linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)                                       \
  43        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)                                        \
  45        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)                                       \
  47        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)                                       \
  49        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)                                        \
  51        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67        struct list_head list;
  68        const char *dev_name;   /* The dev_name() for the consumer */
  69        const char *supply;
  70        struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
  79        struct list_head list;
  80        struct gpio_desc *gpiod;
  81        u32 enable_count;       /* a number of enabled shared GPIO */
  82        u32 request_count;      /* a number of requested shared GPIO */
  83        unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92        struct list_head list;
  93        struct device *src_dev;
  94        const char *src_supply;
  95        struct device *alias_dev;
  96        const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static int _notifier_call_chain(struct regulator_dev *rdev,
 105                                  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107                                     int min_uV, int max_uV);
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109                                          struct device *dev,
 110                                          const char *supply_name);
 111static void _regulator_put(struct regulator *regulator);
 112
 113static const char *rdev_get_name(struct regulator_dev *rdev)
 114{
 115        if (rdev->constraints && rdev->constraints->name)
 116                return rdev->constraints->name;
 117        else if (rdev->desc->name)
 118                return rdev->desc->name;
 119        else
 120                return "";
 121}
 122
 123static bool have_full_constraints(void)
 124{
 125        return has_full_constraints || of_have_populated_dt();
 126}
 127
 128static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 129{
 130        if (!rdev->constraints) {
 131                rdev_err(rdev, "no constraints\n");
 132                return false;
 133        }
 134
 135        if (rdev->constraints->valid_ops_mask & ops)
 136                return true;
 137
 138        return false;
 139}
 140
 141static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 142{
 143        if (rdev && rdev->supply)
 144                return rdev->supply->rdev;
 145
 146        return NULL;
 147}
 148
 149/**
 150 * regulator_lock_nested - lock a single regulator
 151 * @rdev:               regulator source
 152 * @subclass:           mutex subclass used for lockdep
 153 *
 154 * This function can be called many times by one task on
 155 * a single regulator and its mutex will be locked only
 156 * once. If a task, which is calling this function is other
 157 * than the one, which initially locked the mutex, it will
 158 * wait on mutex.
 159 */
 160static void regulator_lock_nested(struct regulator_dev *rdev,
 161                                  unsigned int subclass)
 162{
 163        if (!mutex_trylock(&rdev->mutex)) {
 164                if (rdev->mutex_owner == current) {
 165                        rdev->ref_cnt++;
 166                        return;
 167                }
 168                mutex_lock_nested(&rdev->mutex, subclass);
 169        }
 170
 171        rdev->ref_cnt = 1;
 172        rdev->mutex_owner = current;
 173}
 174
 175static inline void regulator_lock(struct regulator_dev *rdev)
 176{
 177        regulator_lock_nested(rdev, 0);
 178}
 179
 180/**
 181 * regulator_unlock - unlock a single regulator
 182 * @rdev:               regulator_source
 183 *
 184 * This function unlocks the mutex when the
 185 * reference counter reaches 0.
 186 */
 187static void regulator_unlock(struct regulator_dev *rdev)
 188{
 189        if (rdev->ref_cnt != 0) {
 190                rdev->ref_cnt--;
 191
 192                if (!rdev->ref_cnt) {
 193                        rdev->mutex_owner = NULL;
 194                        mutex_unlock(&rdev->mutex);
 195                }
 196        }
 197}
 198
 199/**
 200 * regulator_lock_supply - lock a regulator and its supplies
 201 * @rdev:         regulator source
 202 */
 203static void regulator_lock_supply(struct regulator_dev *rdev)
 204{
 205        int i;
 206
 207        for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 208                regulator_lock_nested(rdev, i);
 209}
 210
 211/**
 212 * regulator_unlock_supply - unlock a regulator and its supplies
 213 * @rdev:         regulator source
 214 */
 215static void regulator_unlock_supply(struct regulator_dev *rdev)
 216{
 217        struct regulator *supply;
 218
 219        while (1) {
 220                regulator_unlock(rdev);
 221                supply = rdev->supply;
 222
 223                if (!rdev->supply)
 224                        return;
 225
 226                rdev = supply->rdev;
 227        }
 228}
 229
 230/**
 231 * of_get_regulator - get a regulator device node based on supply name
 232 * @dev: Device pointer for the consumer (of regulator) device
 233 * @supply: regulator supply name
 234 *
 235 * Extract the regulator device node corresponding to the supply name.
 236 * returns the device node corresponding to the regulator if found, else
 237 * returns NULL.
 238 */
 239static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 240{
 241        struct device_node *regnode = NULL;
 242        char prop_name[32]; /* 32 is max size of property name */
 243
 244        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 245
 246        snprintf(prop_name, 32, "%s-supply", supply);
 247        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 248
 249        if (!regnode) {
 250                dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 251                                prop_name, dev->of_node);
 252                return NULL;
 253        }
 254        return regnode;
 255}
 256
 257/* Platform voltage constraint check */
 258static int regulator_check_voltage(struct regulator_dev *rdev,
 259                                   int *min_uV, int *max_uV)
 260{
 261        BUG_ON(*min_uV > *max_uV);
 262
 263        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 264                rdev_err(rdev, "voltage operation not allowed\n");
 265                return -EPERM;
 266        }
 267
 268        if (*max_uV > rdev->constraints->max_uV)
 269                *max_uV = rdev->constraints->max_uV;
 270        if (*min_uV < rdev->constraints->min_uV)
 271                *min_uV = rdev->constraints->min_uV;
 272
 273        if (*min_uV > *max_uV) {
 274                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 275                         *min_uV, *max_uV);
 276                return -EINVAL;
 277        }
 278
 279        return 0;
 280}
 281
 282/* return 0 if the state is valid */
 283static int regulator_check_states(suspend_state_t state)
 284{
 285        return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 286}
 287
 288/* Make sure we select a voltage that suits the needs of all
 289 * regulator consumers
 290 */
 291static int regulator_check_consumers(struct regulator_dev *rdev,
 292                                     int *min_uV, int *max_uV,
 293                                     suspend_state_t state)
 294{
 295        struct regulator *regulator;
 296        struct regulator_voltage *voltage;
 297
 298        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 299                voltage = &regulator->voltage[state];
 300                /*
 301                 * Assume consumers that didn't say anything are OK
 302                 * with anything in the constraint range.
 303                 */
 304                if (!voltage->min_uV && !voltage->max_uV)
 305                        continue;
 306
 307                if (*max_uV > voltage->max_uV)
 308                        *max_uV = voltage->max_uV;
 309                if (*min_uV < voltage->min_uV)
 310                        *min_uV = voltage->min_uV;
 311        }
 312
 313        if (*min_uV > *max_uV) {
 314                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 315                        *min_uV, *max_uV);
 316                return -EINVAL;
 317        }
 318
 319        return 0;
 320}
 321
 322/* current constraint check */
 323static int regulator_check_current_limit(struct regulator_dev *rdev,
 324                                        int *min_uA, int *max_uA)
 325{
 326        BUG_ON(*min_uA > *max_uA);
 327
 328        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 329                rdev_err(rdev, "current operation not allowed\n");
 330                return -EPERM;
 331        }
 332
 333        if (*max_uA > rdev->constraints->max_uA)
 334                *max_uA = rdev->constraints->max_uA;
 335        if (*min_uA < rdev->constraints->min_uA)
 336                *min_uA = rdev->constraints->min_uA;
 337
 338        if (*min_uA > *max_uA) {
 339                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 340                         *min_uA, *max_uA);
 341                return -EINVAL;
 342        }
 343
 344        return 0;
 345}
 346
 347/* operating mode constraint check */
 348static int regulator_mode_constrain(struct regulator_dev *rdev,
 349                                    unsigned int *mode)
 350{
 351        switch (*mode) {
 352        case REGULATOR_MODE_FAST:
 353        case REGULATOR_MODE_NORMAL:
 354        case REGULATOR_MODE_IDLE:
 355        case REGULATOR_MODE_STANDBY:
 356                break;
 357        default:
 358                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 359                return -EINVAL;
 360        }
 361
 362        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 363                rdev_err(rdev, "mode operation not allowed\n");
 364                return -EPERM;
 365        }
 366
 367        /* The modes are bitmasks, the most power hungry modes having
 368         * the lowest values. If the requested mode isn't supported
 369         * try higher modes. */
 370        while (*mode) {
 371                if (rdev->constraints->valid_modes_mask & *mode)
 372                        return 0;
 373                *mode /= 2;
 374        }
 375
 376        return -EINVAL;
 377}
 378
 379static inline struct regulator_state *
 380regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 381{
 382        if (rdev->constraints == NULL)
 383                return NULL;
 384
 385        switch (state) {
 386        case PM_SUSPEND_STANDBY:
 387                return &rdev->constraints->state_standby;
 388        case PM_SUSPEND_MEM:
 389                return &rdev->constraints->state_mem;
 390        case PM_SUSPEND_MAX:
 391                return &rdev->constraints->state_disk;
 392        default:
 393                return NULL;
 394        }
 395}
 396
 397static ssize_t regulator_uV_show(struct device *dev,
 398                                struct device_attribute *attr, char *buf)
 399{
 400        struct regulator_dev *rdev = dev_get_drvdata(dev);
 401        ssize_t ret;
 402
 403        regulator_lock(rdev);
 404        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 405        regulator_unlock(rdev);
 406
 407        return ret;
 408}
 409static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 410
 411static ssize_t regulator_uA_show(struct device *dev,
 412                                struct device_attribute *attr, char *buf)
 413{
 414        struct regulator_dev *rdev = dev_get_drvdata(dev);
 415
 416        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 417}
 418static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 419
 420static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 421                         char *buf)
 422{
 423        struct regulator_dev *rdev = dev_get_drvdata(dev);
 424
 425        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 426}
 427static DEVICE_ATTR_RO(name);
 428
 429static ssize_t regulator_print_opmode(char *buf, int mode)
 430{
 431        switch (mode) {
 432        case REGULATOR_MODE_FAST:
 433                return sprintf(buf, "fast\n");
 434        case REGULATOR_MODE_NORMAL:
 435                return sprintf(buf, "normal\n");
 436        case REGULATOR_MODE_IDLE:
 437                return sprintf(buf, "idle\n");
 438        case REGULATOR_MODE_STANDBY:
 439                return sprintf(buf, "standby\n");
 440        }
 441        return sprintf(buf, "unknown\n");
 442}
 443
 444static ssize_t regulator_opmode_show(struct device *dev,
 445                                    struct device_attribute *attr, char *buf)
 446{
 447        struct regulator_dev *rdev = dev_get_drvdata(dev);
 448
 449        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 450}
 451static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 452
 453static ssize_t regulator_print_state(char *buf, int state)
 454{
 455        if (state > 0)
 456                return sprintf(buf, "enabled\n");
 457        else if (state == 0)
 458                return sprintf(buf, "disabled\n");
 459        else
 460                return sprintf(buf, "unknown\n");
 461}
 462
 463static ssize_t regulator_state_show(struct device *dev,
 464                                   struct device_attribute *attr, char *buf)
 465{
 466        struct regulator_dev *rdev = dev_get_drvdata(dev);
 467        ssize_t ret;
 468
 469        regulator_lock(rdev);
 470        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 471        regulator_unlock(rdev);
 472
 473        return ret;
 474}
 475static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 476
 477static ssize_t regulator_status_show(struct device *dev,
 478                                   struct device_attribute *attr, char *buf)
 479{
 480        struct regulator_dev *rdev = dev_get_drvdata(dev);
 481        int status;
 482        char *label;
 483
 484        status = rdev->desc->ops->get_status(rdev);
 485        if (status < 0)
 486                return status;
 487
 488        switch (status) {
 489        case REGULATOR_STATUS_OFF:
 490                label = "off";
 491                break;
 492        case REGULATOR_STATUS_ON:
 493                label = "on";
 494                break;
 495        case REGULATOR_STATUS_ERROR:
 496                label = "error";
 497                break;
 498        case REGULATOR_STATUS_FAST:
 499                label = "fast";
 500                break;
 501        case REGULATOR_STATUS_NORMAL:
 502                label = "normal";
 503                break;
 504        case REGULATOR_STATUS_IDLE:
 505                label = "idle";
 506                break;
 507        case REGULATOR_STATUS_STANDBY:
 508                label = "standby";
 509                break;
 510        case REGULATOR_STATUS_BYPASS:
 511                label = "bypass";
 512                break;
 513        case REGULATOR_STATUS_UNDEFINED:
 514                label = "undefined";
 515                break;
 516        default:
 517                return -ERANGE;
 518        }
 519
 520        return sprintf(buf, "%s\n", label);
 521}
 522static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 523
 524static ssize_t regulator_min_uA_show(struct device *dev,
 525                                    struct device_attribute *attr, char *buf)
 526{
 527        struct regulator_dev *rdev = dev_get_drvdata(dev);
 528
 529        if (!rdev->constraints)
 530                return sprintf(buf, "constraint not defined\n");
 531
 532        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 533}
 534static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 535
 536static ssize_t regulator_max_uA_show(struct device *dev,
 537                                    struct device_attribute *attr, char *buf)
 538{
 539        struct regulator_dev *rdev = dev_get_drvdata(dev);
 540
 541        if (!rdev->constraints)
 542                return sprintf(buf, "constraint not defined\n");
 543
 544        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 545}
 546static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 547
 548static ssize_t regulator_min_uV_show(struct device *dev,
 549                                    struct device_attribute *attr, char *buf)
 550{
 551        struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553        if (!rdev->constraints)
 554                return sprintf(buf, "constraint not defined\n");
 555
 556        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 557}
 558static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 559
 560static ssize_t regulator_max_uV_show(struct device *dev,
 561                                    struct device_attribute *attr, char *buf)
 562{
 563        struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565        if (!rdev->constraints)
 566                return sprintf(buf, "constraint not defined\n");
 567
 568        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 569}
 570static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 571
 572static ssize_t regulator_total_uA_show(struct device *dev,
 573                                      struct device_attribute *attr, char *buf)
 574{
 575        struct regulator_dev *rdev = dev_get_drvdata(dev);
 576        struct regulator *regulator;
 577        int uA = 0;
 578
 579        regulator_lock(rdev);
 580        list_for_each_entry(regulator, &rdev->consumer_list, list)
 581                uA += regulator->uA_load;
 582        regulator_unlock(rdev);
 583        return sprintf(buf, "%d\n", uA);
 584}
 585static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 586
 587static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 588                              char *buf)
 589{
 590        struct regulator_dev *rdev = dev_get_drvdata(dev);
 591        return sprintf(buf, "%d\n", rdev->use_count);
 592}
 593static DEVICE_ATTR_RO(num_users);
 594
 595static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 596                         char *buf)
 597{
 598        struct regulator_dev *rdev = dev_get_drvdata(dev);
 599
 600        switch (rdev->desc->type) {
 601        case REGULATOR_VOLTAGE:
 602                return sprintf(buf, "voltage\n");
 603        case REGULATOR_CURRENT:
 604                return sprintf(buf, "current\n");
 605        }
 606        return sprintf(buf, "unknown\n");
 607}
 608static DEVICE_ATTR_RO(type);
 609
 610static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 611                                struct device_attribute *attr, char *buf)
 612{
 613        struct regulator_dev *rdev = dev_get_drvdata(dev);
 614
 615        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 616}
 617static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 618                regulator_suspend_mem_uV_show, NULL);
 619
 620static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 621                                struct device_attribute *attr, char *buf)
 622{
 623        struct regulator_dev *rdev = dev_get_drvdata(dev);
 624
 625        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 626}
 627static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 628                regulator_suspend_disk_uV_show, NULL);
 629
 630static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 631                                struct device_attribute *attr, char *buf)
 632{
 633        struct regulator_dev *rdev = dev_get_drvdata(dev);
 634
 635        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 636}
 637static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 638                regulator_suspend_standby_uV_show, NULL);
 639
 640static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 641                                struct device_attribute *attr, char *buf)
 642{
 643        struct regulator_dev *rdev = dev_get_drvdata(dev);
 644
 645        return regulator_print_opmode(buf,
 646                rdev->constraints->state_mem.mode);
 647}
 648static DEVICE_ATTR(suspend_mem_mode, 0444,
 649                regulator_suspend_mem_mode_show, NULL);
 650
 651static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 652                                struct device_attribute *attr, char *buf)
 653{
 654        struct regulator_dev *rdev = dev_get_drvdata(dev);
 655
 656        return regulator_print_opmode(buf,
 657                rdev->constraints->state_disk.mode);
 658}
 659static DEVICE_ATTR(suspend_disk_mode, 0444,
 660                regulator_suspend_disk_mode_show, NULL);
 661
 662static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 663                                struct device_attribute *attr, char *buf)
 664{
 665        struct regulator_dev *rdev = dev_get_drvdata(dev);
 666
 667        return regulator_print_opmode(buf,
 668                rdev->constraints->state_standby.mode);
 669}
 670static DEVICE_ATTR(suspend_standby_mode, 0444,
 671                regulator_suspend_standby_mode_show, NULL);
 672
 673static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 674                                   struct device_attribute *attr, char *buf)
 675{
 676        struct regulator_dev *rdev = dev_get_drvdata(dev);
 677
 678        return regulator_print_state(buf,
 679                        rdev->constraints->state_mem.enabled);
 680}
 681static DEVICE_ATTR(suspend_mem_state, 0444,
 682                regulator_suspend_mem_state_show, NULL);
 683
 684static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 685                                   struct device_attribute *attr, char *buf)
 686{
 687        struct regulator_dev *rdev = dev_get_drvdata(dev);
 688
 689        return regulator_print_state(buf,
 690                        rdev->constraints->state_disk.enabled);
 691}
 692static DEVICE_ATTR(suspend_disk_state, 0444,
 693                regulator_suspend_disk_state_show, NULL);
 694
 695static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 696                                   struct device_attribute *attr, char *buf)
 697{
 698        struct regulator_dev *rdev = dev_get_drvdata(dev);
 699
 700        return regulator_print_state(buf,
 701                        rdev->constraints->state_standby.enabled);
 702}
 703static DEVICE_ATTR(suspend_standby_state, 0444,
 704                regulator_suspend_standby_state_show, NULL);
 705
 706static ssize_t regulator_bypass_show(struct device *dev,
 707                                     struct device_attribute *attr, char *buf)
 708{
 709        struct regulator_dev *rdev = dev_get_drvdata(dev);
 710        const char *report;
 711        bool bypass;
 712        int ret;
 713
 714        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 715
 716        if (ret != 0)
 717                report = "unknown";
 718        else if (bypass)
 719                report = "enabled";
 720        else
 721                report = "disabled";
 722
 723        return sprintf(buf, "%s\n", report);
 724}
 725static DEVICE_ATTR(bypass, 0444,
 726                   regulator_bypass_show, NULL);
 727
 728/* Calculate the new optimum regulator operating mode based on the new total
 729 * consumer load. All locks held by caller */
 730static int drms_uA_update(struct regulator_dev *rdev)
 731{
 732        struct regulator *sibling;
 733        int current_uA = 0, output_uV, input_uV, err;
 734        unsigned int mode;
 735
 736        lockdep_assert_held_once(&rdev->mutex);
 737
 738        /*
 739         * first check to see if we can set modes at all, otherwise just
 740         * tell the consumer everything is OK.
 741         */
 742        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 743                return 0;
 744
 745        if (!rdev->desc->ops->get_optimum_mode &&
 746            !rdev->desc->ops->set_load)
 747                return 0;
 748
 749        if (!rdev->desc->ops->set_mode &&
 750            !rdev->desc->ops->set_load)
 751                return -EINVAL;
 752
 753        /* calc total requested load */
 754        list_for_each_entry(sibling, &rdev->consumer_list, list)
 755                current_uA += sibling->uA_load;
 756
 757        current_uA += rdev->constraints->system_load;
 758
 759        if (rdev->desc->ops->set_load) {
 760                /* set the optimum mode for our new total regulator load */
 761                err = rdev->desc->ops->set_load(rdev, current_uA);
 762                if (err < 0)
 763                        rdev_err(rdev, "failed to set load %d\n", current_uA);
 764        } else {
 765                /* get output voltage */
 766                output_uV = _regulator_get_voltage(rdev);
 767                if (output_uV <= 0) {
 768                        rdev_err(rdev, "invalid output voltage found\n");
 769                        return -EINVAL;
 770                }
 771
 772                /* get input voltage */
 773                input_uV = 0;
 774                if (rdev->supply)
 775                        input_uV = regulator_get_voltage(rdev->supply);
 776                if (input_uV <= 0)
 777                        input_uV = rdev->constraints->input_uV;
 778                if (input_uV <= 0) {
 779                        rdev_err(rdev, "invalid input voltage found\n");
 780                        return -EINVAL;
 781                }
 782
 783                /* now get the optimum mode for our new total regulator load */
 784                mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 785                                                         output_uV, current_uA);
 786
 787                /* check the new mode is allowed */
 788                err = regulator_mode_constrain(rdev, &mode);
 789                if (err < 0) {
 790                        rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 791                                 current_uA, input_uV, output_uV);
 792                        return err;
 793                }
 794
 795                err = rdev->desc->ops->set_mode(rdev, mode);
 796                if (err < 0)
 797                        rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 798        }
 799
 800        return err;
 801}
 802
 803static int suspend_set_state(struct regulator_dev *rdev,
 804                                    suspend_state_t state)
 805{
 806        int ret = 0;
 807        struct regulator_state *rstate;
 808
 809        rstate = regulator_get_suspend_state(rdev, state);
 810        if (rstate == NULL)
 811                return 0;
 812
 813        /* If we have no suspend mode configration don't set anything;
 814         * only warn if the driver implements set_suspend_voltage or
 815         * set_suspend_mode callback.
 816         */
 817        if (rstate->enabled != ENABLE_IN_SUSPEND &&
 818            rstate->enabled != DISABLE_IN_SUSPEND) {
 819                if (rdev->desc->ops->set_suspend_voltage ||
 820                    rdev->desc->ops->set_suspend_mode)
 821                        rdev_warn(rdev, "No configuration\n");
 822                return 0;
 823        }
 824
 825        if (rstate->enabled == ENABLE_IN_SUSPEND &&
 826                rdev->desc->ops->set_suspend_enable)
 827                ret = rdev->desc->ops->set_suspend_enable(rdev);
 828        else if (rstate->enabled == DISABLE_IN_SUSPEND &&
 829                rdev->desc->ops->set_suspend_disable)
 830                ret = rdev->desc->ops->set_suspend_disable(rdev);
 831        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 832                ret = 0;
 833
 834        if (ret < 0) {
 835                rdev_err(rdev, "failed to enabled/disable\n");
 836                return ret;
 837        }
 838
 839        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 840                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 841                if (ret < 0) {
 842                        rdev_err(rdev, "failed to set voltage\n");
 843                        return ret;
 844                }
 845        }
 846
 847        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 848                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 849                if (ret < 0) {
 850                        rdev_err(rdev, "failed to set mode\n");
 851                        return ret;
 852                }
 853        }
 854
 855        return ret;
 856}
 857
 858static void print_constraints(struct regulator_dev *rdev)
 859{
 860        struct regulation_constraints *constraints = rdev->constraints;
 861        char buf[160] = "";
 862        size_t len = sizeof(buf) - 1;
 863        int count = 0;
 864        int ret;
 865
 866        if (constraints->min_uV && constraints->max_uV) {
 867                if (constraints->min_uV == constraints->max_uV)
 868                        count += scnprintf(buf + count, len - count, "%d mV ",
 869                                           constraints->min_uV / 1000);
 870                else
 871                        count += scnprintf(buf + count, len - count,
 872                                           "%d <--> %d mV ",
 873                                           constraints->min_uV / 1000,
 874                                           constraints->max_uV / 1000);
 875        }
 876
 877        if (!constraints->min_uV ||
 878            constraints->min_uV != constraints->max_uV) {
 879                ret = _regulator_get_voltage(rdev);
 880                if (ret > 0)
 881                        count += scnprintf(buf + count, len - count,
 882                                           "at %d mV ", ret / 1000);
 883        }
 884
 885        if (constraints->uV_offset)
 886                count += scnprintf(buf + count, len - count, "%dmV offset ",
 887                                   constraints->uV_offset / 1000);
 888
 889        if (constraints->min_uA && constraints->max_uA) {
 890                if (constraints->min_uA == constraints->max_uA)
 891                        count += scnprintf(buf + count, len - count, "%d mA ",
 892                                           constraints->min_uA / 1000);
 893                else
 894                        count += scnprintf(buf + count, len - count,
 895                                           "%d <--> %d mA ",
 896                                           constraints->min_uA / 1000,
 897                                           constraints->max_uA / 1000);
 898        }
 899
 900        if (!constraints->min_uA ||
 901            constraints->min_uA != constraints->max_uA) {
 902                ret = _regulator_get_current_limit(rdev);
 903                if (ret > 0)
 904                        count += scnprintf(buf + count, len - count,
 905                                           "at %d mA ", ret / 1000);
 906        }
 907
 908        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 909                count += scnprintf(buf + count, len - count, "fast ");
 910        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 911                count += scnprintf(buf + count, len - count, "normal ");
 912        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 913                count += scnprintf(buf + count, len - count, "idle ");
 914        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 915                count += scnprintf(buf + count, len - count, "standby");
 916
 917        if (!count)
 918                scnprintf(buf, len, "no parameters");
 919
 920        rdev_dbg(rdev, "%s\n", buf);
 921
 922        if ((constraints->min_uV != constraints->max_uV) &&
 923            !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 924                rdev_warn(rdev,
 925                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 926}
 927
 928static int machine_constraints_voltage(struct regulator_dev *rdev,
 929        struct regulation_constraints *constraints)
 930{
 931        const struct regulator_ops *ops = rdev->desc->ops;
 932        int ret;
 933
 934        /* do we need to apply the constraint voltage */
 935        if (rdev->constraints->apply_uV &&
 936            rdev->constraints->min_uV && rdev->constraints->max_uV) {
 937                int target_min, target_max;
 938                int current_uV = _regulator_get_voltage(rdev);
 939
 940                if (current_uV == -ENOTRECOVERABLE) {
 941                        /* This regulator can't be read and must be initted */
 942                        rdev_info(rdev, "Setting %d-%duV\n",
 943                                  rdev->constraints->min_uV,
 944                                  rdev->constraints->max_uV);
 945                        _regulator_do_set_voltage(rdev,
 946                                                  rdev->constraints->min_uV,
 947                                                  rdev->constraints->max_uV);
 948                        current_uV = _regulator_get_voltage(rdev);
 949                }
 950
 951                if (current_uV < 0) {
 952                        rdev_err(rdev,
 953                                 "failed to get the current voltage(%d)\n",
 954                                 current_uV);
 955                        return current_uV;
 956                }
 957
 958                /*
 959                 * If we're below the minimum voltage move up to the
 960                 * minimum voltage, if we're above the maximum voltage
 961                 * then move down to the maximum.
 962                 */
 963                target_min = current_uV;
 964                target_max = current_uV;
 965
 966                if (current_uV < rdev->constraints->min_uV) {
 967                        target_min = rdev->constraints->min_uV;
 968                        target_max = rdev->constraints->min_uV;
 969                }
 970
 971                if (current_uV > rdev->constraints->max_uV) {
 972                        target_min = rdev->constraints->max_uV;
 973                        target_max = rdev->constraints->max_uV;
 974                }
 975
 976                if (target_min != current_uV || target_max != current_uV) {
 977                        rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 978                                  current_uV, target_min, target_max);
 979                        ret = _regulator_do_set_voltage(
 980                                rdev, target_min, target_max);
 981                        if (ret < 0) {
 982                                rdev_err(rdev,
 983                                        "failed to apply %d-%duV constraint(%d)\n",
 984                                        target_min, target_max, ret);
 985                                return ret;
 986                        }
 987                }
 988        }
 989
 990        /* constrain machine-level voltage specs to fit
 991         * the actual range supported by this regulator.
 992         */
 993        if (ops->list_voltage && rdev->desc->n_voltages) {
 994                int     count = rdev->desc->n_voltages;
 995                int     i;
 996                int     min_uV = INT_MAX;
 997                int     max_uV = INT_MIN;
 998                int     cmin = constraints->min_uV;
 999                int     cmax = constraints->max_uV;
1000
1001                /* it's safe to autoconfigure fixed-voltage supplies
1002                   and the constraints are used by list_voltage. */
1003                if (count == 1 && !cmin) {
1004                        cmin = 1;
1005                        cmax = INT_MAX;
1006                        constraints->min_uV = cmin;
1007                        constraints->max_uV = cmax;
1008                }
1009
1010                /* voltage constraints are optional */
1011                if ((cmin == 0) && (cmax == 0))
1012                        return 0;
1013
1014                /* else require explicit machine-level constraints */
1015                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016                        rdev_err(rdev, "invalid voltage constraints\n");
1017                        return -EINVAL;
1018                }
1019
1020                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021                for (i = 0; i < count; i++) {
1022                        int     value;
1023
1024                        value = ops->list_voltage(rdev, i);
1025                        if (value <= 0)
1026                                continue;
1027
1028                        /* maybe adjust [min_uV..max_uV] */
1029                        if (value >= cmin && value < min_uV)
1030                                min_uV = value;
1031                        if (value <= cmax && value > max_uV)
1032                                max_uV = value;
1033                }
1034
1035                /* final: [min_uV..max_uV] valid iff constraints valid */
1036                if (max_uV < min_uV) {
1037                        rdev_err(rdev,
1038                                 "unsupportable voltage constraints %u-%uuV\n",
1039                                 min_uV, max_uV);
1040                        return -EINVAL;
1041                }
1042
1043                /* use regulator's subset of machine constraints */
1044                if (constraints->min_uV < min_uV) {
1045                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046                                 constraints->min_uV, min_uV);
1047                        constraints->min_uV = min_uV;
1048                }
1049                if (constraints->max_uV > max_uV) {
1050                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051                                 constraints->max_uV, max_uV);
1052                        constraints->max_uV = max_uV;
1053                }
1054        }
1055
1056        return 0;
1057}
1058
1059static int machine_constraints_current(struct regulator_dev *rdev,
1060        struct regulation_constraints *constraints)
1061{
1062        const struct regulator_ops *ops = rdev->desc->ops;
1063        int ret;
1064
1065        if (!constraints->min_uA && !constraints->max_uA)
1066                return 0;
1067
1068        if (constraints->min_uA > constraints->max_uA) {
1069                rdev_err(rdev, "Invalid current constraints\n");
1070                return -EINVAL;
1071        }
1072
1073        if (!ops->set_current_limit || !ops->get_current_limit) {
1074                rdev_warn(rdev, "Operation of current configuration missing\n");
1075                return 0;
1076        }
1077
1078        /* Set regulator current in constraints range */
1079        ret = ops->set_current_limit(rdev, constraints->min_uA,
1080                        constraints->max_uA);
1081        if (ret < 0) {
1082                rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083                return ret;
1084        }
1085
1086        return 0;
1087}
1088
1089static int _regulator_do_enable(struct regulator_dev *rdev);
1090
1091/**
1092 * set_machine_constraints - sets regulator constraints
1093 * @rdev: regulator source
1094 * @constraints: constraints to apply
1095 *
1096 * Allows platform initialisation code to define and constrain
1097 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1098 * Constraints *must* be set by platform code in order for some
1099 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100 * set_mode.
1101 */
1102static int set_machine_constraints(struct regulator_dev *rdev,
1103        const struct regulation_constraints *constraints)
1104{
1105        int ret = 0;
1106        const struct regulator_ops *ops = rdev->desc->ops;
1107
1108        if (constraints)
1109                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110                                            GFP_KERNEL);
1111        else
1112                rdev->constraints = kzalloc(sizeof(*constraints),
1113                                            GFP_KERNEL);
1114        if (!rdev->constraints)
1115                return -ENOMEM;
1116
1117        ret = machine_constraints_voltage(rdev, rdev->constraints);
1118        if (ret != 0)
1119                return ret;
1120
1121        ret = machine_constraints_current(rdev, rdev->constraints);
1122        if (ret != 0)
1123                return ret;
1124
1125        if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126                ret = ops->set_input_current_limit(rdev,
1127                                                   rdev->constraints->ilim_uA);
1128                if (ret < 0) {
1129                        rdev_err(rdev, "failed to set input limit\n");
1130                        return ret;
1131                }
1132        }
1133
1134        /* do we need to setup our suspend state */
1135        if (rdev->constraints->initial_state) {
1136                ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137                if (ret < 0) {
1138                        rdev_err(rdev, "failed to set suspend state\n");
1139                        return ret;
1140                }
1141        }
1142
1143        if (rdev->constraints->initial_mode) {
1144                if (!ops->set_mode) {
1145                        rdev_err(rdev, "no set_mode operation\n");
1146                        return -EINVAL;
1147                }
1148
1149                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150                if (ret < 0) {
1151                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152                        return ret;
1153                }
1154        }
1155
1156        /* If the constraints say the regulator should be on at this point
1157         * and we have control then make sure it is enabled.
1158         */
1159        if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160                ret = _regulator_do_enable(rdev);
1161                if (ret < 0 && ret != -EINVAL) {
1162                        rdev_err(rdev, "failed to enable\n");
1163                        return ret;
1164                }
1165        }
1166
1167        if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168                && ops->set_ramp_delay) {
1169                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170                if (ret < 0) {
1171                        rdev_err(rdev, "failed to set ramp_delay\n");
1172                        return ret;
1173                }
1174        }
1175
1176        if (rdev->constraints->pull_down && ops->set_pull_down) {
1177                ret = ops->set_pull_down(rdev);
1178                if (ret < 0) {
1179                        rdev_err(rdev, "failed to set pull down\n");
1180                        return ret;
1181                }
1182        }
1183
1184        if (rdev->constraints->soft_start && ops->set_soft_start) {
1185                ret = ops->set_soft_start(rdev);
1186                if (ret < 0) {
1187                        rdev_err(rdev, "failed to set soft start\n");
1188                        return ret;
1189                }
1190        }
1191
1192        if (rdev->constraints->over_current_protection
1193                && ops->set_over_current_protection) {
1194                ret = ops->set_over_current_protection(rdev);
1195                if (ret < 0) {
1196                        rdev_err(rdev, "failed to set over current protection\n");
1197                        return ret;
1198                }
1199        }
1200
1201        if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202                bool ad_state = (rdev->constraints->active_discharge ==
1203                              REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1204
1205                ret = ops->set_active_discharge(rdev, ad_state);
1206                if (ret < 0) {
1207                        rdev_err(rdev, "failed to set active discharge\n");
1208                        return ret;
1209                }
1210        }
1211
1212        print_constraints(rdev);
1213        return 0;
1214}
1215
1216/**
1217 * set_supply - set regulator supply regulator
1218 * @rdev: regulator name
1219 * @supply_rdev: supply regulator name
1220 *
1221 * Called by platform initialisation code to set the supply regulator for this
1222 * regulator. This ensures that a regulators supply will also be enabled by the
1223 * core if it's child is enabled.
1224 */
1225static int set_supply(struct regulator_dev *rdev,
1226                      struct regulator_dev *supply_rdev)
1227{
1228        int err;
1229
1230        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1231
1232        if (!try_module_get(supply_rdev->owner))
1233                return -ENODEV;
1234
1235        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236        if (rdev->supply == NULL) {
1237                err = -ENOMEM;
1238                return err;
1239        }
1240        supply_rdev->open_count++;
1241
1242        return 0;
1243}
1244
1245/**
1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247 * @rdev:         regulator source
1248 * @consumer_dev_name: dev_name() string for device supply applies to
1249 * @supply:       symbolic name for supply
1250 *
1251 * Allows platform initialisation code to map physical regulator
1252 * sources to symbolic names for supplies for use by devices.  Devices
1253 * should use these symbolic names to request regulators, avoiding the
1254 * need to provide board-specific regulator names as platform data.
1255 */
1256static int set_consumer_device_supply(struct regulator_dev *rdev,
1257                                      const char *consumer_dev_name,
1258                                      const char *supply)
1259{
1260        struct regulator_map *node;
1261        int has_dev;
1262
1263        if (supply == NULL)
1264                return -EINVAL;
1265
1266        if (consumer_dev_name != NULL)
1267                has_dev = 1;
1268        else
1269                has_dev = 0;
1270
1271        list_for_each_entry(node, &regulator_map_list, list) {
1272                if (node->dev_name && consumer_dev_name) {
1273                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274                                continue;
1275                } else if (node->dev_name || consumer_dev_name) {
1276                        continue;
1277                }
1278
1279                if (strcmp(node->supply, supply) != 0)
1280                        continue;
1281
1282                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283                         consumer_dev_name,
1284                         dev_name(&node->regulator->dev),
1285                         node->regulator->desc->name,
1286                         supply,
1287                         dev_name(&rdev->dev), rdev_get_name(rdev));
1288                return -EBUSY;
1289        }
1290
1291        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292        if (node == NULL)
1293                return -ENOMEM;
1294
1295        node->regulator = rdev;
1296        node->supply = supply;
1297
1298        if (has_dev) {
1299                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300                if (node->dev_name == NULL) {
1301                        kfree(node);
1302                        return -ENOMEM;
1303                }
1304        }
1305
1306        list_add(&node->list, &regulator_map_list);
1307        return 0;
1308}
1309
1310static void unset_regulator_supplies(struct regulator_dev *rdev)
1311{
1312        struct regulator_map *node, *n;
1313
1314        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315                if (rdev == node->regulator) {
1316                        list_del(&node->list);
1317                        kfree(node->dev_name);
1318                        kfree(node);
1319                }
1320        }
1321}
1322
1323#ifdef CONFIG_DEBUG_FS
1324static ssize_t constraint_flags_read_file(struct file *file,
1325                                          char __user *user_buf,
1326                                          size_t count, loff_t *ppos)
1327{
1328        const struct regulator *regulator = file->private_data;
1329        const struct regulation_constraints *c = regulator->rdev->constraints;
1330        char *buf;
1331        ssize_t ret;
1332
1333        if (!c)
1334                return 0;
1335
1336        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337        if (!buf)
1338                return -ENOMEM;
1339
1340        ret = snprintf(buf, PAGE_SIZE,
1341                        "always_on: %u\n"
1342                        "boot_on: %u\n"
1343                        "apply_uV: %u\n"
1344                        "ramp_disable: %u\n"
1345                        "soft_start: %u\n"
1346                        "pull_down: %u\n"
1347                        "over_current_protection: %u\n",
1348                        c->always_on,
1349                        c->boot_on,
1350                        c->apply_uV,
1351                        c->ramp_disable,
1352                        c->soft_start,
1353                        c->pull_down,
1354                        c->over_current_protection);
1355
1356        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357        kfree(buf);
1358
1359        return ret;
1360}
1361
1362#endif
1363
1364static const struct file_operations constraint_flags_fops = {
1365#ifdef CONFIG_DEBUG_FS
1366        .open = simple_open,
1367        .read = constraint_flags_read_file,
1368        .llseek = default_llseek,
1369#endif
1370};
1371
1372#define REG_STR_SIZE    64
1373
1374static struct regulator *create_regulator(struct regulator_dev *rdev,
1375                                          struct device *dev,
1376                                          const char *supply_name)
1377{
1378        struct regulator *regulator;
1379        char buf[REG_STR_SIZE];
1380        int err, size;
1381
1382        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383        if (regulator == NULL)
1384                return NULL;
1385
1386        regulator_lock(rdev);
1387        regulator->rdev = rdev;
1388        list_add(&regulator->list, &rdev->consumer_list);
1389
1390        if (dev) {
1391                regulator->dev = dev;
1392
1393                /* Add a link to the device sysfs entry */
1394                size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395                                dev->kobj.name, supply_name);
1396                if (size >= REG_STR_SIZE)
1397                        goto overflow_err;
1398
1399                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400                if (regulator->supply_name == NULL)
1401                        goto overflow_err;
1402
1403                err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404                                        buf);
1405                if (err) {
1406                        rdev_dbg(rdev, "could not add device link %s err %d\n",
1407                                  dev->kobj.name, err);
1408                        /* non-fatal */
1409                }
1410        } else {
1411                regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412                if (regulator->supply_name == NULL)
1413                        goto overflow_err;
1414        }
1415
1416        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417                                                rdev->debugfs);
1418        if (!regulator->debugfs) {
1419                rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420        } else {
1421                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422                                   &regulator->uA_load);
1423                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424                                   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426                                   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427                debugfs_create_file("constraint_flags", 0444,
1428                                    regulator->debugfs, regulator,
1429                                    &constraint_flags_fops);
1430        }
1431
1432        /*
1433         * Check now if the regulator is an always on regulator - if
1434         * it is then we don't need to do nearly so much work for
1435         * enable/disable calls.
1436         */
1437        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438            _regulator_is_enabled(rdev))
1439                regulator->always_on = true;
1440
1441        regulator_unlock(rdev);
1442        return regulator;
1443overflow_err:
1444        list_del(&regulator->list);
1445        kfree(regulator);
1446        regulator_unlock(rdev);
1447        return NULL;
1448}
1449
1450static int _regulator_get_enable_time(struct regulator_dev *rdev)
1451{
1452        if (rdev->constraints && rdev->constraints->enable_time)
1453                return rdev->constraints->enable_time;
1454        if (!rdev->desc->ops->enable_time)
1455                return rdev->desc->enable_time;
1456        return rdev->desc->ops->enable_time(rdev);
1457}
1458
1459static struct regulator_supply_alias *regulator_find_supply_alias(
1460                struct device *dev, const char *supply)
1461{
1462        struct regulator_supply_alias *map;
1463
1464        list_for_each_entry(map, &regulator_supply_alias_list, list)
1465                if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466                        return map;
1467
1468        return NULL;
1469}
1470
1471static void regulator_supply_alias(struct device **dev, const char **supply)
1472{
1473        struct regulator_supply_alias *map;
1474
1475        map = regulator_find_supply_alias(*dev, *supply);
1476        if (map) {
1477                dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478                                *supply, map->alias_supply,
1479                                dev_name(map->alias_dev));
1480                *dev = map->alias_dev;
1481                *supply = map->alias_supply;
1482        }
1483}
1484
1485static int regulator_match(struct device *dev, const void *data)
1486{
1487        struct regulator_dev *r = dev_to_rdev(dev);
1488
1489        return strcmp(rdev_get_name(r), data) == 0;
1490}
1491
1492static struct regulator_dev *regulator_lookup_by_name(const char *name)
1493{
1494        struct device *dev;
1495
1496        dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1497
1498        return dev ? dev_to_rdev(dev) : NULL;
1499}
1500
1501/**
1502 * regulator_dev_lookup - lookup a regulator device.
1503 * @dev: device for regulator "consumer".
1504 * @supply: Supply name or regulator ID.
1505 *
1506 * If successful, returns a struct regulator_dev that corresponds to the name
1507 * @supply and with the embedded struct device refcount incremented by one.
1508 * The refcount must be dropped by calling put_device().
1509 * On failure one of the following ERR-PTR-encoded values is returned:
1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511 * in the future.
1512 */
1513static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514                                                  const char *supply)
1515{
1516        struct regulator_dev *r = NULL;
1517        struct device_node *node;
1518        struct regulator_map *map;
1519        const char *devname = NULL;
1520
1521        regulator_supply_alias(&dev, &supply);
1522
1523        /* first do a dt based lookup */
1524        if (dev && dev->of_node) {
1525                node = of_get_regulator(dev, supply);
1526                if (node) {
1527                        r = of_find_regulator_by_node(node);
1528                        if (r)
1529                                return r;
1530
1531                        /*
1532                         * We have a node, but there is no device.
1533                         * assume it has not registered yet.
1534                         */
1535                        return ERR_PTR(-EPROBE_DEFER);
1536                }
1537        }
1538
1539        /* if not found, try doing it non-dt way */
1540        if (dev)
1541                devname = dev_name(dev);
1542
1543        mutex_lock(&regulator_list_mutex);
1544        list_for_each_entry(map, &regulator_map_list, list) {
1545                /* If the mapping has a device set up it must match */
1546                if (map->dev_name &&
1547                    (!devname || strcmp(map->dev_name, devname)))
1548                        continue;
1549
1550                if (strcmp(map->supply, supply) == 0 &&
1551                    get_device(&map->regulator->dev)) {
1552                        r = map->regulator;
1553                        break;
1554                }
1555        }
1556        mutex_unlock(&regulator_list_mutex);
1557
1558        if (r)
1559                return r;
1560
1561        r = regulator_lookup_by_name(supply);
1562        if (r)
1563                return r;
1564
1565        return ERR_PTR(-ENODEV);
1566}
1567
1568static int regulator_resolve_supply(struct regulator_dev *rdev)
1569{
1570        struct regulator_dev *r;
1571        struct device *dev = rdev->dev.parent;
1572        int ret;
1573
1574        /* No supply to resovle? */
1575        if (!rdev->supply_name)
1576                return 0;
1577
1578        /* Supply already resolved? */
1579        if (rdev->supply)
1580                return 0;
1581
1582        r = regulator_dev_lookup(dev, rdev->supply_name);
1583        if (IS_ERR(r)) {
1584                ret = PTR_ERR(r);
1585
1586                /* Did the lookup explicitly defer for us? */
1587                if (ret == -EPROBE_DEFER)
1588                        return ret;
1589
1590                if (have_full_constraints()) {
1591                        r = dummy_regulator_rdev;
1592                        get_device(&r->dev);
1593                } else {
1594                        dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595                                rdev->supply_name, rdev->desc->name);
1596                        return -EPROBE_DEFER;
1597                }
1598        }
1599
1600        /*
1601         * If the supply's parent device is not the same as the
1602         * regulator's parent device, then ensure the parent device
1603         * is bound before we resolve the supply, in case the parent
1604         * device get probe deferred and unregisters the supply.
1605         */
1606        if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607                if (!device_is_bound(r->dev.parent)) {
1608                        put_device(&r->dev);
1609                        return -EPROBE_DEFER;
1610                }
1611        }
1612
1613        /* Recursively resolve the supply of the supply */
1614        ret = regulator_resolve_supply(r);
1615        if (ret < 0) {
1616                put_device(&r->dev);
1617                return ret;
1618        }
1619
1620        ret = set_supply(rdev, r);
1621        if (ret < 0) {
1622                put_device(&r->dev);
1623                return ret;
1624        }
1625
1626        /* Cascade always-on state to supply */
1627        if (_regulator_is_enabled(rdev)) {
1628                ret = regulator_enable(rdev->supply);
1629                if (ret < 0) {
1630                        _regulator_put(rdev->supply);
1631                        rdev->supply = NULL;
1632                        return ret;
1633                }
1634        }
1635
1636        return 0;
1637}
1638
1639/* Internal regulator request function */
1640struct regulator *_regulator_get(struct device *dev, const char *id,
1641                                 enum regulator_get_type get_type)
1642{
1643        struct regulator_dev *rdev;
1644        struct regulator *regulator;
1645        const char *devname = dev ? dev_name(dev) : "deviceless";
1646        int ret;
1647
1648        if (get_type >= MAX_GET_TYPE) {
1649                dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650                return ERR_PTR(-EINVAL);
1651        }
1652
1653        if (id == NULL) {
1654                pr_err("get() with no identifier\n");
1655                return ERR_PTR(-EINVAL);
1656        }
1657
1658        rdev = regulator_dev_lookup(dev, id);
1659        if (IS_ERR(rdev)) {
1660                ret = PTR_ERR(rdev);
1661
1662                /*
1663                 * If regulator_dev_lookup() fails with error other
1664                 * than -ENODEV our job here is done, we simply return it.
1665                 */
1666                if (ret != -ENODEV)
1667                        return ERR_PTR(ret);
1668
1669                if (!have_full_constraints()) {
1670                        dev_warn(dev,
1671                                 "incomplete constraints, dummy supplies not allowed\n");
1672                        return ERR_PTR(-ENODEV);
1673                }
1674
1675                switch (get_type) {
1676                case NORMAL_GET:
1677                        /*
1678                         * Assume that a regulator is physically present and
1679                         * enabled, even if it isn't hooked up, and just
1680                         * provide a dummy.
1681                         */
1682                        dev_warn(dev,
1683                                 "%s supply %s not found, using dummy regulator\n",
1684                                 devname, id);
1685                        rdev = dummy_regulator_rdev;
1686                        get_device(&rdev->dev);
1687                        break;
1688
1689                case EXCLUSIVE_GET:
1690                        dev_warn(dev,
1691                                 "dummy supplies not allowed for exclusive requests\n");
1692                        /* fall through */
1693
1694                default:
1695                        return ERR_PTR(-ENODEV);
1696                }
1697        }
1698
1699        if (rdev->exclusive) {
1700                regulator = ERR_PTR(-EPERM);
1701                put_device(&rdev->dev);
1702                return regulator;
1703        }
1704
1705        if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706                regulator = ERR_PTR(-EBUSY);
1707                put_device(&rdev->dev);
1708                return regulator;
1709        }
1710
1711        ret = regulator_resolve_supply(rdev);
1712        if (ret < 0) {
1713                regulator = ERR_PTR(ret);
1714                put_device(&rdev->dev);
1715                return regulator;
1716        }
1717
1718        if (!try_module_get(rdev->owner)) {
1719                regulator = ERR_PTR(-EPROBE_DEFER);
1720                put_device(&rdev->dev);
1721                return regulator;
1722        }
1723
1724        regulator = create_regulator(rdev, dev, id);
1725        if (regulator == NULL) {
1726                regulator = ERR_PTR(-ENOMEM);
1727                put_device(&rdev->dev);
1728                module_put(rdev->owner);
1729                return regulator;
1730        }
1731
1732        rdev->open_count++;
1733        if (get_type == EXCLUSIVE_GET) {
1734                rdev->exclusive = 1;
1735
1736                ret = _regulator_is_enabled(rdev);
1737                if (ret > 0)
1738                        rdev->use_count = 1;
1739                else
1740                        rdev->use_count = 0;
1741        }
1742
1743        return regulator;
1744}
1745
1746/**
1747 * regulator_get - lookup and obtain a reference to a regulator.
1748 * @dev: device for regulator "consumer"
1749 * @id: Supply name or regulator ID.
1750 *
1751 * Returns a struct regulator corresponding to the regulator producer,
1752 * or IS_ERR() condition containing errno.
1753 *
1754 * Use of supply names configured via regulator_set_device_supply() is
1755 * strongly encouraged.  It is recommended that the supply name used
1756 * should match the name used for the supply and/or the relevant
1757 * device pins in the datasheet.
1758 */
1759struct regulator *regulator_get(struct device *dev, const char *id)
1760{
1761        return _regulator_get(dev, id, NORMAL_GET);
1762}
1763EXPORT_SYMBOL_GPL(regulator_get);
1764
1765/**
1766 * regulator_get_exclusive - obtain exclusive access to a regulator.
1767 * @dev: device for regulator "consumer"
1768 * @id: Supply name or regulator ID.
1769 *
1770 * Returns a struct regulator corresponding to the regulator producer,
1771 * or IS_ERR() condition containing errno.  Other consumers will be
1772 * unable to obtain this regulator while this reference is held and the
1773 * use count for the regulator will be initialised to reflect the current
1774 * state of the regulator.
1775 *
1776 * This is intended for use by consumers which cannot tolerate shared
1777 * use of the regulator such as those which need to force the
1778 * regulator off for correct operation of the hardware they are
1779 * controlling.
1780 *
1781 * Use of supply names configured via regulator_set_device_supply() is
1782 * strongly encouraged.  It is recommended that the supply name used
1783 * should match the name used for the supply and/or the relevant
1784 * device pins in the datasheet.
1785 */
1786struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1787{
1788        return _regulator_get(dev, id, EXCLUSIVE_GET);
1789}
1790EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1791
1792/**
1793 * regulator_get_optional - obtain optional access to a regulator.
1794 * @dev: device for regulator "consumer"
1795 * @id: Supply name or regulator ID.
1796 *
1797 * Returns a struct regulator corresponding to the regulator producer,
1798 * or IS_ERR() condition containing errno.
1799 *
1800 * This is intended for use by consumers for devices which can have
1801 * some supplies unconnected in normal use, such as some MMC devices.
1802 * It can allow the regulator core to provide stub supplies for other
1803 * supplies requested using normal regulator_get() calls without
1804 * disrupting the operation of drivers that can handle absent
1805 * supplies.
1806 *
1807 * Use of supply names configured via regulator_set_device_supply() is
1808 * strongly encouraged.  It is recommended that the supply name used
1809 * should match the name used for the supply and/or the relevant
1810 * device pins in the datasheet.
1811 */
1812struct regulator *regulator_get_optional(struct device *dev, const char *id)
1813{
1814        return _regulator_get(dev, id, OPTIONAL_GET);
1815}
1816EXPORT_SYMBOL_GPL(regulator_get_optional);
1817
1818/* regulator_list_mutex lock held by regulator_put() */
1819static void _regulator_put(struct regulator *regulator)
1820{
1821        struct regulator_dev *rdev;
1822
1823        if (IS_ERR_OR_NULL(regulator))
1824                return;
1825
1826        lockdep_assert_held_once(&regulator_list_mutex);
1827
1828        rdev = regulator->rdev;
1829
1830        debugfs_remove_recursive(regulator->debugfs);
1831
1832        /* remove any sysfs entries */
1833        if (regulator->dev)
1834                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1835        regulator_lock(rdev);
1836        list_del(&regulator->list);
1837
1838        rdev->open_count--;
1839        rdev->exclusive = 0;
1840        put_device(&rdev->dev);
1841        regulator_unlock(rdev);
1842
1843        kfree_const(regulator->supply_name);
1844        kfree(regulator);
1845
1846        module_put(rdev->owner);
1847}
1848
1849/**
1850 * regulator_put - "free" the regulator source
1851 * @regulator: regulator source
1852 *
1853 * Note: drivers must ensure that all regulator_enable calls made on this
1854 * regulator source are balanced by regulator_disable calls prior to calling
1855 * this function.
1856 */
1857void regulator_put(struct regulator *regulator)
1858{
1859        mutex_lock(&regulator_list_mutex);
1860        _regulator_put(regulator);
1861        mutex_unlock(&regulator_list_mutex);
1862}
1863EXPORT_SYMBOL_GPL(regulator_put);
1864
1865/**
1866 * regulator_register_supply_alias - Provide device alias for supply lookup
1867 *
1868 * @dev: device that will be given as the regulator "consumer"
1869 * @id: Supply name or regulator ID
1870 * @alias_dev: device that should be used to lookup the supply
1871 * @alias_id: Supply name or regulator ID that should be used to lookup the
1872 * supply
1873 *
1874 * All lookups for id on dev will instead be conducted for alias_id on
1875 * alias_dev.
1876 */
1877int regulator_register_supply_alias(struct device *dev, const char *id,
1878                                    struct device *alias_dev,
1879                                    const char *alias_id)
1880{
1881        struct regulator_supply_alias *map;
1882
1883        map = regulator_find_supply_alias(dev, id);
1884        if (map)
1885                return -EEXIST;
1886
1887        map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1888        if (!map)
1889                return -ENOMEM;
1890
1891        map->src_dev = dev;
1892        map->src_supply = id;
1893        map->alias_dev = alias_dev;
1894        map->alias_supply = alias_id;
1895
1896        list_add(&map->list, &regulator_supply_alias_list);
1897
1898        pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1899                id, dev_name(dev), alias_id, dev_name(alias_dev));
1900
1901        return 0;
1902}
1903EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1904
1905/**
1906 * regulator_unregister_supply_alias - Remove device alias
1907 *
1908 * @dev: device that will be given as the regulator "consumer"
1909 * @id: Supply name or regulator ID
1910 *
1911 * Remove a lookup alias if one exists for id on dev.
1912 */
1913void regulator_unregister_supply_alias(struct device *dev, const char *id)
1914{
1915        struct regulator_supply_alias *map;
1916
1917        map = regulator_find_supply_alias(dev, id);
1918        if (map) {
1919                list_del(&map->list);
1920                kfree(map);
1921        }
1922}
1923EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1924
1925/**
1926 * regulator_bulk_register_supply_alias - register multiple aliases
1927 *
1928 * @dev: device that will be given as the regulator "consumer"
1929 * @id: List of supply names or regulator IDs
1930 * @alias_dev: device that should be used to lookup the supply
1931 * @alias_id: List of supply names or regulator IDs that should be used to
1932 * lookup the supply
1933 * @num_id: Number of aliases to register
1934 *
1935 * @return 0 on success, an errno on failure.
1936 *
1937 * This helper function allows drivers to register several supply
1938 * aliases in one operation.  If any of the aliases cannot be
1939 * registered any aliases that were registered will be removed
1940 * before returning to the caller.
1941 */
1942int regulator_bulk_register_supply_alias(struct device *dev,
1943                                         const char *const *id,
1944                                         struct device *alias_dev,
1945                                         const char *const *alias_id,
1946                                         int num_id)
1947{
1948        int i;
1949        int ret;
1950
1951        for (i = 0; i < num_id; ++i) {
1952                ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1953                                                      alias_id[i]);
1954                if (ret < 0)
1955                        goto err;
1956        }
1957
1958        return 0;
1959
1960err:
1961        dev_err(dev,
1962                "Failed to create supply alias %s,%s -> %s,%s\n",
1963                id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1964
1965        while (--i >= 0)
1966                regulator_unregister_supply_alias(dev, id[i]);
1967
1968        return ret;
1969}
1970EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1971
1972/**
1973 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1974 *
1975 * @dev: device that will be given as the regulator "consumer"
1976 * @id: List of supply names or regulator IDs
1977 * @num_id: Number of aliases to unregister
1978 *
1979 * This helper function allows drivers to unregister several supply
1980 * aliases in one operation.
1981 */
1982void regulator_bulk_unregister_supply_alias(struct device *dev,
1983                                            const char *const *id,
1984                                            int num_id)
1985{
1986        int i;
1987
1988        for (i = 0; i < num_id; ++i)
1989                regulator_unregister_supply_alias(dev, id[i]);
1990}
1991EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1992
1993
1994/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1995static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1996                                const struct regulator_config *config)
1997{
1998        struct regulator_enable_gpio *pin;
1999        struct gpio_desc *gpiod;
2000        int ret;
2001
2002        if (config->ena_gpiod)
2003                gpiod = config->ena_gpiod;
2004        else
2005                gpiod = gpio_to_desc(config->ena_gpio);
2006
2007        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2008                if (pin->gpiod == gpiod) {
2009                        rdev_dbg(rdev, "GPIO %d is already used\n",
2010                                config->ena_gpio);
2011                        goto update_ena_gpio_to_rdev;
2012                }
2013        }
2014
2015        if (!config->ena_gpiod) {
2016                ret = gpio_request_one(config->ena_gpio,
2017                                       GPIOF_DIR_OUT | config->ena_gpio_flags,
2018                                       rdev_get_name(rdev));
2019                if (ret)
2020                        return ret;
2021        }
2022
2023        pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2024        if (pin == NULL) {
2025                if (!config->ena_gpiod)
2026                        gpio_free(config->ena_gpio);
2027                return -ENOMEM;
2028        }
2029
2030        pin->gpiod = gpiod;
2031        pin->ena_gpio_invert = config->ena_gpio_invert;
2032        list_add(&pin->list, &regulator_ena_gpio_list);
2033
2034update_ena_gpio_to_rdev:
2035        pin->request_count++;
2036        rdev->ena_pin = pin;
2037        return 0;
2038}
2039
2040static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2041{
2042        struct regulator_enable_gpio *pin, *n;
2043
2044        if (!rdev->ena_pin)
2045                return;
2046
2047        /* Free the GPIO only in case of no use */
2048        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2049                if (pin->gpiod == rdev->ena_pin->gpiod) {
2050                        if (pin->request_count <= 1) {
2051                                pin->request_count = 0;
2052                                gpiod_put(pin->gpiod);
2053                                list_del(&pin->list);
2054                                kfree(pin);
2055                                rdev->ena_pin = NULL;
2056                                return;
2057                        } else {
2058                                pin->request_count--;
2059                        }
2060                }
2061        }
2062}
2063
2064/**
2065 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2066 * @rdev: regulator_dev structure
2067 * @enable: enable GPIO at initial use?
2068 *
2069 * GPIO is enabled in case of initial use. (enable_count is 0)
2070 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2071 */
2072static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2073{
2074        struct regulator_enable_gpio *pin = rdev->ena_pin;
2075
2076        if (!pin)
2077                return -EINVAL;
2078
2079        if (enable) {
2080                /* Enable GPIO at initial use */
2081                if (pin->enable_count == 0)
2082                        gpiod_set_value_cansleep(pin->gpiod,
2083                                                 !pin->ena_gpio_invert);
2084
2085                pin->enable_count++;
2086        } else {
2087                if (pin->enable_count > 1) {
2088                        pin->enable_count--;
2089                        return 0;
2090                }
2091
2092                /* Disable GPIO if not used */
2093                if (pin->enable_count <= 1) {
2094                        gpiod_set_value_cansleep(pin->gpiod,
2095                                                 pin->ena_gpio_invert);
2096                        pin->enable_count = 0;
2097                }
2098        }
2099
2100        return 0;
2101}
2102
2103/**
2104 * _regulator_enable_delay - a delay helper function
2105 * @delay: time to delay in microseconds
2106 *
2107 * Delay for the requested amount of time as per the guidelines in:
2108 *
2109 *     Documentation/timers/timers-howto.txt
2110 *
2111 * The assumption here is that regulators will never be enabled in
2112 * atomic context and therefore sleeping functions can be used.
2113 */
2114static void _regulator_enable_delay(unsigned int delay)
2115{
2116        unsigned int ms = delay / 1000;
2117        unsigned int us = delay % 1000;
2118
2119        if (ms > 0) {
2120                /*
2121                 * For small enough values, handle super-millisecond
2122                 * delays in the usleep_range() call below.
2123                 */
2124                if (ms < 20)
2125                        us += ms * 1000;
2126                else
2127                        msleep(ms);
2128        }
2129
2130        /*
2131         * Give the scheduler some room to coalesce with any other
2132         * wakeup sources. For delays shorter than 10 us, don't even
2133         * bother setting up high-resolution timers and just busy-
2134         * loop.
2135         */
2136        if (us >= 10)
2137                usleep_range(us, us + 100);
2138        else
2139                udelay(us);
2140}
2141
2142static int _regulator_do_enable(struct regulator_dev *rdev)
2143{
2144        int ret, delay;
2145
2146        /* Query before enabling in case configuration dependent.  */
2147        ret = _regulator_get_enable_time(rdev);
2148        if (ret >= 0) {
2149                delay = ret;
2150        } else {
2151                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2152                delay = 0;
2153        }
2154
2155        trace_regulator_enable(rdev_get_name(rdev));
2156
2157        if (rdev->desc->off_on_delay) {
2158                /* if needed, keep a distance of off_on_delay from last time
2159                 * this regulator was disabled.
2160                 */
2161                unsigned long start_jiffy = jiffies;
2162                unsigned long intended, max_delay, remaining;
2163
2164                max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2165                intended = rdev->last_off_jiffy + max_delay;
2166
2167                if (time_before(start_jiffy, intended)) {
2168                        /* calc remaining jiffies to deal with one-time
2169                         * timer wrapping.
2170                         * in case of multiple timer wrapping, either it can be
2171                         * detected by out-of-range remaining, or it cannot be
2172                         * detected and we gets a panelty of
2173                         * _regulator_enable_delay().
2174                         */
2175                        remaining = intended - start_jiffy;
2176                        if (remaining <= max_delay)
2177                                _regulator_enable_delay(
2178                                                jiffies_to_usecs(remaining));
2179                }
2180        }
2181
2182        if (rdev->ena_pin) {
2183                if (!rdev->ena_gpio_state) {
2184                        ret = regulator_ena_gpio_ctrl(rdev, true);
2185                        if (ret < 0)
2186                                return ret;
2187                        rdev->ena_gpio_state = 1;
2188                }
2189        } else if (rdev->desc->ops->enable) {
2190                ret = rdev->desc->ops->enable(rdev);
2191                if (ret < 0)
2192                        return ret;
2193        } else {
2194                return -EINVAL;
2195        }
2196
2197        /* Allow the regulator to ramp; it would be useful to extend
2198         * this for bulk operations so that the regulators can ramp
2199         * together.  */
2200        trace_regulator_enable_delay(rdev_get_name(rdev));
2201
2202        _regulator_enable_delay(delay);
2203
2204        trace_regulator_enable_complete(rdev_get_name(rdev));
2205
2206        return 0;
2207}
2208
2209/* locks held by regulator_enable() */
2210static int _regulator_enable(struct regulator_dev *rdev)
2211{
2212        int ret;
2213
2214        lockdep_assert_held_once(&rdev->mutex);
2215
2216        /* check voltage and requested load before enabling */
2217        if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2218                drms_uA_update(rdev);
2219
2220        if (rdev->use_count == 0) {
2221                /* The regulator may on if it's not switchable or left on */
2222                ret = _regulator_is_enabled(rdev);
2223                if (ret == -EINVAL || ret == 0) {
2224                        if (!regulator_ops_is_valid(rdev,
2225                                        REGULATOR_CHANGE_STATUS))
2226                                return -EPERM;
2227
2228                        ret = _regulator_do_enable(rdev);
2229                        if (ret < 0)
2230                                return ret;
2231
2232                        _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2233                                             NULL);
2234                } else if (ret < 0) {
2235                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2236                        return ret;
2237                }
2238                /* Fallthrough on positive return values - already enabled */
2239        }
2240
2241        rdev->use_count++;
2242
2243        return 0;
2244}
2245
2246/**
2247 * regulator_enable - enable regulator output
2248 * @regulator: regulator source
2249 *
2250 * Request that the regulator be enabled with the regulator output at
2251 * the predefined voltage or current value.  Calls to regulator_enable()
2252 * must be balanced with calls to regulator_disable().
2253 *
2254 * NOTE: the output value can be set by other drivers, boot loader or may be
2255 * hardwired in the regulator.
2256 */
2257int regulator_enable(struct regulator *regulator)
2258{
2259        struct regulator_dev *rdev = regulator->rdev;
2260        int ret = 0;
2261
2262        if (regulator->always_on)
2263                return 0;
2264
2265        if (rdev->supply) {
2266                ret = regulator_enable(rdev->supply);
2267                if (ret != 0)
2268                        return ret;
2269        }
2270
2271        mutex_lock(&rdev->mutex);
2272        ret = _regulator_enable(rdev);
2273        mutex_unlock(&rdev->mutex);
2274
2275        if (ret != 0 && rdev->supply)
2276                regulator_disable(rdev->supply);
2277
2278        return ret;
2279}
2280EXPORT_SYMBOL_GPL(regulator_enable);
2281
2282static int _regulator_do_disable(struct regulator_dev *rdev)
2283{
2284        int ret;
2285
2286        trace_regulator_disable(rdev_get_name(rdev));
2287
2288        if (rdev->ena_pin) {
2289                if (rdev->ena_gpio_state) {
2290                        ret = regulator_ena_gpio_ctrl(rdev, false);
2291                        if (ret < 0)
2292                                return ret;
2293                        rdev->ena_gpio_state = 0;
2294                }
2295
2296        } else if (rdev->desc->ops->disable) {
2297                ret = rdev->desc->ops->disable(rdev);
2298                if (ret != 0)
2299                        return ret;
2300        }
2301
2302        /* cares about last_off_jiffy only if off_on_delay is required by
2303         * device.
2304         */
2305        if (rdev->desc->off_on_delay)
2306                rdev->last_off_jiffy = jiffies;
2307
2308        trace_regulator_disable_complete(rdev_get_name(rdev));
2309
2310        return 0;
2311}
2312
2313/* locks held by regulator_disable() */
2314static int _regulator_disable(struct regulator_dev *rdev)
2315{
2316        int ret = 0;
2317
2318        lockdep_assert_held_once(&rdev->mutex);
2319
2320        if (WARN(rdev->use_count <= 0,
2321                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2322                return -EIO;
2323
2324        /* are we the last user and permitted to disable ? */
2325        if (rdev->use_count == 1 &&
2326            (rdev->constraints && !rdev->constraints->always_on)) {
2327
2328                /* we are last user */
2329                if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2330                        ret = _notifier_call_chain(rdev,
2331                                                   REGULATOR_EVENT_PRE_DISABLE,
2332                                                   NULL);
2333                        if (ret & NOTIFY_STOP_MASK)
2334                                return -EINVAL;
2335
2336                        ret = _regulator_do_disable(rdev);
2337                        if (ret < 0) {
2338                                rdev_err(rdev, "failed to disable\n");
2339                                _notifier_call_chain(rdev,
2340                                                REGULATOR_EVENT_ABORT_DISABLE,
2341                                                NULL);
2342                                return ret;
2343                        }
2344                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2345                                        NULL);
2346                }
2347
2348                rdev->use_count = 0;
2349        } else if (rdev->use_count > 1) {
2350                if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2351                        drms_uA_update(rdev);
2352
2353                rdev->use_count--;
2354        }
2355
2356        return ret;
2357}
2358
2359/**
2360 * regulator_disable - disable regulator output
2361 * @regulator: regulator source
2362 *
2363 * Disable the regulator output voltage or current.  Calls to
2364 * regulator_enable() must be balanced with calls to
2365 * regulator_disable().
2366 *
2367 * NOTE: this will only disable the regulator output if no other consumer
2368 * devices have it enabled, the regulator device supports disabling and
2369 * machine constraints permit this operation.
2370 */
2371int regulator_disable(struct regulator *regulator)
2372{
2373        struct regulator_dev *rdev = regulator->rdev;
2374        int ret = 0;
2375
2376        if (regulator->always_on)
2377                return 0;
2378
2379        mutex_lock(&rdev->mutex);
2380        ret = _regulator_disable(rdev);
2381        mutex_unlock(&rdev->mutex);
2382
2383        if (ret == 0 && rdev->supply)
2384                regulator_disable(rdev->supply);
2385
2386        return ret;
2387}
2388EXPORT_SYMBOL_GPL(regulator_disable);
2389
2390/* locks held by regulator_force_disable() */
2391static int _regulator_force_disable(struct regulator_dev *rdev)
2392{
2393        int ret = 0;
2394
2395        lockdep_assert_held_once(&rdev->mutex);
2396
2397        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2398                        REGULATOR_EVENT_PRE_DISABLE, NULL);
2399        if (ret & NOTIFY_STOP_MASK)
2400                return -EINVAL;
2401
2402        ret = _regulator_do_disable(rdev);
2403        if (ret < 0) {
2404                rdev_err(rdev, "failed to force disable\n");
2405                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2406                                REGULATOR_EVENT_ABORT_DISABLE, NULL);
2407                return ret;
2408        }
2409
2410        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2411                        REGULATOR_EVENT_DISABLE, NULL);
2412
2413        return 0;
2414}
2415
2416/**
2417 * regulator_force_disable - force disable regulator output
2418 * @regulator: regulator source
2419 *
2420 * Forcibly disable the regulator output voltage or current.
2421 * NOTE: this *will* disable the regulator output even if other consumer
2422 * devices have it enabled. This should be used for situations when device
2423 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2424 */
2425int regulator_force_disable(struct regulator *regulator)
2426{
2427        struct regulator_dev *rdev = regulator->rdev;
2428        int ret;
2429
2430        mutex_lock(&rdev->mutex);
2431        regulator->uA_load = 0;
2432        ret = _regulator_force_disable(regulator->rdev);
2433        mutex_unlock(&rdev->mutex);
2434
2435        if (rdev->supply)
2436                while (rdev->open_count--)
2437                        regulator_disable(rdev->supply);
2438
2439        return ret;
2440}
2441EXPORT_SYMBOL_GPL(regulator_force_disable);
2442
2443static void regulator_disable_work(struct work_struct *work)
2444{
2445        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2446                                                  disable_work.work);
2447        int count, i, ret;
2448
2449        regulator_lock(rdev);
2450
2451        BUG_ON(!rdev->deferred_disables);
2452
2453        count = rdev->deferred_disables;
2454        rdev->deferred_disables = 0;
2455
2456        /*
2457         * Workqueue functions queue the new work instance while the previous
2458         * work instance is being processed. Cancel the queued work instance
2459         * as the work instance under processing does the job of the queued
2460         * work instance.
2461         */
2462        cancel_delayed_work(&rdev->disable_work);
2463
2464        for (i = 0; i < count; i++) {
2465                ret = _regulator_disable(rdev);
2466                if (ret != 0)
2467                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2468        }
2469
2470        regulator_unlock(rdev);
2471
2472        if (rdev->supply) {
2473                for (i = 0; i < count; i++) {
2474                        ret = regulator_disable(rdev->supply);
2475                        if (ret != 0) {
2476                                rdev_err(rdev,
2477                                         "Supply disable failed: %d\n", ret);
2478                        }
2479                }
2480        }
2481}
2482
2483/**
2484 * regulator_disable_deferred - disable regulator output with delay
2485 * @regulator: regulator source
2486 * @ms: miliseconds until the regulator is disabled
2487 *
2488 * Execute regulator_disable() on the regulator after a delay.  This
2489 * is intended for use with devices that require some time to quiesce.
2490 *
2491 * NOTE: this will only disable the regulator output if no other consumer
2492 * devices have it enabled, the regulator device supports disabling and
2493 * machine constraints permit this operation.
2494 */
2495int regulator_disable_deferred(struct regulator *regulator, int ms)
2496{
2497        struct regulator_dev *rdev = regulator->rdev;
2498
2499        if (regulator->always_on)
2500                return 0;
2501
2502        if (!ms)
2503                return regulator_disable(regulator);
2504
2505        regulator_lock(rdev);
2506        rdev->deferred_disables++;
2507        mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2508                         msecs_to_jiffies(ms));
2509        regulator_unlock(rdev);
2510
2511        return 0;
2512}
2513EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2514
2515static int _regulator_is_enabled(struct regulator_dev *rdev)
2516{
2517        /* A GPIO control always takes precedence */
2518        if (rdev->ena_pin)
2519                return rdev->ena_gpio_state;
2520
2521        /* If we don't know then assume that the regulator is always on */
2522        if (!rdev->desc->ops->is_enabled)
2523                return 1;
2524
2525        return rdev->desc->ops->is_enabled(rdev);
2526}
2527
2528static int _regulator_list_voltage(struct regulator_dev *rdev,
2529                                   unsigned selector, int lock)
2530{
2531        const struct regulator_ops *ops = rdev->desc->ops;
2532        int ret;
2533
2534        if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2535                return rdev->desc->fixed_uV;
2536
2537        if (ops->list_voltage) {
2538                if (selector >= rdev->desc->n_voltages)
2539                        return -EINVAL;
2540                if (lock)
2541                        regulator_lock(rdev);
2542                ret = ops->list_voltage(rdev, selector);
2543                if (lock)
2544                        regulator_unlock(rdev);
2545        } else if (rdev->is_switch && rdev->supply) {
2546                ret = _regulator_list_voltage(rdev->supply->rdev,
2547                                              selector, lock);
2548        } else {
2549                return -EINVAL;
2550        }
2551
2552        if (ret > 0) {
2553                if (ret < rdev->constraints->min_uV)
2554                        ret = 0;
2555                else if (ret > rdev->constraints->max_uV)
2556                        ret = 0;
2557        }
2558
2559        return ret;
2560}
2561
2562/**
2563 * regulator_is_enabled - is the regulator output enabled
2564 * @regulator: regulator source
2565 *
2566 * Returns positive if the regulator driver backing the source/client
2567 * has requested that the device be enabled, zero if it hasn't, else a
2568 * negative errno code.
2569 *
2570 * Note that the device backing this regulator handle can have multiple
2571 * users, so it might be enabled even if regulator_enable() was never
2572 * called for this particular source.
2573 */
2574int regulator_is_enabled(struct regulator *regulator)
2575{
2576        int ret;
2577
2578        if (regulator->always_on)
2579                return 1;
2580
2581        mutex_lock(&regulator->rdev->mutex);
2582        ret = _regulator_is_enabled(regulator->rdev);
2583        mutex_unlock(&regulator->rdev->mutex);
2584
2585        return ret;
2586}
2587EXPORT_SYMBOL_GPL(regulator_is_enabled);
2588
2589/**
2590 * regulator_count_voltages - count regulator_list_voltage() selectors
2591 * @regulator: regulator source
2592 *
2593 * Returns number of selectors, or negative errno.  Selectors are
2594 * numbered starting at zero, and typically correspond to bitfields
2595 * in hardware registers.
2596 */
2597int regulator_count_voltages(struct regulator *regulator)
2598{
2599        struct regulator_dev    *rdev = regulator->rdev;
2600
2601        if (rdev->desc->n_voltages)
2602                return rdev->desc->n_voltages;
2603
2604        if (!rdev->is_switch || !rdev->supply)
2605                return -EINVAL;
2606
2607        return regulator_count_voltages(rdev->supply);
2608}
2609EXPORT_SYMBOL_GPL(regulator_count_voltages);
2610
2611/**
2612 * regulator_list_voltage - enumerate supported voltages
2613 * @regulator: regulator source
2614 * @selector: identify voltage to list
2615 * Context: can sleep
2616 *
2617 * Returns a voltage that can be passed to @regulator_set_voltage(),
2618 * zero if this selector code can't be used on this system, or a
2619 * negative errno.
2620 */
2621int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2622{
2623        return _regulator_list_voltage(regulator->rdev, selector, 1);
2624}
2625EXPORT_SYMBOL_GPL(regulator_list_voltage);
2626
2627/**
2628 * regulator_get_regmap - get the regulator's register map
2629 * @regulator: regulator source
2630 *
2631 * Returns the register map for the given regulator, or an ERR_PTR value
2632 * if the regulator doesn't use regmap.
2633 */
2634struct regmap *regulator_get_regmap(struct regulator *regulator)
2635{
2636        struct regmap *map = regulator->rdev->regmap;
2637
2638        return map ? map : ERR_PTR(-EOPNOTSUPP);
2639}
2640
2641/**
2642 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2643 * @regulator: regulator source
2644 * @vsel_reg: voltage selector register, output parameter
2645 * @vsel_mask: mask for voltage selector bitfield, output parameter
2646 *
2647 * Returns the hardware register offset and bitmask used for setting the
2648 * regulator voltage. This might be useful when configuring voltage-scaling
2649 * hardware or firmware that can make I2C requests behind the kernel's back,
2650 * for example.
2651 *
2652 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2653 * and 0 is returned, otherwise a negative errno is returned.
2654 */
2655int regulator_get_hardware_vsel_register(struct regulator *regulator,
2656                                         unsigned *vsel_reg,
2657                                         unsigned *vsel_mask)
2658{
2659        struct regulator_dev *rdev = regulator->rdev;
2660        const struct regulator_ops *ops = rdev->desc->ops;
2661
2662        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2663                return -EOPNOTSUPP;
2664
2665        *vsel_reg = rdev->desc->vsel_reg;
2666        *vsel_mask = rdev->desc->vsel_mask;
2667
2668         return 0;
2669}
2670EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2671
2672/**
2673 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2674 * @regulator: regulator source
2675 * @selector: identify voltage to list
2676 *
2677 * Converts the selector to a hardware-specific voltage selector that can be
2678 * directly written to the regulator registers. The address of the voltage
2679 * register can be determined by calling @regulator_get_hardware_vsel_register.
2680 *
2681 * On error a negative errno is returned.
2682 */
2683int regulator_list_hardware_vsel(struct regulator *regulator,
2684                                 unsigned selector)
2685{
2686        struct regulator_dev *rdev = regulator->rdev;
2687        const struct regulator_ops *ops = rdev->desc->ops;
2688
2689        if (selector >= rdev->desc->n_voltages)
2690                return -EINVAL;
2691        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2692                return -EOPNOTSUPP;
2693
2694        return selector;
2695}
2696EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2697
2698/**
2699 * regulator_get_linear_step - return the voltage step size between VSEL values
2700 * @regulator: regulator source
2701 *
2702 * Returns the voltage step size between VSEL values for linear
2703 * regulators, or return 0 if the regulator isn't a linear regulator.
2704 */
2705unsigned int regulator_get_linear_step(struct regulator *regulator)
2706{
2707        struct regulator_dev *rdev = regulator->rdev;
2708
2709        return rdev->desc->uV_step;
2710}
2711EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2712
2713/**
2714 * regulator_is_supported_voltage - check if a voltage range can be supported
2715 *
2716 * @regulator: Regulator to check.
2717 * @min_uV: Minimum required voltage in uV.
2718 * @max_uV: Maximum required voltage in uV.
2719 *
2720 * Returns a boolean or a negative error code.
2721 */
2722int regulator_is_supported_voltage(struct regulator *regulator,
2723                                   int min_uV, int max_uV)
2724{
2725        struct regulator_dev *rdev = regulator->rdev;
2726        int i, voltages, ret;
2727
2728        /* If we can't change voltage check the current voltage */
2729        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2730                ret = regulator_get_voltage(regulator);
2731                if (ret >= 0)
2732                        return min_uV <= ret && ret <= max_uV;
2733                else
2734                        return ret;
2735        }
2736
2737        /* Any voltage within constrains range is fine? */
2738        if (rdev->desc->continuous_voltage_range)
2739                return min_uV >= rdev->constraints->min_uV &&
2740                                max_uV <= rdev->constraints->max_uV;
2741
2742        ret = regulator_count_voltages(regulator);
2743        if (ret < 0)
2744                return ret;
2745        voltages = ret;
2746
2747        for (i = 0; i < voltages; i++) {
2748                ret = regulator_list_voltage(regulator, i);
2749
2750                if (ret >= min_uV && ret <= max_uV)
2751                        return 1;
2752        }
2753
2754        return 0;
2755}
2756EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2757
2758static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2759                                 int max_uV)
2760{
2761        const struct regulator_desc *desc = rdev->desc;
2762
2763        if (desc->ops->map_voltage)
2764                return desc->ops->map_voltage(rdev, min_uV, max_uV);
2765
2766        if (desc->ops->list_voltage == regulator_list_voltage_linear)
2767                return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2768
2769        if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2770                return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2771
2772        return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2773}
2774
2775static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2776                                       int min_uV, int max_uV,
2777                                       unsigned *selector)
2778{
2779        struct pre_voltage_change_data data;
2780        int ret;
2781
2782        data.old_uV = _regulator_get_voltage(rdev);
2783        data.min_uV = min_uV;
2784        data.max_uV = max_uV;
2785        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2786                                   &data);
2787        if (ret & NOTIFY_STOP_MASK)
2788                return -EINVAL;
2789
2790        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2791        if (ret >= 0)
2792                return ret;
2793
2794        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2795                             (void *)data.old_uV);
2796
2797        return ret;
2798}
2799
2800static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2801                                           int uV, unsigned selector)
2802{
2803        struct pre_voltage_change_data data;
2804        int ret;
2805
2806        data.old_uV = _regulator_get_voltage(rdev);
2807        data.min_uV = uV;
2808        data.max_uV = uV;
2809        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2810                                   &data);
2811        if (ret & NOTIFY_STOP_MASK)
2812                return -EINVAL;
2813
2814        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2815        if (ret >= 0)
2816                return ret;
2817
2818        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2819                             (void *)data.old_uV);
2820
2821        return ret;
2822}
2823
2824static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2825                                       int old_uV, int new_uV)
2826{
2827        unsigned int ramp_delay = 0;
2828
2829        if (rdev->constraints->ramp_delay)
2830                ramp_delay = rdev->constraints->ramp_delay;
2831        else if (rdev->desc->ramp_delay)
2832                ramp_delay = rdev->desc->ramp_delay;
2833        else if (rdev->constraints->settling_time)
2834                return rdev->constraints->settling_time;
2835        else if (rdev->constraints->settling_time_up &&
2836                 (new_uV > old_uV))
2837                return rdev->constraints->settling_time_up;
2838        else if (rdev->constraints->settling_time_down &&
2839                 (new_uV < old_uV))
2840                return rdev->constraints->settling_time_down;
2841
2842        if (ramp_delay == 0) {
2843                rdev_dbg(rdev, "ramp_delay not set\n");
2844                return 0;
2845        }
2846
2847        return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2848}
2849
2850static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2851                                     int min_uV, int max_uV)
2852{
2853        int ret;
2854        int delay = 0;
2855        int best_val = 0;
2856        unsigned int selector;
2857        int old_selector = -1;
2858        const struct regulator_ops *ops = rdev->desc->ops;
2859        int old_uV = _regulator_get_voltage(rdev);
2860
2861        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2862
2863        min_uV += rdev->constraints->uV_offset;
2864        max_uV += rdev->constraints->uV_offset;
2865
2866        /*
2867         * If we can't obtain the old selector there is not enough
2868         * info to call set_voltage_time_sel().
2869         */
2870        if (_regulator_is_enabled(rdev) &&
2871            ops->set_voltage_time_sel && ops->get_voltage_sel) {
2872                old_selector = ops->get_voltage_sel(rdev);
2873                if (old_selector < 0)
2874                        return old_selector;
2875        }
2876
2877        if (ops->set_voltage) {
2878                ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2879                                                  &selector);
2880
2881                if (ret >= 0) {
2882                        if (ops->list_voltage)
2883                                best_val = ops->list_voltage(rdev,
2884                                                             selector);
2885                        else
2886                                best_val = _regulator_get_voltage(rdev);
2887                }
2888
2889        } else if (ops->set_voltage_sel) {
2890                ret = regulator_map_voltage(rdev, min_uV, max_uV);
2891                if (ret >= 0) {
2892                        best_val = ops->list_voltage(rdev, ret);
2893                        if (min_uV <= best_val && max_uV >= best_val) {
2894                                selector = ret;
2895                                if (old_selector == selector)
2896                                        ret = 0;
2897                                else
2898                                        ret = _regulator_call_set_voltage_sel(
2899                                                rdev, best_val, selector);
2900                        } else {
2901                                ret = -EINVAL;
2902                        }
2903                }
2904        } else {
2905                ret = -EINVAL;
2906        }
2907
2908        if (ret)
2909                goto out;
2910
2911        if (ops->set_voltage_time_sel) {
2912                /*
2913                 * Call set_voltage_time_sel if successfully obtained
2914                 * old_selector
2915                 */
2916                if (old_selector >= 0 && old_selector != selector)
2917                        delay = ops->set_voltage_time_sel(rdev, old_selector,
2918                                                          selector);
2919        } else {
2920                if (old_uV != best_val) {
2921                        if (ops->set_voltage_time)
2922                                delay = ops->set_voltage_time(rdev, old_uV,
2923                                                              best_val);
2924                        else
2925                                delay = _regulator_set_voltage_time(rdev,
2926                                                                    old_uV,
2927                                                                    best_val);
2928                }
2929        }
2930
2931        if (delay < 0) {
2932                rdev_warn(rdev, "failed to get delay: %d\n", delay);
2933                delay = 0;
2934        }
2935
2936        /* Insert any necessary delays */
2937        if (delay >= 1000) {
2938                mdelay(delay / 1000);
2939                udelay(delay % 1000);
2940        } else if (delay) {
2941                udelay(delay);
2942        }
2943
2944        if (best_val >= 0) {
2945                unsigned long data = best_val;
2946
2947                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2948                                     (void *)data);
2949        }
2950
2951out:
2952        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2953
2954        return ret;
2955}
2956
2957static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2958                                  int min_uV, int max_uV, suspend_state_t state)
2959{
2960        struct regulator_state *rstate;
2961        int uV, sel;
2962
2963        rstate = regulator_get_suspend_state(rdev, state);
2964        if (rstate == NULL)
2965                return -EINVAL;
2966
2967        if (min_uV < rstate->min_uV)
2968                min_uV = rstate->min_uV;
2969        if (max_uV > rstate->max_uV)
2970                max_uV = rstate->max_uV;
2971
2972        sel = regulator_map_voltage(rdev, min_uV, max_uV);
2973        if (sel < 0)
2974                return sel;
2975
2976        uV = rdev->desc->ops->list_voltage(rdev, sel);
2977        if (uV >= min_uV && uV <= max_uV)
2978                rstate->uV = uV;
2979
2980        return 0;
2981}
2982
2983static int regulator_set_voltage_unlocked(struct regulator *regulator,
2984                                          int min_uV, int max_uV,
2985                                          suspend_state_t state)
2986{
2987        struct regulator_dev *rdev = regulator->rdev;
2988        struct regulator_voltage *voltage = &regulator->voltage[state];
2989        int ret = 0;
2990        int old_min_uV, old_max_uV;
2991        int current_uV;
2992        int best_supply_uV = 0;
2993        int supply_change_uV = 0;
2994
2995        /* If we're setting the same range as last time the change
2996         * should be a noop (some cpufreq implementations use the same
2997         * voltage for multiple frequencies, for example).
2998         */
2999        if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3000                goto out;
3001
3002        /* If we're trying to set a range that overlaps the current voltage,
3003         * return successfully even though the regulator does not support
3004         * changing the voltage.
3005         */
3006        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3007                current_uV = _regulator_get_voltage(rdev);
3008                if (min_uV <= current_uV && current_uV <= max_uV) {
3009                        voltage->min_uV = min_uV;
3010                        voltage->max_uV = max_uV;
3011                        goto out;
3012                }
3013        }
3014
3015        /* sanity check */
3016        if (!rdev->desc->ops->set_voltage &&
3017            !rdev->desc->ops->set_voltage_sel) {
3018                ret = -EINVAL;
3019                goto out;
3020        }
3021
3022        /* constraints check */
3023        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3024        if (ret < 0)
3025                goto out;
3026
3027        /* restore original values in case of error */
3028        old_min_uV = voltage->min_uV;
3029        old_max_uV = voltage->max_uV;
3030        voltage->min_uV = min_uV;
3031        voltage->max_uV = max_uV;
3032
3033        ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3034        if (ret < 0)
3035                goto out2;
3036
3037        if (rdev->supply &&
3038            regulator_ops_is_valid(rdev->supply->rdev,
3039                                   REGULATOR_CHANGE_VOLTAGE) &&
3040            (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3041                                           rdev->desc->ops->get_voltage_sel))) {
3042                int current_supply_uV;
3043                int selector;
3044
3045                selector = regulator_map_voltage(rdev, min_uV, max_uV);
3046                if (selector < 0) {
3047                        ret = selector;
3048                        goto out2;
3049                }
3050
3051                best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3052                if (best_supply_uV < 0) {
3053                        ret = best_supply_uV;
3054                        goto out2;
3055                }
3056
3057                best_supply_uV += rdev->desc->min_dropout_uV;
3058
3059                current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3060                if (current_supply_uV < 0) {
3061                        ret = current_supply_uV;
3062                        goto out2;
3063                }
3064
3065                supply_change_uV = best_supply_uV - current_supply_uV;
3066        }
3067
3068        if (supply_change_uV > 0) {
3069                ret = regulator_set_voltage_unlocked(rdev->supply,
3070                                best_supply_uV, INT_MAX, state);
3071                if (ret) {
3072                        dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3073                                        ret);
3074                        goto out2;
3075                }
3076        }
3077
3078        if (state == PM_SUSPEND_ON)
3079                ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3080        else
3081                ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3082                                                        max_uV, state);
3083        if (ret < 0)
3084                goto out2;
3085
3086        if (supply_change_uV < 0) {
3087                ret = regulator_set_voltage_unlocked(rdev->supply,
3088                                best_supply_uV, INT_MAX, state);
3089                if (ret)
3090                        dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3091                                        ret);
3092                /* No need to fail here */
3093                ret = 0;
3094        }
3095
3096out:
3097        return ret;
3098out2:
3099        voltage->min_uV = old_min_uV;
3100        voltage->max_uV = old_max_uV;
3101
3102        return ret;
3103}
3104
3105/**
3106 * regulator_set_voltage - set regulator output voltage
3107 * @regulator: regulator source
3108 * @min_uV: Minimum required voltage in uV
3109 * @max_uV: Maximum acceptable voltage in uV
3110 *
3111 * Sets a voltage regulator to the desired output voltage. This can be set
3112 * during any regulator state. IOW, regulator can be disabled or enabled.
3113 *
3114 * If the regulator is enabled then the voltage will change to the new value
3115 * immediately otherwise if the regulator is disabled the regulator will
3116 * output at the new voltage when enabled.
3117 *
3118 * NOTE: If the regulator is shared between several devices then the lowest
3119 * request voltage that meets the system constraints will be used.
3120 * Regulator system constraints must be set for this regulator before
3121 * calling this function otherwise this call will fail.
3122 */
3123int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3124{
3125        int ret = 0;
3126
3127        regulator_lock_supply(regulator->rdev);
3128
3129        ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3130                                             PM_SUSPEND_ON);
3131
3132        regulator_unlock_supply(regulator->rdev);
3133
3134        return ret;
3135}
3136EXPORT_SYMBOL_GPL(regulator_set_voltage);
3137
3138static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3139                                           suspend_state_t state, bool en)
3140{
3141        struct regulator_state *rstate;
3142
3143        rstate = regulator_get_suspend_state(rdev, state);
3144        if (rstate == NULL)
3145                return -EINVAL;
3146
3147        if (!rstate->changeable)
3148                return -EPERM;
3149
3150        rstate->enabled = en;
3151
3152        return 0;
3153}
3154
3155int regulator_suspend_enable(struct regulator_dev *rdev,
3156                                    suspend_state_t state)
3157{
3158        return regulator_suspend_toggle(rdev, state, true);
3159}
3160EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3161
3162int regulator_suspend_disable(struct regulator_dev *rdev,
3163                                     suspend_state_t state)
3164{
3165        struct regulator *regulator;
3166        struct regulator_voltage *voltage;
3167
3168        /*
3169         * if any consumer wants this regulator device keeping on in
3170         * suspend states, don't set it as disabled.
3171         */
3172        list_for_each_entry(regulator, &rdev->consumer_list, list) {
3173                voltage = &regulator->voltage[state];
3174                if (voltage->min_uV || voltage->max_uV)
3175                        return 0;
3176        }
3177
3178        return regulator_suspend_toggle(rdev, state, false);
3179}
3180EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3181
3182static int _regulator_set_suspend_voltage(struct regulator *regulator,
3183                                          int min_uV, int max_uV,
3184                                          suspend_state_t state)
3185{
3186        struct regulator_dev *rdev = regulator->rdev;
3187        struct regulator_state *rstate;
3188
3189        rstate = regulator_get_suspend_state(rdev, state);
3190        if (rstate == NULL)
3191                return -EINVAL;
3192
3193        if (rstate->min_uV == rstate->max_uV) {
3194                rdev_err(rdev, "The suspend voltage can't be changed!\n");
3195                return -EPERM;
3196        }
3197
3198        return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3199}
3200
3201int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3202                                  int max_uV, suspend_state_t state)
3203{
3204        int ret = 0;
3205
3206        /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3207        if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3208                return -EINVAL;
3209
3210        regulator_lock_supply(regulator->rdev);
3211
3212        ret = _regulator_set_suspend_voltage(regulator, min_uV,
3213                                             max_uV, state);
3214
3215        regulator_unlock_supply(regulator->rdev);
3216
3217        return ret;
3218}
3219EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3220
3221/**
3222 * regulator_set_voltage_time - get raise/fall time
3223 * @regulator: regulator source
3224 * @old_uV: starting voltage in microvolts
3225 * @new_uV: target voltage in microvolts
3226 *
3227 * Provided with the starting and ending voltage, this function attempts to
3228 * calculate the time in microseconds required to rise or fall to this new
3229 * voltage.
3230 */
3231int regulator_set_voltage_time(struct regulator *regulator,
3232                               int old_uV, int new_uV)
3233{
3234        struct regulator_dev *rdev = regulator->rdev;
3235        const struct regulator_ops *ops = rdev->desc->ops;
3236        int old_sel = -1;
3237        int new_sel = -1;
3238        int voltage;
3239        int i;
3240
3241        if (ops->set_voltage_time)
3242                return ops->set_voltage_time(rdev, old_uV, new_uV);
3243        else if (!ops->set_voltage_time_sel)
3244                return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3245
3246        /* Currently requires operations to do this */
3247        if (!ops->list_voltage || !rdev->desc->n_voltages)
3248                return -EINVAL;
3249
3250        for (i = 0; i < rdev->desc->n_voltages; i++) {
3251                /* We only look for exact voltage matches here */
3252                voltage = regulator_list_voltage(regulator, i);
3253                if (voltage < 0)
3254                        return -EINVAL;
3255                if (voltage == 0)
3256                        continue;
3257                if (voltage == old_uV)
3258                        old_sel = i;
3259                if (voltage == new_uV)
3260                        new_sel = i;
3261        }
3262
3263        if (old_sel < 0 || new_sel < 0)
3264                return -EINVAL;
3265
3266        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3267}
3268EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3269
3270/**
3271 * regulator_set_voltage_time_sel - get raise/fall time
3272 * @rdev: regulator source device
3273 * @old_selector: selector for starting voltage
3274 * @new_selector: selector for target voltage
3275 *
3276 * Provided with the starting and target voltage selectors, this function
3277 * returns time in microseconds required to rise or fall to this new voltage
3278 *
3279 * Drivers providing ramp_delay in regulation_constraints can use this as their
3280 * set_voltage_time_sel() operation.
3281 */
3282int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3283                                   unsigned int old_selector,
3284                                   unsigned int new_selector)
3285{
3286        int old_volt, new_volt;
3287
3288        /* sanity check */
3289        if (!rdev->desc->ops->list_voltage)
3290                return -EINVAL;
3291
3292        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3293        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3294
3295        if (rdev->desc->ops->set_voltage_time)
3296                return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3297                                                         new_volt);
3298        else
3299                return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3300}
3301EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3302
3303/**
3304 * regulator_sync_voltage - re-apply last regulator output voltage
3305 * @regulator: regulator source
3306 *
3307 * Re-apply the last configured voltage.  This is intended to be used
3308 * where some external control source the consumer is cooperating with
3309 * has caused the configured voltage to change.
3310 */
3311int regulator_sync_voltage(struct regulator *regulator)
3312{
3313        struct regulator_dev *rdev = regulator->rdev;
3314        struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3315        int ret, min_uV, max_uV;
3316
3317        regulator_lock(rdev);
3318
3319        if (!rdev->desc->ops->set_voltage &&
3320            !rdev->desc->ops->set_voltage_sel) {
3321                ret = -EINVAL;
3322                goto out;
3323        }
3324
3325        /* This is only going to work if we've had a voltage configured. */
3326        if (!voltage->min_uV && !voltage->max_uV) {
3327                ret = -EINVAL;
3328                goto out;
3329        }
3330
3331        min_uV = voltage->min_uV;
3332        max_uV = voltage->max_uV;
3333
3334        /* This should be a paranoia check... */
3335        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3336        if (ret < 0)
3337                goto out;
3338
3339        ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3340        if (ret < 0)
3341                goto out;
3342
3343        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3344
3345out:
3346        regulator_unlock(rdev);
3347        return ret;
3348}
3349EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3350
3351static int _regulator_get_voltage(struct regulator_dev *rdev)
3352{
3353        int sel, ret;
3354        bool bypassed;
3355
3356        if (rdev->desc->ops->get_bypass) {
3357                ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3358                if (ret < 0)
3359                        return ret;
3360                if (bypassed) {
3361                        /* if bypassed the regulator must have a supply */
3362                        if (!rdev->supply) {
3363                                rdev_err(rdev,
3364                                         "bypassed regulator has no supply!\n");
3365                                return -EPROBE_DEFER;
3366                        }
3367
3368                        return _regulator_get_voltage(rdev->supply->rdev);
3369                }
3370        }
3371
3372        if (rdev->desc->ops->get_voltage_sel) {
3373                sel = rdev->desc->ops->get_voltage_sel(rdev);
3374                if (sel < 0)
3375                        return sel;
3376                ret = rdev->desc->ops->list_voltage(rdev, sel);
3377        } else if (rdev->desc->ops->get_voltage) {
3378                ret = rdev->desc->ops->get_voltage(rdev);
3379        } else if (rdev->desc->ops->list_voltage) {
3380                ret = rdev->desc->ops->list_voltage(rdev, 0);
3381        } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3382                ret = rdev->desc->fixed_uV;
3383        } else if (rdev->supply) {
3384                ret = _regulator_get_voltage(rdev->supply->rdev);
3385        } else {
3386                return -EINVAL;
3387        }
3388
3389        if (ret < 0)
3390                return ret;
3391        return ret - rdev->constraints->uV_offset;
3392}
3393
3394/**
3395 * regulator_get_voltage - get regulator output voltage
3396 * @regulator: regulator source
3397 *
3398 * This returns the current regulator voltage in uV.
3399 *
3400 * NOTE: If the regulator is disabled it will return the voltage value. This
3401 * function should not be used to determine regulator state.
3402 */
3403int regulator_get_voltage(struct regulator *regulator)
3404{
3405        int ret;
3406
3407        regulator_lock_supply(regulator->rdev);
3408
3409        ret = _regulator_get_voltage(regulator->rdev);
3410
3411        regulator_unlock_supply(regulator->rdev);
3412
3413        return ret;
3414}
3415EXPORT_SYMBOL_GPL(regulator_get_voltage);
3416
3417/**
3418 * regulator_set_current_limit - set regulator output current limit
3419 * @regulator: regulator source
3420 * @min_uA: Minimum supported current in uA
3421 * @max_uA: Maximum supported current in uA
3422 *
3423 * Sets current sink to the desired output current. This can be set during
3424 * any regulator state. IOW, regulator can be disabled or enabled.
3425 *
3426 * If the regulator is enabled then the current will change to the new value
3427 * immediately otherwise if the regulator is disabled the regulator will
3428 * output at the new current when enabled.
3429 *
3430 * NOTE: Regulator system constraints must be set for this regulator before
3431 * calling this function otherwise this call will fail.
3432 */
3433int regulator_set_current_limit(struct regulator *regulator,
3434                               int min_uA, int max_uA)
3435{
3436        struct regulator_dev *rdev = regulator->rdev;
3437        int ret;
3438
3439        regulator_lock(rdev);
3440
3441        /* sanity check */
3442        if (!rdev->desc->ops->set_current_limit) {
3443                ret = -EINVAL;
3444                goto out;
3445        }
3446
3447        /* constraints check */
3448        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3449        if (ret < 0)
3450                goto out;
3451
3452        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3453out:
3454        regulator_unlock(rdev);
3455        return ret;
3456}
3457EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3458
3459static int _regulator_get_current_limit(struct regulator_dev *rdev)
3460{
3461        int ret;
3462
3463        regulator_lock(rdev);
3464
3465        /* sanity check */
3466        if (!rdev->desc->ops->get_current_limit) {
3467                ret = -EINVAL;
3468                goto out;
3469        }
3470
3471        ret = rdev->desc->ops->get_current_limit(rdev);
3472out:
3473        regulator_unlock(rdev);
3474        return ret;
3475}
3476
3477/**
3478 * regulator_get_current_limit - get regulator output current
3479 * @regulator: regulator source
3480 *
3481 * This returns the current supplied by the specified current sink in uA.
3482 *
3483 * NOTE: If the regulator is disabled it will return the current value. This
3484 * function should not be used to determine regulator state.
3485 */
3486int regulator_get_current_limit(struct regulator *regulator)
3487{
3488        return _regulator_get_current_limit(regulator->rdev);
3489}
3490EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3491
3492/**
3493 * regulator_set_mode - set regulator operating mode
3494 * @regulator: regulator source
3495 * @mode: operating mode - one of the REGULATOR_MODE constants
3496 *
3497 * Set regulator operating mode to increase regulator efficiency or improve
3498 * regulation performance.
3499 *
3500 * NOTE: Regulator system constraints must be set for this regulator before
3501 * calling this function otherwise this call will fail.
3502 */
3503int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3504{
3505        struct regulator_dev *rdev = regulator->rdev;
3506        int ret;
3507        int regulator_curr_mode;
3508
3509        regulator_lock(rdev);
3510
3511        /* sanity check */
3512        if (!rdev->desc->ops->set_mode) {
3513                ret = -EINVAL;
3514                goto out;
3515        }
3516
3517        /* return if the same mode is requested */
3518        if (rdev->desc->ops->get_mode) {
3519                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3520                if (regulator_curr_mode == mode) {
3521                        ret = 0;
3522                        goto out;
3523                }
3524        }
3525
3526        /* constraints check */
3527        ret = regulator_mode_constrain(rdev, &mode);
3528        if (ret < 0)
3529                goto out;
3530
3531        ret = rdev->desc->ops->set_mode(rdev, mode);
3532out:
3533        regulator_unlock(rdev);
3534        return ret;
3535}
3536EXPORT_SYMBOL_GPL(regulator_set_mode);
3537
3538static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3539{
3540        int ret;
3541
3542        regulator_lock(rdev);
3543
3544        /* sanity check */
3545        if (!rdev->desc->ops->get_mode) {
3546                ret = -EINVAL;
3547                goto out;
3548        }
3549
3550        ret = rdev->desc->ops->get_mode(rdev);
3551out:
3552        regulator_unlock(rdev);
3553        return ret;
3554}
3555
3556/**
3557 * regulator_get_mode - get regulator operating mode
3558 * @regulator: regulator source
3559 *
3560 * Get the current regulator operating mode.
3561 */
3562unsigned int regulator_get_mode(struct regulator *regulator)
3563{
3564        return _regulator_get_mode(regulator->rdev);
3565}
3566EXPORT_SYMBOL_GPL(regulator_get_mode);
3567
3568static int _regulator_get_error_flags(struct regulator_dev *rdev,
3569                                        unsigned int *flags)
3570{
3571        int ret;
3572
3573        regulator_lock(rdev);
3574
3575        /* sanity check */
3576        if (!rdev->desc->ops->get_error_flags) {
3577                ret = -EINVAL;
3578                goto out;
3579        }
3580
3581        ret = rdev->desc->ops->get_error_flags(rdev, flags);
3582out:
3583        regulator_unlock(rdev);
3584        return ret;
3585}
3586
3587/**
3588 * regulator_get_error_flags - get regulator error information
3589 * @regulator: regulator source
3590 * @flags: pointer to store error flags
3591 *
3592 * Get the current regulator error information.
3593 */
3594int regulator_get_error_flags(struct regulator *regulator,
3595                                unsigned int *flags)
3596{
3597        return _regulator_get_error_flags(regulator->rdev, flags);
3598}
3599EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3600
3601/**
3602 * regulator_set_load - set regulator load
3603 * @regulator: regulator source
3604 * @uA_load: load current
3605 *
3606 * Notifies the regulator core of a new device load. This is then used by
3607 * DRMS (if enabled by constraints) to set the most efficient regulator
3608 * operating mode for the new regulator loading.
3609 *
3610 * Consumer devices notify their supply regulator of the maximum power
3611 * they will require (can be taken from device datasheet in the power
3612 * consumption tables) when they change operational status and hence power
3613 * state. Examples of operational state changes that can affect power
3614 * consumption are :-
3615 *
3616 *    o Device is opened / closed.
3617 *    o Device I/O is about to begin or has just finished.
3618 *    o Device is idling in between work.
3619 *
3620 * This information is also exported via sysfs to userspace.
3621 *
3622 * DRMS will sum the total requested load on the regulator and change
3623 * to the most efficient operating mode if platform constraints allow.
3624 *
3625 * On error a negative errno is returned.
3626 */
3627int regulator_set_load(struct regulator *regulator, int uA_load)
3628{
3629        struct regulator_dev *rdev = regulator->rdev;
3630        int ret;
3631
3632        regulator_lock(rdev);
3633        regulator->uA_load = uA_load;
3634        ret = drms_uA_update(rdev);
3635        regulator_unlock(rdev);
3636
3637        return ret;
3638}
3639EXPORT_SYMBOL_GPL(regulator_set_load);
3640
3641/**
3642 * regulator_allow_bypass - allow the regulator to go into bypass mode
3643 *
3644 * @regulator: Regulator to configure
3645 * @enable: enable or disable bypass mode
3646 *
3647 * Allow the regulator to go into bypass mode if all other consumers
3648 * for the regulator also enable bypass mode and the machine
3649 * constraints allow this.  Bypass mode means that the regulator is
3650 * simply passing the input directly to the output with no regulation.
3651 */
3652int regulator_allow_bypass(struct regulator *regulator, bool enable)
3653{
3654        struct regulator_dev *rdev = regulator->rdev;
3655        int ret = 0;
3656
3657        if (!rdev->desc->ops->set_bypass)
3658                return 0;
3659
3660        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3661                return 0;
3662
3663        regulator_lock(rdev);
3664
3665        if (enable && !regulator->bypass) {
3666                rdev->bypass_count++;
3667
3668                if (rdev->bypass_count == rdev->open_count) {
3669                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3670                        if (ret != 0)
3671                                rdev->bypass_count--;
3672                }
3673
3674        } else if (!enable && regulator->bypass) {
3675                rdev->bypass_count--;
3676
3677                if (rdev->bypass_count != rdev->open_count) {
3678                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3679                        if (ret != 0)
3680                                rdev->bypass_count++;
3681                }
3682        }
3683
3684        if (ret == 0)
3685                regulator->bypass = enable;
3686
3687        regulator_unlock(rdev);
3688
3689        return ret;
3690}
3691EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3692
3693/**
3694 * regulator_register_notifier - register regulator event notifier
3695 * @regulator: regulator source
3696 * @nb: notifier block
3697 *
3698 * Register notifier block to receive regulator events.
3699 */
3700int regulator_register_notifier(struct regulator *regulator,
3701                              struct notifier_block *nb)
3702{
3703        return blocking_notifier_chain_register(&regulator->rdev->notifier,
3704                                                nb);
3705}
3706EXPORT_SYMBOL_GPL(regulator_register_notifier);
3707
3708/**
3709 * regulator_unregister_notifier - unregister regulator event notifier
3710 * @regulator: regulator source
3711 * @nb: notifier block
3712 *
3713 * Unregister regulator event notifier block.
3714 */
3715int regulator_unregister_notifier(struct regulator *regulator,
3716                                struct notifier_block *nb)
3717{
3718        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3719                                                  nb);
3720}
3721EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3722
3723/* notify regulator consumers and downstream regulator consumers.
3724 * Note mutex must be held by caller.
3725 */
3726static int _notifier_call_chain(struct regulator_dev *rdev,
3727                                  unsigned long event, void *data)
3728{
3729        /* call rdev chain first */
3730        return blocking_notifier_call_chain(&rdev->notifier, event, data);
3731}
3732
3733/**
3734 * regulator_bulk_get - get multiple regulator consumers
3735 *
3736 * @dev:           Device to supply
3737 * @num_consumers: Number of consumers to register
3738 * @consumers:     Configuration of consumers; clients are stored here.
3739 *
3740 * @return 0 on success, an errno on failure.
3741 *
3742 * This helper function allows drivers to get several regulator
3743 * consumers in one operation.  If any of the regulators cannot be
3744 * acquired then any regulators that were allocated will be freed
3745 * before returning to the caller.
3746 */
3747int regulator_bulk_get(struct device *dev, int num_consumers,
3748                       struct regulator_bulk_data *consumers)
3749{
3750        int i;
3751        int ret;
3752
3753        for (i = 0; i < num_consumers; i++)
3754                consumers[i].consumer = NULL;
3755
3756        for (i = 0; i < num_consumers; i++) {
3757                consumers[i].consumer = regulator_get(dev,
3758                                                      consumers[i].supply);
3759                if (IS_ERR(consumers[i].consumer)) {
3760                        ret = PTR_ERR(consumers[i].consumer);
3761                        dev_err(dev, "Failed to get supply '%s': %d\n",
3762                                consumers[i].supply, ret);
3763                        consumers[i].consumer = NULL;
3764                        goto err;
3765                }
3766        }
3767
3768        return 0;
3769
3770err:
3771        while (--i >= 0)
3772                regulator_put(consumers[i].consumer);
3773
3774        return ret;
3775}
3776EXPORT_SYMBOL_GPL(regulator_bulk_get);
3777
3778static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3779{
3780        struct regulator_bulk_data *bulk = data;
3781
3782        bulk->ret = regulator_enable(bulk->consumer);
3783}
3784
3785/**
3786 * regulator_bulk_enable - enable multiple regulator consumers
3787 *
3788 * @num_consumers: Number of consumers
3789 * @consumers:     Consumer data; clients are stored here.
3790 * @return         0 on success, an errno on failure
3791 *
3792 * This convenience API allows consumers to enable multiple regulator
3793 * clients in a single API call.  If any consumers cannot be enabled
3794 * then any others that were enabled will be disabled again prior to
3795 * return.
3796 */
3797int regulator_bulk_enable(int num_consumers,
3798                          struct regulator_bulk_data *consumers)
3799{
3800        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3801        int i;
3802        int ret = 0;
3803
3804        for (i = 0; i < num_consumers; i++) {
3805                if (consumers[i].consumer->always_on)
3806                        consumers[i].ret = 0;
3807                else
3808                        async_schedule_domain(regulator_bulk_enable_async,
3809                                              &consumers[i], &async_domain);
3810        }
3811
3812        async_synchronize_full_domain(&async_domain);
3813
3814        /* If any consumer failed we need to unwind any that succeeded */
3815        for (i = 0; i < num_consumers; i++) {
3816                if (consumers[i].ret != 0) {
3817                        ret = consumers[i].ret;
3818                        goto err;
3819                }
3820        }
3821
3822        return 0;
3823
3824err:
3825        for (i = 0; i < num_consumers; i++) {
3826                if (consumers[i].ret < 0)
3827                        pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3828                               consumers[i].ret);
3829                else
3830                        regulator_disable(consumers[i].consumer);
3831        }
3832
3833        return ret;
3834}
3835EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3836
3837/**
3838 * regulator_bulk_disable - disable multiple regulator consumers
3839 *
3840 * @num_consumers: Number of consumers
3841 * @consumers:     Consumer data; clients are stored here.
3842 * @return         0 on success, an errno on failure
3843 *
3844 * This convenience API allows consumers to disable multiple regulator
3845 * clients in a single API call.  If any consumers cannot be disabled
3846 * then any others that were disabled will be enabled again prior to
3847 * return.
3848 */
3849int regulator_bulk_disable(int num_consumers,
3850                           struct regulator_bulk_data *consumers)
3851{
3852        int i;
3853        int ret, r;
3854
3855        for (i = num_consumers - 1; i >= 0; --i) {
3856                ret = regulator_disable(consumers[i].consumer);
3857                if (ret != 0)
3858                        goto err;
3859        }
3860
3861        return 0;
3862
3863err:
3864        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3865        for (++i; i < num_consumers; ++i) {
3866                r = regulator_enable(consumers[i].consumer);
3867                if (r != 0)
3868                        pr_err("Failed to re-enable %s: %d\n",
3869                               consumers[i].supply, r);
3870        }
3871
3872        return ret;
3873}
3874EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3875
3876/**
3877 * regulator_bulk_force_disable - force disable multiple regulator consumers
3878 *
3879 * @num_consumers: Number of consumers
3880 * @consumers:     Consumer data; clients are stored here.
3881 * @return         0 on success, an errno on failure
3882 *
3883 * This convenience API allows consumers to forcibly disable multiple regulator
3884 * clients in a single API call.
3885 * NOTE: This should be used for situations when device damage will
3886 * likely occur if the regulators are not disabled (e.g. over temp).
3887 * Although regulator_force_disable function call for some consumers can
3888 * return error numbers, the function is called for all consumers.
3889 */
3890int regulator_bulk_force_disable(int num_consumers,
3891                           struct regulator_bulk_data *consumers)
3892{
3893        int i;
3894        int ret = 0;
3895
3896        for (i = 0; i < num_consumers; i++) {
3897                consumers[i].ret =
3898                            regulator_force_disable(consumers[i].consumer);
3899
3900                /* Store first error for reporting */
3901                if (consumers[i].ret && !ret)
3902                        ret = consumers[i].ret;
3903        }
3904
3905        return ret;
3906}
3907EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3908
3909/**
3910 * regulator_bulk_free - free multiple regulator consumers
3911 *
3912 * @num_consumers: Number of consumers
3913 * @consumers:     Consumer data; clients are stored here.
3914 *
3915 * This convenience API allows consumers to free multiple regulator
3916 * clients in a single API call.
3917 */
3918void regulator_bulk_free(int num_consumers,
3919                         struct regulator_bulk_data *consumers)
3920{
3921        int i;
3922
3923        for (i = 0; i < num_consumers; i++) {
3924                regulator_put(consumers[i].consumer);
3925                consumers[i].consumer = NULL;
3926        }
3927}
3928EXPORT_SYMBOL_GPL(regulator_bulk_free);
3929
3930/**
3931 * regulator_notifier_call_chain - call regulator event notifier
3932 * @rdev: regulator source
3933 * @event: notifier block
3934 * @data: callback-specific data.
3935 *
3936 * Called by regulator drivers to notify clients a regulator event has
3937 * occurred. We also notify regulator clients downstream.
3938 * Note lock must be held by caller.
3939 */
3940int regulator_notifier_call_chain(struct regulator_dev *rdev,
3941                                  unsigned long event, void *data)
3942{
3943        lockdep_assert_held_once(&rdev->mutex);
3944
3945        _notifier_call_chain(rdev, event, data);
3946        return NOTIFY_DONE;
3947
3948}
3949EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3950
3951/**
3952 * regulator_mode_to_status - convert a regulator mode into a status
3953 *
3954 * @mode: Mode to convert
3955 *
3956 * Convert a regulator mode into a status.
3957 */
3958int regulator_mode_to_status(unsigned int mode)
3959{
3960        switch (mode) {
3961        case REGULATOR_MODE_FAST:
3962                return REGULATOR_STATUS_FAST;
3963        case REGULATOR_MODE_NORMAL:
3964                return REGULATOR_STATUS_NORMAL;
3965        case REGULATOR_MODE_IDLE:
3966                return REGULATOR_STATUS_IDLE;
3967        case REGULATOR_MODE_STANDBY:
3968                return REGULATOR_STATUS_STANDBY;
3969        default:
3970                return REGULATOR_STATUS_UNDEFINED;
3971        }
3972}
3973EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3974
3975static struct attribute *regulator_dev_attrs[] = {
3976        &dev_attr_name.attr,
3977        &dev_attr_num_users.attr,
3978        &dev_attr_type.attr,
3979        &dev_attr_microvolts.attr,
3980        &dev_attr_microamps.attr,
3981        &dev_attr_opmode.attr,
3982        &dev_attr_state.attr,
3983        &dev_attr_status.attr,
3984        &dev_attr_bypass.attr,
3985        &dev_attr_requested_microamps.attr,
3986        &dev_attr_min_microvolts.attr,
3987        &dev_attr_max_microvolts.attr,
3988        &dev_attr_min_microamps.attr,
3989        &dev_attr_max_microamps.attr,
3990        &dev_attr_suspend_standby_state.attr,
3991        &dev_attr_suspend_mem_state.attr,
3992        &dev_attr_suspend_disk_state.attr,
3993        &dev_attr_suspend_standby_microvolts.attr,
3994        &dev_attr_suspend_mem_microvolts.attr,
3995        &dev_attr_suspend_disk_microvolts.attr,
3996        &dev_attr_suspend_standby_mode.attr,
3997        &dev_attr_suspend_mem_mode.attr,
3998        &dev_attr_suspend_disk_mode.attr,
3999        NULL
4000};
4001
4002/*
4003 * To avoid cluttering sysfs (and memory) with useless state, only
4004 * create attributes that can be meaningfully displayed.
4005 */
4006static umode_t regulator_attr_is_visible(struct kobject *kobj,
4007                                         struct attribute *attr, int idx)
4008{
4009        struct device *dev = kobj_to_dev(kobj);
4010        struct regulator_dev *rdev = dev_to_rdev(dev);
4011        const struct regulator_ops *ops = rdev->desc->ops;
4012        umode_t mode = attr->mode;
4013
4014        /* these three are always present */
4015        if (attr == &dev_attr_name.attr ||
4016            attr == &dev_attr_num_users.attr ||
4017            attr == &dev_attr_type.attr)
4018                return mode;
4019
4020        /* some attributes need specific methods to be displayed */
4021        if (attr == &dev_attr_microvolts.attr) {
4022                if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4023                    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4024                    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4025                    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4026                        return mode;
4027                return 0;
4028        }
4029
4030        if (attr == &dev_attr_microamps.attr)
4031                return ops->get_current_limit ? mode : 0;
4032
4033        if (attr == &dev_attr_opmode.attr)
4034                return ops->get_mode ? mode : 0;
4035
4036        if (attr == &dev_attr_state.attr)
4037                return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4038
4039        if (attr == &dev_attr_status.attr)
4040                return ops->get_status ? mode : 0;
4041
4042        if (attr == &dev_attr_bypass.attr)
4043                return ops->get_bypass ? mode : 0;
4044
4045        /* some attributes are type-specific */
4046        if (attr == &dev_attr_requested_microamps.attr)
4047                return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4048
4049        /* constraints need specific supporting methods */
4050        if (attr == &dev_attr_min_microvolts.attr ||
4051            attr == &dev_attr_max_microvolts.attr)
4052                return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4053
4054        if (attr == &dev_attr_min_microamps.attr ||
4055            attr == &dev_attr_max_microamps.attr)
4056                return ops->set_current_limit ? mode : 0;
4057
4058        if (attr == &dev_attr_suspend_standby_state.attr ||
4059            attr == &dev_attr_suspend_mem_state.attr ||
4060            attr == &dev_attr_suspend_disk_state.attr)
4061                return mode;
4062
4063        if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4064            attr == &dev_attr_suspend_mem_microvolts.attr ||
4065            attr == &dev_attr_suspend_disk_microvolts.attr)
4066                return ops->set_suspend_voltage ? mode : 0;
4067
4068        if (attr == &dev_attr_suspend_standby_mode.attr ||
4069            attr == &dev_attr_suspend_mem_mode.attr ||
4070            attr == &dev_attr_suspend_disk_mode.attr)
4071                return ops->set_suspend_mode ? mode : 0;
4072
4073        return mode;
4074}
4075
4076static const struct attribute_group regulator_dev_group = {
4077        .attrs = regulator_dev_attrs,
4078        .is_visible = regulator_attr_is_visible,
4079};
4080
4081static const struct attribute_group *regulator_dev_groups[] = {
4082        &regulator_dev_group,
4083        NULL
4084};
4085
4086static void regulator_dev_release(struct device *dev)
4087{
4088        struct regulator_dev *rdev = dev_get_drvdata(dev);
4089
4090        kfree(rdev->constraints);
4091        of_node_put(rdev->dev.of_node);
4092        kfree(rdev);
4093}
4094
4095static void rdev_init_debugfs(struct regulator_dev *rdev)
4096{
4097        struct device *parent = rdev->dev.parent;
4098        const char *rname = rdev_get_name(rdev);
4099        char name[NAME_MAX];
4100
4101        /* Avoid duplicate debugfs directory names */
4102        if (parent && rname == rdev->desc->name) {
4103                snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4104                         rname);
4105                rname = name;
4106        }
4107
4108        rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4109        if (!rdev->debugfs) {
4110                rdev_warn(rdev, "Failed to create debugfs directory\n");
4111                return;
4112        }
4113
4114        debugfs_create_u32("use_count", 0444, rdev->debugfs,
4115                           &rdev->use_count);
4116        debugfs_create_u32("open_count", 0444, rdev->debugfs,
4117                           &rdev->open_count);
4118        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4119                           &rdev->bypass_count);
4120}
4121
4122static int regulator_register_resolve_supply(struct device *dev, void *data)
4123{
4124        struct regulator_dev *rdev = dev_to_rdev(dev);
4125
4126        if (regulator_resolve_supply(rdev))
4127                rdev_dbg(rdev, "unable to resolve supply\n");
4128
4129        return 0;
4130}
4131
4132static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4133{
4134        struct coupling_desc *c_desc = &rdev->coupling_desc;
4135        int n_coupled = c_desc->n_coupled;
4136        struct regulator_dev *c_rdev;
4137        int i;
4138
4139        for (i = 1; i < n_coupled; i++) {
4140                /* already resolved */
4141                if (c_desc->coupled_rdevs[i])
4142                        continue;
4143
4144                c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4145
4146                if (c_rdev) {
4147                        c_desc->coupled_rdevs[i] = c_rdev;
4148                        c_desc->n_resolved++;
4149                }
4150        }
4151
4152        if (rdev->coupling_desc.n_resolved < n_coupled)
4153                return -1;
4154        else
4155                return 0;
4156}
4157
4158static int regulator_register_fill_coupling_array(struct device *dev,
4159                                                  void *data)
4160{
4161        struct regulator_dev *rdev = dev_to_rdev(dev);
4162
4163        if (!IS_ENABLED(CONFIG_OF))
4164                return 0;
4165
4166        if (regulator_fill_coupling_array(rdev))
4167                rdev_dbg(rdev, "unable to resolve coupling\n");
4168
4169        return 0;
4170}
4171
4172static int regulator_resolve_coupling(struct regulator_dev *rdev)
4173{
4174        int n_phandles;
4175
4176        if (!IS_ENABLED(CONFIG_OF))
4177                n_phandles = 0;
4178        else
4179                n_phandles = of_get_n_coupled(rdev);
4180
4181        if (n_phandles + 1 > MAX_COUPLED) {
4182                rdev_err(rdev, "too many regulators coupled\n");
4183                return -EPERM;
4184        }
4185
4186        /*
4187         * Every regulator should always have coupling descriptor filled with
4188         * at least pointer to itself.
4189         */
4190        rdev->coupling_desc.coupled_rdevs[0] = rdev;
4191        rdev->coupling_desc.n_coupled = n_phandles + 1;
4192        rdev->coupling_desc.n_resolved++;
4193
4194        /* regulator isn't coupled */
4195        if (n_phandles == 0)
4196                return 0;
4197
4198        /* regulator, which can't change its voltage, can't be coupled */
4199        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4200                rdev_err(rdev, "voltage operation not allowed\n");
4201                return -EPERM;
4202        }
4203
4204        if (rdev->constraints->max_spread <= 0) {
4205                rdev_err(rdev, "wrong max_spread value\n");
4206                return -EPERM;
4207        }
4208
4209        if (!of_check_coupling_data(rdev))
4210                return -EPERM;
4211
4212        /*
4213         * After everything has been checked, try to fill rdevs array
4214         * with pointers to regulators parsed from device tree. If some
4215         * regulators are not registered yet, retry in late init call
4216         */
4217        regulator_fill_coupling_array(rdev);
4218
4219        return 0;
4220}
4221
4222/**
4223 * regulator_register - register regulator
4224 * @regulator_desc: regulator to register
4225 * @cfg: runtime configuration for regulator
4226 *
4227 * Called by regulator drivers to register a regulator.
4228 * Returns a valid pointer to struct regulator_dev on success
4229 * or an ERR_PTR() on error.
4230 */
4231struct regulator_dev *
4232regulator_register(const struct regulator_desc *regulator_desc,
4233                   const struct regulator_config *cfg)
4234{
4235        const struct regulation_constraints *constraints = NULL;
4236        const struct regulator_init_data *init_data;
4237        struct regulator_config *config = NULL;
4238        static atomic_t regulator_no = ATOMIC_INIT(-1);
4239        struct regulator_dev *rdev;
4240        struct device *dev;
4241        int ret, i;
4242
4243        if (regulator_desc == NULL || cfg == NULL)
4244                return ERR_PTR(-EINVAL);
4245
4246        dev = cfg->dev;
4247        WARN_ON(!dev);
4248
4249        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4250                return ERR_PTR(-EINVAL);
4251
4252        if (regulator_desc->type != REGULATOR_VOLTAGE &&
4253            regulator_desc->type != REGULATOR_CURRENT)
4254                return ERR_PTR(-EINVAL);
4255
4256        /* Only one of each should be implemented */
4257        WARN_ON(regulator_desc->ops->get_voltage &&
4258                regulator_desc->ops->get_voltage_sel);
4259        WARN_ON(regulator_desc->ops->set_voltage &&
4260                regulator_desc->ops->set_voltage_sel);
4261
4262        /* If we're using selectors we must implement list_voltage. */
4263        if (regulator_desc->ops->get_voltage_sel &&
4264            !regulator_desc->ops->list_voltage) {
4265                return ERR_PTR(-EINVAL);
4266        }
4267        if (regulator_desc->ops->set_voltage_sel &&
4268            !regulator_desc->ops->list_voltage) {
4269                return ERR_PTR(-EINVAL);
4270        }
4271
4272        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4273        if (rdev == NULL)
4274                return ERR_PTR(-ENOMEM);
4275
4276        /*
4277         * Duplicate the config so the driver could override it after
4278         * parsing init data.
4279         */
4280        config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4281        if (config == NULL) {
4282                kfree(rdev);
4283                return ERR_PTR(-ENOMEM);
4284        }
4285
4286        init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4287                                               &rdev->dev.of_node);
4288        if (!init_data) {
4289                init_data = config->init_data;
4290                rdev->dev.of_node = of_node_get(config->of_node);
4291        }
4292
4293        mutex_init(&rdev->mutex);
4294        rdev->reg_data = config->driver_data;
4295        rdev->owner = regulator_desc->owner;
4296        rdev->desc = regulator_desc;
4297        if (config->regmap)
4298                rdev->regmap = config->regmap;
4299        else if (dev_get_regmap(dev, NULL))
4300                rdev->regmap = dev_get_regmap(dev, NULL);
4301        else if (dev->parent)
4302                rdev->regmap = dev_get_regmap(dev->parent, NULL);
4303        INIT_LIST_HEAD(&rdev->consumer_list);
4304        INIT_LIST_HEAD(&rdev->list);
4305        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4306        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4307
4308        /* preform any regulator specific init */
4309        if (init_data && init_data->regulator_init) {
4310                ret = init_data->regulator_init(rdev->reg_data);
4311                if (ret < 0)
4312                        goto clean;
4313        }
4314
4315        if (config->ena_gpiod ||
4316            ((config->ena_gpio || config->ena_gpio_initialized) &&
4317             gpio_is_valid(config->ena_gpio))) {
4318                mutex_lock(&regulator_list_mutex);
4319                ret = regulator_ena_gpio_request(rdev, config);
4320                mutex_unlock(&regulator_list_mutex);
4321                if (ret != 0) {
4322                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4323                                 config->ena_gpio, ret);
4324                        goto clean;
4325                }
4326        }
4327
4328        /* register with sysfs */
4329        rdev->dev.class = &regulator_class;
4330        rdev->dev.parent = dev;
4331        dev_set_name(&rdev->dev, "regulator.%lu",
4332                    (unsigned long) atomic_inc_return(&regulator_no));
4333
4334        /* set regulator constraints */
4335        if (init_data)
4336                constraints = &init_data->constraints;
4337
4338        if (init_data && init_data->supply_regulator)
4339                rdev->supply_name = init_data->supply_regulator;
4340        else if (regulator_desc->supply_name)
4341                rdev->supply_name = regulator_desc->supply_name;
4342
4343        /*
4344         * Attempt to resolve the regulator supply, if specified,
4345         * but don't return an error if we fail because we will try
4346         * to resolve it again later as more regulators are added.
4347         */
4348        if (regulator_resolve_supply(rdev))
4349                rdev_dbg(rdev, "unable to resolve supply\n");
4350
4351        ret = set_machine_constraints(rdev, constraints);
4352        if (ret < 0)
4353                goto wash;
4354
4355        mutex_lock(&regulator_list_mutex);
4356        ret = regulator_resolve_coupling(rdev);
4357        mutex_unlock(&regulator_list_mutex);
4358
4359        if (ret != 0)
4360                goto wash;
4361
4362        /* add consumers devices */
4363        if (init_data) {
4364                mutex_lock(&regulator_list_mutex);
4365                for (i = 0; i < init_data->num_consumer_supplies; i++) {
4366                        ret = set_consumer_device_supply(rdev,
4367                                init_data->consumer_supplies[i].dev_name,
4368                                init_data->consumer_supplies[i].supply);
4369                        if (ret < 0) {
4370                                mutex_unlock(&regulator_list_mutex);
4371                                dev_err(dev, "Failed to set supply %s\n",
4372                                        init_data->consumer_supplies[i].supply);
4373                                goto unset_supplies;
4374                        }
4375                }
4376                mutex_unlock(&regulator_list_mutex);
4377        }
4378
4379        if (!rdev->desc->ops->get_voltage &&
4380            !rdev->desc->ops->list_voltage &&
4381            !rdev->desc->fixed_uV)
4382                rdev->is_switch = true;
4383
4384        ret = device_register(&rdev->dev);
4385        if (ret != 0) {
4386                put_device(&rdev->dev);
4387                goto unset_supplies;
4388        }
4389
4390        dev_set_drvdata(&rdev->dev, rdev);
4391        rdev_init_debugfs(rdev);
4392
4393        /* try to resolve regulators supply since a new one was registered */
4394        class_for_each_device(&regulator_class, NULL, NULL,
4395                              regulator_register_resolve_supply);
4396        kfree(config);
4397        return rdev;
4398
4399unset_supplies:
4400        mutex_lock(&regulator_list_mutex);
4401        unset_regulator_supplies(rdev);
4402        mutex_unlock(&regulator_list_mutex);
4403wash:
4404        kfree(rdev->constraints);
4405        mutex_lock(&regulator_list_mutex);
4406        regulator_ena_gpio_free(rdev);
4407        mutex_unlock(&regulator_list_mutex);
4408clean:
4409        kfree(rdev);
4410        kfree(config);
4411        return ERR_PTR(ret);
4412}
4413EXPORT_SYMBOL_GPL(regulator_register);
4414
4415/**
4416 * regulator_unregister - unregister regulator
4417 * @rdev: regulator to unregister
4418 *
4419 * Called by regulator drivers to unregister a regulator.
4420 */
4421void regulator_unregister(struct regulator_dev *rdev)
4422{
4423        if (rdev == NULL)
4424                return;
4425
4426        if (rdev->supply) {
4427                while (rdev->use_count--)
4428                        regulator_disable(rdev->supply);
4429                regulator_put(rdev->supply);
4430        }
4431        mutex_lock(&regulator_list_mutex);
4432        debugfs_remove_recursive(rdev->debugfs);
4433        flush_work(&rdev->disable_work.work);
4434        WARN_ON(rdev->open_count);
4435        unset_regulator_supplies(rdev);
4436        list_del(&rdev->list);
4437        regulator_ena_gpio_free(rdev);
4438        mutex_unlock(&regulator_list_mutex);
4439        device_unregister(&rdev->dev);
4440}
4441EXPORT_SYMBOL_GPL(regulator_unregister);
4442
4443#ifdef CONFIG_SUSPEND
4444static int _regulator_suspend_late(struct device *dev, void *data)
4445{
4446        struct regulator_dev *rdev = dev_to_rdev(dev);
4447        suspend_state_t *state = data;
4448        int ret;
4449
4450        regulator_lock(rdev);
4451        ret = suspend_set_state(rdev, *state);
4452        regulator_unlock(rdev);
4453
4454        return ret;
4455}
4456
4457/**
4458 * regulator_suspend_late - prepare regulators for system wide suspend
4459 * @state: system suspend state
4460 *
4461 * Configure each regulator with it's suspend operating parameters for state.
4462 */
4463static int regulator_suspend_late(struct device *dev)
4464{
4465        suspend_state_t state = pm_suspend_target_state;
4466
4467        return class_for_each_device(&regulator_class, NULL, &state,
4468                                     _regulator_suspend_late);
4469}
4470
4471static int _regulator_resume_early(struct device *dev, void *data)
4472{
4473        int ret = 0;
4474        struct regulator_dev *rdev = dev_to_rdev(dev);
4475        suspend_state_t *state = data;
4476        struct regulator_state *rstate;
4477
4478        rstate = regulator_get_suspend_state(rdev, *state);
4479        if (rstate == NULL)
4480                return 0;
4481
4482        regulator_lock(rdev);
4483
4484        if (rdev->desc->ops->resume_early &&
4485            (rstate->enabled == ENABLE_IN_SUSPEND ||
4486             rstate->enabled == DISABLE_IN_SUSPEND))
4487                ret = rdev->desc->ops->resume_early(rdev);
4488
4489        regulator_unlock(rdev);
4490
4491        return ret;
4492}
4493
4494static int regulator_resume_early(struct device *dev)
4495{
4496        suspend_state_t state = pm_suspend_target_state;
4497
4498        return class_for_each_device(&regulator_class, NULL, &state,
4499                                     _regulator_resume_early);
4500}
4501
4502#else /* !CONFIG_SUSPEND */
4503
4504#define regulator_suspend_late  NULL
4505#define regulator_resume_early  NULL
4506
4507#endif /* !CONFIG_SUSPEND */
4508
4509#ifdef CONFIG_PM
4510static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4511        .suspend_late   = regulator_suspend_late,
4512        .resume_early   = regulator_resume_early,
4513};
4514#endif
4515
4516struct class regulator_class = {
4517        .name = "regulator",
4518        .dev_release = regulator_dev_release,
4519        .dev_groups = regulator_dev_groups,
4520#ifdef CONFIG_PM
4521        .pm = &regulator_pm_ops,
4522#endif
4523};
4524/**
4525 * regulator_has_full_constraints - the system has fully specified constraints
4526 *
4527 * Calling this function will cause the regulator API to disable all
4528 * regulators which have a zero use count and don't have an always_on
4529 * constraint in a late_initcall.
4530 *
4531 * The intention is that this will become the default behaviour in a
4532 * future kernel release so users are encouraged to use this facility
4533 * now.
4534 */
4535void regulator_has_full_constraints(void)
4536{
4537        has_full_constraints = 1;
4538}
4539EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4540
4541/**
4542 * rdev_get_drvdata - get rdev regulator driver data
4543 * @rdev: regulator
4544 *
4545 * Get rdev regulator driver private data. This call can be used in the
4546 * regulator driver context.
4547 */
4548void *rdev_get_drvdata(struct regulator_dev *rdev)
4549{
4550        return rdev->reg_data;
4551}
4552EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4553
4554/**
4555 * regulator_get_drvdata - get regulator driver data
4556 * @regulator: regulator
4557 *
4558 * Get regulator driver private data. This call can be used in the consumer
4559 * driver context when non API regulator specific functions need to be called.
4560 */
4561void *regulator_get_drvdata(struct regulator *regulator)
4562{
4563        return regulator->rdev->reg_data;
4564}
4565EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4566
4567/**
4568 * regulator_set_drvdata - set regulator driver data
4569 * @regulator: regulator
4570 * @data: data
4571 */
4572void regulator_set_drvdata(struct regulator *regulator, void *data)
4573{
4574        regulator->rdev->reg_data = data;
4575}
4576EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4577
4578/**
4579 * regulator_get_id - get regulator ID
4580 * @rdev: regulator
4581 */
4582int rdev_get_id(struct regulator_dev *rdev)
4583{
4584        return rdev->desc->id;
4585}
4586EXPORT_SYMBOL_GPL(rdev_get_id);
4587
4588struct device *rdev_get_dev(struct regulator_dev *rdev)
4589{
4590        return &rdev->dev;
4591}
4592EXPORT_SYMBOL_GPL(rdev_get_dev);
4593
4594void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4595{
4596        return reg_init_data->driver_data;
4597}
4598EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4599
4600#ifdef CONFIG_DEBUG_FS
4601static int supply_map_show(struct seq_file *sf, void *data)
4602{
4603        struct regulator_map *map;
4604
4605        list_for_each_entry(map, &regulator_map_list, list) {
4606                seq_printf(sf, "%s -> %s.%s\n",
4607                                rdev_get_name(map->regulator), map->dev_name,
4608                                map->supply);
4609        }
4610
4611        return 0;
4612}
4613
4614static int supply_map_open(struct inode *inode, struct file *file)
4615{
4616        return single_open(file, supply_map_show, inode->i_private);
4617}
4618#endif
4619
4620static const struct file_operations supply_map_fops = {
4621#ifdef CONFIG_DEBUG_FS
4622        .open = supply_map_open,
4623        .read = seq_read,
4624        .llseek = seq_lseek,
4625        .release = single_release,
4626#endif
4627};
4628
4629#ifdef CONFIG_DEBUG_FS
4630struct summary_data {
4631        struct seq_file *s;
4632        struct regulator_dev *parent;
4633        int level;
4634};
4635
4636static void regulator_summary_show_subtree(struct seq_file *s,
4637                                           struct regulator_dev *rdev,
4638                                           int level);
4639
4640static int regulator_summary_show_children(struct device *dev, void *data)
4641{
4642        struct regulator_dev *rdev = dev_to_rdev(dev);
4643        struct summary_data *summary_data = data;
4644
4645        if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4646                regulator_summary_show_subtree(summary_data->s, rdev,
4647                                               summary_data->level + 1);
4648
4649        return 0;
4650}
4651
4652static void regulator_summary_show_subtree(struct seq_file *s,
4653                                           struct regulator_dev *rdev,
4654                                           int level)
4655{
4656        struct regulation_constraints *c;
4657        struct regulator *consumer;
4658        struct summary_data summary_data;
4659
4660        if (!rdev)
4661                return;
4662
4663        seq_printf(s, "%*s%-*s %3d %4d %6d ",
4664                   level * 3 + 1, "",
4665                   30 - level * 3, rdev_get_name(rdev),
4666                   rdev->use_count, rdev->open_count, rdev->bypass_count);
4667
4668        seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4669        seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4670
4671        c = rdev->constraints;
4672        if (c) {
4673                switch (rdev->desc->type) {
4674                case REGULATOR_VOLTAGE:
4675                        seq_printf(s, "%5dmV %5dmV ",
4676                                   c->min_uV / 1000, c->max_uV / 1000);
4677                        break;
4678                case REGULATOR_CURRENT:
4679                        seq_printf(s, "%5dmA %5dmA ",
4680                                   c->min_uA / 1000, c->max_uA / 1000);
4681                        break;
4682                }
4683        }
4684
4685        seq_puts(s, "\n");
4686
4687        list_for_each_entry(consumer, &rdev->consumer_list, list) {
4688                if (consumer->dev && consumer->dev->class == &regulator_class)
4689                        continue;
4690
4691                seq_printf(s, "%*s%-*s ",
4692                           (level + 1) * 3 + 1, "",
4693                           30 - (level + 1) * 3,
4694                           consumer->dev ? dev_name(consumer->dev) : "deviceless");
4695
4696                switch (rdev->desc->type) {
4697                case REGULATOR_VOLTAGE:
4698                        seq_printf(s, "%37dmV %5dmV",
4699                                   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4700                                   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4701                        break;
4702                case REGULATOR_CURRENT:
4703                        break;
4704                }
4705
4706                seq_puts(s, "\n");
4707        }
4708
4709        summary_data.s = s;
4710        summary_data.level = level;
4711        summary_data.parent = rdev;
4712
4713        class_for_each_device(&regulator_class, NULL, &summary_data,
4714                              regulator_summary_show_children);
4715}
4716
4717static int regulator_summary_show_roots(struct device *dev, void *data)
4718{
4719        struct regulator_dev *rdev = dev_to_rdev(dev);
4720        struct seq_file *s = data;
4721
4722        if (!rdev->supply)
4723                regulator_summary_show_subtree(s, rdev, 0);
4724
4725        return 0;
4726}
4727
4728static int regulator_summary_show(struct seq_file *s, void *data)
4729{
4730        seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4731        seq_puts(s, "-------------------------------------------------------------------------------\n");
4732
4733        class_for_each_device(&regulator_class, NULL, s,
4734                              regulator_summary_show_roots);
4735
4736        return 0;
4737}
4738
4739static int regulator_summary_open(struct inode *inode, struct file *file)
4740{
4741        return single_open(file, regulator_summary_show, inode->i_private);
4742}
4743#endif
4744
4745static const struct file_operations regulator_summary_fops = {
4746#ifdef CONFIG_DEBUG_FS
4747        .open           = regulator_summary_open,
4748        .read           = seq_read,
4749        .llseek         = seq_lseek,
4750        .release        = single_release,
4751#endif
4752};
4753
4754static int __init regulator_init(void)
4755{
4756        int ret;
4757
4758        ret = class_register(&regulator_class);
4759
4760        debugfs_root = debugfs_create_dir("regulator", NULL);
4761        if (!debugfs_root)
4762                pr_warn("regulator: Failed to create debugfs directory\n");
4763
4764        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4765                            &supply_map_fops);
4766
4767        debugfs_create_file("regulator_summary", 0444, debugfs_root,
4768                            NULL, &regulator_summary_fops);
4769
4770        regulator_dummy_init();
4771
4772        return ret;
4773}
4774
4775/* init early to allow our consumers to complete system booting */
4776core_initcall(regulator_init);
4777
4778static int __init regulator_late_cleanup(struct device *dev, void *data)
4779{
4780        struct regulator_dev *rdev = dev_to_rdev(dev);
4781        const struct regulator_ops *ops = rdev->desc->ops;
4782        struct regulation_constraints *c = rdev->constraints;
4783        int enabled, ret;
4784
4785        if (c && c->always_on)
4786                return 0;
4787
4788        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4789                return 0;
4790
4791        regulator_lock(rdev);
4792
4793        if (rdev->use_count)
4794                goto unlock;
4795
4796        /* If we can't read the status assume it's on. */
4797        if (ops->is_enabled)
4798                enabled = ops->is_enabled(rdev);
4799        else
4800                enabled = 1;
4801
4802        if (!enabled)
4803                goto unlock;
4804
4805        if (have_full_constraints()) {
4806                /* We log since this may kill the system if it goes
4807                 * wrong. */
4808                rdev_info(rdev, "disabling\n");
4809                ret = _regulator_do_disable(rdev);
4810                if (ret != 0)
4811                        rdev_err(rdev, "couldn't disable: %d\n", ret);
4812        } else {
4813                /* The intention is that in future we will
4814                 * assume that full constraints are provided
4815                 * so warn even if we aren't going to do
4816                 * anything here.
4817                 */
4818                rdev_warn(rdev, "incomplete constraints, leaving on\n");
4819        }
4820
4821unlock:
4822        regulator_unlock(rdev);
4823
4824        return 0;
4825}
4826
4827static int __init regulator_init_complete(void)
4828{
4829        /*
4830         * Since DT doesn't provide an idiomatic mechanism for
4831         * enabling full constraints and since it's much more natural
4832         * with DT to provide them just assume that a DT enabled
4833         * system has full constraints.
4834         */
4835        if (of_have_populated_dt())
4836                has_full_constraints = true;
4837
4838        /*
4839         * Regulators may had failed to resolve their input supplies
4840         * when were registered, either because the input supply was
4841         * not registered yet or because its parent device was not
4842         * bound yet. So attempt to resolve the input supplies for
4843         * pending regulators before trying to disable unused ones.
4844         */
4845        class_for_each_device(&regulator_class, NULL, NULL,
4846                              regulator_register_resolve_supply);
4847
4848        /* If we have a full configuration then disable any regulators
4849         * we have permission to change the status for and which are
4850         * not in use or always_on.  This is effectively the default
4851         * for DT and ACPI as they have full constraints.
4852         */
4853        class_for_each_device(&regulator_class, NULL, NULL,
4854                              regulator_late_cleanup);
4855
4856        class_for_each_device(&regulator_class, NULL, NULL,
4857                              regulator_register_fill_coupling_array);
4858
4859        return 0;
4860}
4861late_initcall_sync(regulator_init_complete);
4862