logging event configurations for
 468 * modules of interest. When disabling FW logging completely, the callers can
 469 * just pass false in the "enable" parameter. On completion, the function will
 470 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 471 * logging event configurations of the modules that are being re/configured. FW
 472 * logging modules that are not part of a reconfiguration operation retain their
 473 * previous states.
 474 *
 475 * Before resetting the device, it is recommended that the driver disables FW
 476 * logging before shutting down the control queue. When disabling FW logging
 477 * ("enable" = false), the latest configurations of FW logging events stored in
 478 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 479 * a device reset.
 480 *
 481 * When enabling FW logging to emit log messages via the Rx CQ during the
 482 * device's initialization phase, a mechanism alternative to interrupt handlers
 483 * needs to be used to extract FW log messages from the Rx CQ periodically and
 484 * to prevent the Rx CQ from being full and stalling other types of control
 485 * messages from FW to SW. Interrupts are typically disabled during the device's
 486 * initialization phase.
 487 */
 488static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 489{
 490        struct ice_aqc_fw_logging_data *data = NULL;
 491        struct ice_aqc_fw_logging *cmd;
 492        enum ice_status status = 0;
 493        u16 i, chgs = 0, len = 0;
 494        struct ice_aq_desc desc;
 495        u8 actv_evnts = 0;
 496        void *buf = NULL;
 497
 498        if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 499                return 0;
 500
 501        /* Disable FW logging only when the control queue is still responsive */
 502        if (!enable &&
 503            (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 504                return 0;
 505
 506        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 507        cmd = &desc.params.fw_logging;
 508
 509        /* Indicate which controls are valid */
 510        if (hw->fw_log.cq_en)
 511                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 512
 513        if (hw->fw_log.uart_en)
 514                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 515
 516        if (enable) {
 517                /* Fill in an array of entries with FW logging modules and
 518                 * logging events being reconfigured.
 519                 */
 520                for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 521                        u16 val;
 522
 523                        /* Keep track of enabled event types */
 524                        actv_evnts |= hw->fw_log.evnts[i].cfg;
 525
 526                        if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 527                                continue;
 528
 529                        if (!data) {
 530                                data = devm_kzalloc(ice_hw_to_dev(hw),
 531                                                    ICE_FW_LOG_DESC_SIZE_MAX,
 532                                                    GFP_KERNEL);
 533                                if (!data)
 534                                        return ICE_ERR_NO_MEMORY;
 535                        }
 536
 537                        val = i << ICE_AQC_FW_LOG_ID_S;
 538                        val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 539                        data->entry[chgs++] = cpu_to_le16(val);
 540                }
 541
 542                /* Only enable FW logging if at least one module is specified.
 543                 * If FW logging is currently enabled but all modules are not
 544                 * enabled to emit log messages, disable FW logging altogether.
 545                 */
 546                if (actv_evnts) {
 547                        /* Leave if there is effectively no change */
 548                        if (!chgs)
 549                                goto out;
 550
 551                        if (hw->fw_log.cq_en)
 552                                cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 553
 554                        if (hw->fw_log.uart_en)
 555                                cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 556
 557                        buf = data;
 558                        len = ICE_FW_LOG_DESC_SIZE(chgs);
 559                        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 560                }
 561        }
 562
 563        status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 564        if (!status) {
 565                /* Update the current configuration to reflect events enabled.
 566                 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 567                 * logging mode is enabled for the device. They do not reflect
 568                 * actual modules being enabled to emit log messages. So, their
 569                 * values remain unchanged even when all modules are disabled.
 570                 */
 571                u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 572
 573                hw->fw_log.actv_evnts = actv_evnts;
 574                for (i = 0; i < cnt; i++) {
 575                        u16 v, m;
 576
 577                        if (!enable) {
 578                                /* When disabling all FW logging events as part
 579                                 * of device's de-initialization, the original
 580                                 * configurations are retained, and can be used
 581                                 * to reconfigure FW logging later if the device
 582                                 * is re-initialized.
 583                                 */
 584                                hw->fw_log.evnts[i].cur = 0;
 585                                continue;
 586                        }
 587
 588                        v = le16_to_cpu(data->entry[i]);
 589                        m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 590                        hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 591                }
 592        }
 593
 594out:
 595        if (data)
 596                devm_kfree(ice_hw_to_dev(hw), data);
 597
 598        return status;
 599}
 600
 601/**
 602 * ice_output_fw_log
 603 * @hw: pointer to the hw struct
 604 * @desc: pointer to the AQ message descriptor
 605 * @buf: pointer to the buffer accompanying the AQ message
 606 *
 607 * Formats a FW Log message and outputs it via the standard driver logs.
 608 */
 609void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 610{
 611        ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
 612        ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
 613                        le16_to_cpu(desc->datalen));
 614        ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
 615}
 616
 617/**
 618 * ice_get_itr_intrl_gran - determine int/intrl granularity
 619 * @hw: pointer to the hw struct
 620 *
 621 * Determines the itr/intrl granularities based on the maximum aggregate
 622 * bandwidth according to the device's configuration during power-on.
 623 */
 624static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
 625{
 626        u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 627                         GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 628                        GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 629
 630        switch (max_agg_bw) {
 631        case ICE_MAX_AGG_BW_200G:
 632        case ICE_MAX_AGG_BW_100G:
 633        case ICE_MAX_AGG_BW_50G:
 634                hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 635                hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 636                break;
 637        case ICE_MAX_AGG_BW_25G:
 638                hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 639                hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 640                break;
 641        default:
 642                ice_debug(hw, ICE_DBG_INIT,
 643                          "Failed to determine itr/intrl granularity\n");
 644                return ICE_ERR_CFG;
 645        }
 646
 647        return 0;
 648}
 649
 650/**
 651 * ice_init_hw - main hardware initialization routine
 652 * @hw: pointer to the hardware structure
 653 */
 654enum ice_status ice_init_hw(struct ice_hw *hw)
 655{
 656        struct ice_aqc_get_phy_caps_data *pcaps;
 657        enum ice_status status;
 658        u16 mac_buf_len;
 659        void *mac_buf;
 660
 661        /* Set MAC type based on DeviceID */
 662        status = ice_set_mac_type(hw);
 663        if (status)
 664                return status;
 665
 666        hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 667                         PF_FUNC_RID_FUNC_NUM_M) >>
 668                PF_FUNC_RID_FUNC_NUM_S;
 669
 670        status = ice_reset(hw, ICE_RESET_PFR);
 671        if (status)
 672                return status;
 673
 674        status = ice_get_itr_intrl_gran(hw);
 675        if (status)
 676                return status;
 677
 678        status = ice_init_all_ctrlq(hw);
 679        if (status)
 680                goto err_unroll_cqinit;
 681
 682        /* Enable FW logging. Not fatal if this fails. */
 683        status = ice_cfg_fw_log(hw, true);
 684        if (status)
 685                ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 686
 687        status = ice_clear_pf_cfg(hw);
 688        if (status)
 689                goto err_unroll_cqinit;
 690
 691        ice_clear_pxe_mode(hw);
 692
 693        status = ice_init_nvm(hw);
 694        if (status)
 695                goto err_unroll_cqinit;
 696
 697        status = ice_get_caps(hw);
 698        if (status)
 699                goto err_unroll_cqinit;
 700
 701        hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 702                                     sizeof(*hw->port_info), GFP_KERNEL);
 703        if (!hw->port_info) {
 704                status = ICE_ERR_NO_MEMORY;
 705                goto err_unroll_cqinit;
 706        }
 707
 708        /* set the back pointer to hw */
 709        hw->port_info->hw = hw;
 710
 711        /* Initialize port_info struct with switch configuration data */
 712        status = ice_get_initial_sw_cfg(hw);
 713        if (status)
 714                goto err_unroll_alloc;
 715
 716        hw->evb_veb = true;
 717
 718        /* Query the allocated resources for tx scheduler */
 719        status = ice_sched_query_res_alloc(hw);
 720        if (status) {
 721                ice_debug(hw, ICE_DBG_SCHED,
 722                          "Failed to get scheduler allocated resources\n");
 723                goto err_unroll_alloc;
 724        }
 725
 726        /* Initialize port_info struct with scheduler data */
 727        status = ice_sched_init_port(hw->port_info);
 728        if (status)
 729                goto err_unroll_sched;
 730
 731        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 732        if (!pcaps) {
 733                status = ICE_ERR_NO_MEMORY;
 734                goto err_unroll_sched;
 735        }
 736
 737        /* Initialize port_info struct with PHY capabilities */
 738        status = ice_aq_get_phy_caps(hw->port_info, false,
 739                                     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
 740        devm_kfree(ice_hw_to_dev(hw), pcaps);
 741        if (status)
 742                goto err_unroll_sched;
 743
 744        /* Initialize port_info struct with link information */
 745        status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 746        if (status)
 747                goto err_unroll_sched;
 748
 749        /* need a valid SW entry point to build a Tx tree */
 750        if (!hw->sw_entry_point_layer) {
 751                ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
 752                status = ICE_ERR_CFG;
 753                goto err_unroll_sched;
 754        }
 755
 756        status = ice_init_fltr_mgmt_struct(hw);
 757        if (status)
 758                goto err_unroll_sched;
 759
 760        ice_dev_onetime_setup(hw);
 761
 762        /* Get MAC information */
 763        /* A single port can report up to two (LAN and WoL) addresses */
 764        mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 765                               sizeof(struct ice_aqc_manage_mac_read_resp),
 766                               GFP_KERNEL);
 767        mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 768
 769        if (!mac_buf) {
 770                status = ICE_ERR_NO_MEMORY;
 771                goto err_unroll_fltr_mgmt_struct;
 772        }
 773
 774        status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 775        devm_kfree(ice_hw_to_dev(hw), mac_buf);
 776
 777        if (status)
 778                goto err_unroll_fltr_mgmt_struct;
 779
 780        ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
 781        ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
 782
 783        return 0;
 784
 785err_unroll_fltr_mgmt_struct:
 786        ice_cleanup_fltr_mgmt_struct(hw);
 787err_unroll_sched:
 788        ice_sched_cleanup_all(hw);
 789err_unroll_alloc:
 790        devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 791err_unroll_cqinit:
 792        ice_shutdown_all_ctrlq(hw);
 793        return status;
 794}
 795
 796/**
 797 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 798 * @hw: pointer to the hardware structure
 799 */
 800void ice_deinit_hw(struct ice_hw *hw)
 801{
 802        ice_cleanup_fltr_mgmt_struct(hw);
 803
 804        ice_sched_cleanup_all(hw);
 805
 806        if (hw->port_info) {
 807                devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 808                hw->port_info = NULL;
 809        }
 810
 811        /* Attempt to disable FW logging before shutting down control queues */
 812        ice_cfg_fw_log(hw, false);
 813        ice_shutdown_all_ctrlq(hw);
 814
 815        /* Clear VSI contexts if not already cleared */
 816        ice_clear_all_vsi_ctx(hw);
 817}
 818
 819/**
 820 * ice_check_reset - Check to see if a global reset is complete
 821 * @hw: pointer to the hardware structure
 822 */
 823enum ice_status ice_check_reset(struct ice_hw *hw)
 824{
 825        u32 cnt, reg = 0, grst_delay;
 826
 827        /* Poll for Device Active state in case a recent CORER, GLOBR,
 828         * or EMPR has occurred. The grst delay value is in 100ms units.
 829         * Add 1sec for outstanding AQ commands that can take a long time.
 830         */
 831        grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
 832                      GLGEN_RSTCTL_GRSTDEL_S) + 10;
 833
 834        for (cnt = 0; cnt < grst_delay; cnt++) {
 835                mdelay(100);
 836                reg = rd32(hw, GLGEN_RSTAT);
 837                if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
 838                        break;
 839        }
 840
 841        if (cnt == grst_delay) {
 842                ice_debug(hw, ICE_DBG_INIT,
 843                          "Global reset polling failed to complete.\n");
 844                return ICE_ERR_RESET_FAILED;
 845        }
 846
 847#define ICE_RESET_DONE_MASK     (GLNVM_ULD_CORER_DONE_M | \
 848                                 GLNVM_ULD_GLOBR_DONE_M)
 849
 850        /* Device is Active; check Global Reset processes are done */
 851        for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 852                reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
 853                if (reg == ICE_RESET_DONE_MASK) {
 854                        ice_debug(hw, ICE_DBG_INIT,
 855                                  "Global reset processes done. %d\n", cnt);
 856                        break;
 857                }
 858                mdelay(10);
 859        }
 860
 861        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 862                ice_debug(hw, ICE_DBG_INIT,
 863                          "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 864                          reg);
 865                return ICE_ERR_RESET_FAILED;
 866        }
 867
 868        return 0;
 869}
 870
 871/**
 872 * ice_pf_reset - Reset the PF
 873 * @hw: pointer to the hardware structure
 874 *
 875 * If a global reset has been triggered, this function checks
 876 * for its completion and then issues the PF reset
 877 */
 878static enum ice_status ice_pf_reset(struct ice_hw *hw)
 879{
 880        u32 cnt, reg;
 881
 882        /* If at function entry a global reset was already in progress, i.e.
 883         * state is not 'device active' or any of the reset done bits are not
 884         * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
 885         * global reset is done.
 886         */
 887        if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
 888            (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
 889                /* poll on global reset currently in progress until done */
 890                if (ice_check_reset(hw))
 891                        return ICE_ERR_RESET_FAILED;
 892
 893                return 0;
 894        }
 895
 896        /* Reset the PF */
 897        reg = rd32(hw, PFGEN_CTRL);
 898
 899        wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
 900
 901        for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 902                reg = rd32(hw, PFGEN_CTRL);
 903                if (!(reg & PFGEN_CTRL_PFSWR_M))
 904                        break;
 905
 906                mdelay(1);
 907        }
 908
 909        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 910                ice_debug(hw, ICE_DBG_INIT,
 911                          "PF reset polling failed to complete.\n");
 912                return ICE_ERR_RESET_FAILED;
 913        }
 914
 915        return 0;
 916}
 917
 918/**
 919 * ice_reset - Perform different types of reset
 920 * @hw: pointer to the hardware structure
 921 * @req: reset request
 922 *
 923 * This function triggers a reset as specified by the req parameter.
 924 *
 925 * Note:
 926 * If anything other than a PF reset is triggered, PXE mode is restored.
 927 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
 928 * interface has been restored in the rebuild flow.
 929 */
 930enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
 931{
 932        u32 val = 0;
 933
 934        switch (req) {
 935        case ICE_RESET_PFR:
 936                return ice_pf_reset(hw);
 937        case ICE_RESET_CORER:
 938                ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
 939                val = GLGEN_RTRIG_CORER_M;
 940                break;
 941        case ICE_RESET_GLOBR:
 942                ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
 943                val = GLGEN_RTRIG_GLOBR_M;
 944                break;
 945        default:
 946                return ICE_ERR_PARAM;
 947        }
 948
 949        val |= rd32(hw, GLGEN_RTRIG);
 950        wr32(hw, GLGEN_RTRIG, val);
 951        ice_flush(hw);
 952
 953        /* wait for the FW to be ready */
 954        return ice_check_reset(hw);
 955}
 956
 957/**
 958 * ice_copy_rxq_ctx_to_hw
 959 * @hw: pointer to the hardware structure
 960 * @ice_rxq_ctx: pointer to the rxq context
 961 * @rxq_index: the index of the rx queue
 962 *
 963 * Copies rxq context from dense structure to hw register space
 964 */
 965static enum ice_status
 966ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
 967{
 968        u8 i;
 969
 970        if (!ice_rxq_ctx)
 971                return ICE_ERR_BAD_PTR;
 972
 973        if (rxq_index > QRX_CTRL_MAX_INDEX)
 974                return ICE_ERR_PARAM;
 975
 976        /* Copy each dword separately to hw */
 977        for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
 978                wr32(hw, QRX_CONTEXT(i, rxq_index),
 979                     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
 980
 981                ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
 982                          *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
 983        }
 984
 985        return 0;
 986}
 987
 988/* LAN Rx Queue Context */
 989static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
 990        /* Field                Width   LSB */
 991        ICE_CTX_STORE(ice_rlan_ctx, head,               13,     0),
 992        ICE_CTX_STORE(ice_rlan_ctx, cpuid,              8,      13),
 993        ICE_CTX_STORE(ice_rlan_ctx, base,               57,     32),
 994        ICE_CTX_STORE(ice_rlan_ctx, qlen,               13,     89),
 995        ICE_CTX_STORE(ice_rlan_ctx, dbuf,               7,      102),
 996        ICE_CTX_STORE(ice_rlan_ctx, hbuf,               5,      109),
 997        ICE_CTX_STORE(ice_rlan_ctx, dtype,              2,      114),
 998        ICE_CTX_STORE(ice_rlan_ctx, dsize,              1,      116),
 999        ICE_CTX_STORE(ice_rlan_ctx, crcstrip,           1,      117),
1000        ICE_CTX_STORE(ice_rlan_ctx, l2tsel,             1,      119),
1001        ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,           4,      120),
1002        ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,           2,      124),
1003        ICE_CTX_STORE(ice_rlan_ctx, showiv,             1,      127),
1004        ICE_CTX_STORE(ice_rlan_ctx, rxmax,              14,     174),
1005        ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,       1,      193),
1006        ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,       1,      194),
1007        ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,        1,      195),
1008        ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,        1,      196),
1009        ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,         3,      198),
1010        { 0 }
1011};
1012
1013/**
1014 * ice_write_rxq_ctx
1015 * @hw: pointer to the hardware structure
1016 * @rlan_ctx: pointer to the rxq context
1017 * @rxq_index: the index of the rx queue
1018 *
1019 * Converts rxq context from sparse to dense structure and then writes
1020 * it to hw register space
1021 */
1022enum ice_status
1023ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1024                  u32 rxq_index)
1025{
1026        u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1027
1028        ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1029        return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1030}
1031
1032/* LAN Tx Queue Context */
1033const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1034                                    /* Field                    Width   LSB */
1035        ICE_CTX_STORE(ice_tlan_ctx, base,                       57,     0),
1036        ICE_CTX_STORE(ice_tlan_ctx, port_num,                   3,      57),
1037        ICE_CTX_STORE(ice_tlan_ctx, cgd_num,                    5,      60),
1038        ICE_CTX_STORE(ice_tlan_ctx, pf_num,                     3,      65),
1039        ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,                   10,     68),
1040        ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,                  2,      78),
1041        ICE_CTX_STORE(ice_tlan_ctx, src_vsi,                    10,     80),
1042        ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,                   1,      90),
1043        ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,                   1,      92),
1044        ICE_CTX_STORE(ice_tlan_ctx, cpuid,                      8,      93),
1045        ICE_CTX_STORE(ice_tlan_ctx, wb_mode,                    1,      101),
1046        ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,                 1,      102),
1047        ICE_CTX_STORE(ice_tlan_ctx, tphrd,                      1,      103),
1048        ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,                 1,      104),
1049        ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,                    9,      105),
1050        ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,               14,     114),
1051        ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,      1,      128),
1052        ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,             6,      129),
1053        ICE_CTX_STORE(ice_tlan_ctx, qlen,                       13,     135),
1054        ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,            4,      148),
1055        ICE_CTX_STORE(ice_tlan_ctx, tso_ena,                    1,      152),
1056        ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,                   11,     153),
1057        ICE_CTX_STORE(ice_tlan_ctx, legacy_int,                 1,      164),
1058        ICE_CTX_STORE(ice_tlan_ctx, drop_ena,                   1,      165),
1059        ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,             2,      166),
1060        ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,        3,      168),
1061        ICE_CTX_STORE(ice_tlan_ctx, int_q_state,                110,    171),
1062        { 0 }
1063};
1064
1065/**
1066 * ice_debug_cq
1067 * @hw: pointer to the hardware structure
1068 * @mask: debug mask
1069 * @desc: pointer to control queue descriptor
1070 * @buf: pointer to command buffer
1071 * @buf_len: max length of buf
1072 *
1073 * Dumps debug log about control command with descriptor contents.
1074 */
1075void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
1076                  void *buf, u16 buf_len)
1077{
1078        struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1079        u16 len;
1080
1081#ifndef CONFIG_DYNAMIC_DEBUG
1082        if (!(mask & hw->debug_mask))
1083                return;
1084#endif
1085
1086        if (!desc)
1087                return;
1088
1089        len = le16_to_cpu(cq_desc->datalen);
1090
1091        ice_debug(hw, mask,
1092                  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1093                  le16_to_cpu(cq_desc->opcode),
1094                  le16_to_cpu(cq_desc->flags),
1095                  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1096        ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1097                  le32_to_cpu(cq_desc->cookie_high),
1098                  le32_to_cpu(cq_desc->cookie_low));
1099        ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1100                  le32_to_cpu(cq_desc->params.generic.param0),
1101                  le32_to_cpu(cq_desc->params.generic.param1));
1102        ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1103                  le32_to_cpu(cq_desc->params.generic.addr_high),
1104                  le32_to_cpu(cq_desc->params.generic.addr_low));
1105        if (buf && cq_desc->datalen != 0) {
1106                ice_debug(hw, mask, "Buffer:\n");
1107                if (buf_len < len)
1108                        len = buf_len;
1109
1110                ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1111        }
1112}
1113
1114/* FW Admin Queue command wrappers */
1115
1116/**
1117 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1118 * @hw: pointer to the hw struct
1119 * @desc: descriptor describing the command
1120 * @buf: buffer to use for indirect commands (NULL for direct commands)
1121 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1122 * @cd: pointer to command details structure
1123 *
1124 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1125 */
1126enum ice_status
1127ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1128                u16 buf_size, struct ice_sq_cd *cd)
1129{
1130        return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1131}
1132
1133/**
1134 * ice_aq_get_fw_ver
1135 * @hw: pointer to the hw struct
1136 * @cd: pointer to command details structure or NULL
1137 *
1138 * Get the firmware version (0x0001) from the admin queue commands
1139 */
1140enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1141{
1142        struct ice_aqc_get_ver *resp;
1143        struct ice_aq_desc desc;
1144        enum ice_status status;
1145
1146        resp = &desc.params.get_ver;
1147
1148        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1149
1150        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1151
1152        if (!status) {
1153                hw->fw_branch = resp->fw_branch;
1154                hw->fw_maj_ver = resp->fw_major;
1155                hw->fw_min_ver = resp->fw_minor;
1156                hw->fw_patch = resp->fw_patch;
1157                hw->fw_build = le32_to_cpu(resp->fw_build);
1158                hw->api_branch = resp->api_branch;
1159                hw->api_maj_ver = resp->api_major;
1160                hw->api_min_ver = resp->api_minor;
1161                hw->api_patch = resp->api_patch;
1162        }
1163
1164        return status;
1165}
1166
1167/**
1168 * ice_aq_q_shutdown
1169 * @hw: pointer to the hw struct
1170 * @unloading: is the driver unloading itself
1171 *
1172 * Tell the Firmware that we're shutting down the AdminQ and whether
1173 * or not the driver is unloading as well (0x0003).
1174 */
1175enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1176{
1177        struct ice_aqc_q_shutdown *cmd;
1178        struct ice_aq_desc desc;
1179
1180        cmd = &desc.params.q_shutdown;
1181
1182        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1183
1184        if (unloading)
1185                cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1186
1187        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1188}
1189
1190/**
1191 * ice_aq_req_res
1192 * @hw: pointer to the hw struct
1193 * @res: resource id
1194 * @access: access type
1195 * @sdp_number: resource number
1196 * @timeout: the maximum time in ms that the driver may hold the resource
1197 * @cd: pointer to command details structure or NULL
1198 *
1199 * Requests common resource using the admin queue commands (0x0008).
1200 * When attempting to acquire the Global Config Lock, the driver can
1201 * learn of three states:
1202 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1203 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1204 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1205 *                          successfully downloaded the package; the driver does
1206 *                          not have to download the package and can continue
1207 *                          loading
1208 *
1209 * Note that if the caller is in an acquire lock, perform action, release lock
1210 * phase of operation, it is possible that the FW may detect a timeout and issue
1211 * a CORER. In this case, the driver will receive a CORER interrupt and will
1212 * have to determine its cause. The calling thread that is handling this flow
1213 * will likely get an error propagated back to it indicating the Download
1214 * Package, Update Package or the Release Resource AQ commands timed out.
1215 */
1216static enum ice_status
1217ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1218               enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1219               struct ice_sq_cd *cd)
1220{
1221        struct ice_aqc_req_res *cmd_resp;
1222        struct ice_aq_desc desc;
1223        enum ice_status status;
1224
1225        cmd_resp = &desc.params.res_owner;
1226
1227        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1228
1229        cmd_resp->res_id = cpu_to_le16(res);
1230        cmd_resp->access_type = cpu_to_le16(access);
1231        cmd_resp->res_number = cpu_to_le32(sdp_number);
1232        cmd_resp->timeout = cpu_to_le32(*timeout);
1233        *timeout = 0;
1234
1235        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1236
1237        /* The completion specifies the maximum time in ms that the driver
1238         * may hold the resource in the Timeout field.
1239         */
1240
1241        /* Global config lock response utilizes an additional status field.
1242         *
1243         * If the Global config lock resource is held by some other driver, the
1244         * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1245         * and the timeout field indicates the maximum time the current owner
1246         * of the resource has to free it.
1247         */
1248        if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1249                if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1250                        *timeout = le32_to_cpu(cmd_resp->timeout);
1251                        return 0;
1252                } else if (le16_to_cpu(cmd_resp->status) ==
1253                           ICE_AQ_RES_GLBL_IN_PROG) {
1254                        *timeout = le32_to_cpu(cmd_resp->timeout);
1255                        return ICE_ERR_AQ_ERROR;
1256                } else if (le16_to_cpu(cmd_resp->status) ==
1257                           ICE_AQ_RES_GLBL_DONE) {
1258                        return ICE_ERR_AQ_NO_WORK;
1259                }
1260
1261                /* invalid FW response, force a timeout immediately */
1262                *timeout = 0;
1263                return ICE_ERR_AQ_ERROR;
1264        }
1265
1266        /* If the resource is held by some other driver, the command completes
1267         * with a busy return value and the timeout field indicates the maximum
1268         * time the current owner of the resource has to free it.
1269         */
1270        if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1271                *timeout = le32_to_cpu(cmd_resp->timeout);
1272
1273        return status;
1274}
1275
1276/**
1277 * ice_aq_release_res
1278 * @hw: pointer to the hw struct
1279 * @res: resource id
1280 * @sdp_number: resource number
1281 * @cd: pointer to command details structure or NULL
1282 *
1283 * release common resource using the admin queue commands (0x0009)
1284 */
1285static enum ice_status
1286ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1287                   struct ice_sq_cd *cd)
1288{
1289        struct ice_aqc_req_res *cmd;
1290        struct ice_aq_desc desc;
1291
1292        cmd = &desc.params.res_owner;
1293
1294        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1295
1296        cmd->res_id = cpu_to_le16(res);
1297        cmd->res_number = cpu_to_le32(sdp_number);
1298
1299        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1300}
1301
1302/**
1303 * ice_acquire_res
1304 * @hw: pointer to the HW structure
1305 * @res: resource id
1306 * @access: access type (read or write)
1307 * @timeout: timeout in milliseconds
1308 *
1309 * This function will attempt to acquire the ownership of a resource.
1310 */
1311enum ice_status
1312ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1313                enum ice_aq_res_access_type access, u32 timeout)
1314{
1315#define ICE_RES_POLLING_DELAY_MS        10
1316        u32 delay = ICE_RES_POLLING_DELAY_MS;
1317        u32 time_left = timeout;
1318        enum ice_status status;
1319
1320        status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1321
1322        /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1323         * previously acquired the resource and performed any necessary updates;
1324         * in this case the caller does not obtain the resource and has no
1325         * further work to do.
1326         */
1327        if (status == ICE_ERR_AQ_NO_WORK)
1328                goto ice_acquire_res_exit;
1329
1330        if (status)
1331                ice_debug(hw, ICE_DBG_RES,
1332                          "resource %d acquire type %d failed.\n", res, access);
1333
1334        /* If necessary, poll until the current lock owner timeouts */
1335        timeout = time_left;
1336        while (status && timeout && time_left) {
1337                mdelay(delay);
1338                timeout = (timeout > delay) ? timeout - delay : 0;
1339                status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1340
1341                if (status == ICE_ERR_AQ_NO_WORK)
1342                        /* lock free, but no work to do */
1343                        break;
1344
1345                if (!status)
1346                        /* lock acquired */
1347                        break;
1348        }
1349        if (status && status != ICE_ERR_AQ_NO_WORK)
1350                ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1351
1352ice_acquire_res_exit:
1353        if (status == ICE_ERR_AQ_NO_WORK) {
1354                if (access == ICE_RES_WRITE)
1355                        ice_debug(hw, ICE_DBG_RES,
1356                                  "resource indicates no work to do.\n");
1357                else
1358                        ice_debug(hw, ICE_DBG_RES,
1359                                  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1360        }
1361        return status;
1362}
1363
1364/**
1365 * ice_release_res
1366 * @hw: pointer to the HW structure
1367 * @res: resource id
1368 *
1369 * This function will release a resource using the proper Admin Command.
1370 */
1371void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1372{
1373        enum ice_status status;
1374        u32 total_delay = 0;
1375
1376        status = ice_aq_release_res(hw, res, 0, NULL);
1377
1378        /* there are some rare cases when trying to release the resource
1379         * results in an admin Q timeout, so handle them correctly
1380         */
1381        while ((status == ICE_ERR_AQ_TIMEOUT) &&
1382               (total_delay < hw->adminq.sq_cmd_timeout)) {
1383                mdelay(1);
1384                status = ice_aq_release_res(hw, res, 0, NULL);
1385                total_delay++;
1386        }
1387}
1388
1389/**
1390 * ice_parse_caps - parse function/device capabilities
1391 * @hw: pointer to the hw struct
1392 * @buf: pointer to a buffer containing function/device capability records
1393 * @cap_count: number of capability records in the list
1394 * @opc: type of capabilities list to parse
1395 *
1396 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1397 */
1398static void
1399ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1400               enum ice_adminq_opc opc)
1401{
1402        struct ice_aqc_list_caps_elem *cap_resp;
1403        struct ice_hw_func_caps *func_p = NULL;
1404        struct ice_hw_dev_caps *dev_p = NULL;
1405        struct ice_hw_common_caps *caps;
1406        u32 i;
1407
1408        if (!buf)
1409                return;
1410
1411        cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1412
1413        if (opc == ice_aqc_opc_list_dev_caps) {
1414                dev_p = &hw->dev_caps;
1415                caps = &dev_p->common_cap;
1416        } else if (opc == ice_aqc_opc_list_func_caps) {
1417                func_p = &hw->func_caps;
1418                caps = &func_p->common_cap;
1419        } else {
1420                ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1421                return;
1422        }
1423
1424        for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1425                u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1426                u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1427                u32 number = le32_to_cpu(cap_resp->number);
1428                u16 cap = le16_to_cpu(cap_resp->cap);
1429
1430                switch (cap) {
1431                case ICE_AQC_CAPS_SRIOV:
1432                        caps->sr_iov_1_1 = (number == 1);
1433                        ice_debug(hw, ICE_DBG_INIT,
1434                                  "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
1435                        break;
1436                case ICE_AQC_CAPS_VF:
1437                        if (dev_p) {
1438                                dev_p->num_vfs_exposed = number;
1439                                ice_debug(hw, ICE_DBG_INIT,
1440                                          "HW caps: VFs exposed = %d\n",
1441                                          dev_p->num_vfs_exposed);
1442                        } else if (func_p) {
1443                                func_p->num_allocd_vfs = number;
1444                                func_p->vf_base_id = logical_id;
1445                                ice_debug(hw, ICE_DBG_INIT,
1446                                          "HW caps: VFs allocated = %d\n",
1447                                          func_p->num_allocd_vfs);
1448                                ice_debug(hw, ICE_DBG_INIT,
1449                                          "HW caps: VF base_id = %d\n",
1450                                          func_p->vf_base_id);
1451                        }
1452                        break;
1453                case ICE_AQC_CAPS_VSI:
1454                        if (dev_p) {
1455                                dev_p->num_vsi_allocd_to_host = number;
1456                                ice_debug(hw, ICE_DBG_INIT,
1457                                          "HW caps: Dev.VSI cnt = %d\n",
1458                                          dev_p->num_vsi_allocd_to_host);
1459                        } else if (func_p) {
1460                                func_p->guaranteed_num_vsi = number;
1461                                ice_debug(hw, ICE_DBG_INIT,
1462                                          "HW caps: Func.VSI cnt = %d\n",
1463                                          func_p->guaranteed_num_vsi);
1464                        }
1465                        break;
1466                case ICE_AQC_CAPS_RSS:
1467                        caps->rss_table_size = number;
1468                        caps->rss_table_entry_width = logical_id;
1469                        ice_debug(hw, ICE_DBG_INIT,
1470                                  "HW caps: RSS table size = %d\n",
1471                                  caps->rss_table_size);
1472                        ice_debug(hw, ICE_DBG_INIT,
1473                                  "HW caps: RSS table width = %d\n",
1474                                  caps->rss_table_entry_width);
1475                        break;
1476                case ICE_AQC_CAPS_RXQS:
1477                        caps->num_rxq = number;
1478                        caps->rxq_first_id = phys_id;
1479                        ice_debug(hw, ICE_DBG_INIT,
1480                                  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1481                        ice_debug(hw, ICE_DBG_INIT,
1482                                  "HW caps: Rx first queue ID = %d\n",
1483                                  caps->rxq_first_id);
1484                        break;
1485                case ICE_AQC_CAPS_TXQS:
1486                        caps->num_txq = number;
1487                        caps->txq_first_id = phys_id;
1488                        ice_debug(hw, ICE_DBG_INIT,
1489                                  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1490                        ice_debug(hw, ICE_DBG_INIT,
1491                                  "HW caps: Tx first queue ID = %d\n",
1492                                  caps->txq_first_id);
1493                        break;
1494                case ICE_AQC_CAPS_MSIX:
1495                        caps->num_msix_vectors = number;
1496                        caps->msix_vector_first_id = phys_id;
1497                        ice_debug(hw, ICE_DBG_INIT,
1498                                  "HW caps: MSIX vector count = %d\n",
1499                                  caps->num_msix_vectors);
1500                        ice_debug(hw, ICE_DBG_INIT,
1501                                  "HW caps: MSIX first vector index = %d\n",
1502                                  caps->msix_vector_first_id);
1503                        break;
1504                case ICE_AQC_CAPS_MAX_MTU:
1505                        caps->max_mtu = number;
1506                        if (dev_p)
1507                                ice_debug(hw, ICE_DBG_INIT,
1508                                          "HW caps: Dev.MaxMTU = %d\n",
1509                                          caps->max_mtu);
1510                        else if (func_p)
1511                                ice_debug(hw, ICE_DBG_INIT,
1512                                          "HW caps: func.MaxMTU = %d\n",
1513                                          caps->max_mtu);
1514                        break;
1515                default:
1516                        ice_debug(hw, ICE_DBG_INIT,
1517                                  "HW caps: Unknown capability[%d]: 0x%x\n", i,
1518                                  cap);
1519                        break;
1520                }
1521        }
1522}
1523
1524/**
1525 * ice_aq_discover_caps - query function/device capabilities
1526 * @hw: pointer to the hw struct
1527 * @buf: a virtual buffer to hold the capabilities
1528 * @buf_size: Size of the virtual buffer
1529 * @cap_count: cap count needed if AQ err==ENOMEM
1530 * @opc: capabilities type to discover - pass in the command opcode
1531 * @cd: pointer to command details structure or NULL
1532 *
1533 * Get the function(0x000a)/device(0x000b) capabilities description from
1534 * the firmware.
1535 */
1536static enum ice_status
1537ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1538                     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1539{
1540        struct ice_aqc_list_caps *cmd;
1541        struct ice_aq_desc desc;
1542        enum ice_status status;
1543
1544        cmd = &desc.params.get_cap;
1545
1546        if (opc != ice_aqc_opc_list_func_caps &&
1547            opc != ice_aqc_opc_list_dev_caps)
1548                return ICE_ERR_PARAM;
1549
1550        ice_fill_dflt_direct_cmd_desc(&desc, opc);
1551
1552        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1553        if (!status)
1554                ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1555        else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1556                *cap_count = le32_to_cpu(cmd->count);
1557        return status;
1558}
1559
1560/**
1561 * ice_discover_caps - get info about the HW
1562 * @hw: pointer to the hardware structure
1563 * @opc: capabilities type to discover - pass in the command opcode
1564 */
1565static enum ice_status ice_discover_caps(struct ice_hw *hw,
1566                                         enum ice_adminq_opc opc)
1567{
1568        enum ice_status status;
1569        u32 cap_count;
1570        u16 cbuf_len;
1571        u8 retries;
1572
1573        /* The driver doesn't know how many capabilities the device will return
1574         * so the buffer size required isn't known ahead of time. The driver
1575         * starts with cbuf_len and if this turns out to be insufficient, the
1576         * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1577         * The driver then allocates the buffer based on the count and retries
1578         * the operation. So it follows that the retry count is 2.
1579         */
1580#define ICE_GET_CAP_BUF_COUNT   40
1581#define ICE_GET_CAP_RETRY_COUNT 2
1582
1583        cap_count = ICE_GET_CAP_BUF_COUNT;
1584        retries = ICE_GET_CAP_RETRY_COUNT;
1585
1586        do {
1587                void *cbuf;
1588
1589                cbuf_len = (u16)(cap_count *
1590                                 sizeof(struct ice_aqc_list_caps_elem));
1591                cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1592                if (!cbuf)
1593                        return ICE_ERR_NO_MEMORY;
1594
1595                status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1596                                              opc, NULL);
1597                devm_kfree(ice_hw_to_dev(hw), cbuf);
1598
1599                if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1600                        break;
1601
1602                /* If ENOMEM is returned, try again with bigger buffer */
1603        } while (--retries);
1604
1605        return status;
1606}
1607
1608/**
1609 * ice_get_caps - get info about the HW
1610 * @hw: pointer to the hardware structure
1611 */
1612enum ice_status ice_get_caps(struct ice_hw *hw)
1613{
1614        enum ice_status status;
1615
1616        status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1617        if (!status)
1618                status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1619
1620        return status;
1621}
1622
1623/**
1624 * ice_aq_manage_mac_write - manage MAC address write command
1625 * @hw: pointer to the hw struct
1626 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1627 * @flags: flags to control write behavior
1628 * @cd: pointer to command details structure or NULL
1629 *
1630 * This function is used to write MAC address to the NVM (0x0108).
1631 */
1632enum ice_status
1633ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1634                        struct ice_sq_cd *cd)
1635{
1636        struct ice_aqc_manage_mac_write *cmd;
1637        struct ice_aq_desc desc;
1638
1639        cmd = &desc.params.mac_write;
1640        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1641
1642        cmd->flags = flags;
1643
1644        /* Prep values for flags, sah, sal */
1645        cmd->sah = htons(*((u16 *)mac_addr));
1646        cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1647
1648        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1649}
1650
1651/**
1652 * ice_aq_clear_pxe_mode
1653 * @hw: pointer to the hw struct
1654 *
1655 * Tell the firmware that the driver is taking over from PXE (0x0110).
1656 */
1657static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1658{
1659        struct ice_aq_desc desc;
1660
1661        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1662        desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1663
1664        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1665}
1666
1667/**
1668 * ice_clear_pxe_mode - clear pxe operations mode
1669 * @hw: pointer to the hw struct
1670 *
1671 * Make sure all PXE mode settings are cleared, including things
1672 * like descriptor fetch/write-back mode.
1673 */
1674void ice_clear_pxe_mode(struct ice_hw *hw)
1675{
1676        if (ice_check_sq_alive(hw, &hw->adminq))
1677                ice_aq_clear_pxe_mode(hw);
1678}
1679
1680/**
1681 * ice_get_link_speed_based_on_phy_type - returns link speed
1682 * @phy_type_low: lower part of phy_type
1683 *
1684 * This helper function will convert a phy_type_low to its corresponding link
1685 * speed.
1686 * Note: In the structure of phy_type_low, there should be one bit set, as
1687 * this function will convert one phy type to its speed.
1688 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1689 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1690 */
1691static u16
1692ice_get_link_speed_based_on_phy_type(u64 phy_type_low)
1693{
1694        u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1695
1696        switch (phy_type_low) {
1697        case ICE_PHY_TYPE_LOW_100BASE_TX:
1698        case ICE_PHY_TYPE_LOW_100M_SGMII:
1699                speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1700                break;
1701        case ICE_PHY_TYPE_LOW_1000BASE_T:
1702        case ICE_PHY_TYPE_LOW_1000BASE_SX:
1703        case ICE_PHY_TYPE_LOW_1000BASE_LX:
1704        case ICE_PHY_TYPE_LOW_1000BASE_KX:
1705        case ICE_PHY_TYPE_LOW_1G_SGMII:
1706                speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1707                break;
1708        case ICE_PHY_TYPE_LOW_2500BASE_T:
1709        case ICE_PHY_TYPE_LOW_2500BASE_X:
1710        case ICE_PHY_TYPE_LOW_2500BASE_KX:
1711                speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1712                break;
1713        case ICE_PHY_TYPE_LOW_5GBASE_T:
1714        case ICE_PHY_TYPE_LOW_5GBASE_KR:
1715                speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1716                break;
1717        case ICE_PHY_TYPE_LOW_10GBASE_T:
1718        case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1719        case ICE_PHY_TYPE_LOW_10GBASE_SR:
1720        case ICE_PHY_TYPE_LOW_10GBASE_LR:
1721        case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1722        case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1723        case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1724                speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1725                break;
1726        case ICE_PHY_TYPE_LOW_25GBASE_T:
1727        case ICE_PHY_TYPE_LOW_25GBASE_CR:
1728        case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1729        case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1730        case ICE_PHY_TYPE_LOW_25GBASE_SR:
1731        case ICE_PHY_TYPE_LOW_25GBASE_LR:
1732        case ICE_PHY_TYPE_LOW_25GBASE_KR:
1733        case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1734        case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1735        case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1736        case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1737                speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1738                break;
1739        case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1740        case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1741        case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1742        case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1743        case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1744        case ICE_PHY_TYPE_LOW_40G_XLAUI:
1745                speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1746                break;
1747        default:
1748                speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1749                break;
1750        }
1751
1752        return speed_phy_type_low;
1753}
1754
1755/**
1756 * ice_update_phy_type
1757 * @phy_type_low: pointer to the lower part of phy_type
1758 * @link_speeds_bitmap: targeted link speeds bitmap
1759 *
1760 * Note: For the link_speeds_bitmap structure, you can check it at
1761 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1762 * link_speeds_bitmap include multiple speeds.
1763 *
1764 * The value of phy_type_low will present a certain link speed. This helper
1765 * function will turn on bits in the phy_type_low based on the value of
1766 * link_speeds_bitmap input parameter.
1767 */
1768void ice_update_phy_type(u64 *phy_type_low, u16 link_speeds_bitmap)
1769{
1770        u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
1771        u64 pt_low;
1772        int index;
1773
1774        /* We first check with low part of phy_type */
1775        for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1776                pt_low = BIT_ULL(index);
1777                speed = ice_get_link_speed_based_on_phy_type(pt_low);
1778
1779                if (link_speeds_bitmap & speed)
1780                        *phy_type_low |= BIT_ULL(index);
1781        }
1782}
1783
1784/**
1785 * ice_aq_set_phy_cfg
1786 * @hw: pointer to the hw struct
1787 * @lport: logical port number
1788 * @cfg: structure with PHY configuration data to be set
1789 * @cd: pointer to command details structure or NULL
1790 *
1791 * Set the various PHY configuration parameters supported on the Port.
1792 * One or more of the Set PHY config parameters may be ignored in an MFP
1793 * mode as the PF may not have the privilege to set some of the PHY Config
1794 * parameters. This status will be indicated by the command response (0x0601).
1795 */
1796enum ice_status
1797ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1798                   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1799{
1800        struct ice_aq_desc desc;
1801
1802        if (!cfg)
1803                return ICE_ERR_PARAM;
1804
1805        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1806        desc.params.set_phy.lport_num = lport;
1807        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1808
1809        return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1810}
1811
1812/**
1813 * ice_update_link_info - update status of the HW network link
1814 * @pi: port info structure of the interested logical port
1815 */
1816enum ice_status ice_update_link_info(struct ice_port_info *pi)
1817{
1818        struct ice_aqc_get_phy_caps_data *pcaps;
1819        struct ice_phy_info *phy_info;
1820        enum ice_status status;
1821        struct ice_hw *hw;
1822
1823        if (!pi)
1824                return ICE_ERR_PARAM;
1825
1826        hw = pi->hw;
1827
1828        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1829        if (!pcaps)
1830                return ICE_ERR_NO_MEMORY;
1831
1832        phy_info = &pi->phy;
1833        status = ice_aq_get_link_info(pi, true, NULL, NULL);
1834        if (status)
1835                goto out;
1836
1837        if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1838                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1839                                             pcaps, NULL);
1840                if (status)
1841                        goto out;
1842
1843                memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1844                       sizeof(phy_info->link_info.module_type));
1845        }
1846out:
1847        devm_kfree(ice_hw_to_dev(hw), pcaps);
1848        return status;
1849}
1850
1851/**
1852 * ice_set_fc
1853 * @pi: port information structure
1854 * @aq_failures: pointer to status code, specific to ice_set_fc routine
1855 * @ena_auto_link_update: enable automatic link update
1856 *
1857 * Set the requested flow control mode.
1858 */
1859enum ice_status
1860ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
1861{
1862        struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1863        struct ice_aqc_get_phy_caps_data *pcaps;
1864        enum ice_status status;
1865        u8 pause_mask = 0x0;
1866        struct ice_hw *hw;
1867
1868        if (!pi)
1869                return ICE_ERR_PARAM;
1870        hw = pi->hw;
1871        *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1872
1873        switch (pi->fc.req_mode) {
1874        case ICE_FC_FULL:
1875                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1876                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1877                break;
1878        case ICE_FC_RX_PAUSE:
1879                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1880                break;
1881        case ICE_FC_TX_PAUSE:
1882                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1883                break;
1884        default:
1885                break;
1886        }
1887
1888        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1889        if (!pcaps)
1890                return ICE_ERR_NO_MEMORY;
1891
1892        /* Get the current phy config */
1893        status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1894                                     NULL);
1895        if (status) {
1896                *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1897                goto out;
1898        }
1899
1900        /* clear the old pause settings */
1901        cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1902                                   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1903        /* set the new capabilities */
1904        cfg.caps |= pause_mask;
1905        /* If the capabilities have changed, then set the new config */
1906        if (cfg.caps != pcaps->caps) {
1907                int retry_count, retry_max = 10;
1908
1909                /* Auto restart link so settings take effect */
1910                if (ena_auto_link_update)
1911                        cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1912                /* Copy over all the old settings */
1913                cfg.phy_type_low = pcaps->phy_type_low;
1914                cfg.low_power_ctrl = pcaps->low_power_ctrl;
1915                cfg.eee_cap = pcaps->eee_cap;
1916                cfg.eeer_value = pcaps->eeer_value;
1917                cfg.link_fec_opt = pcaps->link_fec_options;
1918
1919                status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1920                if (status) {
1921                        *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1922                        goto out;
1923                }
1924
1925                /* Update the link info
1926                 * It sometimes takes a really long time for link to
1927                 * come back from the atomic reset. Thus, we wait a
1928                 * little bit.
1929                 */
1930                for (retry_count = 0; retry_count < retry_max; retry_count++) {
1931                        status = ice_update_link_info(pi);
1932
1933                        if (!status)
1934                                break;
1935
1936                        mdelay(100);
1937                }
1938
1939                if (status)
1940                        *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1941        }
1942
1943out:
1944        devm_kfree(ice_hw_to_dev(hw), pcaps);
1945        return status;
1946}
1947
1948/**
1949 * ice_get_link_status - get status of the HW network link
1950 * @pi: port information structure
1951 * @link_up: pointer to bool (true/false = linkup/linkdown)
1952 *
1953 * Variable link_up is true if link is up, false if link is down.
1954 * The variable link_up is invalid if status is non zero. As a
1955 * result of this call, link status reporting becomes enabled
1956 */
1957enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1958{
1959        struct ice_phy_info *phy_info;
1960        enum ice_status status = 0;
1961
1962        if (!pi || !link_up)
1963                return ICE_ERR_PARAM;
1964
1965        phy_info = &pi->phy;
1966
1967        if (phy_info->get_link_info) {
1968                status = ice_update_link_info(pi);
1969
1970                if (status)
1971                        ice_debug(pi->hw, ICE_DBG_LINK,
1972                                  "get link status error, status = %d\n",
1973                                  status);
1974        }
1975
1976        *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
1977
1978        return status;
1979}
1980
1981/**
1982 * ice_aq_set_link_restart_an
1983 * @pi: pointer to the port information structure
1984 * @ena_link: if true: enable link, if false: disable link
1985 * @cd: pointer to command details structure or NULL
1986 *
1987 * Sets up the link and restarts the Auto-Negotiation over the link.
1988 */
1989enum ice_status
1990ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
1991                           struct ice_sq_cd *cd)
1992{
1993        struct ice_aqc_restart_an *cmd;
1994        struct ice_aq_desc desc;
1995
1996        cmd = &desc.params.restart_an;
1997
1998        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
1999
2000        cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2001        cmd->lport_num = pi->lport;
2002        if (ena_link)
2003                cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2004        else
2005                cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2006
2007        return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2008}
2009
2010/**
2011 * __ice_aq_get_set_rss_lut
2012 * @hw: pointer to the hardware structure
2013 * @vsi_id: VSI FW index
2014 * @lut_type: LUT table type
2015 * @lut: pointer to the LUT buffer provided by the caller
2016 * @lut_size: size of the LUT buffer
2017 * @glob_lut_idx: global LUT index
2018 * @set: set true to set the table, false to get the table
2019 *
2020 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2021 */
2022static enum ice_status
2023__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2024                         u16 lut_size, u8 glob_lut_idx, bool set)
2025{
2026        struct ice_aqc_get_set_rss_lut *cmd_resp;
2027        struct ice_aq_desc desc;
2028        enum ice_status status;
2029        u16 flags = 0;
2030
2031        cmd_resp = &desc.params.get_set_rss_lut;
2032
2033        if (set) {
2034                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2035                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2036        } else {
2037                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2038        }
2039
2040        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2041                                         ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2042                                        ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2043                                       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2044
2045        switch (lut_type) {
2046        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2047        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2048        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2049                flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2050                          ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2051                break;
2052        default:
2053                status = ICE_ERR_PARAM;
2054                goto ice_aq_get_set_rss_lut_exit;
2055        }
2056
2057        if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2058                flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2059                          ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2060
2061                if (!set)
2062                        goto ice_aq_get_set_rss_lut_send;
2063        } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2064                if (!set)
2065                        goto ice_aq_get_set_rss_lut_send;
2066        } else {
2067                goto ice_aq_get_set_rss_lut_send;
2068        }
2069
2070        /* LUT size is only valid for Global and PF table types */
2071        switch (lut_size) {
2072        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2073                break;
2074        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2075                flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2076                          ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2077                         ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2078                break;
2079        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2080                if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2081                        flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2082                                  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2083                                 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2084                        break;
2085                }
2086                /* fall-through */
2087        default:
2088                status = ICE_ERR_PARAM;
2089                goto ice_aq_get_set_rss_lut_exit;
2090        }
2091
2092ice_aq_get_set_rss_lut_send:
2093        cmd_resp->flags = cpu_to_le16(flags);
2094        status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2095
2096ice_aq_get_set_rss_lut_exit:
2097        return status;
2098}
2099
2100/**
2101 * ice_aq_get_rss_lut
2102 * @hw: pointer to the hardware structure
2103 * @vsi_handle: software VSI handle
2104 * @lut_type: LUT table type
2105 * @lut: pointer to the LUT buffer provided by the caller
2106 * @lut_size: size of the LUT buffer
2107 *
2108 * get the RSS lookup table, PF or VSI type
2109 */
2110enum ice_status
2111ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2112                   u8 *lut, u16 lut_size)
2113{
2114        if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2115                return ICE_ERR_PARAM;
2116
2117        return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2118                                        lut_type, lut, lut_size, 0, false);
2119}
2120
2121/**
2122 * ice_aq_set_rss_lut
2123 * @hw: pointer to the hardware structure
2124 * @vsi_handle: software VSI handle
2125 * @lut_type: LUT table type
2126 * @lut: pointer to the LUT buffer provided by the caller
2127 * @lut_size: size of the LUT buffer
2128 *
2129 * set the RSS lookup table, PF or VSI type
2130 */
2131enum ice_status
2132ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2133                   u8 *lut, u16 lut_size)
2134{
2135        if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2136                return ICE_ERR_PARAM;
2137
2138        return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2139                                        lut_type, lut, lut_size, 0, true);
2140}
2141
2142/**
2143 * __ice_aq_get_set_rss_key
2144 * @hw: pointer to the hw struct
2145 * @vsi_id: VSI FW index
2146 * @key: pointer to key info struct
2147 * @set: set true to set the key, false to get the key
2148 *
2149 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2150 */
2151static enum
2152ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2153                                    struct ice_aqc_get_set_rss_keys *key,
2154                                    bool set)
2155{
2156        struct ice_aqc_get_set_rss_key *cmd_resp;
2157        u16 key_size = sizeof(*key);
2158        struct ice_aq_desc desc;
2159
2160        cmd_resp = &desc.params.get_set_rss_key;
2161
2162        if (set) {
2163                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2164                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2165        } else {
2166                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2167        }
2168
2169        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2170                                         ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2171                                        ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2172                                       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2173
2174        return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2175}
2176
2177/**
2178 * ice_aq_get_rss_key
2179 * @hw: pointer to the hw struct
2180 * @vsi_handle: software VSI handle
2181 * @key: pointer to key info struct
2182 *
2183 * get the RSS key per VSI
2184 */
2185enum ice_status
2186ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2187                   struct ice_aqc_get_set_rss_keys *key)
2188{
2189        if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2190                return ICE_ERR_PARAM;
2191
2192        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2193                                        key, false);
2194}
2195
2196/**
2197 * ice_aq_set_rss_key
2198 * @hw: pointer to the hw struct
2199 * @vsi_handle: software VSI handle
2200 * @keys: pointer to key info struct
2201 *
2202 * set the RSS key per VSI
2203 */
2204enum ice_status
2205ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2206                   struct ice_aqc_get_set_rss_keys *keys)
2207{
2208        if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2209                return ICE_ERR_PARAM;
2210
2211        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2212                                        keys, true);
2213}
2214
2215/**
2216 * ice_aq_add_lan_txq
2217 * @hw: pointer to the hardware structure
2218 * @num_qgrps: Number of added queue groups
2219 * @qg_list: list of queue groups to be added
2220 * @buf_size: size of buffer for indirect command
2221 * @cd: pointer to command details structure or NULL
2222 *
2223 * Add Tx LAN queue (0x0C30)
2224 *
2225 * NOTE:
2226 * Prior to calling add Tx LAN queue:
2227 * Initialize the following as part of the Tx queue context:
2228 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2229 * Cache profile and Packet shaper profile.
2230 *
2231 * After add Tx LAN queue AQ command is completed:
2232 * Interrupts should be associated with specific queues,
2233 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2234 * flow.
2235 */
2236static enum ice_status
2237ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2238                   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2239                   struct ice_sq_cd *cd)
2240{
2241        u16 i, sum_header_size, sum_q_size = 0;
2242        struct ice_aqc_add_tx_qgrp *list;
2243        struct ice_aqc_add_txqs *cmd;
2244        struct ice_aq_desc desc;
2245
2246        cmd = &desc.params.add_txqs;
2247
2248        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2249
2250        if (!qg_list)
2251                return ICE_ERR_PARAM;
2252
2253        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2254                return ICE_ERR_PARAM;
2255
2256        sum_header_size = num_qgrps *
2257                (sizeof(*qg_list) - sizeof(*qg_list->txqs));
2258
2259        list = qg_list;
2260        for (i = 0; i < num_qgrps; i++) {
2261                struct ice_aqc_add_txqs_perq *q = list->txqs;
2262
2263                sum_q_size += list->num_txqs * sizeof(*q);
2264                list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2265        }
2266
2267        if (buf_size != (sum_header_size + sum_q_size))
2268                return ICE_ERR_PARAM;
2269
2270        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2271
2272        cmd->num_qgrps = num_qgrps;
2273
2274        return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2275}
2276
2277/**
2278 * ice_aq_dis_lan_txq
2279 * @hw: pointer to the hardware structure
2280 * @num_qgrps: number of groups in the list
2281 * @qg_list: the list of groups to disable
2282 * @buf_size: the total size of the qg_list buffer in bytes
2283 * @rst_src: if called due to reset, specifies the RST source
2284 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2285 * @cd: pointer to command details structure or NULL
2286 *
2287 * Disable LAN Tx queue (0x0C31)
2288 */
2289static enum ice_status
2290ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2291                   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2292                   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2293                   struct ice_sq_cd *cd)
2294{
2295        struct ice_aqc_dis_txqs *cmd;
2296        struct ice_aq_desc desc;
2297        u16 i, sz = 0;
2298
2299        cmd = &desc.params.dis_txqs;
2300        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2301
2302        /* qg_list can be NULL only in VM/VF reset flow */
2303        if (!qg_list && !rst_src)
2304                return ICE_ERR_PARAM;
2305
2306        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2307                return ICE_ERR_PARAM;
2308
2309        cmd->num_entries = num_qgrps;
2310
2311        cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2312                                            ICE_AQC_Q_DIS_TIMEOUT_M);
2313
2314        switch (rst_src) {
2315        case ICE_VM_RESET:
2316                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2317                cmd->vmvf_and_timeout |=
2318                        cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2319                break;
2320        case ICE_VF_RESET:
2321                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2322                /* In this case, FW expects vmvf_num to be absolute VF id */
2323                cmd->vmvf_and_timeout |=
2324                        cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2325                                    ICE_AQC_Q_DIS_VMVF_NUM_M);
2326                break;
2327        case ICE_NO_RESET:
2328        default:
2329                break;
2330        }
2331
2332        /* If no queue group info, we are in a reset flow. Issue the AQ */
2333        if (!qg_list)
2334                goto do_aq;
2335
2336        /* set RD bit to indicate that command buffer is provided by the driver
2337         * and it needs to be read by the firmware
2338         */
2339        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2340
2341        for (i = 0; i < num_qgrps; ++i) {
2342                /* Calculate the size taken up by the queue IDs in this group */
2343                sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2344
2345                /* Add the size of the group header */
2346                sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2347
2348                /* If the num of queues is even, add 2 bytes of padding */
2349                if ((qg_list[i].num_qs % 2) == 0)
2350                        sz += 2;
2351        }
2352
2353        if (buf_size != sz)
2354                return ICE_ERR_PARAM;
2355
2356do_aq:
2357        return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2358}
2359
2360/* End of FW Admin Queue command wrappers */
2361
2362/**
2363 * ice_write_byte - write a byte to a packed context structure
2364 * @src_ctx:  the context structure to read from
2365 * @dest_ctx: the context to be written to
2366 * @ce_info:  a description of the struct to be filled
2367 */
2368static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
2369                           const struct ice_ctx_ele *ce_info)
2370{
2371        u8 src_byte, dest_byte, mask;
2372        u8 *from, *dest;
2373        u16 shift_width;
2374
2375        /* copy from the next struct field */
2376        from = src_ctx + ce_info->offset;
2377
2378        /* prepare the bits and mask */
2379        shift_width = ce_info->lsb % 8;
2380        mask = (u8)(BIT(ce_info->width) - 1);
2381
2382        src_byte = *from;
2383        src_byte &= mask;
2384
2385        /* shift to correct alignment */
2386        mask <<= shift_width;
2387        src_byte <<= shift_width;
2388
2389        /* get the current bits from the target bit string */
2390        dest = dest_ctx + (ce_info->lsb / 8);
2391
2392        memcpy(&dest_byte, dest, sizeof(dest_byte));
2393
2394        dest_byte &= ~mask;     /* get the bits not changing */
2395        dest_byte |= src_byte;  /* add in the new bits */
2396
2397        /* put it all back */
2398        memcpy(dest, &dest_byte, sizeof(dest_byte));
2399}
2400
2401/**
2402 * ice_write_word - write a word to a packed context structure
2403 * @src_ctx:  the context structure to read from
2404 * @dest_ctx: the context to be written to
2405 * @ce_info:  a description of the struct to be filled
2406 */
2407static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
2408                           const struct ice_ctx_ele *ce_info)
2409{
2410        u16 src_word, mask;
2411        __le16 dest_word;
2412        u8 *from, *dest;
2413        u16 shift_width;
2414
2415        /* copy from the next struct field */
2416        from = src_ctx + ce_info->offset;
2417
2418        /* prepare the bits and mask */
2419        shift_width = ce_info->lsb % 8;
2420        mask = BIT(ce_info->width) - 1;
2421
2422        /* don't swizzle the bits until after the mask because the mask bits
2423         * will be in a different bit position on big endian machines
2424         */
2425        src_word = *(u16 *)from;
2426        src_word &= mask;
2427
2428        /* shift to correct alignment */
2429        mask <<= shift_width;
2430        src_word <<= shift_width;
2431
2432        /* get the current bits from the target bit string */
2433        dest = dest_ctx + (ce_info->lsb / 8);
2434
2435        memcpy(&dest_word, dest, sizeof(dest_word));
2436
2437        dest_word &= ~(cpu_to_le16(mask));      /* get the bits not changing */
2438        dest_word |= cpu_to_le16(src_word);     /* add in the new bits */
2439
2440        /* put it all back */
2441        memcpy(dest, &dest_word, sizeof(dest_word));
2442}
2443
2444/**
2445 * ice_write_dword - write a dword to a packed context structure
2446 * @src_ctx:  the context structure to read from
2447 * @dest_ctx: the context to be written to
2448 * @ce_info:  a description of the struct to be filled
2449 */
2450static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
2451                            const struct ice_ctx_ele *ce_info)
2452{
2453        u32 src_dword, mask;
2454        __le32 dest_dword;
2455        u8 *from, *dest;
2456        u16 shift_width;
2457
2458        /* copy from the next struct field */
2459        from = src_ctx + ce_info->offset;
2460
2461        /* prepare the bits and mask */
2462        shift_width = ce_info->lsb % 8;
2463
2464        /* if the field width is exactly 32 on an x86 machine, then the shift
2465         * operation will not work because the SHL instructions count is masked
2466         * to 5 bits so the shift will do nothing
2467         */
2468        if (ce_info->width < 32)
2469                mask = BIT(ce_info->width) - 1;
2470        else
2471                mask = (u32)~0;
2472
2473        /* don't swizzle the bits until after the mask because the mask bits
2474         * will be in a different bit position on big endian machines
2475         */
2476        src_dword = *(u32 *)from;
2477        src_dword &= mask;
2478
2479        /* shift to correct alignment */
2480        mask <<= shift_width;
2481        src_dword <<= shift_width;
2482
2483        /* get the current bits from the target bit string */
2484        dest = dest_ctx + (ce_info->lsb / 8);
2485
2486        memcpy(&dest_dword, dest, sizeof(dest_dword));
2487
2488        dest_dword &= ~(cpu_to_le32(mask));     /* get the bits not changing */
2489        dest_dword |= cpu_to_le32(src_dword);   /* add in the new bits */
2490
2491        /* put it all back */
2492        memcpy(dest, &dest_dword, sizeof(dest_dword));
2493}
2494
2495/**
2496 * ice_write_qword - write a qword to a packed context structure
2497 * @src_ctx:  the context structure to read from
2498 * @dest_ctx: the context to be written to
2499 * @ce_info:  a description of the struct to be filled
2500 */
2501static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2502                            const struct ice_ctx_ele *ce_info)
2503{
2504        u64 src_qword, mask;
2505        __le64 dest_qword;
2506        u8 *from, *dest;
2507        u16 shift_width;
2508
2509        /* copy from the next struct field */
2510        from = src_ctx + ce_info->offset;
2511
2512        /* prepare the bits and mask */
2513        shift_width = ce_info->lsb % 8;
2514
2515        /* if the field width is exactly 64 on an x86 machine, then the shift
2516         * operation will not work because the SHL instructions count is masked
2517         * to 6 bits so the shift will do nothing
2518         */
2519        if (ce_info->width < 64)
2520                mask = BIT_ULL(ce_info->width) - 1;
2521        else
2522                mask = (u64)~0;
2523
2524        /* don't swizzle the bits until after the mask because the mask bits
2525         * will be in a different bit position on big endian machines
2526         */
2527        src_qword = *(u64 *)from;
2528        src_qword &= mask;
2529
2530        /* shift to correct alignment */
2531        mask <<= shift_width;
2532        src_qword <<= shift_width;
2533
2534        /* get the current bits from the target bit string */
2535        dest = dest_ctx + (ce_info->lsb / 8);
2536
2537        memcpy(&dest_qword, dest, sizeof(dest_qword));
2538
2539        dest_qword &= ~(cpu_to_le64(mask));     /* get the bits not changing */
2540        dest_qword |= cpu_to_le64(src_qword);   /* add in the new bits */
2541
2542        /* put it all back */
2543        memcpy(dest, &dest_qword, sizeof(dest_qword));
2544}
2545
2546/**
2547 * ice_set_ctx - set context bits in packed structure
2548 * @src_ctx:  pointer to a generic non-packed context structure
2549 * @dest_ctx: pointer to memory for the packed structure
2550 * @ce_info:  a description of the structure to be transformed
2551 */
2552enum ice_status
2553ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2554{
2555        int f;
2556
2557        for (f = 0; ce_info[f].width; f++) {
2558                /* We have to deal with each element of the FW response
2559                 * using the correct size so that we are correct regardless
2560                 * of the endianness of the machine.
2561                 */
2562                switch (ce_info[f].size_of) {
2563                case sizeof(u8):
2564                        ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2565                        break;
2566                case sizeof(u16):
2567                        ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2568                        break;
2569                case sizeof(u32):
2570                        ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2571                        break;
2572                case sizeof(u64):
2573                        ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2574                        break;
2575                default:
2576                        return ICE_ERR_INVAL_SIZE;
2577                }
2578        }
2579
2580        return 0;
2581}
2582
2583/**
2584 * ice_ena_vsi_txq
2585 * @pi: port information structure
2586 * @vsi_handle: software VSI handle
2587 * @tc: tc number
2588 * @num_qgrps: Number of added queue groups
2589 * @buf: list of queue groups to be added
2590 * @buf_size: size of buffer for indirect command
2591 * @cd: pointer to command details structure or NULL
2592 *
2593 * This function adds one lan q
2594 */
2595enum ice_status
2596ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
2597                struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2598                struct ice_sq_cd *cd)
2599{
2600        struct ice_aqc_txsched_elem_data node = { 0 };
2601        struct ice_sched_node *parent;
2602        enum ice_status status;
2603        struct ice_hw *hw;
2604
2605        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2606                return ICE_ERR_CFG;
2607
2608        if (num_qgrps > 1 || buf->num_txqs > 1)
2609                return ICE_ERR_MAX_LIMIT;
2610
2611        hw = pi->hw;
2612
2613        if (!ice_is_vsi_valid(hw, vsi_handle))
2614                return ICE_ERR_PARAM;
2615
2616        mutex_lock(&pi->sched_lock);
2617
2618        /* find a parent node */
2619        parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
2620                                            ICE_SCHED_NODE_OWNER_LAN);
2621        if (!parent) {
2622                status = ICE_ERR_PARAM;
2623                goto ena_txq_exit;
2624        }
2625
2626        buf->parent_teid = parent->info.node_teid;
2627        node.parent_teid = parent->info.node_teid;
2628        /* Mark that the values in the "generic" section as valid. The default
2629         * value in the "generic" section is zero. This means that :
2630         * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2631         * - 0 priority among siblings, indicated by Bit 1-3.
2632         * - WFQ, indicated by Bit 4.
2633         * - 0 Adjustment value is used in PSM credit update flow, indicated by
2634         * Bit 5-6.
2635         * - Bit 7 is reserved.
2636         * Without setting the generic section as valid in valid_sections, the
2637         * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2638         */
2639        buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2640
2641        /* add the lan q */
2642        status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2643        if (status)
2644                goto ena_txq_exit;
2645
2646        node.node_teid = buf->txqs[0].q_teid;
2647        node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2648
2649        /* add a leaf node into schduler tree q layer */
2650        status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2651
2652ena_txq_exit:
2653        mutex_unlock(&pi->sched_lock);
2654        return status;
2655}
2656
2657/**
2658 * ice_dis_vsi_txq
2659 * @pi: port information structure
2660 * @num_queues: number of queues
2661 * @q_ids: pointer to the q_id array
2662 * @q_teids: pointer to queue node teids
2663 * @rst_src: if called due to reset, specifies the RST source
2664 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2665 * @cd: pointer to command details structure or NULL
2666 *
2667 * This function removes queues and their corresponding nodes in SW DB
2668 */
2669enum ice_status
2670ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2671                u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
2672                struct ice_sq_cd *cd)
2673{
2674        enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2675        struct ice_aqc_dis_txq_item qg_list;
2676        u16 i;
2677
2678        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2679                return ICE_ERR_CFG;
2680
2681        /* if queue is disabled already yet the disable queue command has to be
2682         * sent to complete the VF reset, then call ice_aq_dis_lan_txq without
2683         * any queue information
2684         */
2685
2686        if (!num_queues && rst_src)
2687                return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
2688                                          NULL);
2689
2690        mutex_lock(&pi->sched_lock);
2691
2692        for (i = 0; i < num_queues; i++) {
2693                struct ice_sched_node *node;
2694
2695                node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2696                if (!node)
2697                        continue;
2698                qg_list.parent_teid = node->info.parent_teid;
2699                qg_list.num_qs = 1;
2700                qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2701                status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2702                                            sizeof(qg_list), rst_src, vmvf_num,
2703                                            cd);
2704
2705                if (status)
2706                        break;
2707                ice_free_sched_node(pi, node);
2708        }
2709        mutex_unlock(&pi->sched_lock);
2710        return status;
2711}
2712
2713/**
2714 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2715 * @pi: port information structure
2716 * @vsi_handle: software VSI handle
2717 * @tc_bitmap: TC bitmap
2718 * @maxqs: max queues array per TC
2719 * @owner: lan or rdma
2720 *
2721 * This function adds/updates the VSI queues per TC.
2722 */
2723static enum ice_status
2724ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2725               u16 *maxqs, u8 owner)
2726{
2727        enum ice_status status = 0;
2728        u8 i;
2729
2730        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2731                return ICE_ERR_CFG;
2732
2733        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2734                return ICE_ERR_PARAM;
2735
2736        mutex_lock(&pi->sched_lock);
2737
2738        for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2739                /* configuration is possible only if TC node is present */
2740                if (!ice_sched_get_tc_node(pi, i))
2741                        continue;
2742
2743                status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
2744                                           ice_is_tc_ena(tc_bitmap, i));
2745                if (status)
2746                        break;
2747        }
2748
2749        mutex_unlock(&pi->sched_lock);
2750        return status;
2751}
2752
2753/**
2754 * ice_cfg_vsi_lan - configure VSI lan queues
2755 * @pi: port information structure
2756 * @vsi_handle: software VSI handle
2757 * @tc_bitmap: TC bitmap
2758 * @max_lanqs: max lan queues array per TC
2759 *
2760 * This function adds/updates the VSI lan queues per TC.
2761 */
2762enum ice_status
2763ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2764                u16 *max_lanqs)
2765{
2766        return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
2767                              ICE_SCHED_NODE_OWNER_LAN);
2768}
2769
2770/**
2771 * ice_replay_pre_init - replay pre initialization
2772 * @hw: pointer to the hw struct
2773 *
2774 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
2775 */
2776static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
2777{
2778        struct ice_switch_info *sw = hw->switch_info;
2779        u8 i;
2780
2781        /* Delete old entries from replay filter list head if there is any */
2782        ice_rm_all_sw_replay_rule_info(hw);
2783        /* In start of replay, move entries into replay_rules list, it
2784         * will allow adding rules entries back to filt_rules list,
2785         * which is operational list.
2786         */
2787        for (i = 0; i < ICE_SW_LKUP_LAST; i++)
2788                list_replace_init(&sw->recp_list[i].filt_rules,
2789                                  &sw->recp_list[i].filt_replay_rules);
2790
2791        return 0;
2792}
2793
2794/**
2795 * ice_replay_vsi - replay VSI configuration
2796 * @hw: pointer to the hw struct
2797 * @vsi_handle: driver VSI handle
2798 *
2799 * Restore all VSI configuration after reset. It is required to call this
2800 * function with main VSI first.
2801 */
2802enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
2803{
2804        enum ice_status status;
2805
2806        if (!ice_is_vsi_valid(hw, vsi_handle))
2807                return ICE_ERR_PARAM;
2808
2809        /* Replay pre-initialization if there is any */
2810        if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
2811                status = ice_replay_pre_init(hw);
2812                if (status)
2813                        return status;
2814        }
2815
2816        /* Replay per VSI all filters */
2817        status = ice_replay_vsi_all_fltr(hw, vsi_handle);
2818        return status;
2819}
2820
2821/**
2822 * ice_replay_post - post replay configuration cleanup
2823 * @hw: pointer to the hw struct
2824 *
2825 * Post replay cleanup.
2826 */
2827void ice_replay_post(struct ice_hw *hw)
2828{
2829        /* Delete old entries from replay filter list head */
2830        ice_rm_all_sw_replay_rule_info(hw);
2831}
2832
2833/**
2834 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
2835 * @hw: ptr to the hardware info
2836 * @hireg: high 32 bit HW register to read from
2837 * @loreg: low 32 bit HW register to read from
2838 * @prev_stat_loaded: bool to specify if previous stats are loaded
2839 * @prev_stat: ptr to previous loaded stat value
2840 * @cur_stat: ptr to current stat value
2841 */
2842void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
2843                       bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
2844{
2845        u64 new_data;
2846
2847        new_data = rd32(hw, loreg);
2848        new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
2849
2850        /* device stats are not reset at PFR, they likely will not be zeroed
2851         * when the driver starts. So save the first values read and use them as
2852         * offsets to be subtracted from the raw values in order to report stats
2853         * that count from zero.
2854         */
2855        if (!prev_stat_loaded)
2856                *prev_stat = new_data;
2857        if (new_data >= *prev_stat)
2858                *cur_stat = new_data - *prev_stat;
2859        else
2860                /* to manage the potential roll-over */
2861                *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
2862        *cur_stat &= 0xFFFFFFFFFFULL;
2863}
2864
2865/**
2866 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
2867 * @hw: ptr to the hardware info
2868 * @reg: HW register to read from
2869 * @prev_stat_loaded: bool to specify if previous stats are loaded
2870 * @prev_stat: ptr to previous loaded stat value
2871 * @cur_stat: ptr to current stat value
2872 */
2873void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
2874                       u64 *prev_stat, u64 *cur_stat)
2875{
2876        u32 new_data;
2877
2878        new_data = rd32(hw, reg);
2879
2880        /* device stats are not reset at PFR, they likely will not be zeroed
2881         * when the driver starts. So save the first values read and use them as
2882         * offsets to be subtracted from the raw values in order to report stats
2883         * that count from zero.
2884         */
2885        if (!prev_stat_loaded)
2886                *prev_stat = new_data;
2887        if (new_data >= *prev_stat)
2888                *cur_stat = new_data - *prev_stat;
2889        else
2890                /* to manage the potential roll-over */
2891                *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
2892}
2893