linux/drivers/net/ethernet/intel/igb/e1000_mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#include <linux/if_ether.h>
   5#include <linux/delay.h>
   6#include <linux/pci.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9
  10#include "e1000_mac.h"
  11
  12#include "igb.h"
  13
  14static s32 igb_set_default_fc(struct e1000_hw *hw);
  15static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  16
  17/**
  18 *  igb_get_bus_info_pcie - Get PCIe bus information
  19 *  @hw: pointer to the HW structure
  20 *
  21 *  Determines and stores the system bus information for a particular
  22 *  network interface.  The following bus information is determined and stored:
  23 *  bus speed, bus width, type (PCIe), and PCIe function.
  24 **/
  25s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  26{
  27        struct e1000_bus_info *bus = &hw->bus;
  28        s32 ret_val;
  29        u32 reg;
  30        u16 pcie_link_status;
  31
  32        bus->type = e1000_bus_type_pci_express;
  33
  34        ret_val = igb_read_pcie_cap_reg(hw,
  35                                        PCI_EXP_LNKSTA,
  36                                        &pcie_link_status);
  37        if (ret_val) {
  38                bus->width = e1000_bus_width_unknown;
  39                bus->speed = e1000_bus_speed_unknown;
  40        } else {
  41                switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  42                case PCI_EXP_LNKSTA_CLS_2_5GB:
  43                        bus->speed = e1000_bus_speed_2500;
  44                        break;
  45                case PCI_EXP_LNKSTA_CLS_5_0GB:
  46                        bus->speed = e1000_bus_speed_5000;
  47                        break;
  48                default:
  49                        bus->speed = e1000_bus_speed_unknown;
  50                        break;
  51                }
  52
  53                bus->width = (enum e1000_bus_width)((pcie_link_status &
  54                                                     PCI_EXP_LNKSTA_NLW) >>
  55                                                     PCI_EXP_LNKSTA_NLW_SHIFT);
  56        }
  57
  58        reg = rd32(E1000_STATUS);
  59        bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  60
  61        return 0;
  62}
  63
  64/**
  65 *  igb_clear_vfta - Clear VLAN filter table
  66 *  @hw: pointer to the HW structure
  67 *
  68 *  Clears the register array which contains the VLAN filter table by
  69 *  setting all the values to 0.
  70 **/
  71void igb_clear_vfta(struct e1000_hw *hw)
  72{
  73        u32 offset;
  74
  75        for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  76                hw->mac.ops.write_vfta(hw, offset, 0);
  77}
  78
  79/**
  80 *  igb_write_vfta - Write value to VLAN filter table
  81 *  @hw: pointer to the HW structure
  82 *  @offset: register offset in VLAN filter table
  83 *  @value: register value written to VLAN filter table
  84 *
  85 *  Writes value at the given offset in the register array which stores
  86 *  the VLAN filter table.
  87 **/
  88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
  89{
  90        struct igb_adapter *adapter = hw->back;
  91
  92        array_wr32(E1000_VFTA, offset, value);
  93        wrfl();
  94
  95        adapter->shadow_vfta[offset] = value;
  96}
  97
  98/**
  99 *  igb_init_rx_addrs - Initialize receive address's
 100 *  @hw: pointer to the HW structure
 101 *  @rar_count: receive address registers
 102 *
 103 *  Setups the receive address registers by setting the base receive address
 104 *  register to the devices MAC address and clearing all the other receive
 105 *  address registers to 0.
 106 **/
 107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 108{
 109        u32 i;
 110        u8 mac_addr[ETH_ALEN] = {0};
 111
 112        /* Setup the receive address */
 113        hw_dbg("Programming MAC Address into RAR[0]\n");
 114
 115        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 116
 117        /* Zero out the other (rar_entry_count - 1) receive addresses */
 118        hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 119        for (i = 1; i < rar_count; i++)
 120                hw->mac.ops.rar_set(hw, mac_addr, i);
 121}
 122
 123/**
 124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 125 *  @hw: pointer to hardware structure
 126 *  @vlan: VLAN id to write to VLAN filter
 127 *  @vlvf_bypass: skip VLVF if no match is found
 128 *
 129 *  return the VLVF index where this VLAN id should be placed
 130 *
 131 **/
 132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 133{
 134        s32 regindex, first_empty_slot;
 135        u32 bits;
 136
 137        /* short cut the special case */
 138        if (vlan == 0)
 139                return 0;
 140
 141        /* if vlvf_bypass is set we don't want to use an empty slot, we
 142         * will simply bypass the VLVF if there are no entries present in the
 143         * VLVF that contain our VLAN
 144         */
 145        first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 146
 147        /* Search for the VLAN id in the VLVF entries. Save off the first empty
 148         * slot found along the way.
 149         *
 150         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 151         */
 152        for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 153                bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 154                if (bits == vlan)
 155                        return regindex;
 156                if (!first_empty_slot && !bits)
 157                        first_empty_slot = regindex;
 158        }
 159
 160        return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 161}
 162
 163/**
 164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 165 *  @hw: pointer to the HW structure
 166 *  @vlan: VLAN id to add or remove
 167 *  @vind: VMDq output index that maps queue to VLAN id
 168 *  @vlan_on: if true add filter, if false remove
 169 *
 170 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 171 *  and if we are adding or removing the filter
 172 **/
 173s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 174                 bool vlan_on, bool vlvf_bypass)
 175{
 176        struct igb_adapter *adapter = hw->back;
 177        u32 regidx, vfta_delta, vfta, bits;
 178        s32 vlvf_index;
 179
 180        if ((vlan > 4095) || (vind > 7))
 181                return -E1000_ERR_PARAM;
 182
 183        /* this is a 2 part operation - first the VFTA, then the
 184         * VLVF and VLVFB if VT Mode is set
 185         * We don't write the VFTA until we know the VLVF part succeeded.
 186         */
 187
 188        /* Part 1
 189         * The VFTA is a bitstring made up of 128 32-bit registers
 190         * that enable the particular VLAN id, much like the MTA:
 191         *    bits[11-5]: which register
 192         *    bits[4-0]:  which bit in the register
 193         */
 194        regidx = vlan / 32;
 195        vfta_delta = BIT(vlan % 32);
 196        vfta = adapter->shadow_vfta[regidx];
 197
 198        /* vfta_delta represents the difference between the current value
 199         * of vfta and the value we want in the register.  Since the diff
 200         * is an XOR mask we can just update vfta using an XOR.
 201         */
 202        vfta_delta &= vlan_on ? ~vfta : vfta;
 203        vfta ^= vfta_delta;
 204
 205        /* Part 2
 206         * If VT Mode is set
 207         *   Either vlan_on
 208         *     make sure the VLAN is in VLVF
 209         *     set the vind bit in the matching VLVFB
 210         *   Or !vlan_on
 211         *     clear the pool bit and possibly the vind
 212         */
 213        if (!adapter->vfs_allocated_count)
 214                goto vfta_update;
 215
 216        vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 217        if (vlvf_index < 0) {
 218                if (vlvf_bypass)
 219                        goto vfta_update;
 220                return vlvf_index;
 221        }
 222
 223        bits = rd32(E1000_VLVF(vlvf_index));
 224
 225        /* set the pool bit */
 226        bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 227        if (vlan_on)
 228                goto vlvf_update;
 229
 230        /* clear the pool bit */
 231        bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 232
 233        if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 234                /* Clear VFTA first, then disable VLVF.  Otherwise
 235                 * we run the risk of stray packets leaking into
 236                 * the PF via the default pool
 237                 */
 238                if (vfta_delta)
 239                        hw->mac.ops.write_vfta(hw, regidx, vfta);
 240
 241                /* disable VLVF and clear remaining bit from pool */
 242                wr32(E1000_VLVF(vlvf_index), 0);
 243
 244                return 0;
 245        }
 246
 247        /* If there are still bits set in the VLVFB registers
 248         * for the VLAN ID indicated we need to see if the
 249         * caller is requesting that we clear the VFTA entry bit.
 250         * If the caller has requested that we clear the VFTA
 251         * entry bit but there are still pools/VFs using this VLAN
 252         * ID entry then ignore the request.  We're not worried
 253         * about the case where we're turning the VFTA VLAN ID
 254         * entry bit on, only when requested to turn it off as
 255         * there may be multiple pools and/or VFs using the
 256         * VLAN ID entry.  In that case we cannot clear the
 257         * VFTA bit until all pools/VFs using that VLAN ID have also
 258         * been cleared.  This will be indicated by "bits" being
 259         * zero.
 260         */
 261        vfta_delta = 0;
 262
 263vlvf_update:
 264        /* record pool change and enable VLAN ID if not already enabled */
 265        wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 266
 267vfta_update:
 268        /* bit was set/cleared before we started */
 269        if (vfta_delta)
 270                hw->mac.ops.write_vfta(hw, regidx, vfta);
 271
 272        return 0;
 273}
 274
 275/**
 276 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 277 *  @hw: pointer to the HW structure
 278 *
 279 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 280 *  can be setup by pre-boot software and must be treated like a permanent
 281 *  address and must override the actual permanent MAC address.  If an
 282 *  alternate MAC address is found it is saved in the hw struct and
 283 *  programmed into RAR0 and the function returns success, otherwise the
 284 *  function returns an error.
 285 **/
 286s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 287{
 288        u32 i;
 289        s32 ret_val = 0;
 290        u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 291        u8 alt_mac_addr[ETH_ALEN];
 292
 293        /* Alternate MAC address is handled by the option ROM for 82580
 294         * and newer. SW support not required.
 295         */
 296        if (hw->mac.type >= e1000_82580)
 297                goto out;
 298
 299        ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 300                                 &nvm_alt_mac_addr_offset);
 301        if (ret_val) {
 302                hw_dbg("NVM Read Error\n");
 303                goto out;
 304        }
 305
 306        if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 307            (nvm_alt_mac_addr_offset == 0x0000))
 308                /* There is no Alternate MAC Address */
 309                goto out;
 310
 311        if (hw->bus.func == E1000_FUNC_1)
 312                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 313        if (hw->bus.func == E1000_FUNC_2)
 314                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 315
 316        if (hw->bus.func == E1000_FUNC_3)
 317                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 318        for (i = 0; i < ETH_ALEN; i += 2) {
 319                offset = nvm_alt_mac_addr_offset + (i >> 1);
 320                ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 321                if (ret_val) {
 322                        hw_dbg("NVM Read Error\n");
 323                        goto out;
 324                }
 325
 326                alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 327                alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 328        }
 329
 330        /* if multicast bit is set, the alternate address will not be used */
 331        if (is_multicast_ether_addr(alt_mac_addr)) {
 332                hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 333                goto out;
 334        }
 335
 336        /* We have a valid alternate MAC address, and we want to treat it the
 337         * same as the normal permanent MAC address stored by the HW into the
 338         * RAR. Do this by mapping this address into RAR0.
 339         */
 340        hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 341
 342out:
 343        return ret_val;
 344}
 345
 346/**
 347 *  igb_rar_set - Set receive address register
 348 *  @hw: pointer to the HW structure
 349 *  @addr: pointer to the receive address
 350 *  @index: receive address array register
 351 *
 352 *  Sets the receive address array register at index to the address passed
 353 *  in by addr.
 354 **/
 355void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 356{
 357        u32 rar_low, rar_high;
 358
 359        /* HW expects these in little endian so we reverse the byte order
 360         * from network order (big endian) to little endian
 361         */
 362        rar_low = ((u32) addr[0] |
 363                   ((u32) addr[1] << 8) |
 364                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 365
 366        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 367
 368        /* If MAC address zero, no need to set the AV bit */
 369        if (rar_low || rar_high)
 370                rar_high |= E1000_RAH_AV;
 371
 372        /* Some bridges will combine consecutive 32-bit writes into
 373         * a single burst write, which will malfunction on some parts.
 374         * The flushes avoid this.
 375         */
 376        wr32(E1000_RAL(index), rar_low);
 377        wrfl();
 378        wr32(E1000_RAH(index), rar_high);
 379        wrfl();
 380}
 381
 382/**
 383 *  igb_mta_set - Set multicast filter table address
 384 *  @hw: pointer to the HW structure
 385 *  @hash_value: determines the MTA register and bit to set
 386 *
 387 *  The multicast table address is a register array of 32-bit registers.
 388 *  The hash_value is used to determine what register the bit is in, the
 389 *  current value is read, the new bit is OR'd in and the new value is
 390 *  written back into the register.
 391 **/
 392void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 393{
 394        u32 hash_bit, hash_reg, mta;
 395
 396        /* The MTA is a register array of 32-bit registers. It is
 397         * treated like an array of (32*mta_reg_count) bits.  We want to
 398         * set bit BitArray[hash_value]. So we figure out what register
 399         * the bit is in, read it, OR in the new bit, then write
 400         * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 401         * mask to bits 31:5 of the hash value which gives us the
 402         * register we're modifying.  The hash bit within that register
 403         * is determined by the lower 5 bits of the hash value.
 404         */
 405        hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 406        hash_bit = hash_value & 0x1F;
 407
 408        mta = array_rd32(E1000_MTA, hash_reg);
 409
 410        mta |= BIT(hash_bit);
 411
 412        array_wr32(E1000_MTA, hash_reg, mta);
 413        wrfl();
 414}
 415
 416/**
 417 *  igb_hash_mc_addr - Generate a multicast hash value
 418 *  @hw: pointer to the HW structure
 419 *  @mc_addr: pointer to a multicast address
 420 *
 421 *  Generates a multicast address hash value which is used to determine
 422 *  the multicast filter table array address and new table value.  See
 423 *  igb_mta_set()
 424 **/
 425static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 426{
 427        u32 hash_value, hash_mask;
 428        u8 bit_shift = 0;
 429
 430        /* Register count multiplied by bits per register */
 431        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 432
 433        /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 434         * where 0xFF would still fall within the hash mask.
 435         */
 436        while (hash_mask >> bit_shift != 0xFF)
 437                bit_shift++;
 438
 439        /* The portion of the address that is used for the hash table
 440         * is determined by the mc_filter_type setting.
 441         * The algorithm is such that there is a total of 8 bits of shifting.
 442         * The bit_shift for a mc_filter_type of 0 represents the number of
 443         * left-shifts where the MSB of mc_addr[5] would still fall within
 444         * the hash_mask.  Case 0 does this exactly.  Since there are a total
 445         * of 8 bits of shifting, then mc_addr[4] will shift right the
 446         * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 447         * cases are a variation of this algorithm...essentially raising the
 448         * number of bits to shift mc_addr[5] left, while still keeping the
 449         * 8-bit shifting total.
 450         *
 451         * For example, given the following Destination MAC Address and an
 452         * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 453         * we can see that the bit_shift for case 0 is 4.  These are the hash
 454         * values resulting from each mc_filter_type...
 455         * [0] [1] [2] [3] [4] [5]
 456         * 01  AA  00  12  34  56
 457         * LSB                 MSB
 458         *
 459         * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 460         * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 461         * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 462         * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 463         */
 464        switch (hw->mac.mc_filter_type) {
 465        default:
 466        case 0:
 467                break;
 468        case 1:
 469                bit_shift += 1;
 470                break;
 471        case 2:
 472                bit_shift += 2;
 473                break;
 474        case 3:
 475                bit_shift += 4;
 476                break;
 477        }
 478
 479        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 480                                  (((u16) mc_addr[5]) << bit_shift)));
 481
 482        return hash_value;
 483}
 484
 485/**
 486 *  igb_update_mc_addr_list - Update Multicast addresses
 487 *  @hw: pointer to the HW structure
 488 *  @mc_addr_list: array of multicast addresses to program
 489 *  @mc_addr_count: number of multicast addresses to program
 490 *
 491 *  Updates entire Multicast Table Array.
 492 *  The caller must have a packed mc_addr_list of multicast addresses.
 493 **/
 494void igb_update_mc_addr_list(struct e1000_hw *hw,
 495                             u8 *mc_addr_list, u32 mc_addr_count)
 496{
 497        u32 hash_value, hash_bit, hash_reg;
 498        int i;
 499
 500        /* clear mta_shadow */
 501        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 502
 503        /* update mta_shadow from mc_addr_list */
 504        for (i = 0; (u32) i < mc_addr_count; i++) {
 505                hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 506
 507                hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 508                hash_bit = hash_value & 0x1F;
 509
 510                hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 511                mc_addr_list += (ETH_ALEN);
 512        }
 513
 514        /* replace the entire MTA table */
 515        for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 516                array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 517        wrfl();
 518}
 519
 520/**
 521 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 522 *  @hw: pointer to the HW structure
 523 *
 524 *  Clears the base hardware counters by reading the counter registers.
 525 **/
 526void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 527{
 528        rd32(E1000_CRCERRS);
 529        rd32(E1000_SYMERRS);
 530        rd32(E1000_MPC);
 531        rd32(E1000_SCC);
 532        rd32(E1000_ECOL);
 533        rd32(E1000_MCC);
 534        rd32(E1000_LATECOL);
 535        rd32(E1000_COLC);
 536        rd32(E1000_DC);
 537        rd32(E1000_SEC);
 538        rd32(E1000_RLEC);
 539        rd32(E1000_XONRXC);
 540        rd32(E1000_XONTXC);
 541        rd32(E1000_XOFFRXC);
 542        rd32(E1000_XOFFTXC);
 543        rd32(E1000_FCRUC);
 544        rd32(E1000_GPRC);
 545        rd32(E1000_BPRC);
 546        rd32(E1000_MPRC);
 547        rd32(E1000_GPTC);
 548        rd32(E1000_GORCL);
 549        rd32(E1000_GORCH);
 550        rd32(E1000_GOTCL);
 551        rd32(E1000_GOTCH);
 552        rd32(E1000_RNBC);
 553        rd32(E1000_RUC);
 554        rd32(E1000_RFC);
 555        rd32(E1000_ROC);
 556        rd32(E1000_RJC);
 557        rd32(E1000_TORL);
 558        rd32(E1000_TORH);
 559        rd32(E1000_TOTL);
 560        rd32(E1000_TOTH);
 561        rd32(E1000_TPR);
 562        rd32(E1000_TPT);
 563        rd32(E1000_MPTC);
 564        rd32(E1000_BPTC);
 565}
 566
 567/**
 568 *  igb_check_for_copper_link - Check for link (Copper)
 569 *  @hw: pointer to the HW structure
 570 *
 571 *  Checks to see of the link status of the hardware has changed.  If a
 572 *  change in link status has been detected, then we read the PHY registers
 573 *  to get the current speed/duplex if link exists.
 574 **/
 575s32 igb_check_for_copper_link(struct e1000_hw *hw)
 576{
 577        struct e1000_mac_info *mac = &hw->mac;
 578        s32 ret_val;
 579        bool link;
 580
 581        /* We only want to go out to the PHY registers to see if Auto-Neg
 582         * has completed and/or if our link status has changed.  The
 583         * get_link_status flag is set upon receiving a Link Status
 584         * Change or Rx Sequence Error interrupt.
 585         */
 586        if (!mac->get_link_status) {
 587                ret_val = 0;
 588                goto out;
 589        }
 590
 591        /* First we want to see if the MII Status Register reports
 592         * link.  If so, then we want to get the current speed/duplex
 593         * of the PHY.
 594         */
 595        ret_val = igb_phy_has_link(hw, 1, 0, &link);
 596        if (ret_val)
 597                goto out;
 598
 599        if (!link)
 600                goto out; /* No link detected */
 601
 602        mac->get_link_status = false;
 603
 604        /* Check if there was DownShift, must be checked
 605         * immediately after link-up
 606         */
 607        igb_check_downshift(hw);
 608
 609        /* If we are forcing speed/duplex, then we simply return since
 610         * we have already determined whether we have link or not.
 611         */
 612        if (!mac->autoneg) {
 613                ret_val = -E1000_ERR_CONFIG;
 614                goto out;
 615        }
 616
 617        /* Auto-Neg is enabled.  Auto Speed Detection takes care
 618         * of MAC speed/duplex configuration.  So we only need to
 619         * configure Collision Distance in the MAC.
 620         */
 621        igb_config_collision_dist(hw);
 622
 623        /* Configure Flow Control now that Auto-Neg has completed.
 624         * First, we need to restore the desired flow control
 625         * settings because we may have had to re-autoneg with a
 626         * different link partner.
 627         */
 628        ret_val = igb_config_fc_after_link_up(hw);
 629        if (ret_val)
 630                hw_dbg("Error configuring flow control\n");
 631
 632out:
 633        return ret_val;
 634}
 635
 636/**
 637 *  igb_setup_link - Setup flow control and link settings
 638 *  @hw: pointer to the HW structure
 639 *
 640 *  Determines which flow control settings to use, then configures flow
 641 *  control.  Calls the appropriate media-specific link configuration
 642 *  function.  Assuming the adapter has a valid link partner, a valid link
 643 *  should be established.  Assumes the hardware has previously been reset
 644 *  and the transmitter and receiver are not enabled.
 645 **/
 646s32 igb_setup_link(struct e1000_hw *hw)
 647{
 648        s32 ret_val = 0;
 649
 650        /* In the case of the phy reset being blocked, we already have a link.
 651         * We do not need to set it up again.
 652         */
 653        if (igb_check_reset_block(hw))
 654                goto out;
 655
 656        /* If requested flow control is set to default, set flow control
 657         * based on the EEPROM flow control settings.
 658         */
 659        if (hw->fc.requested_mode == e1000_fc_default) {
 660                ret_val = igb_set_default_fc(hw);
 661                if (ret_val)
 662                        goto out;
 663        }
 664
 665        /* We want to save off the original Flow Control configuration just
 666         * in case we get disconnected and then reconnected into a different
 667         * hub or switch with different Flow Control capabilities.
 668         */
 669        hw->fc.current_mode = hw->fc.requested_mode;
 670
 671        hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 672
 673        /* Call the necessary media_type subroutine to configure the link. */
 674        ret_val = hw->mac.ops.setup_physical_interface(hw);
 675        if (ret_val)
 676                goto out;
 677
 678        /* Initialize the flow control address, type, and PAUSE timer
 679         * registers to their default values.  This is done even if flow
 680         * control is disabled, because it does not hurt anything to
 681         * initialize these registers.
 682         */
 683        hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 684        wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 685        wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 686        wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 687
 688        wr32(E1000_FCTTV, hw->fc.pause_time);
 689
 690        ret_val = igb_set_fc_watermarks(hw);
 691
 692out:
 693
 694        return ret_val;
 695}
 696
 697/**
 698 *  igb_config_collision_dist - Configure collision distance
 699 *  @hw: pointer to the HW structure
 700 *
 701 *  Configures the collision distance to the default value and is used
 702 *  during link setup. Currently no func pointer exists and all
 703 *  implementations are handled in the generic version of this function.
 704 **/
 705void igb_config_collision_dist(struct e1000_hw *hw)
 706{
 707        u32 tctl;
 708
 709        tctl = rd32(E1000_TCTL);
 710
 711        tctl &= ~E1000_TCTL_COLD;
 712        tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 713
 714        wr32(E1000_TCTL, tctl);
 715        wrfl();
 716}
 717
 718/**
 719 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 720 *  @hw: pointer to the HW structure
 721 *
 722 *  Sets the flow control high/low threshold (watermark) registers.  If
 723 *  flow control XON frame transmission is enabled, then set XON frame
 724 *  tansmission as well.
 725 **/
 726static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 727{
 728        s32 ret_val = 0;
 729        u32 fcrtl = 0, fcrth = 0;
 730
 731        /* Set the flow control receive threshold registers.  Normally,
 732         * these registers will be set to a default threshold that may be
 733         * adjusted later by the driver's runtime code.  However, if the
 734         * ability to transmit pause frames is not enabled, then these
 735         * registers will be set to 0.
 736         */
 737        if (hw->fc.current_mode & e1000_fc_tx_pause) {
 738                /* We need to set up the Receive Threshold high and low water
 739                 * marks as well as (optionally) enabling the transmission of
 740                 * XON frames.
 741                 */
 742                fcrtl = hw->fc.low_water;
 743                if (hw->fc.send_xon)
 744                        fcrtl |= E1000_FCRTL_XONE;
 745
 746                fcrth = hw->fc.high_water;
 747        }
 748        wr32(E1000_FCRTL, fcrtl);
 749        wr32(E1000_FCRTH, fcrth);
 750
 751        return ret_val;
 752}
 753
 754/**
 755 *  igb_set_default_fc - Set flow control default values
 756 *  @hw: pointer to the HW structure
 757 *
 758 *  Read the EEPROM for the default values for flow control and store the
 759 *  values.
 760 **/
 761static s32 igb_set_default_fc(struct e1000_hw *hw)
 762{
 763        s32 ret_val = 0;
 764        u16 lan_offset;
 765        u16 nvm_data;
 766
 767        /* Read and store word 0x0F of the EEPROM. This word contains bits
 768         * that determine the hardware's default PAUSE (flow control) mode,
 769         * a bit that determines whether the HW defaults to enabling or
 770         * disabling auto-negotiation, and the direction of the
 771         * SW defined pins. If there is no SW over-ride of the flow
 772         * control setting, then the variable hw->fc will
 773         * be initialized based on a value in the EEPROM.
 774         */
 775        if (hw->mac.type == e1000_i350)
 776                lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 777        else
 778                lan_offset = 0;
 779
 780        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
 781                                   1, &nvm_data);
 782        if (ret_val) {
 783                hw_dbg("NVM Read Error\n");
 784                goto out;
 785        }
 786
 787        if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 788                hw->fc.requested_mode = e1000_fc_none;
 789        else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 790                hw->fc.requested_mode = e1000_fc_tx_pause;
 791        else
 792                hw->fc.requested_mode = e1000_fc_full;
 793
 794out:
 795        return ret_val;
 796}
 797
 798/**
 799 *  igb_force_mac_fc - Force the MAC's flow control settings
 800 *  @hw: pointer to the HW structure
 801 *
 802 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 803 *  device control register to reflect the adapter settings.  TFCE and RFCE
 804 *  need to be explicitly set by software when a copper PHY is used because
 805 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 806 *  also configure these bits when link is forced on a fiber connection.
 807 **/
 808s32 igb_force_mac_fc(struct e1000_hw *hw)
 809{
 810        u32 ctrl;
 811        s32 ret_val = 0;
 812
 813        ctrl = rd32(E1000_CTRL);
 814
 815        /* Because we didn't get link via the internal auto-negotiation
 816         * mechanism (we either forced link or we got link via PHY
 817         * auto-neg), we have to manually enable/disable transmit an
 818         * receive flow control.
 819         *
 820         * The "Case" statement below enables/disable flow control
 821         * according to the "hw->fc.current_mode" parameter.
 822         *
 823         * The possible values of the "fc" parameter are:
 824         *      0:  Flow control is completely disabled
 825         *      1:  Rx flow control is enabled (we can receive pause
 826         *          frames but not send pause frames).
 827         *      2:  Tx flow control is enabled (we can send pause frames
 828         *          frames but we do not receive pause frames).
 829         *      3:  Both Rx and TX flow control (symmetric) is enabled.
 830         *  other:  No other values should be possible at this point.
 831         */
 832        hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 833
 834        switch (hw->fc.current_mode) {
 835        case e1000_fc_none:
 836                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 837                break;
 838        case e1000_fc_rx_pause:
 839                ctrl &= (~E1000_CTRL_TFCE);
 840                ctrl |= E1000_CTRL_RFCE;
 841                break;
 842        case e1000_fc_tx_pause:
 843                ctrl &= (~E1000_CTRL_RFCE);
 844                ctrl |= E1000_CTRL_TFCE;
 845                break;
 846        case e1000_fc_full:
 847                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 848                break;
 849        default:
 850                hw_dbg("Flow control param set incorrectly\n");
 851                ret_val = -E1000_ERR_CONFIG;
 852                goto out;
 853        }
 854
 855        wr32(E1000_CTRL, ctrl);
 856
 857out:
 858        return ret_val;
 859}
 860
 861/**
 862 *  igb_config_fc_after_link_up - Configures flow control after link
 863 *  @hw: pointer to the HW structure
 864 *
 865 *  Checks the status of auto-negotiation after link up to ensure that the
 866 *  speed and duplex were not forced.  If the link needed to be forced, then
 867 *  flow control needs to be forced also.  If auto-negotiation is enabled
 868 *  and did not fail, then we configure flow control based on our link
 869 *  partner.
 870 **/
 871s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 872{
 873        struct e1000_mac_info *mac = &hw->mac;
 874        s32 ret_val = 0;
 875        u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 876        u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 877        u16 speed, duplex;
 878
 879        /* Check for the case where we have fiber media and auto-neg failed
 880         * so we had to force link.  In this case, we need to force the
 881         * configuration of the MAC to match the "fc" parameter.
 882         */
 883        if (mac->autoneg_failed) {
 884                if (hw->phy.media_type == e1000_media_type_internal_serdes)
 885                        ret_val = igb_force_mac_fc(hw);
 886        } else {
 887                if (hw->phy.media_type == e1000_media_type_copper)
 888                        ret_val = igb_force_mac_fc(hw);
 889        }
 890
 891        if (ret_val) {
 892                hw_dbg("Error forcing flow control settings\n");
 893                goto out;
 894        }
 895
 896        /* Check for the case where we have copper media and auto-neg is
 897         * enabled.  In this case, we need to check and see if Auto-Neg
 898         * has completed, and if so, how the PHY and link partner has
 899         * flow control configured.
 900         */
 901        if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 902                /* Read the MII Status Register and check to see if AutoNeg
 903                 * has completed.  We read this twice because this reg has
 904                 * some "sticky" (latched) bits.
 905                 */
 906                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 907                                                   &mii_status_reg);
 908                if (ret_val)
 909                        goto out;
 910                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 911                                                   &mii_status_reg);
 912                if (ret_val)
 913                        goto out;
 914
 915                if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 916                        hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 917                        goto out;
 918                }
 919
 920                /* The AutoNeg process has completed, so we now need to
 921                 * read both the Auto Negotiation Advertisement
 922                 * Register (Address 4) and the Auto_Negotiation Base
 923                 * Page Ability Register (Address 5) to determine how
 924                 * flow control was negotiated.
 925                 */
 926                ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 927                                            &mii_nway_adv_reg);
 928                if (ret_val)
 929                        goto out;
 930                ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 931                                            &mii_nway_lp_ability_reg);
 932                if (ret_val)
 933                        goto out;
 934
 935                /* Two bits in the Auto Negotiation Advertisement Register
 936                 * (Address 4) and two bits in the Auto Negotiation Base
 937                 * Page Ability Register (Address 5) determine flow control
 938                 * for both the PHY and the link partner.  The following
 939                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 940                 * 1999, describes these PAUSE resolution bits and how flow
 941                 * control is determined based upon these settings.
 942                 * NOTE:  DC = Don't Care
 943                 *
 944                 *   LOCAL DEVICE  |   LINK PARTNER
 945                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 946                 *-------|---------|-------|---------|--------------------
 947                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 948                 *   0   |    1    |   0   |   DC    | e1000_fc_none
 949                 *   0   |    1    |   1   |    0    | e1000_fc_none
 950                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 951                 *   1   |    0    |   0   |   DC    | e1000_fc_none
 952                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 953                 *   1   |    1    |   0   |    0    | e1000_fc_none
 954                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 955                 *
 956                 * Are both PAUSE bits set to 1?  If so, this implies
 957                 * Symmetric Flow Control is enabled at both ends.  The
 958                 * ASM_DIR bits are irrelevant per the spec.
 959                 *
 960                 * For Symmetric Flow Control:
 961                 *
 962                 *   LOCAL DEVICE  |   LINK PARTNER
 963                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 964                 *-------|---------|-------|---------|--------------------
 965                 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 966                 *
 967                 */
 968                if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 969                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 970                        /* Now we need to check if the user selected RX ONLY
 971                         * of pause frames.  In this case, we had to advertise
 972                         * FULL flow control because we could not advertise RX
 973                         * ONLY. Hence, we must now check to see if we need to
 974                         * turn OFF  the TRANSMISSION of PAUSE frames.
 975                         */
 976                        if (hw->fc.requested_mode == e1000_fc_full) {
 977                                hw->fc.current_mode = e1000_fc_full;
 978                                hw_dbg("Flow Control = FULL.\n");
 979                        } else {
 980                                hw->fc.current_mode = e1000_fc_rx_pause;
 981                                hw_dbg("Flow Control = RX PAUSE frames only.\n");
 982                        }
 983                }
 984                /* For receiving PAUSE frames ONLY.
 985                 *
 986                 *   LOCAL DEVICE  |   LINK PARTNER
 987                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 988                 *-------|---------|-------|---------|--------------------
 989                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 990                 */
 991                else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 992                          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 993                          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 994                          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 995                        hw->fc.current_mode = e1000_fc_tx_pause;
 996                        hw_dbg("Flow Control = TX PAUSE frames only.\n");
 997                }
 998                /* For transmitting PAUSE frames ONLY.
 999                 *
1000                 *   LOCAL DEVICE  |   LINK PARTNER
1001                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1002                 *-------|---------|-------|---------|--------------------
1003                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1004                 */
1005                else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1006                         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1007                         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1008                         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1009                        hw->fc.current_mode = e1000_fc_rx_pause;
1010                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
1011                }
1012                /* Per the IEEE spec, at this point flow control should be
1013                 * disabled.  However, we want to consider that we could
1014                 * be connected to a legacy switch that doesn't advertise
1015                 * desired flow control, but can be forced on the link
1016                 * partner.  So if we advertised no flow control, that is
1017                 * what we will resolve to.  If we advertised some kind of
1018                 * receive capability (Rx Pause Only or Full Flow Control)
1019                 * and the link partner advertised none, we will configure
1020                 * ourselves to enable Rx Flow Control only.  We can do
1021                 * this safely for two reasons:  If the link partner really
1022                 * didn't want flow control enabled, and we enable Rx, no
1023                 * harm done since we won't be receiving any PAUSE frames
1024                 * anyway.  If the intent on the link partner was to have
1025                 * flow control enabled, then by us enabling RX only, we
1026                 * can at least receive pause frames and process them.
1027                 * This is a good idea because in most cases, since we are
1028                 * predominantly a server NIC, more times than not we will
1029                 * be asked to delay transmission of packets than asking
1030                 * our link partner to pause transmission of frames.
1031                 */
1032                else if ((hw->fc.requested_mode == e1000_fc_none) ||
1033                         (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1034                         (hw->fc.strict_ieee)) {
1035                        hw->fc.current_mode = e1000_fc_none;
1036                        hw_dbg("Flow Control = NONE.\n");
1037                } else {
1038                        hw->fc.current_mode = e1000_fc_rx_pause;
1039                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
1040                }
1041
1042                /* Now we need to do one last check...  If we auto-
1043                 * negotiated to HALF DUPLEX, flow control should not be
1044                 * enabled per IEEE 802.3 spec.
1045                 */
1046                ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1047                if (ret_val) {
1048                        hw_dbg("Error getting link speed and duplex\n");
1049                        goto out;
1050                }
1051
1052                if (duplex == HALF_DUPLEX)
1053                        hw->fc.current_mode = e1000_fc_none;
1054
1055                /* Now we call a subroutine to actually force the MAC
1056                 * controller to use the correct flow control settings.
1057                 */
1058                ret_val = igb_force_mac_fc(hw);
1059                if (ret_val) {
1060                        hw_dbg("Error forcing flow control settings\n");
1061                        goto out;
1062                }
1063        }
1064        /* Check for the case where we have SerDes media and auto-neg is
1065         * enabled.  In this case, we need to check and see if Auto-Neg
1066         * has completed, and if so, how the PHY and link partner has
1067         * flow control configured.
1068         */
1069        if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1070                && mac->autoneg) {
1071                /* Read the PCS_LSTS and check to see if AutoNeg
1072                 * has completed.
1073                 */
1074                pcs_status_reg = rd32(E1000_PCS_LSTAT);
1075
1076                if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1077                        hw_dbg("PCS Auto Neg has not completed.\n");
1078                        return ret_val;
1079                }
1080
1081                /* The AutoNeg process has completed, so we now need to
1082                 * read both the Auto Negotiation Advertisement
1083                 * Register (PCS_ANADV) and the Auto_Negotiation Base
1084                 * Page Ability Register (PCS_LPAB) to determine how
1085                 * flow control was negotiated.
1086                 */
1087                pcs_adv_reg = rd32(E1000_PCS_ANADV);
1088                pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1089
1090                /* Two bits in the Auto Negotiation Advertisement Register
1091                 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1092                 * Page Ability Register (PCS_LPAB) determine flow control
1093                 * for both the PHY and the link partner.  The following
1094                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1095                 * 1999, describes these PAUSE resolution bits and how flow
1096                 * control is determined based upon these settings.
1097                 * NOTE:  DC = Don't Care
1098                 *
1099                 *   LOCAL DEVICE  |   LINK PARTNER
1100                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1101                 *-------|---------|-------|---------|--------------------
1102                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1103                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1104                 *   0   |    1    |   1   |    0    | e1000_fc_none
1105                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1106                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1107                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1108                 *   1   |    1    |   0   |    0    | e1000_fc_none
1109                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1110                 *
1111                 * Are both PAUSE bits set to 1?  If so, this implies
1112                 * Symmetric Flow Control is enabled at both ends.  The
1113                 * ASM_DIR bits are irrelevant per the spec.
1114                 *
1115                 * For Symmetric Flow Control:
1116                 *
1117                 *   LOCAL DEVICE  |   LINK PARTNER
1118                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1119                 *-------|---------|-------|---------|--------------------
1120                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1121                 *
1122                 */
1123                if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1124                    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1125                        /* Now we need to check if the user selected Rx ONLY
1126                         * of pause frames.  In this case, we had to advertise
1127                         * FULL flow control because we could not advertise Rx
1128                         * ONLY. Hence, we must now check to see if we need to
1129                         * turn OFF the TRANSMISSION of PAUSE frames.
1130                         */
1131                        if (hw->fc.requested_mode == e1000_fc_full) {
1132                                hw->fc.current_mode = e1000_fc_full;
1133                                hw_dbg("Flow Control = FULL.\n");
1134                        } else {
1135                                hw->fc.current_mode = e1000_fc_rx_pause;
1136                                hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1137                        }
1138                }
1139                /* For receiving PAUSE frames ONLY.
1140                 *
1141                 *   LOCAL DEVICE  |   LINK PARTNER
1142                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1143                 *-------|---------|-------|---------|--------------------
1144                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1145                 */
1146                else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1147                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1148                          (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1149                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1150                        hw->fc.current_mode = e1000_fc_tx_pause;
1151                        hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1152                }
1153                /* For transmitting PAUSE frames ONLY.
1154                 *
1155                 *   LOCAL DEVICE  |   LINK PARTNER
1156                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1157                 *-------|---------|-------|---------|--------------------
1158                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1159                 */
1160                else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1161                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1162                         !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1163                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1164                        hw->fc.current_mode = e1000_fc_rx_pause;
1165                        hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1166                } else {
1167                        /* Per the IEEE spec, at this point flow control
1168                         * should be disabled.
1169                         */
1170                        hw->fc.current_mode = e1000_fc_none;
1171                        hw_dbg("Flow Control = NONE.\n");
1172                }
1173
1174                /* Now we call a subroutine to actually force the MAC
1175                 * controller to use the correct flow control settings.
1176                 */
1177                pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1178                pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1179                wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1180
1181                ret_val = igb_force_mac_fc(hw);
1182                if (ret_val) {
1183                        hw_dbg("Error forcing flow control settings\n");
1184                        return ret_val;
1185                }
1186        }
1187
1188out:
1189        return ret_val;
1190}
1191
1192/**
1193 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1194 *  @hw: pointer to the HW structure
1195 *  @speed: stores the current speed
1196 *  @duplex: stores the current duplex
1197 *
1198 *  Read the status register for the current speed/duplex and store the current
1199 *  speed and duplex for copper connections.
1200 **/
1201s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1202                                      u16 *duplex)
1203{
1204        u32 status;
1205
1206        status = rd32(E1000_STATUS);
1207        if (status & E1000_STATUS_SPEED_1000) {
1208                *speed = SPEED_1000;
1209                hw_dbg("1000 Mbs, ");
1210        } else if (status & E1000_STATUS_SPEED_100) {
1211                *speed = SPEED_100;
1212                hw_dbg("100 Mbs, ");
1213        } else {
1214                *speed = SPEED_10;
1215                hw_dbg("10 Mbs, ");
1216        }
1217
1218        if (status & E1000_STATUS_FD) {
1219                *duplex = FULL_DUPLEX;
1220                hw_dbg("Full Duplex\n");
1221        } else {
1222                *duplex = HALF_DUPLEX;
1223                hw_dbg("Half Duplex\n");
1224        }
1225
1226        return 0;
1227}
1228
1229/**
1230 *  igb_get_hw_semaphore - Acquire hardware semaphore
1231 *  @hw: pointer to the HW structure
1232 *
1233 *  Acquire the HW semaphore to access the PHY or NVM
1234 **/
1235s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1236{
1237        u32 swsm;
1238        s32 ret_val = 0;
1239        s32 timeout = hw->nvm.word_size + 1;
1240        s32 i = 0;
1241
1242        /* Get the SW semaphore */
1243        while (i < timeout) {
1244                swsm = rd32(E1000_SWSM);
1245                if (!(swsm & E1000_SWSM_SMBI))
1246                        break;
1247
1248                udelay(50);
1249                i++;
1250        }
1251
1252        if (i == timeout) {
1253                hw_dbg("Driver can't access device - SMBI bit is set.\n");
1254                ret_val = -E1000_ERR_NVM;
1255                goto out;
1256        }
1257
1258        /* Get the FW semaphore. */
1259        for (i = 0; i < timeout; i++) {
1260                swsm = rd32(E1000_SWSM);
1261                wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1262
1263                /* Semaphore acquired if bit latched */
1264                if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1265                        break;
1266
1267                udelay(50);
1268        }
1269
1270        if (i == timeout) {
1271                /* Release semaphores */
1272                igb_put_hw_semaphore(hw);
1273                hw_dbg("Driver can't access the NVM\n");
1274                ret_val = -E1000_ERR_NVM;
1275                goto out;
1276        }
1277
1278out:
1279        return ret_val;
1280}
1281
1282/**
1283 *  igb_put_hw_semaphore - Release hardware semaphore
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  Release hardware semaphore used to access the PHY or NVM
1287 **/
1288void igb_put_hw_semaphore(struct e1000_hw *hw)
1289{
1290        u32 swsm;
1291
1292        swsm = rd32(E1000_SWSM);
1293
1294        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1295
1296        wr32(E1000_SWSM, swsm);
1297}
1298
1299/**
1300 *  igb_get_auto_rd_done - Check for auto read completion
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Check EEPROM for Auto Read done bit.
1304 **/
1305s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1306{
1307        s32 i = 0;
1308        s32 ret_val = 0;
1309
1310
1311        while (i < AUTO_READ_DONE_TIMEOUT) {
1312                if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1313                        break;
1314                usleep_range(1000, 2000);
1315                i++;
1316        }
1317
1318        if (i == AUTO_READ_DONE_TIMEOUT) {
1319                hw_dbg("Auto read by HW from NVM has not completed.\n");
1320                ret_val = -E1000_ERR_RESET;
1321                goto out;
1322        }
1323
1324out:
1325        return ret_val;
1326}
1327
1328/**
1329 *  igb_valid_led_default - Verify a valid default LED config
1330 *  @hw: pointer to the HW structure
1331 *  @data: pointer to the NVM (EEPROM)
1332 *
1333 *  Read the EEPROM for the current default LED configuration.  If the
1334 *  LED configuration is not valid, set to a valid LED configuration.
1335 **/
1336static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1337{
1338        s32 ret_val;
1339
1340        ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1341        if (ret_val) {
1342                hw_dbg("NVM Read Error\n");
1343                goto out;
1344        }
1345
1346        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1347                switch (hw->phy.media_type) {
1348                case e1000_media_type_internal_serdes:
1349                        *data = ID_LED_DEFAULT_82575_SERDES;
1350                        break;
1351                case e1000_media_type_copper:
1352                default:
1353                        *data = ID_LED_DEFAULT;
1354                        break;
1355                }
1356        }
1357out:
1358        return ret_val;
1359}
1360
1361/**
1362 *  igb_id_led_init -
1363 *  @hw: pointer to the HW structure
1364 *
1365 **/
1366s32 igb_id_led_init(struct e1000_hw *hw)
1367{
1368        struct e1000_mac_info *mac = &hw->mac;
1369        s32 ret_val;
1370        const u32 ledctl_mask = 0x000000FF;
1371        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1372        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1373        u16 data, i, temp;
1374        const u16 led_mask = 0x0F;
1375
1376        /* i210 and i211 devices have different LED mechanism */
1377        if ((hw->mac.type == e1000_i210) ||
1378            (hw->mac.type == e1000_i211))
1379                ret_val = igb_valid_led_default_i210(hw, &data);
1380        else
1381                ret_val = igb_valid_led_default(hw, &data);
1382
1383        if (ret_val)
1384                goto out;
1385
1386        mac->ledctl_default = rd32(E1000_LEDCTL);
1387        mac->ledctl_mode1 = mac->ledctl_default;
1388        mac->ledctl_mode2 = mac->ledctl_default;
1389
1390        for (i = 0; i < 4; i++) {
1391                temp = (data >> (i << 2)) & led_mask;
1392                switch (temp) {
1393                case ID_LED_ON1_DEF2:
1394                case ID_LED_ON1_ON2:
1395                case ID_LED_ON1_OFF2:
1396                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1397                        mac->ledctl_mode1 |= ledctl_on << (i << 3);
1398                        break;
1399                case ID_LED_OFF1_DEF2:
1400                case ID_LED_OFF1_ON2:
1401                case ID_LED_OFF1_OFF2:
1402                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1403                        mac->ledctl_mode1 |= ledctl_off << (i << 3);
1404                        break;
1405                default:
1406                        /* Do nothing */
1407                        break;
1408                }
1409                switch (temp) {
1410                case ID_LED_DEF1_ON2:
1411                case ID_LED_ON1_ON2:
1412                case ID_LED_OFF1_ON2:
1413                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1414                        mac->ledctl_mode2 |= ledctl_on << (i << 3);
1415                        break;
1416                case ID_LED_DEF1_OFF2:
1417                case ID_LED_ON1_OFF2:
1418                case ID_LED_OFF1_OFF2:
1419                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1420                        mac->ledctl_mode2 |= ledctl_off << (i << 3);
1421                        break;
1422                default:
1423                        /* Do nothing */
1424                        break;
1425                }
1426        }
1427
1428out:
1429        return ret_val;
1430}
1431
1432/**
1433 *  igb_cleanup_led - Set LED config to default operation
1434 *  @hw: pointer to the HW structure
1435 *
1436 *  Remove the current LED configuration and set the LED configuration
1437 *  to the default value, saved from the EEPROM.
1438 **/
1439s32 igb_cleanup_led(struct e1000_hw *hw)
1440{
1441        wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1442        return 0;
1443}
1444
1445/**
1446 *  igb_blink_led - Blink LED
1447 *  @hw: pointer to the HW structure
1448 *
1449 *  Blink the led's which are set to be on.
1450 **/
1451s32 igb_blink_led(struct e1000_hw *hw)
1452{
1453        u32 ledctl_blink = 0;
1454        u32 i;
1455
1456        if (hw->phy.media_type == e1000_media_type_fiber) {
1457                /* always blink LED0 for PCI-E fiber */
1458                ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1459                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1460        } else {
1461                /* Set the blink bit for each LED that's "on" (0x0E)
1462                 * (or "off" if inverted) in ledctl_mode2.  The blink
1463                 * logic in hardware only works when mode is set to "on"
1464                 * so it must be changed accordingly when the mode is
1465                 * "off" and inverted.
1466                 */
1467                ledctl_blink = hw->mac.ledctl_mode2;
1468                for (i = 0; i < 32; i += 8) {
1469                        u32 mode = (hw->mac.ledctl_mode2 >> i) &
1470                            E1000_LEDCTL_LED0_MODE_MASK;
1471                        u32 led_default = hw->mac.ledctl_default >> i;
1472
1473                        if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1474                             (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1475                            ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1476                             (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1477                                ledctl_blink &=
1478                                    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1479                                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1480                                                 E1000_LEDCTL_MODE_LED_ON) << i;
1481                        }
1482                }
1483        }
1484
1485        wr32(E1000_LEDCTL, ledctl_blink);
1486
1487        return 0;
1488}
1489
1490/**
1491 *  igb_led_off - Turn LED off
1492 *  @hw: pointer to the HW structure
1493 *
1494 *  Turn LED off.
1495 **/
1496s32 igb_led_off(struct e1000_hw *hw)
1497{
1498        switch (hw->phy.media_type) {
1499        case e1000_media_type_copper:
1500                wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1501                break;
1502        default:
1503                break;
1504        }
1505
1506        return 0;
1507}
1508
1509/**
1510 *  igb_disable_pcie_master - Disables PCI-express master access
1511 *  @hw: pointer to the HW structure
1512 *
1513 *  Returns 0 (0) if successful, else returns -10
1514 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1515 *  the master requests to be disabled.
1516 *
1517 *  Disables PCI-Express master access and verifies there are no pending
1518 *  requests.
1519 **/
1520s32 igb_disable_pcie_master(struct e1000_hw *hw)
1521{
1522        u32 ctrl;
1523        s32 timeout = MASTER_DISABLE_TIMEOUT;
1524        s32 ret_val = 0;
1525
1526        if (hw->bus.type != e1000_bus_type_pci_express)
1527                goto out;
1528
1529        ctrl = rd32(E1000_CTRL);
1530        ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1531        wr32(E1000_CTRL, ctrl);
1532
1533        while (timeout) {
1534                if (!(rd32(E1000_STATUS) &
1535                      E1000_STATUS_GIO_MASTER_ENABLE))
1536                        break;
1537                udelay(100);
1538                timeout--;
1539        }
1540
1541        if (!timeout) {
1542                hw_dbg("Master requests are pending.\n");
1543                ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1544                goto out;
1545        }
1546
1547out:
1548        return ret_val;
1549}
1550
1551/**
1552 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1556 *  set, which is forced to MDI mode only.
1557 **/
1558s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1559{
1560        s32 ret_val = 0;
1561
1562        /* All MDI settings are supported on 82580 and newer. */
1563        if (hw->mac.type >= e1000_82580)
1564                goto out;
1565
1566        if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1567                hw_dbg("Invalid MDI setting detected\n");
1568                hw->phy.mdix = 1;
1569                ret_val = -E1000_ERR_CONFIG;
1570                goto out;
1571        }
1572
1573out:
1574        return ret_val;
1575}
1576
1577/**
1578 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1579 *  @hw: pointer to the HW structure
1580 *  @reg: 32bit register offset such as E1000_SCTL
1581 *  @offset: register offset to write to
1582 *  @data: data to write at register offset
1583 *
1584 *  Writes an address/data control type register.  There are several of these
1585 *  and they all have the format address << 8 | data and bit 31 is polled for
1586 *  completion.
1587 **/
1588s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1589                              u32 offset, u8 data)
1590{
1591        u32 i, regvalue = 0;
1592        s32 ret_val = 0;
1593
1594        /* Set up the address and data */
1595        regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1596        wr32(reg, regvalue);
1597
1598        /* Poll the ready bit to see if the MDI read completed */
1599        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1600                udelay(5);
1601                regvalue = rd32(reg);
1602                if (regvalue & E1000_GEN_CTL_READY)
1603                        break;
1604        }
1605        if (!(regvalue & E1000_GEN_CTL_READY)) {
1606                hw_dbg("Reg %08x did not indicate ready\n", reg);
1607                ret_val = -E1000_ERR_PHY;
1608                goto out;
1609        }
1610
1611out:
1612        return ret_val;
1613}
1614
1615/**
1616 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1617 *  @hw: pointer to the HW structure
1618 *
1619 *  Verifies the hardware needs to leave interface enabled so that frames can
1620 *  be directed to and from the management interface.
1621 **/
1622bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1623{
1624        u32 manc;
1625        u32 fwsm, factps;
1626        bool ret_val = false;
1627
1628        if (!hw->mac.asf_firmware_present)
1629                goto out;
1630
1631        manc = rd32(E1000_MANC);
1632
1633        if (!(manc & E1000_MANC_RCV_TCO_EN))
1634                goto out;
1635
1636        if (hw->mac.arc_subsystem_valid) {
1637                fwsm = rd32(E1000_FWSM);
1638                factps = rd32(E1000_FACTPS);
1639
1640                if (!(factps & E1000_FACTPS_MNGCG) &&
1641                    ((fwsm & E1000_FWSM_MODE_MASK) ==
1642                     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1643                        ret_val = true;
1644                        goto out;
1645                }
1646        } else {
1647                if ((manc & E1000_MANC_SMBUS_EN) &&
1648                    !(manc & E1000_MANC_ASF_EN)) {
1649                        ret_val = true;
1650                        goto out;
1651                }
1652        }
1653
1654out:
1655        return ret_val;
1656}
1657