linux/drivers/net/ethernet/qualcomm/emac/emac-mac.c
<<
>>
Prefs
   1/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   2 *
   3 * This program is free software; you can redistribute it and/or modify
   4 * it under the terms of the GNU General Public License version 2 and
   5 * only version 2 as published by the Free Software Foundation.
   6 *
   7 * This program is distributed in the hope that it will be useful,
   8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  10 * GNU General Public License for more details.
  11 */
  12
  13/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
  14 */
  15
  16#include <linux/tcp.h>
  17#include <linux/ip.h>
  18#include <linux/ipv6.h>
  19#include <linux/crc32.h>
  20#include <linux/if_vlan.h>
  21#include <linux/jiffies.h>
  22#include <linux/phy.h>
  23#include <linux/of.h>
  24#include <net/ip6_checksum.h>
  25#include "emac.h"
  26#include "emac-sgmii.h"
  27
  28/* EMAC_MAC_CTRL */
  29#define SINGLE_PAUSE_MODE               0x10000000
  30#define DEBUG_MODE                      0x08000000
  31#define BROAD_EN                        0x04000000
  32#define MULTI_ALL                       0x02000000
  33#define RX_CHKSUM_EN                    0x01000000
  34#define HUGE                            0x00800000
  35#define SPEED(x)                        (((x) & 0x3) << 20)
  36#define SPEED_MASK                      SPEED(0x3)
  37#define SIMR                            0x00080000
  38#define TPAUSE                          0x00010000
  39#define PROM_MODE                       0x00008000
  40#define VLAN_STRIP                      0x00004000
  41#define PRLEN_BMSK                      0x00003c00
  42#define PRLEN_SHFT                      10
  43#define HUGEN                           0x00000200
  44#define FLCHK                           0x00000100
  45#define PCRCE                           0x00000080
  46#define CRCE                            0x00000040
  47#define FULLD                           0x00000020
  48#define MAC_LP_EN                       0x00000010
  49#define RXFC                            0x00000008
  50#define TXFC                            0x00000004
  51#define RXEN                            0x00000002
  52#define TXEN                            0x00000001
  53
  54/* EMAC_DESC_CTRL_3 */
  55#define RFD_RING_SIZE_BMSK                                       0xfff
  56
  57/* EMAC_DESC_CTRL_4 */
  58#define RX_BUFFER_SIZE_BMSK                                     0xffff
  59
  60/* EMAC_DESC_CTRL_6 */
  61#define RRD_RING_SIZE_BMSK                                       0xfff
  62
  63/* EMAC_DESC_CTRL_9 */
  64#define TPD_RING_SIZE_BMSK                                      0xffff
  65
  66/* EMAC_TXQ_CTRL_0 */
  67#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  68#define NUM_TXF_BURST_PREF_SHFT                                     16
  69#define LS_8023_SP                                                0x80
  70#define TXQ_MODE                                                  0x40
  71#define TXQ_EN                                                    0x20
  72#define IP_OP_SP                                                  0x10
  73#define NUM_TPD_BURST_PREF_BMSK                                    0xf
  74#define NUM_TPD_BURST_PREF_SHFT                                      0
  75
  76/* EMAC_TXQ_CTRL_1 */
  77#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  78
  79/* EMAC_TXQ_CTRL_2 */
  80#define TXF_HWM_BMSK                                         0xfff0000
  81#define TXF_LWM_BMSK                                             0xfff
  82
  83/* EMAC_RXQ_CTRL_0 */
  84#define RXQ_EN                                                 BIT(31)
  85#define CUT_THRU_EN                                            BIT(30)
  86#define RSS_HASH_EN                                            BIT(29)
  87#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  88#define NUM_RFD_BURST_PREF_SHFT                                     20
  89#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  90#define IDT_TABLE_SIZE_SHFT                                          8
  91#define SP_IPV6                                                   0x80
  92
  93/* EMAC_RXQ_CTRL_1 */
  94#define JUMBO_1KAH_BMSK                                         0xf000
  95#define JUMBO_1KAH_SHFT                                             12
  96#define RFD_PREF_LOW_TH                                           0x10
  97#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  98#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  99#define RFD_PREF_UP_TH                                            0x10
 100#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
 101#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
 102
 103/* EMAC_RXQ_CTRL_2 */
 104#define RXF_DOF_THRESFHOLD                                       0x1a0
 105#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
 106#define RXF_DOF_THRESHOLD_SHFT                                      16
 107#define RXF_UOF_THRESFHOLD                                        0xbe
 108#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 109#define RXF_UOF_THRESHOLD_SHFT                                       0
 110
 111/* EMAC_RXQ_CTRL_3 */
 112#define RXD_TIMER_BMSK                                      0xffff0000
 113#define RXD_THRESHOLD_BMSK                                       0xfff
 114#define RXD_THRESHOLD_SHFT                                           0
 115
 116/* EMAC_DMA_CTRL */
 117#define DMAW_DLY_CNT_BMSK                                      0xf0000
 118#define DMAW_DLY_CNT_SHFT                                           16
 119#define DMAR_DLY_CNT_BMSK                                       0xf800
 120#define DMAR_DLY_CNT_SHFT                                           11
 121#define DMAR_REQ_PRI                                             0x400
 122#define REGWRBLEN_BMSK                                           0x380
 123#define REGWRBLEN_SHFT                                               7
 124#define REGRDBLEN_BMSK                                            0x70
 125#define REGRDBLEN_SHFT                                               4
 126#define OUT_ORDER_MODE                                             0x4
 127#define ENH_ORDER_MODE                                             0x2
 128#define IN_ORDER_MODE                                              0x1
 129
 130/* EMAC_MAILBOX_13 */
 131#define RFD3_PROC_IDX_BMSK                                   0xfff0000
 132#define RFD3_PROC_IDX_SHFT                                          16
 133#define RFD3_PROD_IDX_BMSK                                       0xfff
 134#define RFD3_PROD_IDX_SHFT                                           0
 135
 136/* EMAC_MAILBOX_2 */
 137#define NTPD_CONS_IDX_BMSK                                  0xffff0000
 138#define NTPD_CONS_IDX_SHFT                                          16
 139
 140/* EMAC_MAILBOX_3 */
 141#define RFD0_CONS_IDX_BMSK                                       0xfff
 142#define RFD0_CONS_IDX_SHFT                                           0
 143
 144/* EMAC_MAILBOX_11 */
 145#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 146#define H3TPD_PROD_IDX_SHFT                                         16
 147
 148/* EMAC_AXI_MAST_CTRL */
 149#define DATA_BYTE_SWAP                                             0x8
 150#define MAX_BOUND                                                  0x2
 151#define MAX_BTYPE                                                  0x1
 152
 153/* EMAC_MAILBOX_12 */
 154#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 155#define H3TPD_CONS_IDX_SHFT                                         16
 156
 157/* EMAC_MAILBOX_9 */
 158#define H2TPD_PROD_IDX_BMSK                                     0xffff
 159#define H2TPD_PROD_IDX_SHFT                                          0
 160
 161/* EMAC_MAILBOX_10 */
 162#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 163#define H1TPD_CONS_IDX_SHFT                                         16
 164#define H2TPD_CONS_IDX_BMSK                                     0xffff
 165#define H2TPD_CONS_IDX_SHFT                                          0
 166
 167/* EMAC_ATHR_HEADER_CTRL */
 168#define HEADER_CNT_EN                                              0x2
 169#define HEADER_ENABLE                                              0x1
 170
 171/* EMAC_MAILBOX_0 */
 172#define RFD0_PROC_IDX_BMSK                                   0xfff0000
 173#define RFD0_PROC_IDX_SHFT                                          16
 174#define RFD0_PROD_IDX_BMSK                                       0xfff
 175#define RFD0_PROD_IDX_SHFT                                           0
 176
 177/* EMAC_MAILBOX_5 */
 178#define RFD1_PROC_IDX_BMSK                                   0xfff0000
 179#define RFD1_PROC_IDX_SHFT                                          16
 180#define RFD1_PROD_IDX_BMSK                                       0xfff
 181#define RFD1_PROD_IDX_SHFT                                           0
 182
 183/* EMAC_MISC_CTRL */
 184#define RX_UNCPL_INT_EN                                            0x1
 185
 186/* EMAC_MAILBOX_7 */
 187#define RFD2_CONS_IDX_BMSK                                   0xfff0000
 188#define RFD2_CONS_IDX_SHFT                                          16
 189#define RFD1_CONS_IDX_BMSK                                       0xfff
 190#define RFD1_CONS_IDX_SHFT                                           0
 191
 192/* EMAC_MAILBOX_8 */
 193#define RFD3_CONS_IDX_BMSK                                       0xfff
 194#define RFD3_CONS_IDX_SHFT                                           0
 195
 196/* EMAC_MAILBOX_15 */
 197#define NTPD_PROD_IDX_BMSK                                      0xffff
 198#define NTPD_PROD_IDX_SHFT                                           0
 199
 200/* EMAC_MAILBOX_16 */
 201#define H1TPD_PROD_IDX_BMSK                                     0xffff
 202#define H1TPD_PROD_IDX_SHFT                                          0
 203
 204#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 205#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 206#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 207#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 208
 209/* EMAC_EMAC_WRAPPER_TX_TS_INX */
 210#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 211#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 212
 213struct emac_skb_cb {
 214        u32           tpd_idx;
 215        unsigned long jiffies;
 216};
 217
 218#define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
 219#define EMAC_RSS_IDT_SIZE       256
 220#define JUMBO_1KAH              0x4
 221#define RXD_TH                  0x100
 222#define EMAC_TPD_LAST_FRAGMENT  0x80000000
 223#define EMAC_TPD_TSTAMP_SAVE    0x80000000
 224
 225/* EMAC Errors in emac_rrd.word[3] */
 226#define EMAC_RRD_L4F            BIT(14)
 227#define EMAC_RRD_IPF            BIT(15)
 228#define EMAC_RRD_CRC            BIT(21)
 229#define EMAC_RRD_FAE            BIT(22)
 230#define EMAC_RRD_TRN            BIT(23)
 231#define EMAC_RRD_RNT            BIT(24)
 232#define EMAC_RRD_INC            BIT(25)
 233#define EMAC_RRD_FOV            BIT(29)
 234#define EMAC_RRD_LEN            BIT(30)
 235
 236/* Error bits that will result in a received frame being discarded */
 237#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 238                        EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 239                        EMAC_RRD_FOV | EMAC_RRD_LEN)
 240#define EMAC_RRD_STATS_DW_IDX 3
 241
 242#define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 243#define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 244#define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 245
 246#define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
 247#define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
 248
 249#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
 250
 251#define ISR_RX_PKT      (\
 252        RX_PKT_INT0     |\
 253        RX_PKT_INT1     |\
 254        RX_PKT_INT2     |\
 255        RX_PKT_INT3)
 256
 257void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 258{
 259        u32 crc32, bit, reg, mta;
 260
 261        /* Calculate the CRC of the MAC address */
 262        crc32 = ether_crc(ETH_ALEN, addr);
 263
 264        /* The HASH Table is an array of 2 32-bit registers. It is
 265         * treated like an array of 64 bits (BitArray[hash_value]).
 266         * Use the upper 6 bits of the above CRC as the hash value.
 267         */
 268        reg = (crc32 >> 31) & 0x1;
 269        bit = (crc32 >> 26) & 0x1F;
 270
 271        mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 272        mta |= BIT(bit);
 273        writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 274}
 275
 276void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 277{
 278        writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 279        writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 280}
 281
 282/* definitions for RSS */
 283#define EMAC_RSS_KEY(_i, _type) \
 284                (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 285#define EMAC_RSS_TBL(_i, _type) \
 286                (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 287
 288/* Config MAC modes */
 289void emac_mac_mode_config(struct emac_adapter *adpt)
 290{
 291        struct net_device *netdev = adpt->netdev;
 292        u32 mac;
 293
 294        mac = readl(adpt->base + EMAC_MAC_CTRL);
 295        mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 296
 297        if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 298                mac |= VLAN_STRIP;
 299
 300        if (netdev->flags & IFF_PROMISC)
 301                mac |= PROM_MODE;
 302
 303        if (netdev->flags & IFF_ALLMULTI)
 304                mac |= MULTI_ALL;
 305
 306        writel(mac, adpt->base + EMAC_MAC_CTRL);
 307}
 308
 309/* Config descriptor rings */
 310static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 311{
 312        /* TPD (Transmit Packet Descriptor) */
 313        writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 314               adpt->base + EMAC_DESC_CTRL_1);
 315
 316        writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 317               adpt->base + EMAC_DESC_CTRL_8);
 318
 319        writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 320               adpt->base + EMAC_DESC_CTRL_9);
 321
 322        /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 323        writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 324               adpt->base + EMAC_DESC_CTRL_0);
 325
 326        writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 327               adpt->base + EMAC_DESC_CTRL_2);
 328        writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 329               adpt->base + EMAC_DESC_CTRL_5);
 330
 331        writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 332               adpt->base + EMAC_DESC_CTRL_3);
 333        writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 334               adpt->base + EMAC_DESC_CTRL_6);
 335
 336        writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 337               adpt->base + EMAC_DESC_CTRL_4);
 338
 339        writel(0, adpt->base + EMAC_DESC_CTRL_11);
 340
 341        /* Load all of the base addresses above and ensure that triggering HW to
 342         * read ring pointers is flushed
 343         */
 344        writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 345}
 346
 347/* Config transmit parameters */
 348static void emac_mac_tx_config(struct emac_adapter *adpt)
 349{
 350        u32 val;
 351
 352        writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 353               JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 354
 355        val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 356               NUM_TPD_BURST_PREF_BMSK;
 357
 358        val |= TXQ_MODE | LS_8023_SP;
 359        val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 360                NUM_TXF_BURST_PREF_BMSK;
 361
 362        writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 363        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 364                          (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 365}
 366
 367/* Config receive parameters */
 368static void emac_mac_rx_config(struct emac_adapter *adpt)
 369{
 370        u32 val;
 371
 372        val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 373               NUM_RFD_BURST_PREF_BMSK;
 374        val |= (SP_IPV6 | CUT_THRU_EN);
 375
 376        writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 377
 378        val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 379        val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 380                 RFD_PREF_UP_THRESHOLD_BMSK);
 381        val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 382                (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 383                (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 384        writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 385
 386        val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 387        val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 388        val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 389                (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 390        writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 391
 392        val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 393        val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 394        val |= RXD_TH << RXD_THRESHOLD_SHFT;
 395        writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 396}
 397
 398/* Config dma */
 399static void emac_mac_dma_config(struct emac_adapter *adpt)
 400{
 401        u32 dma_ctrl = DMAR_REQ_PRI;
 402
 403        switch (adpt->dma_order) {
 404        case emac_dma_ord_in:
 405                dma_ctrl |= IN_ORDER_MODE;
 406                break;
 407        case emac_dma_ord_enh:
 408                dma_ctrl |= ENH_ORDER_MODE;
 409                break;
 410        case emac_dma_ord_out:
 411                dma_ctrl |= OUT_ORDER_MODE;
 412                break;
 413        default:
 414                break;
 415        }
 416
 417        dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 418                                                REGRDBLEN_BMSK;
 419        dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 420                                                REGWRBLEN_BMSK;
 421        dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 422                                                DMAR_DLY_CNT_BMSK;
 423        dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 424                                                DMAW_DLY_CNT_BMSK;
 425
 426        /* config DMA and ensure that configuration is flushed to HW */
 427        writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 428}
 429
 430/* set MAC address */
 431static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
 432{
 433        u32 sta;
 434
 435        /* for example: 00-A0-C6-11-22-33
 436         * 0<-->C6112233, 1<-->00A0.
 437         */
 438
 439        /* low 32bit word */
 440        sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 441              (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 442        writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 443
 444        /* hight 32bit word */
 445        sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 446        writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 447}
 448
 449static void emac_mac_config(struct emac_adapter *adpt)
 450{
 451        struct net_device *netdev = adpt->netdev;
 452        unsigned int max_frame;
 453        u32 val;
 454
 455        emac_set_mac_address(adpt, netdev->dev_addr);
 456
 457        max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 458        adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 459                ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 460
 461        emac_mac_dma_rings_config(adpt);
 462
 463        writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 464               adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 465
 466        emac_mac_tx_config(adpt);
 467        emac_mac_rx_config(adpt);
 468        emac_mac_dma_config(adpt);
 469
 470        val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 471        val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 472        val |= MAX_BTYPE;
 473        writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 474        writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 475        writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 476}
 477
 478void emac_mac_reset(struct emac_adapter *adpt)
 479{
 480        emac_mac_stop(adpt);
 481
 482        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 483        usleep_range(100, 150); /* reset may take up to 100usec */
 484
 485        /* interrupt clear-on-read */
 486        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 487}
 488
 489static void emac_mac_start(struct emac_adapter *adpt)
 490{
 491        struct phy_device *phydev = adpt->phydev;
 492        u32 mac, csr1;
 493
 494        /* enable tx queue */
 495        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 496
 497        /* enable rx queue */
 498        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 499
 500        /* enable mac control */
 501        mac = readl(adpt->base + EMAC_MAC_CTRL);
 502        csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 503
 504        mac |= TXEN | RXEN;     /* enable RX/TX */
 505
 506        /* Configure MAC flow control. If set to automatic, then match
 507         * whatever the PHY does. Otherwise, enable or disable it, depending
 508         * on what the user configured via ethtool.
 509         */
 510        mac &= ~(RXFC | TXFC);
 511
 512        if (adpt->automatic) {
 513                /* If it's set to automatic, then update our local values */
 514                adpt->rx_flow_control = phydev->pause;
 515                adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 516        }
 517        mac |= adpt->rx_flow_control ? RXFC : 0;
 518        mac |= adpt->tx_flow_control ? TXFC : 0;
 519
 520        /* setup link speed */
 521        mac &= ~SPEED_MASK;
 522        if (phydev->speed == SPEED_1000) {
 523                mac |= SPEED(2);
 524                csr1 |= FREQ_MODE;
 525        } else {
 526                mac |= SPEED(1);
 527                csr1 &= ~FREQ_MODE;
 528        }
 529
 530        if (phydev->duplex == DUPLEX_FULL)
 531                mac |= FULLD;
 532        else
 533                mac &= ~FULLD;
 534
 535        /* other parameters */
 536        mac |= (CRCE | PCRCE);
 537        mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 538        mac |= BROAD_EN;
 539        mac |= FLCHK;
 540        mac &= ~RX_CHKSUM_EN;
 541        mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 542                 DEBUG_MODE | SINGLE_PAUSE_MODE);
 543
 544        /* Enable single-pause-frame mode if requested.
 545         *
 546         * If enabled, the EMAC will send a single pause frame when the RX
 547         * queue is full.  This normally leads to packet loss because
 548         * the pause frame disables the remote MAC only for 33ms (the quanta),
 549         * and then the remote MAC continues sending packets even though
 550         * the RX queue is still full.
 551         *
 552         * If disabled, the EMAC sends a pause frame every 31ms until the RX
 553         * queue is no longer full.  Normally, this is the preferred
 554         * method of operation.  However, when the system is hung (e.g.
 555         * cores are halted), the EMAC interrupt handler is never called
 556         * and so the RX queue fills up quickly and stays full.  The resuling
 557         * non-stop "flood" of pause frames sometimes has the effect of
 558         * disabling nearby switches.  In some cases, other nearby switches
 559         * are also affected, shutting down the entire network.
 560         *
 561         * The user can enable or disable single-pause-frame mode
 562         * via ethtool.
 563         */
 564        mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 565
 566        writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 567
 568        writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 569
 570        /* enable interrupt read clear, low power sleep mode and
 571         * the irq moderators
 572         */
 573
 574        writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 575        writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 576                        IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 577
 578        emac_mac_mode_config(adpt);
 579
 580        emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 581                          (HEADER_ENABLE | HEADER_CNT_EN), 0);
 582}
 583
 584void emac_mac_stop(struct emac_adapter *adpt)
 585{
 586        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 587        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 588        emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 589        usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 590}
 591
 592/* Free all descriptors of given transmit queue */
 593static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 594{
 595        struct emac_tx_queue *tx_q = &adpt->tx_q;
 596        unsigned int i;
 597        size_t size;
 598
 599        /* ring already cleared, nothing to do */
 600        if (!tx_q->tpd.tpbuff)
 601                return;
 602
 603        for (i = 0; i < tx_q->tpd.count; i++) {
 604                struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 605
 606                if (tpbuf->dma_addr) {
 607                        dma_unmap_single(adpt->netdev->dev.parent,
 608                                         tpbuf->dma_addr, tpbuf->length,
 609                                         DMA_TO_DEVICE);
 610                        tpbuf->dma_addr = 0;
 611                }
 612                if (tpbuf->skb) {
 613                        dev_kfree_skb_any(tpbuf->skb);
 614                        tpbuf->skb = NULL;
 615                }
 616        }
 617
 618        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 619        memset(tx_q->tpd.tpbuff, 0, size);
 620
 621        /* clear the descriptor ring */
 622        memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 623
 624        tx_q->tpd.consume_idx = 0;
 625        tx_q->tpd.produce_idx = 0;
 626}
 627
 628/* Free all descriptors of given receive queue */
 629static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 630{
 631        struct device *dev = adpt->netdev->dev.parent;
 632        struct emac_rx_queue *rx_q = &adpt->rx_q;
 633        unsigned int i;
 634        size_t size;
 635
 636        /* ring already cleared, nothing to do */
 637        if (!rx_q->rfd.rfbuff)
 638                return;
 639
 640        for (i = 0; i < rx_q->rfd.count; i++) {
 641                struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 642
 643                if (rfbuf->dma_addr) {
 644                        dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 645                                         DMA_FROM_DEVICE);
 646                        rfbuf->dma_addr = 0;
 647                }
 648                if (rfbuf->skb) {
 649                        dev_kfree_skb(rfbuf->skb);
 650                        rfbuf->skb = NULL;
 651                }
 652        }
 653
 654        size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 655        memset(rx_q->rfd.rfbuff, 0, size);
 656
 657        /* clear the descriptor rings */
 658        memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 659        rx_q->rrd.produce_idx = 0;
 660        rx_q->rrd.consume_idx = 0;
 661
 662        memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 663        rx_q->rfd.produce_idx = 0;
 664        rx_q->rfd.consume_idx = 0;
 665}
 666
 667/* Free all buffers associated with given transmit queue */
 668static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 669{
 670        struct emac_tx_queue *tx_q = &adpt->tx_q;
 671
 672        emac_tx_q_descs_free(adpt);
 673
 674        kfree(tx_q->tpd.tpbuff);
 675        tx_q->tpd.tpbuff = NULL;
 676        tx_q->tpd.v_addr = NULL;
 677        tx_q->tpd.dma_addr = 0;
 678        tx_q->tpd.size = 0;
 679}
 680
 681/* Allocate TX descriptor ring for the given transmit queue */
 682static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 683                                struct emac_tx_queue *tx_q)
 684{
 685        struct emac_ring_header *ring_header = &adpt->ring_header;
 686        int node = dev_to_node(adpt->netdev->dev.parent);
 687        size_t size;
 688
 689        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 690        tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
 691        if (!tx_q->tpd.tpbuff)
 692                return -ENOMEM;
 693
 694        tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 695        tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 696        tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 697        ring_header->used += ALIGN(tx_q->tpd.size, 8);
 698        tx_q->tpd.produce_idx = 0;
 699        tx_q->tpd.consume_idx = 0;
 700
 701        return 0;
 702}
 703
 704/* Free all buffers associated with given transmit queue */
 705static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 706{
 707        struct emac_rx_queue *rx_q = &adpt->rx_q;
 708
 709        emac_rx_q_free_descs(adpt);
 710
 711        kfree(rx_q->rfd.rfbuff);
 712        rx_q->rfd.rfbuff   = NULL;
 713
 714        rx_q->rfd.v_addr   = NULL;
 715        rx_q->rfd.dma_addr = 0;
 716        rx_q->rfd.size     = 0;
 717
 718        rx_q->rrd.v_addr   = NULL;
 719        rx_q->rrd.dma_addr = 0;
 720        rx_q->rrd.size     = 0;
 721}
 722
 723/* Allocate RX descriptor rings for the given receive queue */
 724static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 725{
 726        struct emac_ring_header *ring_header = &adpt->ring_header;
 727        int node = dev_to_node(adpt->netdev->dev.parent);
 728        struct emac_rx_queue *rx_q = &adpt->rx_q;
 729        size_t size;
 730
 731        size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 732        rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
 733        if (!rx_q->rfd.rfbuff)
 734                return -ENOMEM;
 735
 736        rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 737        rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 738
 739        rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 740        rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 741        ring_header->used += ALIGN(rx_q->rrd.size, 8);
 742
 743        rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 744        rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 745        ring_header->used += ALIGN(rx_q->rfd.size, 8);
 746
 747        rx_q->rrd.produce_idx = 0;
 748        rx_q->rrd.consume_idx = 0;
 749
 750        rx_q->rfd.produce_idx = 0;
 751        rx_q->rfd.consume_idx = 0;
 752
 753        return 0;
 754}
 755
 756/* Allocate all TX and RX descriptor rings */
 757int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 758{
 759        struct emac_ring_header *ring_header = &adpt->ring_header;
 760        struct device *dev = adpt->netdev->dev.parent;
 761        unsigned int num_tx_descs = adpt->tx_desc_cnt;
 762        unsigned int num_rx_descs = adpt->rx_desc_cnt;
 763        int ret;
 764
 765        adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 766
 767        adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 768        adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 769
 770        /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 771         * hence the additional padding bytes are allocated.
 772         */
 773        ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 774                            num_rx_descs * (adpt->rfd_size * 4) +
 775                            num_rx_descs * (adpt->rrd_size * 4) +
 776                            8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 777
 778        ring_header->used = 0;
 779        ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
 780                                                 &ring_header->dma_addr,
 781                                                 GFP_KERNEL);
 782        if (!ring_header->v_addr)
 783                return -ENOMEM;
 784
 785        ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 786                                                        ring_header->dma_addr;
 787
 788        ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 789        if (ret) {
 790                netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 791                goto err_alloc_tx;
 792        }
 793
 794        ret = emac_rx_descs_alloc(adpt);
 795        if (ret) {
 796                netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 797                goto err_alloc_rx;
 798        }
 799
 800        return 0;
 801
 802err_alloc_rx:
 803        emac_tx_q_bufs_free(adpt);
 804err_alloc_tx:
 805        dma_free_coherent(dev, ring_header->size,
 806                          ring_header->v_addr, ring_header->dma_addr);
 807
 808        ring_header->v_addr   = NULL;
 809        ring_header->dma_addr = 0;
 810        ring_header->size     = 0;
 811        ring_header->used     = 0;
 812
 813        return ret;
 814}
 815
 816/* Free all TX and RX descriptor rings */
 817void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 818{
 819        struct emac_ring_header *ring_header = &adpt->ring_header;
 820        struct device *dev = adpt->netdev->dev.parent;
 821
 822        emac_tx_q_bufs_free(adpt);
 823        emac_rx_q_bufs_free(adpt);
 824
 825        dma_free_coherent(dev, ring_header->size,
 826                          ring_header->v_addr, ring_header->dma_addr);
 827
 828        ring_header->v_addr   = NULL;
 829        ring_header->dma_addr = 0;
 830        ring_header->size     = 0;
 831        ring_header->used     = 0;
 832}
 833
 834/* Initialize descriptor rings */
 835static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 836{
 837        unsigned int i;
 838
 839        adpt->tx_q.tpd.produce_idx = 0;
 840        adpt->tx_q.tpd.consume_idx = 0;
 841        for (i = 0; i < adpt->tx_q.tpd.count; i++)
 842                adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 843
 844        adpt->rx_q.rrd.produce_idx = 0;
 845        adpt->rx_q.rrd.consume_idx = 0;
 846        adpt->rx_q.rfd.produce_idx = 0;
 847        adpt->rx_q.rfd.consume_idx = 0;
 848        for (i = 0; i < adpt->rx_q.rfd.count; i++)
 849                adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 850}
 851
 852/* Produce new receive free descriptor */
 853static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 854                                   struct emac_rx_queue *rx_q,
 855                                   dma_addr_t addr)
 856{
 857        u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 858
 859        *(hw_rfd++) = lower_32_bits(addr);
 860        *hw_rfd = upper_32_bits(addr);
 861
 862        if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 863                rx_q->rfd.produce_idx = 0;
 864}
 865
 866/* Fill up receive queue's RFD with preallocated receive buffers */
 867static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 868                                    struct emac_rx_queue *rx_q)
 869{
 870        struct emac_buffer *curr_rxbuf;
 871        struct emac_buffer *next_rxbuf;
 872        unsigned int count = 0;
 873        u32 next_produce_idx;
 874
 875        next_produce_idx = rx_q->rfd.produce_idx + 1;
 876        if (next_produce_idx == rx_q->rfd.count)
 877                next_produce_idx = 0;
 878
 879        curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 880        next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 881
 882        /* this always has a blank rx_buffer*/
 883        while (!next_rxbuf->dma_addr) {
 884                struct sk_buff *skb;
 885                int ret;
 886
 887                skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 888                if (!skb)
 889                        break;
 890
 891                curr_rxbuf->dma_addr =
 892                        dma_map_single(adpt->netdev->dev.parent, skb->data,
 893                                       adpt->rxbuf_size, DMA_FROM_DEVICE);
 894
 895                ret = dma_mapping_error(adpt->netdev->dev.parent,
 896                                        curr_rxbuf->dma_addr);
 897                if (ret) {
 898                        dev_kfree_skb(skb);
 899                        break;
 900                }
 901                curr_rxbuf->skb = skb;
 902                curr_rxbuf->length = adpt->rxbuf_size;
 903
 904                emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 905                next_produce_idx = rx_q->rfd.produce_idx + 1;
 906                if (next_produce_idx == rx_q->rfd.count)
 907                        next_produce_idx = 0;
 908
 909                curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 910                next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 911                count++;
 912        }
 913
 914        if (count) {
 915                u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 916                                rx_q->produce_mask;
 917                emac_reg_update32(adpt->base + rx_q->produce_reg,
 918                                  rx_q->produce_mask, prod_idx);
 919        }
 920}
 921
 922static void emac_adjust_link(struct net_device *netdev)
 923{
 924        struct emac_adapter *adpt = netdev_priv(netdev);
 925        struct phy_device *phydev = netdev->phydev;
 926
 927        if (phydev->link) {
 928                emac_mac_start(adpt);
 929                emac_sgmii_link_change(adpt, true);
 930        } else {
 931                emac_sgmii_link_change(adpt, false);
 932                emac_mac_stop(adpt);
 933        }
 934
 935        phy_print_status(phydev);
 936}
 937
 938/* Bringup the interface/HW */
 939int emac_mac_up(struct emac_adapter *adpt)
 940{
 941        struct net_device *netdev = adpt->netdev;
 942        int ret;
 943
 944        emac_mac_rx_tx_ring_reset_all(adpt);
 945        emac_mac_config(adpt);
 946        emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 947
 948        adpt->phydev->irq = PHY_POLL;
 949        ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 950                                 PHY_INTERFACE_MODE_SGMII);
 951        if (ret) {
 952                netdev_err(adpt->netdev, "could not connect phy\n");
 953                return ret;
 954        }
 955
 956        phy_attached_print(adpt->phydev, NULL);
 957
 958        /* enable mac irq */
 959        writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 960        writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 961
 962        phy_start(adpt->phydev);
 963
 964        napi_enable(&adpt->rx_q.napi);
 965        netif_start_queue(netdev);
 966
 967        return 0;
 968}
 969
 970/* Bring down the interface/HW */
 971void emac_mac_down(struct emac_adapter *adpt)
 972{
 973        struct net_device *netdev = adpt->netdev;
 974
 975        netif_stop_queue(netdev);
 976        napi_disable(&adpt->rx_q.napi);
 977
 978        phy_stop(adpt->phydev);
 979
 980        /* Interrupts must be disabled before the PHY is disconnected, to
 981         * avoid a race condition where adjust_link is null when we get
 982         * an interrupt.
 983         */
 984        writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 985        writel(0, adpt->base + EMAC_INT_MASK);
 986        synchronize_irq(adpt->irq.irq);
 987
 988        phy_disconnect(adpt->phydev);
 989
 990        emac_mac_reset(adpt);
 991
 992        emac_tx_q_descs_free(adpt);
 993        netdev_reset_queue(adpt->netdev);
 994        emac_rx_q_free_descs(adpt);
 995}
 996
 997/* Consume next received packet descriptor */
 998static bool emac_rx_process_rrd(struct emac_adapter *adpt,
 999                                struct emac_rx_queue *rx_q,
1000                                struct emac_rrd *rrd)
1001{
1002        u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1003
1004        rrd->word[3] = *(hw_rrd + 3);
1005
1006        if (!RRD_UPDT(rrd))
1007                return false;
1008
1009        rrd->word[4] = 0;
1010        rrd->word[5] = 0;
1011
1012        rrd->word[0] = *(hw_rrd++);
1013        rrd->word[1] = *(hw_rrd++);
1014        rrd->word[2] = *(hw_rrd++);
1015
1016        if (unlikely(RRD_NOR(rrd) != 1)) {
1017                netdev_err(adpt->netdev,
1018                           "error: multi-RFD not support yet! nor:%lu\n",
1019                           RRD_NOR(rrd));
1020        }
1021
1022        /* mark rrd as processed */
1023        RRD_UPDT_SET(rrd, 0);
1024        *hw_rrd = rrd->word[3];
1025
1026        if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1027                rx_q->rrd.consume_idx = 0;
1028
1029        return true;
1030}
1031
1032/* Produce new transmit descriptor */
1033static void emac_tx_tpd_create(struct emac_adapter *adpt,
1034                               struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1035{
1036        u32 *hw_tpd;
1037
1038        tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1039        hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1040
1041        if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1042                tx_q->tpd.produce_idx = 0;
1043
1044        *(hw_tpd++) = tpd->word[0];
1045        *(hw_tpd++) = tpd->word[1];
1046        *(hw_tpd++) = tpd->word[2];
1047        *hw_tpd = tpd->word[3];
1048}
1049
1050/* Mark the last transmit descriptor as such (for the transmit packet) */
1051static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1052                                  struct emac_tx_queue *tx_q)
1053{
1054        u32 *hw_tpd =
1055                EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1056        u32 tmp_tpd;
1057
1058        tmp_tpd = *(hw_tpd + 1);
1059        tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1060        *(hw_tpd + 1) = tmp_tpd;
1061}
1062
1063static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1064{
1065        struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1066        u32 consume_idx = RRD_SI(rrd);
1067        unsigned int i;
1068
1069        for (i = 0; i < RRD_NOR(rrd); i++) {
1070                rfbuf[consume_idx].skb = NULL;
1071                if (++consume_idx == rx_q->rfd.count)
1072                        consume_idx = 0;
1073        }
1074
1075        rx_q->rfd.consume_idx = consume_idx;
1076        rx_q->rfd.process_idx = consume_idx;
1077}
1078
1079/* Push the received skb to upper layers */
1080static void emac_receive_skb(struct emac_rx_queue *rx_q,
1081                             struct sk_buff *skb,
1082                             u16 vlan_tag, bool vlan_flag)
1083{
1084        if (vlan_flag) {
1085                u16 vlan;
1086
1087                EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1088                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1089        }
1090
1091        napi_gro_receive(&rx_q->napi, skb);
1092}
1093
1094/* Process receive event */
1095void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1096                         int *num_pkts, int max_pkts)
1097{
1098        u32 proc_idx, hw_consume_idx, num_consume_pkts;
1099        struct net_device *netdev  = adpt->netdev;
1100        struct emac_buffer *rfbuf;
1101        unsigned int count = 0;
1102        struct emac_rrd rrd;
1103        struct sk_buff *skb;
1104        u32 reg;
1105
1106        reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1107
1108        hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1109        num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1110                (hw_consume_idx -  rx_q->rrd.consume_idx) :
1111                (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1112
1113        do {
1114                if (!num_consume_pkts)
1115                        break;
1116
1117                if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1118                        break;
1119
1120                if (likely(RRD_NOR(&rrd) == 1)) {
1121                        /* good receive */
1122                        rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1123                        dma_unmap_single(adpt->netdev->dev.parent,
1124                                         rfbuf->dma_addr, rfbuf->length,
1125                                         DMA_FROM_DEVICE);
1126                        rfbuf->dma_addr = 0;
1127                        skb = rfbuf->skb;
1128                } else {
1129                        netdev_err(adpt->netdev,
1130                                   "error: multi-RFD not support yet!\n");
1131                        break;
1132                }
1133                emac_rx_rfd_clean(rx_q, &rrd);
1134                num_consume_pkts--;
1135                count++;
1136
1137                /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1138                 * with DF set are marked as error), drop packets based on the
1139                 * error mask rather than the summary bit (ignoring L4F errors)
1140                 */
1141                if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1142                        netif_dbg(adpt, rx_status, adpt->netdev,
1143                                  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1144                                  rrd.word[0], rrd.word[1],
1145                                  rrd.word[2], rrd.word[3]);
1146
1147                        dev_kfree_skb(skb);
1148                        continue;
1149                }
1150
1151                skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1152                skb->dev = netdev;
1153                skb->protocol = eth_type_trans(skb, skb->dev);
1154                if (netdev->features & NETIF_F_RXCSUM)
1155                        skb->ip_summed = RRD_L4F(&rrd) ?
1156                                          CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1157                else
1158                        skb_checksum_none_assert(skb);
1159
1160                emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1161                                 (bool)RRD_CVTAG(&rrd));
1162
1163                (*num_pkts)++;
1164        } while (*num_pkts < max_pkts);
1165
1166        if (count) {
1167                proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1168                                rx_q->process_mask;
1169                emac_reg_update32(adpt->base + rx_q->process_reg,
1170                                  rx_q->process_mask, proc_idx);
1171                emac_mac_rx_descs_refill(adpt, rx_q);
1172        }
1173}
1174
1175/* get the number of free transmit descriptors */
1176static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1177{
1178        u32 produce_idx = tx_q->tpd.produce_idx;
1179        u32 consume_idx = tx_q->tpd.consume_idx;
1180
1181        return (consume_idx > produce_idx) ?
1182                (consume_idx - produce_idx - 1) :
1183                (tx_q->tpd.count + consume_idx - produce_idx - 1);
1184}
1185
1186/* Process transmit event */
1187void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1188{
1189        u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1190        u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1191        struct emac_buffer *tpbuf;
1192
1193        hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1194
1195        while (tx_q->tpd.consume_idx != hw_consume_idx) {
1196                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1197                if (tpbuf->dma_addr) {
1198                        dma_unmap_page(adpt->netdev->dev.parent,
1199                                       tpbuf->dma_addr, tpbuf->length,
1200                                       DMA_TO_DEVICE);
1201                        tpbuf->dma_addr = 0;
1202                }
1203
1204                if (tpbuf->skb) {
1205                        pkts_compl++;
1206                        bytes_compl += tpbuf->skb->len;
1207                        dev_kfree_skb_irq(tpbuf->skb);
1208                        tpbuf->skb = NULL;
1209                }
1210
1211                if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1212                        tx_q->tpd.consume_idx = 0;
1213        }
1214
1215        netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1216
1217        if (netif_queue_stopped(adpt->netdev))
1218                if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1219                        netif_wake_queue(adpt->netdev);
1220}
1221
1222/* Initialize all queue data structures */
1223void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1224                                  struct emac_adapter *adpt)
1225{
1226        adpt->rx_q.netdev = adpt->netdev;
1227
1228        adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1229        adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1230        adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1231
1232        adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1233        adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1234        adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1235
1236        adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1237        adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1238        adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1239
1240        adpt->rx_q.irq          = &adpt->irq;
1241        adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1242
1243        adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1244        adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1245        adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1246
1247        adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1248        adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1249        adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1250}
1251
1252/* Fill up transmit descriptors with TSO and Checksum offload information */
1253static int emac_tso_csum(struct emac_adapter *adpt,
1254                         struct emac_tx_queue *tx_q,
1255                         struct sk_buff *skb,
1256                         struct emac_tpd *tpd)
1257{
1258        unsigned int hdr_len;
1259        int ret;
1260
1261        if (skb_is_gso(skb)) {
1262                if (skb_header_cloned(skb)) {
1263                        ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1264                        if (unlikely(ret))
1265                                return ret;
1266                }
1267
1268                if (skb->protocol == htons(ETH_P_IP)) {
1269                        u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1270                                       + ntohs(ip_hdr(skb)->tot_len);
1271                        if (skb->len > pkt_len)
1272                                pskb_trim(skb, pkt_len);
1273                }
1274
1275                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1276                if (unlikely(skb->len == hdr_len)) {
1277                        /* we only need to do csum */
1278                        netif_warn(adpt, tx_err, adpt->netdev,
1279                                   "tso not needed for packet with 0 data\n");
1280                        goto do_csum;
1281                }
1282
1283                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1284                        ip_hdr(skb)->check = 0;
1285                        tcp_hdr(skb)->check =
1286                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1287                                                   ip_hdr(skb)->daddr,
1288                                                   0, IPPROTO_TCP, 0);
1289                        TPD_IPV4_SET(tpd, 1);
1290                }
1291
1292                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1293                        /* ipv6 tso need an extra tpd */
1294                        struct emac_tpd extra_tpd;
1295
1296                        memset(tpd, 0, sizeof(*tpd));
1297                        memset(&extra_tpd, 0, sizeof(extra_tpd));
1298
1299                        ipv6_hdr(skb)->payload_len = 0;
1300                        tcp_hdr(skb)->check =
1301                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1302                                                 &ipv6_hdr(skb)->daddr,
1303                                                 0, IPPROTO_TCP, 0);
1304                        TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1305                        TPD_LSO_SET(&extra_tpd, 1);
1306                        TPD_LSOV_SET(&extra_tpd, 1);
1307                        emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1308                        TPD_LSOV_SET(tpd, 1);
1309                }
1310
1311                TPD_LSO_SET(tpd, 1);
1312                TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1313                TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1314                return 0;
1315        }
1316
1317do_csum:
1318        if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1319                unsigned int css, cso;
1320
1321                cso = skb_transport_offset(skb);
1322                if (unlikely(cso & 0x1)) {
1323                        netdev_err(adpt->netdev,
1324                                   "error: payload offset should be even\n");
1325                        return -EINVAL;
1326                }
1327                css = cso + skb->csum_offset;
1328
1329                TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1330                TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1331                TPD_CSX_SET(tpd, 1);
1332        }
1333
1334        return 0;
1335}
1336
1337/* Fill up transmit descriptors */
1338static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1339                             struct emac_tx_queue *tx_q, struct sk_buff *skb,
1340                             struct emac_tpd *tpd)
1341{
1342        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1343        unsigned int first = tx_q->tpd.produce_idx;
1344        unsigned int len = skb_headlen(skb);
1345        struct emac_buffer *tpbuf = NULL;
1346        unsigned int mapped_len = 0;
1347        unsigned int i;
1348        int count = 0;
1349        int ret;
1350
1351        /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1352        if (TPD_LSO(tpd)) {
1353                mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1354
1355                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1356                tpbuf->length = mapped_len;
1357                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1358                                               virt_to_page(skb->data),
1359                                               offset_in_page(skb->data),
1360                                               tpbuf->length,
1361                                               DMA_TO_DEVICE);
1362                ret = dma_mapping_error(adpt->netdev->dev.parent,
1363                                        tpbuf->dma_addr);
1364                if (ret)
1365                        goto error;
1366
1367                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1368                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1369                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1370                emac_tx_tpd_create(adpt, tx_q, tpd);
1371                count++;
1372        }
1373
1374        if (mapped_len < len) {
1375                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1376                tpbuf->length = len - mapped_len;
1377                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1378                                               virt_to_page(skb->data +
1379                                                            mapped_len),
1380                                               offset_in_page(skb->data +
1381                                                              mapped_len),
1382                                               tpbuf->length, DMA_TO_DEVICE);
1383                ret = dma_mapping_error(adpt->netdev->dev.parent,
1384                                        tpbuf->dma_addr);
1385                if (ret)
1386                        goto error;
1387
1388                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1389                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1390                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1391                emac_tx_tpd_create(adpt, tx_q, tpd);
1392                count++;
1393        }
1394
1395        for (i = 0; i < nr_frags; i++) {
1396                struct skb_frag_struct *frag;
1397
1398                frag = &skb_shinfo(skb)->frags[i];
1399
1400                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1401                tpbuf->length = frag->size;
1402                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1403                                               frag->page.p, frag->page_offset,
1404                                               tpbuf->length, DMA_TO_DEVICE);
1405                ret = dma_mapping_error(adpt->netdev->dev.parent,
1406                                        tpbuf->dma_addr);
1407                if (ret)
1408                        goto error;
1409
1410                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1411                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1412                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1413                emac_tx_tpd_create(adpt, tx_q, tpd);
1414                count++;
1415        }
1416
1417        /* The last tpd */
1418        wmb();
1419        emac_tx_tpd_mark_last(adpt, tx_q);
1420
1421        /* The last buffer info contain the skb address,
1422         * so it will be freed after unmap
1423         */
1424        tpbuf->skb = skb;
1425
1426        return;
1427
1428error:
1429        /* One of the memory mappings failed, so undo everything */
1430        tx_q->tpd.produce_idx = first;
1431
1432        while (count--) {
1433                tpbuf = GET_TPD_BUFFER(tx_q, first);
1434                dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1435                               tpbuf->length, DMA_TO_DEVICE);
1436                tpbuf->dma_addr = 0;
1437                tpbuf->length = 0;
1438
1439                if (++first == tx_q->tpd.count)
1440                        first = 0;
1441        }
1442
1443        dev_kfree_skb(skb);
1444}
1445
1446/* Transmit the packet using specified transmit queue */
1447int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1448                         struct sk_buff *skb)
1449{
1450        struct emac_tpd tpd;
1451        u32 prod_idx;
1452
1453        memset(&tpd, 0, sizeof(tpd));
1454
1455        if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1456                dev_kfree_skb_any(skb);
1457                return NETDEV_TX_OK;
1458        }
1459
1460        if (skb_vlan_tag_present(skb)) {
1461                u16 tag;
1462
1463                EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1464                TPD_CVLAN_TAG_SET(&tpd, tag);
1465                TPD_INSTC_SET(&tpd, 1);
1466        }
1467
1468        if (skb_network_offset(skb) != ETH_HLEN)
1469                TPD_TYP_SET(&tpd, 1);
1470
1471        emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1472
1473        netdev_sent_queue(adpt->netdev, skb->len);
1474
1475        /* Make sure the are enough free descriptors to hold one
1476         * maximum-sized SKB.  We need one desc for each fragment,
1477         * one for the checksum (emac_tso_csum), one for TSO, and
1478         * and one for the SKB header.
1479         */
1480        if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1481                netif_stop_queue(adpt->netdev);
1482
1483        /* update produce idx */
1484        prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1485                    tx_q->produce_mask;
1486        emac_reg_update32(adpt->base + tx_q->produce_reg,
1487                          tx_q->produce_mask, prod_idx);
1488
1489        return NETDEV_TX_OK;
1490}
1491