linux/drivers/scsi/mpt3sas/mpt3sas_base.c
<<
>>
Prefs
   1/*
   2 * This is the Fusion MPT base driver providing common API layer interface
   3 * for access to MPT (Message Passing Technology) firmware.
   4 *
   5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
   6 * Copyright (C) 2012-2014  LSI Corporation
   7 * Copyright (C) 2013-2014 Avago Technologies
   8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version 2
  13 * of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * NO WARRANTY
  21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  25 * solely responsible for determining the appropriateness of using and
  26 * distributing the Program and assumes all risks associated with its
  27 * exercise of rights under this Agreement, including but not limited to
  28 * the risks and costs of program errors, damage to or loss of data,
  29 * programs or equipment, and unavailability or interruption of operations.
  30
  31 * DISCLAIMER OF LIABILITY
  32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  39
  40 * You should have received a copy of the GNU General Public License
  41 * along with this program; if not, write to the Free Software
  42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  43 * USA.
  44 */
  45
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/errno.h>
  49#include <linux/init.h>
  50#include <linux/slab.h>
  51#include <linux/types.h>
  52#include <linux/pci.h>
  53#include <linux/kdev_t.h>
  54#include <linux/blkdev.h>
  55#include <linux/delay.h>
  56#include <linux/interrupt.h>
  57#include <linux/dma-mapping.h>
  58#include <linux/io.h>
  59#include <linux/time.h>
  60#include <linux/ktime.h>
  61#include <linux/kthread.h>
  62#include <asm/page.h>        /* To get host page size per arch */
  63#include <linux/aer.h>
  64
  65
  66#include "mpt3sas_base.h"
  67
  68static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
  69
  70
  71#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
  72
  73 /* maximum controller queue depth */
  74#define MAX_HBA_QUEUE_DEPTH     30000
  75#define MAX_CHAIN_DEPTH         100000
  76static int max_queue_depth = -1;
  77module_param(max_queue_depth, int, 0);
  78MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
  79
  80static int max_sgl_entries = -1;
  81module_param(max_sgl_entries, int, 0);
  82MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
  83
  84static int msix_disable = -1;
  85module_param(msix_disable, int, 0);
  86MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
  87
  88static int smp_affinity_enable = 1;
  89module_param(smp_affinity_enable, int, S_IRUGO);
  90MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
  91
  92static int max_msix_vectors = -1;
  93module_param(max_msix_vectors, int, 0);
  94MODULE_PARM_DESC(max_msix_vectors,
  95        " max msix vectors");
  96
  97static int mpt3sas_fwfault_debug;
  98MODULE_PARM_DESC(mpt3sas_fwfault_debug,
  99        " enable detection of firmware fault and halt firmware - (default=0)");
 100
 101static int
 102_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
 103
 104/**
 105 * mpt3sas_base_check_cmd_timeout - Function
 106 *              to check timeout and command termination due
 107 *              to Host reset.
 108 *
 109 * @ioc:        per adapter object.
 110 * @status:     Status of issued command.
 111 * @mpi_request:mf request pointer.
 112 * @sz:         size of buffer.
 113 *
 114 * @Returns - 1/0 Reset to be done or Not
 115 */
 116u8
 117mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
 118                u8 status, void *mpi_request, int sz)
 119{
 120        u8 issue_reset = 0;
 121
 122        if (!(status & MPT3_CMD_RESET))
 123                issue_reset = 1;
 124
 125        ioc_err(ioc, "Command %s\n",
 126                issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
 127        _debug_dump_mf(mpi_request, sz);
 128
 129        return issue_reset;
 130}
 131
 132/**
 133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
 134 * @val: ?
 135 * @kp: ?
 136 *
 137 * Return: ?
 138 */
 139static int
 140_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
 141{
 142        int ret = param_set_int(val, kp);
 143        struct MPT3SAS_ADAPTER *ioc;
 144
 145        if (ret)
 146                return ret;
 147
 148        /* global ioc spinlock to protect controller list on list operations */
 149        pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
 150        spin_lock(&gioc_lock);
 151        list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
 152                ioc->fwfault_debug = mpt3sas_fwfault_debug;
 153        spin_unlock(&gioc_lock);
 154        return 0;
 155}
 156module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
 157        param_get_int, &mpt3sas_fwfault_debug, 0644);
 158
 159/**
 160 * _base_readl_aero - retry readl for max three times.
 161 * @addr - MPT Fusion system interface register address
 162 *
 163 * Retry the readl() for max three times if it gets zero value
 164 * while reading the system interface register.
 165 */
 166static inline u32
 167_base_readl_aero(const volatile void __iomem *addr)
 168{
 169        u32 i = 0, ret_val;
 170
 171        do {
 172                ret_val = readl(addr);
 173                i++;
 174        } while (ret_val == 0 && i < 3);
 175
 176        return ret_val;
 177}
 178
 179static inline u32
 180_base_readl(const volatile void __iomem *addr)
 181{
 182        return readl(addr);
 183}
 184
 185/**
 186 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
 187 *                                in BAR0 space.
 188 *
 189 * @ioc: per adapter object
 190 * @reply: reply message frame(lower 32bit addr)
 191 * @index: System request message index.
 192 */
 193static void
 194_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
 195                u32 index)
 196{
 197        /*
 198         * 256 is offset within sys register.
 199         * 256 offset MPI frame starts. Max MPI frame supported is 32.
 200         * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
 201         */
 202        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 203        void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
 204                        MPI_FRAME_START_OFFSET +
 205                        (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
 206
 207        writel(reply, reply_free_iomem);
 208}
 209
 210/**
 211 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
 212 *                              to system/BAR0 region.
 213 *
 214 * @dst_iomem: Pointer to the destination location in BAR0 space.
 215 * @src: Pointer to the Source data.
 216 * @size: Size of data to be copied.
 217 */
 218static void
 219_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
 220{
 221        int i;
 222        u32 *src_virt_mem = (u32 *)src;
 223
 224        for (i = 0; i < size/4; i++)
 225                writel((u32)src_virt_mem[i],
 226                                (void __iomem *)dst_iomem + (i * 4));
 227}
 228
 229/**
 230 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
 231 *
 232 * @dst_iomem: Pointer to the destination location in BAR0 space.
 233 * @src: Pointer to the Source data.
 234 * @size: Size of data to be copied.
 235 */
 236static void
 237_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
 238{
 239        int i;
 240        u32 *src_virt_mem = (u32 *)(src);
 241
 242        for (i = 0; i < size/4; i++)
 243                writel((u32)src_virt_mem[i],
 244                        (void __iomem *)dst_iomem + (i * 4));
 245}
 246
 247/**
 248 * _base_get_chain - Calculates and Returns virtual chain address
 249 *                       for the provided smid in BAR0 space.
 250 *
 251 * @ioc: per adapter object
 252 * @smid: system request message index
 253 * @sge_chain_count: Scatter gather chain count.
 254 *
 255 * Return: the chain address.
 256 */
 257static inline void __iomem*
 258_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 259                u8 sge_chain_count)
 260{
 261        void __iomem *base_chain, *chain_virt;
 262        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 263
 264        base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
 265                (cmd_credit * ioc->request_sz) +
 266                REPLY_FREE_POOL_SIZE;
 267        chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
 268                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 269        return chain_virt;
 270}
 271
 272/**
 273 * _base_get_chain_phys - Calculates and Returns physical address
 274 *                      in BAR0 for scatter gather chains, for
 275 *                      the provided smid.
 276 *
 277 * @ioc: per adapter object
 278 * @smid: system request message index
 279 * @sge_chain_count: Scatter gather chain count.
 280 *
 281 * Return: Physical chain address.
 282 */
 283static inline phys_addr_t
 284_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 285                u8 sge_chain_count)
 286{
 287        phys_addr_t base_chain_phys, chain_phys;
 288        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 289
 290        base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
 291                (cmd_credit * ioc->request_sz) +
 292                REPLY_FREE_POOL_SIZE;
 293        chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
 294                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 295        return chain_phys;
 296}
 297
 298/**
 299 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
 300 *                      buffer address for the provided smid.
 301 *                      (Each smid can have 64K starts from 17024)
 302 *
 303 * @ioc: per adapter object
 304 * @smid: system request message index
 305 *
 306 * Return: Pointer to buffer location in BAR0.
 307 */
 308
 309static void __iomem *
 310_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 311{
 312        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 313        // Added extra 1 to reach end of chain.
 314        void __iomem *chain_end = _base_get_chain(ioc,
 315                        cmd_credit + 1,
 316                        ioc->facts.MaxChainDepth);
 317        return chain_end + (smid * 64 * 1024);
 318}
 319
 320/**
 321 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
 322 *              Host buffer Physical address for the provided smid.
 323 *              (Each smid can have 64K starts from 17024)
 324 *
 325 * @ioc: per adapter object
 326 * @smid: system request message index
 327 *
 328 * Return: Pointer to buffer location in BAR0.
 329 */
 330static phys_addr_t
 331_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 332{
 333        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 334        phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
 335                        cmd_credit + 1,
 336                        ioc->facts.MaxChainDepth);
 337        return chain_end_phys + (smid * 64 * 1024);
 338}
 339
 340/**
 341 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
 342 *                      lookup list and Provides chain_buffer
 343 *                      address for the matching dma address.
 344 *                      (Each smid can have 64K starts from 17024)
 345 *
 346 * @ioc: per adapter object
 347 * @chain_buffer_dma: Chain buffer dma address.
 348 *
 349 * Return: Pointer to chain buffer. Or Null on Failure.
 350 */
 351static void *
 352_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
 353                dma_addr_t chain_buffer_dma)
 354{
 355        u16 index, j;
 356        struct chain_tracker *ct;
 357
 358        for (index = 0; index < ioc->scsiio_depth; index++) {
 359                for (j = 0; j < ioc->chains_needed_per_io; j++) {
 360                        ct = &ioc->chain_lookup[index].chains_per_smid[j];
 361                        if (ct && ct->chain_buffer_dma == chain_buffer_dma)
 362                                return ct->chain_buffer;
 363                }
 364        }
 365        ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
 366        return NULL;
 367}
 368
 369/**
 370 * _clone_sg_entries -  MPI EP's scsiio and config requests
 371 *                      are handled here. Base function for
 372 *                      double buffering, before submitting
 373 *                      the requests.
 374 *
 375 * @ioc: per adapter object.
 376 * @mpi_request: mf request pointer.
 377 * @smid: system request message index.
 378 */
 379static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
 380                void *mpi_request, u16 smid)
 381{
 382        Mpi2SGESimple32_t *sgel, *sgel_next;
 383        u32  sgl_flags, sge_chain_count = 0;
 384        bool is_write = 0;
 385        u16 i = 0;
 386        void __iomem *buffer_iomem;
 387        phys_addr_t buffer_iomem_phys;
 388        void __iomem *buff_ptr;
 389        phys_addr_t buff_ptr_phys;
 390        void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 391        void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 392        phys_addr_t dst_addr_phys;
 393        MPI2RequestHeader_t *request_hdr;
 394        struct scsi_cmnd *scmd;
 395        struct scatterlist *sg_scmd = NULL;
 396        int is_scsiio_req = 0;
 397
 398        request_hdr = (MPI2RequestHeader_t *) mpi_request;
 399
 400        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 401                Mpi25SCSIIORequest_t *scsiio_request =
 402                        (Mpi25SCSIIORequest_t *)mpi_request;
 403                sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
 404                is_scsiio_req = 1;
 405        } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 406                Mpi2ConfigRequest_t  *config_req =
 407                        (Mpi2ConfigRequest_t *)mpi_request;
 408                sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
 409        } else
 410                return;
 411
 412        /* From smid we can get scsi_cmd, once we have sg_scmd,
 413         * we just need to get sg_virt and sg_next to get virual
 414         * address associated with sgel->Address.
 415         */
 416
 417        if (is_scsiio_req) {
 418                /* Get scsi_cmd using smid */
 419                scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
 420                if (scmd == NULL) {
 421                        ioc_err(ioc, "scmd is NULL\n");
 422                        return;
 423                }
 424
 425                /* Get sg_scmd from scmd provided */
 426                sg_scmd = scsi_sglist(scmd);
 427        }
 428
 429        /*
 430         * 0 - 255      System register
 431         * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
 432         * 4352 - 4864  Reply_free pool (512 byte is reserved
 433         *              considering maxCredit 32. Reply need extra
 434         *              room, for mCPU case kept four times of
 435         *              maxCredit).
 436         * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
 437         *              128 byte size = 12288)
 438         * 17152 - x    Host buffer mapped with smid.
 439         *              (Each smid can have 64K Max IO.)
 440         * BAR0+Last 1K MSIX Addr and Data
 441         * Total size in use 2113664 bytes of 4MB BAR0
 442         */
 443
 444        buffer_iomem = _base_get_buffer_bar0(ioc, smid);
 445        buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
 446
 447        buff_ptr = buffer_iomem;
 448        buff_ptr_phys = buffer_iomem_phys;
 449        WARN_ON(buff_ptr_phys > U32_MAX);
 450
 451        if (le32_to_cpu(sgel->FlagsLength) &
 452                        (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
 453                is_write = 1;
 454
 455        for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
 456
 457                sgl_flags =
 458                    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
 459
 460                switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
 461                case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 462                        /*
 463                         * Helper function which on passing
 464                         * chain_buffer_dma returns chain_buffer. Get
 465                         * the virtual address for sgel->Address
 466                         */
 467                        sgel_next =
 468                                _base_get_chain_buffer_dma_to_chain_buffer(ioc,
 469                                                le32_to_cpu(sgel->Address));
 470                        if (sgel_next == NULL)
 471                                return;
 472                        /*
 473                         * This is coping 128 byte chain
 474                         * frame (not a host buffer)
 475                         */
 476                        dst_chain_addr[sge_chain_count] =
 477                                _base_get_chain(ioc,
 478                                        smid, sge_chain_count);
 479                        src_chain_addr[sge_chain_count] =
 480                                                (void *) sgel_next;
 481                        dst_addr_phys = _base_get_chain_phys(ioc,
 482                                                smid, sge_chain_count);
 483                        WARN_ON(dst_addr_phys > U32_MAX);
 484                        sgel->Address =
 485                                cpu_to_le32(lower_32_bits(dst_addr_phys));
 486                        sgel = sgel_next;
 487                        sge_chain_count++;
 488                        break;
 489                case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 490                        if (is_write) {
 491                                if (is_scsiio_req) {
 492                                        _base_clone_to_sys_mem(buff_ptr,
 493                                            sg_virt(sg_scmd),
 494                                            (le32_to_cpu(sgel->FlagsLength) &
 495                                            0x00ffffff));
 496                                        /*
 497                                         * FIXME: this relies on a a zero
 498                                         * PCI mem_offset.
 499                                         */
 500                                        sgel->Address =
 501                                            cpu_to_le32((u32)buff_ptr_phys);
 502                                } else {
 503                                        _base_clone_to_sys_mem(buff_ptr,
 504                                            ioc->config_vaddr,
 505                                            (le32_to_cpu(sgel->FlagsLength) &
 506                                            0x00ffffff));
 507                                        sgel->Address =
 508                                            cpu_to_le32((u32)buff_ptr_phys);
 509                                }
 510                        }
 511                        buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
 512                            0x00ffffff);
 513                        buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
 514                            0x00ffffff);
 515                        if ((le32_to_cpu(sgel->FlagsLength) &
 516                            (MPI2_SGE_FLAGS_END_OF_BUFFER
 517                                        << MPI2_SGE_FLAGS_SHIFT)))
 518                                goto eob_clone_chain;
 519                        else {
 520                                /*
 521                                 * Every single element in MPT will have
 522                                 * associated sg_next. Better to sanity that
 523                                 * sg_next is not NULL, but it will be a bug
 524                                 * if it is null.
 525                                 */
 526                                if (is_scsiio_req) {
 527                                        sg_scmd = sg_next(sg_scmd);
 528                                        if (sg_scmd)
 529                                                sgel++;
 530                                        else
 531                                                goto eob_clone_chain;
 532                                }
 533                        }
 534                        break;
 535                }
 536        }
 537
 538eob_clone_chain:
 539        for (i = 0; i < sge_chain_count; i++) {
 540                if (is_scsiio_req)
 541                        _base_clone_to_sys_mem(dst_chain_addr[i],
 542                                src_chain_addr[i], ioc->request_sz);
 543        }
 544}
 545
 546/**
 547 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
 548 * @arg: input argument, used to derive ioc
 549 *
 550 * Return:
 551 * 0 if controller is removed from pci subsystem.
 552 * -1 for other case.
 553 */
 554static int mpt3sas_remove_dead_ioc_func(void *arg)
 555{
 556        struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
 557        struct pci_dev *pdev;
 558
 559        if (!ioc)
 560                return -1;
 561
 562        pdev = ioc->pdev;
 563        if (!pdev)
 564                return -1;
 565        pci_stop_and_remove_bus_device_locked(pdev);
 566        return 0;
 567}
 568
 569/**
 570 * _base_fault_reset_work - workq handling ioc fault conditions
 571 * @work: input argument, used to derive ioc
 572 *
 573 * Context: sleep.
 574 */
 575static void
 576_base_fault_reset_work(struct work_struct *work)
 577{
 578        struct MPT3SAS_ADAPTER *ioc =
 579            container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
 580        unsigned long    flags;
 581        u32 doorbell;
 582        int rc;
 583        struct task_struct *p;
 584
 585
 586        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 587        if (ioc->shost_recovery || ioc->pci_error_recovery)
 588                goto rearm_timer;
 589        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 590
 591        doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 592        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
 593                ioc_err(ioc, "SAS host is non-operational !!!!\n");
 594
 595                /* It may be possible that EEH recovery can resolve some of
 596                 * pci bus failure issues rather removing the dead ioc function
 597                 * by considering controller is in a non-operational state. So
 598                 * here priority is given to the EEH recovery. If it doesn't
 599                 * not resolve this issue, mpt3sas driver will consider this
 600                 * controller to non-operational state and remove the dead ioc
 601                 * function.
 602                 */
 603                if (ioc->non_operational_loop++ < 5) {
 604                        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
 605                                                         flags);
 606                        goto rearm_timer;
 607                }
 608
 609                /*
 610                 * Call _scsih_flush_pending_cmds callback so that we flush all
 611                 * pending commands back to OS. This call is required to aovid
 612                 * deadlock at block layer. Dead IOC will fail to do diag reset,
 613                 * and this call is safe since dead ioc will never return any
 614                 * command back from HW.
 615                 */
 616                ioc->schedule_dead_ioc_flush_running_cmds(ioc);
 617                /*
 618                 * Set remove_host flag early since kernel thread will
 619                 * take some time to execute.
 620                 */
 621                ioc->remove_host = 1;
 622                /*Remove the Dead Host */
 623                p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
 624                    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
 625                if (IS_ERR(p))
 626                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
 627                                __func__);
 628                else
 629                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
 630                                __func__);
 631                return; /* don't rearm timer */
 632        }
 633
 634        ioc->non_operational_loop = 0;
 635
 636        if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
 637                rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 638                ioc_warn(ioc, "%s: hard reset: %s\n",
 639                         __func__, rc == 0 ? "success" : "failed");
 640                doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 641                if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 642                        mpt3sas_base_fault_info(ioc, doorbell &
 643                            MPI2_DOORBELL_DATA_MASK);
 644                if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
 645                    MPI2_IOC_STATE_OPERATIONAL)
 646                        return; /* don't rearm timer */
 647        }
 648
 649        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 650 rearm_timer:
 651        if (ioc->fault_reset_work_q)
 652                queue_delayed_work(ioc->fault_reset_work_q,
 653                    &ioc->fault_reset_work,
 654                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 655        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 656}
 657
 658/**
 659 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
 660 * @ioc: per adapter object
 661 *
 662 * Context: sleep.
 663 */
 664void
 665mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
 666{
 667        unsigned long    flags;
 668
 669        if (ioc->fault_reset_work_q)
 670                return;
 671
 672        /* initialize fault polling */
 673
 674        INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
 675        snprintf(ioc->fault_reset_work_q_name,
 676            sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
 677            ioc->driver_name, ioc->id);
 678        ioc->fault_reset_work_q =
 679                create_singlethread_workqueue(ioc->fault_reset_work_q_name);
 680        if (!ioc->fault_reset_work_q) {
 681                ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
 682                return;
 683        }
 684        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 685        if (ioc->fault_reset_work_q)
 686                queue_delayed_work(ioc->fault_reset_work_q,
 687                    &ioc->fault_reset_work,
 688                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 689        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 690}
 691
 692/**
 693 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
 694 * @ioc: per adapter object
 695 *
 696 * Context: sleep.
 697 */
 698void
 699mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
 700{
 701        unsigned long flags;
 702        struct workqueue_struct *wq;
 703
 704        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 705        wq = ioc->fault_reset_work_q;
 706        ioc->fault_reset_work_q = NULL;
 707        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 708        if (wq) {
 709                if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
 710                        flush_workqueue(wq);
 711                destroy_workqueue(wq);
 712        }
 713}
 714
 715/**
 716 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
 717 * @ioc: per adapter object
 718 * @fault_code: fault code
 719 */
 720void
 721mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
 722{
 723        ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
 724}
 725
 726/**
 727 * mpt3sas_halt_firmware - halt's mpt controller firmware
 728 * @ioc: per adapter object
 729 *
 730 * For debugging timeout related issues.  Writing 0xCOFFEE00
 731 * to the doorbell register will halt controller firmware. With
 732 * the purpose to stop both driver and firmware, the enduser can
 733 * obtain a ring buffer from controller UART.
 734 */
 735void
 736mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
 737{
 738        u32 doorbell;
 739
 740        if (!ioc->fwfault_debug)
 741                return;
 742
 743        dump_stack();
 744
 745        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
 746        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 747                mpt3sas_base_fault_info(ioc , doorbell);
 748        else {
 749                writel(0xC0FFEE00, &ioc->chip->Doorbell);
 750                ioc_err(ioc, "Firmware is halted due to command timeout\n");
 751        }
 752
 753        if (ioc->fwfault_debug == 2)
 754                for (;;)
 755                        ;
 756        else
 757                panic("panic in %s\n", __func__);
 758}
 759
 760/**
 761 * _base_sas_ioc_info - verbose translation of the ioc status
 762 * @ioc: per adapter object
 763 * @mpi_reply: reply mf payload returned from firmware
 764 * @request_hdr: request mf
 765 */
 766static void
 767_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
 768        MPI2RequestHeader_t *request_hdr)
 769{
 770        u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
 771            MPI2_IOCSTATUS_MASK;
 772        char *desc = NULL;
 773        u16 frame_sz;
 774        char *func_str = NULL;
 775
 776        /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
 777        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
 778            request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
 779            request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
 780                return;
 781
 782        if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
 783                return;
 784
 785        switch (ioc_status) {
 786
 787/****************************************************************************
 788*  Common IOCStatus values for all replies
 789****************************************************************************/
 790
 791        case MPI2_IOCSTATUS_INVALID_FUNCTION:
 792                desc = "invalid function";
 793                break;
 794        case MPI2_IOCSTATUS_BUSY:
 795                desc = "busy";
 796                break;
 797        case MPI2_IOCSTATUS_INVALID_SGL:
 798                desc = "invalid sgl";
 799                break;
 800        case MPI2_IOCSTATUS_INTERNAL_ERROR:
 801                desc = "internal error";
 802                break;
 803        case MPI2_IOCSTATUS_INVALID_VPID:
 804                desc = "invalid vpid";
 805                break;
 806        case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
 807                desc = "insufficient resources";
 808                break;
 809        case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
 810                desc = "insufficient power";
 811                break;
 812        case MPI2_IOCSTATUS_INVALID_FIELD:
 813                desc = "invalid field";
 814                break;
 815        case MPI2_IOCSTATUS_INVALID_STATE:
 816                desc = "invalid state";
 817                break;
 818        case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
 819                desc = "op state not supported";
 820                break;
 821
 822/****************************************************************************
 823*  Config IOCStatus values
 824****************************************************************************/
 825
 826        case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
 827                desc = "config invalid action";
 828                break;
 829        case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
 830                desc = "config invalid type";
 831                break;
 832        case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
 833                desc = "config invalid page";
 834                break;
 835        case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
 836                desc = "config invalid data";
 837                break;
 838        case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
 839                desc = "config no defaults";
 840                break;
 841        case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
 842                desc = "config cant commit";
 843                break;
 844
 845/****************************************************************************
 846*  SCSI IO Reply
 847****************************************************************************/
 848
 849        case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
 850        case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
 851        case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
 852        case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
 853        case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
 854        case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
 855        case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
 856        case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
 857        case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
 858        case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
 859        case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
 860        case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
 861                break;
 862
 863/****************************************************************************
 864*  For use by SCSI Initiator and SCSI Target end-to-end data protection
 865****************************************************************************/
 866
 867        case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
 868                desc = "eedp guard error";
 869                break;
 870        case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
 871                desc = "eedp ref tag error";
 872                break;
 873        case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
 874                desc = "eedp app tag error";
 875                break;
 876
 877/****************************************************************************
 878*  SCSI Target values
 879****************************************************************************/
 880
 881        case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
 882                desc = "target invalid io index";
 883                break;
 884        case MPI2_IOCSTATUS_TARGET_ABORTED:
 885                desc = "target aborted";
 886                break;
 887        case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
 888                desc = "target no conn retryable";
 889                break;
 890        case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
 891                desc = "target no connection";
 892                break;
 893        case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
 894                desc = "target xfer count mismatch";
 895                break;
 896        case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
 897                desc = "target data offset error";
 898                break;
 899        case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
 900                desc = "target too much write data";
 901                break;
 902        case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
 903                desc = "target iu too short";
 904                break;
 905        case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
 906                desc = "target ack nak timeout";
 907                break;
 908        case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
 909                desc = "target nak received";
 910                break;
 911
 912/****************************************************************************
 913*  Serial Attached SCSI values
 914****************************************************************************/
 915
 916        case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
 917                desc = "smp request failed";
 918                break;
 919        case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
 920                desc = "smp data overrun";
 921                break;
 922
 923/****************************************************************************
 924*  Diagnostic Buffer Post / Diagnostic Release values
 925****************************************************************************/
 926
 927        case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
 928                desc = "diagnostic released";
 929                break;
 930        default:
 931                break;
 932        }
 933
 934        if (!desc)
 935                return;
 936
 937        switch (request_hdr->Function) {
 938        case MPI2_FUNCTION_CONFIG:
 939                frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
 940                func_str = "config_page";
 941                break;
 942        case MPI2_FUNCTION_SCSI_TASK_MGMT:
 943                frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
 944                func_str = "task_mgmt";
 945                break;
 946        case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
 947                frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
 948                func_str = "sas_iounit_ctl";
 949                break;
 950        case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
 951                frame_sz = sizeof(Mpi2SepRequest_t);
 952                func_str = "enclosure";
 953                break;
 954        case MPI2_FUNCTION_IOC_INIT:
 955                frame_sz = sizeof(Mpi2IOCInitRequest_t);
 956                func_str = "ioc_init";
 957                break;
 958        case MPI2_FUNCTION_PORT_ENABLE:
 959                frame_sz = sizeof(Mpi2PortEnableRequest_t);
 960                func_str = "port_enable";
 961                break;
 962        case MPI2_FUNCTION_SMP_PASSTHROUGH:
 963                frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
 964                func_str = "smp_passthru";
 965                break;
 966        case MPI2_FUNCTION_NVME_ENCAPSULATED:
 967                frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
 968                    ioc->sge_size;
 969                func_str = "nvme_encapsulated";
 970                break;
 971        default:
 972                frame_sz = 32;
 973                func_str = "unknown";
 974                break;
 975        }
 976
 977        ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
 978                 desc, ioc_status, request_hdr, func_str);
 979
 980        _debug_dump_mf(request_hdr, frame_sz/4);
 981}
 982
 983/**
 984 * _base_display_event_data - verbose translation of firmware asyn events
 985 * @ioc: per adapter object
 986 * @mpi_reply: reply mf payload returned from firmware
 987 */
 988static void
 989_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
 990        Mpi2EventNotificationReply_t *mpi_reply)
 991{
 992        char *desc = NULL;
 993        u16 event;
 994
 995        if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
 996                return;
 997
 998        event = le16_to_cpu(mpi_reply->Event);
 999
1000        switch (event) {
1001        case MPI2_EVENT_LOG_DATA:
1002                desc = "Log Data";
1003                break;
1004        case MPI2_EVENT_STATE_CHANGE:
1005                desc = "Status Change";
1006                break;
1007        case MPI2_EVENT_HARD_RESET_RECEIVED:
1008                desc = "Hard Reset Received";
1009                break;
1010        case MPI2_EVENT_EVENT_CHANGE:
1011                desc = "Event Change";
1012                break;
1013        case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1014                desc = "Device Status Change";
1015                break;
1016        case MPI2_EVENT_IR_OPERATION_STATUS:
1017                if (!ioc->hide_ir_msg)
1018                        desc = "IR Operation Status";
1019                break;
1020        case MPI2_EVENT_SAS_DISCOVERY:
1021        {
1022                Mpi2EventDataSasDiscovery_t *event_data =
1023                    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1024                ioc_info(ioc, "Discovery: (%s)",
1025                         event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1026                         "start" : "stop");
1027                if (event_data->DiscoveryStatus)
1028                        pr_cont(" discovery_status(0x%08x)",
1029                            le32_to_cpu(event_data->DiscoveryStatus));
1030                pr_cont("\n");
1031                return;
1032        }
1033        case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1034                desc = "SAS Broadcast Primitive";
1035                break;
1036        case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1037                desc = "SAS Init Device Status Change";
1038                break;
1039        case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1040                desc = "SAS Init Table Overflow";
1041                break;
1042        case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1043                desc = "SAS Topology Change List";
1044                break;
1045        case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1046                desc = "SAS Enclosure Device Status Change";
1047                break;
1048        case MPI2_EVENT_IR_VOLUME:
1049                if (!ioc->hide_ir_msg)
1050                        desc = "IR Volume";
1051                break;
1052        case MPI2_EVENT_IR_PHYSICAL_DISK:
1053                if (!ioc->hide_ir_msg)
1054                        desc = "IR Physical Disk";
1055                break;
1056        case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1057                if (!ioc->hide_ir_msg)
1058                        desc = "IR Configuration Change List";
1059                break;
1060        case MPI2_EVENT_LOG_ENTRY_ADDED:
1061                if (!ioc->hide_ir_msg)
1062                        desc = "Log Entry Added";
1063                break;
1064        case MPI2_EVENT_TEMP_THRESHOLD:
1065                desc = "Temperature Threshold";
1066                break;
1067        case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1068                desc = "Cable Event";
1069                break;
1070        case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1071                desc = "SAS Device Discovery Error";
1072                break;
1073        case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1074                desc = "PCIE Device Status Change";
1075                break;
1076        case MPI2_EVENT_PCIE_ENUMERATION:
1077        {
1078                Mpi26EventDataPCIeEnumeration_t *event_data =
1079                        (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1080                ioc_info(ioc, "PCIE Enumeration: (%s)",
1081                         event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1082                         "start" : "stop");
1083                if (event_data->EnumerationStatus)
1084                        pr_cont("enumeration_status(0x%08x)",
1085                                le32_to_cpu(event_data->EnumerationStatus));
1086                pr_cont("\n");
1087                return;
1088        }
1089        case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1090                desc = "PCIE Topology Change List";
1091                break;
1092        }
1093
1094        if (!desc)
1095                return;
1096
1097        ioc_info(ioc, "%s\n", desc);
1098}
1099
1100/**
1101 * _base_sas_log_info - verbose translation of firmware log info
1102 * @ioc: per adapter object
1103 * @log_info: log info
1104 */
1105static void
1106_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1107{
1108        union loginfo_type {
1109                u32     loginfo;
1110                struct {
1111                        u32     subcode:16;
1112                        u32     code:8;
1113                        u32     originator:4;
1114                        u32     bus_type:4;
1115                } dw;
1116        };
1117        union loginfo_type sas_loginfo;
1118        char *originator_str = NULL;
1119
1120        sas_loginfo.loginfo = log_info;
1121        if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1122                return;
1123
1124        /* each nexus loss loginfo */
1125        if (log_info == 0x31170000)
1126                return;
1127
1128        /* eat the loginfos associated with task aborts */
1129        if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1130            0x31140000 || log_info == 0x31130000))
1131                return;
1132
1133        switch (sas_loginfo.dw.originator) {
1134        case 0:
1135                originator_str = "IOP";
1136                break;
1137        case 1:
1138                originator_str = "PL";
1139                break;
1140        case 2:
1141                if (!ioc->hide_ir_msg)
1142                        originator_str = "IR";
1143                else
1144                        originator_str = "WarpDrive";
1145                break;
1146        }
1147
1148        ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1149                 log_info,
1150                 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1151}
1152
1153/**
1154 * _base_display_reply_info -
1155 * @ioc: per adapter object
1156 * @smid: system request message index
1157 * @msix_index: MSIX table index supplied by the OS
1158 * @reply: reply message frame(lower 32bit addr)
1159 */
1160static void
1161_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1162        u32 reply)
1163{
1164        MPI2DefaultReply_t *mpi_reply;
1165        u16 ioc_status;
1166        u32 loginfo = 0;
1167
1168        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1169        if (unlikely(!mpi_reply)) {
1170                ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1171                        __FILE__, __LINE__, __func__);
1172                return;
1173        }
1174        ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1175
1176        if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1177            (ioc->logging_level & MPT_DEBUG_REPLY)) {
1178                _base_sas_ioc_info(ioc , mpi_reply,
1179                   mpt3sas_base_get_msg_frame(ioc, smid));
1180        }
1181
1182        if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1183                loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1184                _base_sas_log_info(ioc, loginfo);
1185        }
1186
1187        if (ioc_status || loginfo) {
1188                ioc_status &= MPI2_IOCSTATUS_MASK;
1189                mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1190        }
1191}
1192
1193/**
1194 * mpt3sas_base_done - base internal command completion routine
1195 * @ioc: per adapter object
1196 * @smid: system request message index
1197 * @msix_index: MSIX table index supplied by the OS
1198 * @reply: reply message frame(lower 32bit addr)
1199 *
1200 * Return:
1201 * 1 meaning mf should be freed from _base_interrupt
1202 * 0 means the mf is freed from this function.
1203 */
1204u8
1205mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1206        u32 reply)
1207{
1208        MPI2DefaultReply_t *mpi_reply;
1209
1210        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1211        if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1212                return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1213
1214        if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1215                return 1;
1216
1217        ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1218        if (mpi_reply) {
1219                ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1220                memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1221        }
1222        ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1223
1224        complete(&ioc->base_cmds.done);
1225        return 1;
1226}
1227
1228/**
1229 * _base_async_event - main callback handler for firmware asyn events
1230 * @ioc: per adapter object
1231 * @msix_index: MSIX table index supplied by the OS
1232 * @reply: reply message frame(lower 32bit addr)
1233 *
1234 * Return:
1235 * 1 meaning mf should be freed from _base_interrupt
1236 * 0 means the mf is freed from this function.
1237 */
1238static u8
1239_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1240{
1241        Mpi2EventNotificationReply_t *mpi_reply;
1242        Mpi2EventAckRequest_t *ack_request;
1243        u16 smid;
1244        struct _event_ack_list *delayed_event_ack;
1245
1246        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1247        if (!mpi_reply)
1248                return 1;
1249        if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1250                return 1;
1251
1252        _base_display_event_data(ioc, mpi_reply);
1253
1254        if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1255                goto out;
1256        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1257        if (!smid) {
1258                delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1259                                        GFP_ATOMIC);
1260                if (!delayed_event_ack)
1261                        goto out;
1262                INIT_LIST_HEAD(&delayed_event_ack->list);
1263                delayed_event_ack->Event = mpi_reply->Event;
1264                delayed_event_ack->EventContext = mpi_reply->EventContext;
1265                list_add_tail(&delayed_event_ack->list,
1266                                &ioc->delayed_event_ack_list);
1267                dewtprintk(ioc,
1268                           ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1269                                    le16_to_cpu(mpi_reply->Event)));
1270                goto out;
1271        }
1272
1273        ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1274        memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1275        ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1276        ack_request->Event = mpi_reply->Event;
1277        ack_request->EventContext = mpi_reply->EventContext;
1278        ack_request->VF_ID = 0;  /* TODO */
1279        ack_request->VP_ID = 0;
1280        mpt3sas_base_put_smid_default(ioc, smid);
1281
1282 out:
1283
1284        /* scsih callback handler */
1285        mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1286
1287        /* ctl callback handler */
1288        mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1289
1290        return 1;
1291}
1292
1293static struct scsiio_tracker *
1294_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1295{
1296        struct scsi_cmnd *cmd;
1297
1298        if (WARN_ON(!smid) ||
1299            WARN_ON(smid >= ioc->hi_priority_smid))
1300                return NULL;
1301
1302        cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1303        if (cmd)
1304                return scsi_cmd_priv(cmd);
1305
1306        return NULL;
1307}
1308
1309/**
1310 * _base_get_cb_idx - obtain the callback index
1311 * @ioc: per adapter object
1312 * @smid: system request message index
1313 *
1314 * Return: callback index.
1315 */
1316static u8
1317_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1318{
1319        int i;
1320        u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1321        u8 cb_idx = 0xFF;
1322
1323        if (smid < ioc->hi_priority_smid) {
1324                struct scsiio_tracker *st;
1325
1326                if (smid < ctl_smid) {
1327                        st = _get_st_from_smid(ioc, smid);
1328                        if (st)
1329                                cb_idx = st->cb_idx;
1330                } else if (smid == ctl_smid)
1331                        cb_idx = ioc->ctl_cb_idx;
1332        } else if (smid < ioc->internal_smid) {
1333                i = smid - ioc->hi_priority_smid;
1334                cb_idx = ioc->hpr_lookup[i].cb_idx;
1335        } else if (smid <= ioc->hba_queue_depth) {
1336                i = smid - ioc->internal_smid;
1337                cb_idx = ioc->internal_lookup[i].cb_idx;
1338        }
1339        return cb_idx;
1340}
1341
1342/**
1343 * _base_mask_interrupts - disable interrupts
1344 * @ioc: per adapter object
1345 *
1346 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1347 */
1348static void
1349_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1350{
1351        u32 him_register;
1352
1353        ioc->mask_interrupts = 1;
1354        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1355        him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1356        writel(him_register, &ioc->chip->HostInterruptMask);
1357        ioc->base_readl(&ioc->chip->HostInterruptMask);
1358}
1359
1360/**
1361 * _base_unmask_interrupts - enable interrupts
1362 * @ioc: per adapter object
1363 *
1364 * Enabling only Reply Interrupts
1365 */
1366static void
1367_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1368{
1369        u32 him_register;
1370
1371        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1372        him_register &= ~MPI2_HIM_RIM;
1373        writel(him_register, &ioc->chip->HostInterruptMask);
1374        ioc->mask_interrupts = 0;
1375}
1376
1377union reply_descriptor {
1378        u64 word;
1379        struct {
1380                u32 low;
1381                u32 high;
1382        } u;
1383};
1384
1385/**
1386 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1387 * @irq: irq number (not used)
1388 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1389 *
1390 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1391 */
1392static irqreturn_t
1393_base_interrupt(int irq, void *bus_id)
1394{
1395        struct adapter_reply_queue *reply_q = bus_id;
1396        union reply_descriptor rd;
1397        u32 completed_cmds;
1398        u8 request_desript_type;
1399        u16 smid;
1400        u8 cb_idx;
1401        u32 reply;
1402        u8 msix_index = reply_q->msix_index;
1403        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1404        Mpi2ReplyDescriptorsUnion_t *rpf;
1405        u8 rc;
1406
1407        if (ioc->mask_interrupts)
1408                return IRQ_NONE;
1409
1410        if (!atomic_add_unless(&reply_q->busy, 1, 1))
1411                return IRQ_NONE;
1412
1413        rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1414        request_desript_type = rpf->Default.ReplyFlags
1415             & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1416        if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1417                atomic_dec(&reply_q->busy);
1418                return IRQ_NONE;
1419        }
1420
1421        completed_cmds = 0;
1422        cb_idx = 0xFF;
1423        do {
1424                rd.word = le64_to_cpu(rpf->Words);
1425                if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1426                        goto out;
1427                reply = 0;
1428                smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1429                if (request_desript_type ==
1430                    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1431                    request_desript_type ==
1432                    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1433                    request_desript_type ==
1434                    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1435                        cb_idx = _base_get_cb_idx(ioc, smid);
1436                        if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1437                            (likely(mpt_callbacks[cb_idx] != NULL))) {
1438                                rc = mpt_callbacks[cb_idx](ioc, smid,
1439                                    msix_index, 0);
1440                                if (rc)
1441                                        mpt3sas_base_free_smid(ioc, smid);
1442                        }
1443                } else if (request_desript_type ==
1444                    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1445                        reply = le32_to_cpu(
1446                            rpf->AddressReply.ReplyFrameAddress);
1447                        if (reply > ioc->reply_dma_max_address ||
1448                            reply < ioc->reply_dma_min_address)
1449                                reply = 0;
1450                        if (smid) {
1451                                cb_idx = _base_get_cb_idx(ioc, smid);
1452                                if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1453                                    (likely(mpt_callbacks[cb_idx] != NULL))) {
1454                                        rc = mpt_callbacks[cb_idx](ioc, smid,
1455                                            msix_index, reply);
1456                                        if (reply)
1457                                                _base_display_reply_info(ioc,
1458                                                    smid, msix_index, reply);
1459                                        if (rc)
1460                                                mpt3sas_base_free_smid(ioc,
1461                                                    smid);
1462                                }
1463                        } else {
1464                                _base_async_event(ioc, msix_index, reply);
1465                        }
1466
1467                        /* reply free queue handling */
1468                        if (reply) {
1469                                ioc->reply_free_host_index =
1470                                    (ioc->reply_free_host_index ==
1471                                    (ioc->reply_free_queue_depth - 1)) ?
1472                                    0 : ioc->reply_free_host_index + 1;
1473                                ioc->reply_free[ioc->reply_free_host_index] =
1474                                    cpu_to_le32(reply);
1475                                if (ioc->is_mcpu_endpoint)
1476                                        _base_clone_reply_to_sys_mem(ioc,
1477                                                reply,
1478                                                ioc->reply_free_host_index);
1479                                writel(ioc->reply_free_host_index,
1480                                    &ioc->chip->ReplyFreeHostIndex);
1481                        }
1482                }
1483
1484                rpf->Words = cpu_to_le64(ULLONG_MAX);
1485                reply_q->reply_post_host_index =
1486                    (reply_q->reply_post_host_index ==
1487                    (ioc->reply_post_queue_depth - 1)) ? 0 :
1488                    reply_q->reply_post_host_index + 1;
1489                request_desript_type =
1490                    reply_q->reply_post_free[reply_q->reply_post_host_index].
1491                    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1492                completed_cmds++;
1493                /* Update the reply post host index after continuously
1494                 * processing the threshold number of Reply Descriptors.
1495                 * So that FW can find enough entries to post the Reply
1496                 * Descriptors in the reply descriptor post queue.
1497                 */
1498                if (completed_cmds > ioc->hba_queue_depth/3) {
1499                        if (ioc->combined_reply_queue) {
1500                                writel(reply_q->reply_post_host_index |
1501                                                ((msix_index  & 7) <<
1502                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1503                                    ioc->replyPostRegisterIndex[msix_index/8]);
1504                        } else {
1505                                writel(reply_q->reply_post_host_index |
1506                                                (msix_index <<
1507                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1508                                                &ioc->chip->ReplyPostHostIndex);
1509                        }
1510                        completed_cmds = 1;
1511                }
1512                if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1513                        goto out;
1514                if (!reply_q->reply_post_host_index)
1515                        rpf = reply_q->reply_post_free;
1516                else
1517                        rpf++;
1518        } while (1);
1519
1520 out:
1521
1522        if (!completed_cmds) {
1523                atomic_dec(&reply_q->busy);
1524                return IRQ_NONE;
1525        }
1526
1527        if (ioc->is_warpdrive) {
1528                writel(reply_q->reply_post_host_index,
1529                ioc->reply_post_host_index[msix_index]);
1530                atomic_dec(&reply_q->busy);
1531                return IRQ_HANDLED;
1532        }
1533
1534        /* Update Reply Post Host Index.
1535         * For those HBA's which support combined reply queue feature
1536         * 1. Get the correct Supplemental Reply Post Host Index Register.
1537         *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1538         *    Index Register address bank i.e replyPostRegisterIndex[],
1539         * 2. Then update this register with new reply host index value
1540         *    in ReplyPostIndex field and the MSIxIndex field with
1541         *    msix_index value reduced to a value between 0 and 7,
1542         *    using a modulo 8 operation. Since each Supplemental Reply Post
1543         *    Host Index Register supports 8 MSI-X vectors.
1544         *
1545         * For other HBA's just update the Reply Post Host Index register with
1546         * new reply host index value in ReplyPostIndex Field and msix_index
1547         * value in MSIxIndex field.
1548         */
1549        if (ioc->combined_reply_queue)
1550                writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1551                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1552                        ioc->replyPostRegisterIndex[msix_index/8]);
1553        else
1554                writel(reply_q->reply_post_host_index | (msix_index <<
1555                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1556                        &ioc->chip->ReplyPostHostIndex);
1557        atomic_dec(&reply_q->busy);
1558        return IRQ_HANDLED;
1559}
1560
1561/**
1562 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1563 * @ioc: per adapter object
1564 *
1565 * Return: Whether or not MSI/X is enabled.
1566 */
1567static inline int
1568_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1569{
1570        return (ioc->facts.IOCCapabilities &
1571            MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1572}
1573
1574/**
1575 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1576 * @ioc: per adapter object
1577 * Context: non ISR conext
1578 *
1579 * Called when a Task Management request has completed.
1580 */
1581void
1582mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1583{
1584        struct adapter_reply_queue *reply_q;
1585
1586        /* If MSIX capability is turned off
1587         * then multi-queues are not enabled
1588         */
1589        if (!_base_is_controller_msix_enabled(ioc))
1590                return;
1591
1592        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1593                if (ioc->shost_recovery || ioc->remove_host ||
1594                                ioc->pci_error_recovery)
1595                        return;
1596                /* TMs are on msix_index == 0 */
1597                if (reply_q->msix_index == 0)
1598                        continue;
1599                synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1600        }
1601}
1602
1603/**
1604 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1605 * @cb_idx: callback index
1606 */
1607void
1608mpt3sas_base_release_callback_handler(u8 cb_idx)
1609{
1610        mpt_callbacks[cb_idx] = NULL;
1611}
1612
1613/**
1614 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1615 * @cb_func: callback function
1616 *
1617 * Return: Index of @cb_func.
1618 */
1619u8
1620mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1621{
1622        u8 cb_idx;
1623
1624        for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1625                if (mpt_callbacks[cb_idx] == NULL)
1626                        break;
1627
1628        mpt_callbacks[cb_idx] = cb_func;
1629        return cb_idx;
1630}
1631
1632/**
1633 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1634 */
1635void
1636mpt3sas_base_initialize_callback_handler(void)
1637{
1638        u8 cb_idx;
1639
1640        for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1641                mpt3sas_base_release_callback_handler(cb_idx);
1642}
1643
1644
1645/**
1646 * _base_build_zero_len_sge - build zero length sg entry
1647 * @ioc: per adapter object
1648 * @paddr: virtual address for SGE
1649 *
1650 * Create a zero length scatter gather entry to insure the IOCs hardware has
1651 * something to use if the target device goes brain dead and tries
1652 * to send data even when none is asked for.
1653 */
1654static void
1655_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1656{
1657        u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1658            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1659            MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1660            MPI2_SGE_FLAGS_SHIFT);
1661        ioc->base_add_sg_single(paddr, flags_length, -1);
1662}
1663
1664/**
1665 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1666 * @paddr: virtual address for SGE
1667 * @flags_length: SGE flags and data transfer length
1668 * @dma_addr: Physical address
1669 */
1670static void
1671_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1672{
1673        Mpi2SGESimple32_t *sgel = paddr;
1674
1675        flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1676            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1677        sgel->FlagsLength = cpu_to_le32(flags_length);
1678        sgel->Address = cpu_to_le32(dma_addr);
1679}
1680
1681
1682/**
1683 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1684 * @paddr: virtual address for SGE
1685 * @flags_length: SGE flags and data transfer length
1686 * @dma_addr: Physical address
1687 */
1688static void
1689_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1690{
1691        Mpi2SGESimple64_t *sgel = paddr;
1692
1693        flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1694            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1695        sgel->FlagsLength = cpu_to_le32(flags_length);
1696        sgel->Address = cpu_to_le64(dma_addr);
1697}
1698
1699/**
1700 * _base_get_chain_buffer_tracker - obtain chain tracker
1701 * @ioc: per adapter object
1702 * @scmd: SCSI commands of the IO request
1703 *
1704 * Return: chain tracker from chain_lookup table using key as
1705 * smid and smid's chain_offset.
1706 */
1707static struct chain_tracker *
1708_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1709                               struct scsi_cmnd *scmd)
1710{
1711        struct chain_tracker *chain_req;
1712        struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1713        u16 smid = st->smid;
1714        u8 chain_offset =
1715           atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1716
1717        if (chain_offset == ioc->chains_needed_per_io)
1718                return NULL;
1719
1720        chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1721        atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1722        return chain_req;
1723}
1724
1725
1726/**
1727 * _base_build_sg - build generic sg
1728 * @ioc: per adapter object
1729 * @psge: virtual address for SGE
1730 * @data_out_dma: physical address for WRITES
1731 * @data_out_sz: data xfer size for WRITES
1732 * @data_in_dma: physical address for READS
1733 * @data_in_sz: data xfer size for READS
1734 */
1735static void
1736_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1737        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1738        size_t data_in_sz)
1739{
1740        u32 sgl_flags;
1741
1742        if (!data_out_sz && !data_in_sz) {
1743                _base_build_zero_len_sge(ioc, psge);
1744                return;
1745        }
1746
1747        if (data_out_sz && data_in_sz) {
1748                /* WRITE sgel first */
1749                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1750                    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1751                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1752                ioc->base_add_sg_single(psge, sgl_flags |
1753                    data_out_sz, data_out_dma);
1754
1755                /* incr sgel */
1756                psge += ioc->sge_size;
1757
1758                /* READ sgel last */
1759                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1760                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1761                    MPI2_SGE_FLAGS_END_OF_LIST);
1762                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1763                ioc->base_add_sg_single(psge, sgl_flags |
1764                    data_in_sz, data_in_dma);
1765        } else if (data_out_sz) /* WRITE */ {
1766                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1767                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1768                    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1769                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1770                ioc->base_add_sg_single(psge, sgl_flags |
1771                    data_out_sz, data_out_dma);
1772        } else if (data_in_sz) /* READ */ {
1773                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1774                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1775                    MPI2_SGE_FLAGS_END_OF_LIST);
1776                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1777                ioc->base_add_sg_single(psge, sgl_flags |
1778                    data_in_sz, data_in_dma);
1779        }
1780}
1781
1782/* IEEE format sgls */
1783
1784/**
1785 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1786 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1787 * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1788 * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1789 * used to describe a larger data buffer.  If the data buffer is too large to
1790 * describe using the two PRP entriess inside the NVMe message, then PRP1
1791 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1792 * list located elsewhere in memory to describe the remaining data memory
1793 * segments.  The PRP list will be contiguous.
1794 *
1795 * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1796 * consists of a list of PRP entries to describe a number of noncontigous
1797 * physical memory segments as a single memory buffer, just as a SGL does.  Note
1798 * however, that this function is only used by the IOCTL call, so the memory
1799 * given will be guaranteed to be contiguous.  There is no need to translate
1800 * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1801 * contiguous space that is one page size each.
1802 *
1803 * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1804 * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1805 * contains the second PRP element if the memory being described fits within 2
1806 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1807 *
1808 * A PRP list pointer contains the address of a PRP list, structured as a linear
1809 * array of PRP entries.  Each PRP entry in this list describes a segment of
1810 * physical memory.
1811 *
1812 * Each 64-bit PRP entry comprises an address and an offset field.  The address
1813 * always points at the beginning of a 4KB physical memory page, and the offset
1814 * describes where within that 4KB page the memory segment begins.  Only the
1815 * first element in a PRP list may contain a non-zero offest, implying that all
1816 * memory segments following the first begin at the start of a 4KB page.
1817 *
1818 * Each PRP element normally describes 4KB of physical memory, with exceptions
1819 * for the first and last elements in the list.  If the memory being described
1820 * by the list begins at a non-zero offset within the first 4KB page, then the
1821 * first PRP element will contain a non-zero offset indicating where the region
1822 * begins within the 4KB page.  The last memory segment may end before the end
1823 * of the 4KB segment, depending upon the overall size of the memory being
1824 * described by the PRP list.
1825 *
1826 * Since PRP entries lack any indication of size, the overall data buffer length
1827 * is used to determine where the end of the data memory buffer is located, and
1828 * how many PRP entries are required to describe it.
1829 *
1830 * @ioc: per adapter object
1831 * @smid: system request message index for getting asscociated SGL
1832 * @nvme_encap_request: the NVMe request msg frame pointer
1833 * @data_out_dma: physical address for WRITES
1834 * @data_out_sz: data xfer size for WRITES
1835 * @data_in_dma: physical address for READS
1836 * @data_in_sz: data xfer size for READS
1837 */
1838static void
1839_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1840        Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1841        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1842        size_t data_in_sz)
1843{
1844        int             prp_size = NVME_PRP_SIZE;
1845        __le64          *prp_entry, *prp1_entry, *prp2_entry;
1846        __le64          *prp_page;
1847        dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1848        u32             offset, entry_len;
1849        u32             page_mask_result, page_mask;
1850        size_t          length;
1851        struct mpt3sas_nvme_cmd *nvme_cmd =
1852                (void *)nvme_encap_request->NVMe_Command;
1853
1854        /*
1855         * Not all commands require a data transfer. If no data, just return
1856         * without constructing any PRP.
1857         */
1858        if (!data_in_sz && !data_out_sz)
1859                return;
1860        prp1_entry = &nvme_cmd->prp1;
1861        prp2_entry = &nvme_cmd->prp2;
1862        prp_entry = prp1_entry;
1863        /*
1864         * For the PRP entries, use the specially allocated buffer of
1865         * contiguous memory.
1866         */
1867        prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1868        prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1869
1870        /*
1871         * Check if we are within 1 entry of a page boundary we don't
1872         * want our first entry to be a PRP List entry.
1873         */
1874        page_mask = ioc->page_size - 1;
1875        page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1876        if (!page_mask_result) {
1877                /* Bump up to next page boundary. */
1878                prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1879                prp_page_dma = prp_page_dma + prp_size;
1880        }
1881
1882        /*
1883         * Set PRP physical pointer, which initially points to the current PRP
1884         * DMA memory page.
1885         */
1886        prp_entry_dma = prp_page_dma;
1887
1888        /* Get physical address and length of the data buffer. */
1889        if (data_in_sz) {
1890                dma_addr = data_in_dma;
1891                length = data_in_sz;
1892        } else {
1893                dma_addr = data_out_dma;
1894                length = data_out_sz;
1895        }
1896
1897        /* Loop while the length is not zero. */
1898        while (length) {
1899                /*
1900                 * Check if we need to put a list pointer here if we are at
1901                 * page boundary - prp_size (8 bytes).
1902                 */
1903                page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1904                if (!page_mask_result) {
1905                        /*
1906                         * This is the last entry in a PRP List, so we need to
1907                         * put a PRP list pointer here.  What this does is:
1908                         *   - bump the current memory pointer to the next
1909                         *     address, which will be the next full page.
1910                         *   - set the PRP Entry to point to that page.  This
1911                         *     is now the PRP List pointer.
1912                         *   - bump the PRP Entry pointer the start of the
1913                         *     next page.  Since all of this PRP memory is
1914                         *     contiguous, no need to get a new page - it's
1915                         *     just the next address.
1916                         */
1917                        prp_entry_dma++;
1918                        *prp_entry = cpu_to_le64(prp_entry_dma);
1919                        prp_entry++;
1920                }
1921
1922                /* Need to handle if entry will be part of a page. */
1923                offset = dma_addr & page_mask;
1924                entry_len = ioc->page_size - offset;
1925
1926                if (prp_entry == prp1_entry) {
1927                        /*
1928                         * Must fill in the first PRP pointer (PRP1) before
1929                         * moving on.
1930                         */
1931                        *prp1_entry = cpu_to_le64(dma_addr);
1932
1933                        /*
1934                         * Now point to the second PRP entry within the
1935                         * command (PRP2).
1936                         */
1937                        prp_entry = prp2_entry;
1938                } else if (prp_entry == prp2_entry) {
1939                        /*
1940                         * Should the PRP2 entry be a PRP List pointer or just
1941                         * a regular PRP pointer?  If there is more than one
1942                         * more page of data, must use a PRP List pointer.
1943                         */
1944                        if (length > ioc->page_size) {
1945                                /*
1946                                 * PRP2 will contain a PRP List pointer because
1947                                 * more PRP's are needed with this command. The
1948                                 * list will start at the beginning of the
1949                                 * contiguous buffer.
1950                                 */
1951                                *prp2_entry = cpu_to_le64(prp_entry_dma);
1952
1953                                /*
1954                                 * The next PRP Entry will be the start of the
1955                                 * first PRP List.
1956                                 */
1957                                prp_entry = prp_page;
1958                        } else {
1959                                /*
1960                                 * After this, the PRP Entries are complete.
1961                                 * This command uses 2 PRP's and no PRP list.
1962                                 */
1963                                *prp2_entry = cpu_to_le64(dma_addr);
1964                        }
1965                } else {
1966                        /*
1967                         * Put entry in list and bump the addresses.
1968                         *
1969                         * After PRP1 and PRP2 are filled in, this will fill in
1970                         * all remaining PRP entries in a PRP List, one per
1971                         * each time through the loop.
1972                         */
1973                        *prp_entry = cpu_to_le64(dma_addr);
1974                        prp_entry++;
1975                        prp_entry_dma++;
1976                }
1977
1978                /*
1979                 * Bump the phys address of the command's data buffer by the
1980                 * entry_len.
1981                 */
1982                dma_addr += entry_len;
1983
1984                /* Decrement length accounting for last partial page. */
1985                if (entry_len > length)
1986                        length = 0;
1987                else
1988                        length -= entry_len;
1989        }
1990}
1991
1992/**
1993 * base_make_prp_nvme -
1994 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1995 *
1996 * @ioc:                per adapter object
1997 * @scmd:               SCSI command from the mid-layer
1998 * @mpi_request:        mpi request
1999 * @smid:               msg Index
2000 * @sge_count:          scatter gather element count.
2001 *
2002 * Return:              true: PRPs are built
2003 *                      false: IEEE SGLs needs to be built
2004 */
2005static void
2006base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2007                struct scsi_cmnd *scmd,
2008                Mpi25SCSIIORequest_t *mpi_request,
2009                u16 smid, int sge_count)
2010{
2011        int sge_len, num_prp_in_chain = 0;
2012        Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2013        __le64 *curr_buff;
2014        dma_addr_t msg_dma, sge_addr, offset;
2015        u32 page_mask, page_mask_result;
2016        struct scatterlist *sg_scmd;
2017        u32 first_prp_len;
2018        int data_len = scsi_bufflen(scmd);
2019        u32 nvme_pg_size;
2020
2021        nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2022        /*
2023         * Nvme has a very convoluted prp format.  One prp is required
2024         * for each page or partial page. Driver need to split up OS sg_list
2025         * entries if it is longer than one page or cross a page
2026         * boundary.  Driver also have to insert a PRP list pointer entry as
2027         * the last entry in each physical page of the PRP list.
2028         *
2029         * NOTE: The first PRP "entry" is actually placed in the first
2030         * SGL entry in the main message as IEEE 64 format.  The 2nd
2031         * entry in the main message is the chain element, and the rest
2032         * of the PRP entries are built in the contiguous pcie buffer.
2033         */
2034        page_mask = nvme_pg_size - 1;
2035
2036        /*
2037         * Native SGL is needed.
2038         * Put a chain element in main message frame that points to the first
2039         * chain buffer.
2040         *
2041         * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2042         *        a native SGL.
2043         */
2044
2045        /* Set main message chain element pointer */
2046        main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2047        /*
2048         * For NVMe the chain element needs to be the 2nd SG entry in the main
2049         * message.
2050         */
2051        main_chain_element = (Mpi25IeeeSgeChain64_t *)
2052                ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2053
2054        /*
2055         * For the PRP entries, use the specially allocated buffer of
2056         * contiguous memory.  Normal chain buffers can't be used
2057         * because each chain buffer would need to be the size of an OS
2058         * page (4k).
2059         */
2060        curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2061        msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2062
2063        main_chain_element->Address = cpu_to_le64(msg_dma);
2064        main_chain_element->NextChainOffset = 0;
2065        main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2066                        MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2067                        MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2068
2069        /* Build first prp, sge need not to be page aligned*/
2070        ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2071        sg_scmd = scsi_sglist(scmd);
2072        sge_addr = sg_dma_address(sg_scmd);
2073        sge_len = sg_dma_len(sg_scmd);
2074
2075        offset = sge_addr & page_mask;
2076        first_prp_len = nvme_pg_size - offset;
2077
2078        ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2079        ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2080
2081        data_len -= first_prp_len;
2082
2083        if (sge_len > first_prp_len) {
2084                sge_addr += first_prp_len;
2085                sge_len -= first_prp_len;
2086        } else if (data_len && (sge_len == first_prp_len)) {
2087                sg_scmd = sg_next(sg_scmd);
2088                sge_addr = sg_dma_address(sg_scmd);
2089                sge_len = sg_dma_len(sg_scmd);
2090        }
2091
2092        for (;;) {
2093                offset = sge_addr & page_mask;
2094
2095                /* Put PRP pointer due to page boundary*/
2096                page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2097                if (unlikely(!page_mask_result)) {
2098                        scmd_printk(KERN_NOTICE,
2099                                scmd, "page boundary curr_buff: 0x%p\n",
2100                                curr_buff);
2101                        msg_dma += 8;
2102                        *curr_buff = cpu_to_le64(msg_dma);
2103                        curr_buff++;
2104                        num_prp_in_chain++;
2105                }
2106
2107                *curr_buff = cpu_to_le64(sge_addr);
2108                curr_buff++;
2109                msg_dma += 8;
2110                num_prp_in_chain++;
2111
2112                sge_addr += nvme_pg_size;
2113                sge_len -= nvme_pg_size;
2114                data_len -= nvme_pg_size;
2115
2116                if (data_len <= 0)
2117                        break;
2118
2119                if (sge_len > 0)
2120                        continue;
2121
2122                sg_scmd = sg_next(sg_scmd);
2123                sge_addr = sg_dma_address(sg_scmd);
2124                sge_len = sg_dma_len(sg_scmd);
2125        }
2126
2127        main_chain_element->Length =
2128                cpu_to_le32(num_prp_in_chain * sizeof(u64));
2129        return;
2130}
2131
2132static bool
2133base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2134        struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2135{
2136        u32 data_length = 0;
2137        bool build_prp = true;
2138
2139        data_length = scsi_bufflen(scmd);
2140
2141        /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2142         * we built IEEE SGL
2143         */
2144        if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2145                build_prp = false;
2146
2147        return build_prp;
2148}
2149
2150/**
2151 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2152 * determine if the driver needs to build a native SGL.  If so, that native
2153 * SGL is built in the special contiguous buffers allocated especially for
2154 * PCIe SGL creation.  If the driver will not build a native SGL, return
2155 * TRUE and a normal IEEE SGL will be built.  Currently this routine
2156 * supports NVMe.
2157 * @ioc: per adapter object
2158 * @mpi_request: mf request pointer
2159 * @smid: system request message index
2160 * @scmd: scsi command
2161 * @pcie_device: points to the PCIe device's info
2162 *
2163 * Return: 0 if native SGL was built, 1 if no SGL was built
2164 */
2165static int
2166_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2167        Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2168        struct _pcie_device *pcie_device)
2169{
2170        int sges_left;
2171
2172        /* Get the SG list pointer and info. */
2173        sges_left = scsi_dma_map(scmd);
2174        if (sges_left < 0) {
2175                sdev_printk(KERN_ERR, scmd->device,
2176                        "scsi_dma_map failed: request for %d bytes!\n",
2177                        scsi_bufflen(scmd));
2178                return 1;
2179        }
2180
2181        /* Check if we need to build a native SG list. */
2182        if (base_is_prp_possible(ioc, pcie_device,
2183                                scmd, sges_left) == 0) {
2184                /* We built a native SG list, just return. */
2185                goto out;
2186        }
2187
2188        /*
2189         * Build native NVMe PRP.
2190         */
2191        base_make_prp_nvme(ioc, scmd, mpi_request,
2192                        smid, sges_left);
2193
2194        return 0;
2195out:
2196        scsi_dma_unmap(scmd);
2197        return 1;
2198}
2199
2200/**
2201 * _base_add_sg_single_ieee - add sg element for IEEE format
2202 * @paddr: virtual address for SGE
2203 * @flags: SGE flags
2204 * @chain_offset: number of 128 byte elements from start of segment
2205 * @length: data transfer length
2206 * @dma_addr: Physical address
2207 */
2208static void
2209_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2210        dma_addr_t dma_addr)
2211{
2212        Mpi25IeeeSgeChain64_t *sgel = paddr;
2213
2214        sgel->Flags = flags;
2215        sgel->NextChainOffset = chain_offset;
2216        sgel->Length = cpu_to_le32(length);
2217        sgel->Address = cpu_to_le64(dma_addr);
2218}
2219
2220/**
2221 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2222 * @ioc: per adapter object
2223 * @paddr: virtual address for SGE
2224 *
2225 * Create a zero length scatter gather entry to insure the IOCs hardware has
2226 * something to use if the target device goes brain dead and tries
2227 * to send data even when none is asked for.
2228 */
2229static void
2230_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2231{
2232        u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2233                MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2234                MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2235
2236        _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2237}
2238
2239/**
2240 * _base_build_sg_scmd - main sg creation routine
2241 *              pcie_device is unused here!
2242 * @ioc: per adapter object
2243 * @scmd: scsi command
2244 * @smid: system request message index
2245 * @unused: unused pcie_device pointer
2246 * Context: none.
2247 *
2248 * The main routine that builds scatter gather table from a given
2249 * scsi request sent via the .queuecommand main handler.
2250 *
2251 * Return: 0 success, anything else error
2252 */
2253static int
2254_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2255        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2256{
2257        Mpi2SCSIIORequest_t *mpi_request;
2258        dma_addr_t chain_dma;
2259        struct scatterlist *sg_scmd;
2260        void *sg_local, *chain;
2261        u32 chain_offset;
2262        u32 chain_length;
2263        u32 chain_flags;
2264        int sges_left;
2265        u32 sges_in_segment;
2266        u32 sgl_flags;
2267        u32 sgl_flags_last_element;
2268        u32 sgl_flags_end_buffer;
2269        struct chain_tracker *chain_req;
2270
2271        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2272
2273        /* init scatter gather flags */
2274        sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2275        if (scmd->sc_data_direction == DMA_TO_DEVICE)
2276                sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2277        sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2278            << MPI2_SGE_FLAGS_SHIFT;
2279        sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2280            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2281            << MPI2_SGE_FLAGS_SHIFT;
2282        sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2283
2284        sg_scmd = scsi_sglist(scmd);
2285        sges_left = scsi_dma_map(scmd);
2286        if (sges_left < 0) {
2287                sdev_printk(KERN_ERR, scmd->device,
2288                 "pci_map_sg failed: request for %d bytes!\n",
2289                 scsi_bufflen(scmd));
2290                return -ENOMEM;
2291        }
2292
2293        sg_local = &mpi_request->SGL;
2294        sges_in_segment = ioc->max_sges_in_main_message;
2295        if (sges_left <= sges_in_segment)
2296                goto fill_in_last_segment;
2297
2298        mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2299            (sges_in_segment * ioc->sge_size))/4;
2300
2301        /* fill in main message segment when there is a chain following */
2302        while (sges_in_segment) {
2303                if (sges_in_segment == 1)
2304                        ioc->base_add_sg_single(sg_local,
2305                            sgl_flags_last_element | sg_dma_len(sg_scmd),
2306                            sg_dma_address(sg_scmd));
2307                else
2308                        ioc->base_add_sg_single(sg_local, sgl_flags |
2309                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2310                sg_scmd = sg_next(sg_scmd);
2311                sg_local += ioc->sge_size;
2312                sges_left--;
2313                sges_in_segment--;
2314        }
2315
2316        /* initializing the chain flags and pointers */
2317        chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2318        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2319        if (!chain_req)
2320                return -1;
2321        chain = chain_req->chain_buffer;
2322        chain_dma = chain_req->chain_buffer_dma;
2323        do {
2324                sges_in_segment = (sges_left <=
2325                    ioc->max_sges_in_chain_message) ? sges_left :
2326                    ioc->max_sges_in_chain_message;
2327                chain_offset = (sges_left == sges_in_segment) ?
2328                    0 : (sges_in_segment * ioc->sge_size)/4;
2329                chain_length = sges_in_segment * ioc->sge_size;
2330                if (chain_offset) {
2331                        chain_offset = chain_offset <<
2332                            MPI2_SGE_CHAIN_OFFSET_SHIFT;
2333                        chain_length += ioc->sge_size;
2334                }
2335                ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2336                    chain_length, chain_dma);
2337                sg_local = chain;
2338                if (!chain_offset)
2339                        goto fill_in_last_segment;
2340
2341                /* fill in chain segments */
2342                while (sges_in_segment) {
2343                        if (sges_in_segment == 1)
2344                                ioc->base_add_sg_single(sg_local,
2345                                    sgl_flags_last_element |
2346                                    sg_dma_len(sg_scmd),
2347                                    sg_dma_address(sg_scmd));
2348                        else
2349                                ioc->base_add_sg_single(sg_local, sgl_flags |
2350                                    sg_dma_len(sg_scmd),
2351                                    sg_dma_address(sg_scmd));
2352                        sg_scmd = sg_next(sg_scmd);
2353                        sg_local += ioc->sge_size;
2354                        sges_left--;
2355                        sges_in_segment--;
2356                }
2357
2358                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2359                if (!chain_req)
2360                        return -1;
2361                chain = chain_req->chain_buffer;
2362                chain_dma = chain_req->chain_buffer_dma;
2363        } while (1);
2364
2365
2366 fill_in_last_segment:
2367
2368        /* fill the last segment */
2369        while (sges_left) {
2370                if (sges_left == 1)
2371                        ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2372                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2373                else
2374                        ioc->base_add_sg_single(sg_local, sgl_flags |
2375                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2376                sg_scmd = sg_next(sg_scmd);
2377                sg_local += ioc->sge_size;
2378                sges_left--;
2379        }
2380
2381        return 0;
2382}
2383
2384/**
2385 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2386 * @ioc: per adapter object
2387 * @scmd: scsi command
2388 * @smid: system request message index
2389 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2390 * constructed on need.
2391 * Context: none.
2392 *
2393 * The main routine that builds scatter gather table from a given
2394 * scsi request sent via the .queuecommand main handler.
2395 *
2396 * Return: 0 success, anything else error
2397 */
2398static int
2399_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2400        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2401{
2402        Mpi25SCSIIORequest_t *mpi_request;
2403        dma_addr_t chain_dma;
2404        struct scatterlist *sg_scmd;
2405        void *sg_local, *chain;
2406        u32 chain_offset;
2407        u32 chain_length;
2408        int sges_left;
2409        u32 sges_in_segment;
2410        u8 simple_sgl_flags;
2411        u8 simple_sgl_flags_last;
2412        u8 chain_sgl_flags;
2413        struct chain_tracker *chain_req;
2414
2415        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2416
2417        /* init scatter gather flags */
2418        simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2419            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2420        simple_sgl_flags_last = simple_sgl_flags |
2421            MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2422        chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2423            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2424
2425        /* Check if we need to build a native SG list. */
2426        if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2427                        smid, scmd, pcie_device) == 0)) {
2428                /* We built a native SG list, just return. */
2429                return 0;
2430        }
2431
2432        sg_scmd = scsi_sglist(scmd);
2433        sges_left = scsi_dma_map(scmd);
2434        if (sges_left < 0) {
2435                sdev_printk(KERN_ERR, scmd->device,
2436                        "pci_map_sg failed: request for %d bytes!\n",
2437                        scsi_bufflen(scmd));
2438                return -ENOMEM;
2439        }
2440
2441        sg_local = &mpi_request->SGL;
2442        sges_in_segment = (ioc->request_sz -
2443                   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2444        if (sges_left <= sges_in_segment)
2445                goto fill_in_last_segment;
2446
2447        mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2448            (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2449
2450        /* fill in main message segment when there is a chain following */
2451        while (sges_in_segment > 1) {
2452                _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2453                    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2454                sg_scmd = sg_next(sg_scmd);
2455                sg_local += ioc->sge_size_ieee;
2456                sges_left--;
2457                sges_in_segment--;
2458        }
2459
2460        /* initializing the pointers */
2461        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2462        if (!chain_req)
2463                return -1;
2464        chain = chain_req->chain_buffer;
2465        chain_dma = chain_req->chain_buffer_dma;
2466        do {
2467                sges_in_segment = (sges_left <=
2468                    ioc->max_sges_in_chain_message) ? sges_left :
2469                    ioc->max_sges_in_chain_message;
2470                chain_offset = (sges_left == sges_in_segment) ?
2471                    0 : sges_in_segment;
2472                chain_length = sges_in_segment * ioc->sge_size_ieee;
2473                if (chain_offset)
2474                        chain_length += ioc->sge_size_ieee;
2475                _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2476                    chain_offset, chain_length, chain_dma);
2477
2478                sg_local = chain;
2479                if (!chain_offset)
2480                        goto fill_in_last_segment;
2481
2482                /* fill in chain segments */
2483                while (sges_in_segment) {
2484                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2485                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2486                        sg_scmd = sg_next(sg_scmd);
2487                        sg_local += ioc->sge_size_ieee;
2488                        sges_left--;
2489                        sges_in_segment--;
2490                }
2491
2492                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2493                if (!chain_req)
2494                        return -1;
2495                chain = chain_req->chain_buffer;
2496                chain_dma = chain_req->chain_buffer_dma;
2497        } while (1);
2498
2499
2500 fill_in_last_segment:
2501
2502        /* fill the last segment */
2503        while (sges_left > 0) {
2504                if (sges_left == 1)
2505                        _base_add_sg_single_ieee(sg_local,
2506                            simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2507                            sg_dma_address(sg_scmd));
2508                else
2509                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2510                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2511                sg_scmd = sg_next(sg_scmd);
2512                sg_local += ioc->sge_size_ieee;
2513                sges_left--;
2514        }
2515
2516        return 0;
2517}
2518
2519/**
2520 * _base_build_sg_ieee - build generic sg for IEEE format
2521 * @ioc: per adapter object
2522 * @psge: virtual address for SGE
2523 * @data_out_dma: physical address for WRITES
2524 * @data_out_sz: data xfer size for WRITES
2525 * @data_in_dma: physical address for READS
2526 * @data_in_sz: data xfer size for READS
2527 */
2528static void
2529_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2530        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2531        size_t data_in_sz)
2532{
2533        u8 sgl_flags;
2534
2535        if (!data_out_sz && !data_in_sz) {
2536                _base_build_zero_len_sge_ieee(ioc, psge);
2537                return;
2538        }
2539
2540        if (data_out_sz && data_in_sz) {
2541                /* WRITE sgel first */
2542                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2543                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2544                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2545                    data_out_dma);
2546
2547                /* incr sgel */
2548                psge += ioc->sge_size_ieee;
2549
2550                /* READ sgel last */
2551                sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2552                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2553                    data_in_dma);
2554        } else if (data_out_sz) /* WRITE */ {
2555                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2556                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2557                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2558                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2559                    data_out_dma);
2560        } else if (data_in_sz) /* READ */ {
2561                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2562                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2563                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2564                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2565                    data_in_dma);
2566        }
2567}
2568
2569#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2570
2571/**
2572 * _base_config_dma_addressing - set dma addressing
2573 * @ioc: per adapter object
2574 * @pdev: PCI device struct
2575 *
2576 * Return: 0 for success, non-zero for failure.
2577 */
2578static int
2579_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2580{
2581        struct sysinfo s;
2582        u64 consistent_dma_mask;
2583
2584        if (ioc->is_mcpu_endpoint)
2585                goto try_32bit;
2586
2587        if (ioc->dma_mask)
2588                consistent_dma_mask = DMA_BIT_MASK(64);
2589        else
2590                consistent_dma_mask = DMA_BIT_MASK(32);
2591
2592        if (sizeof(dma_addr_t) > 4) {
2593                const uint64_t required_mask =
2594                    dma_get_required_mask(&pdev->dev);
2595                if ((required_mask > DMA_BIT_MASK(32)) &&
2596                    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2597                    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2598                        ioc->base_add_sg_single = &_base_add_sg_single_64;
2599                        ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2600                        ioc->dma_mask = 64;
2601                        goto out;
2602                }
2603        }
2604
2605 try_32bit:
2606        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2607            && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2608                ioc->base_add_sg_single = &_base_add_sg_single_32;
2609                ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2610                ioc->dma_mask = 32;
2611        } else
2612                return -ENODEV;
2613
2614 out:
2615        si_meminfo(&s);
2616        ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2617                 ioc->dma_mask, convert_to_kb(s.totalram));
2618
2619        return 0;
2620}
2621
2622static int
2623_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2624                                      struct pci_dev *pdev)
2625{
2626        if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2627                if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2628                        return -ENODEV;
2629        }
2630        return 0;
2631}
2632
2633/**
2634 * _base_check_enable_msix - checks MSIX capabable.
2635 * @ioc: per adapter object
2636 *
2637 * Check to see if card is capable of MSIX, and set number
2638 * of available msix vectors
2639 */
2640static int
2641_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2642{
2643        int base;
2644        u16 message_control;
2645
2646        /* Check whether controller SAS2008 B0 controller,
2647         * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2648         */
2649        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2650            ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2651                return -EINVAL;
2652        }
2653
2654        base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2655        if (!base) {
2656                dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2657                return -EINVAL;
2658        }
2659
2660        /* get msix vector count */
2661        /* NUMA_IO not supported for older controllers */
2662        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2663            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2664            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2665            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2666            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2667            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2668            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2669                ioc->msix_vector_count = 1;
2670        else {
2671                pci_read_config_word(ioc->pdev, base + 2, &message_control);
2672                ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2673        }
2674        dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2675                                  ioc->msix_vector_count));
2676        return 0;
2677}
2678
2679/**
2680 * _base_free_irq - free irq
2681 * @ioc: per adapter object
2682 *
2683 * Freeing respective reply_queue from the list.
2684 */
2685static void
2686_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2687{
2688        struct adapter_reply_queue *reply_q, *next;
2689
2690        if (list_empty(&ioc->reply_queue_list))
2691                return;
2692
2693        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2694                list_del(&reply_q->list);
2695                free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2696                         reply_q);
2697                kfree(reply_q);
2698        }
2699}
2700
2701/**
2702 * _base_request_irq - request irq
2703 * @ioc: per adapter object
2704 * @index: msix index into vector table
2705 *
2706 * Inserting respective reply_queue into the list.
2707 */
2708static int
2709_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2710{
2711        struct pci_dev *pdev = ioc->pdev;
2712        struct adapter_reply_queue *reply_q;
2713        int r;
2714
2715        reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2716        if (!reply_q) {
2717                ioc_err(ioc, "unable to allocate memory %zu!\n",
2718                        sizeof(struct adapter_reply_queue));
2719                return -ENOMEM;
2720        }
2721        reply_q->ioc = ioc;
2722        reply_q->msix_index = index;
2723
2724        atomic_set(&reply_q->busy, 0);
2725        if (ioc->msix_enable)
2726                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2727                    ioc->driver_name, ioc->id, index);
2728        else
2729                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2730                    ioc->driver_name, ioc->id);
2731        r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2732                        IRQF_SHARED, reply_q->name, reply_q);
2733        if (r) {
2734                pr_err("%s: unable to allocate interrupt %d!\n",
2735                       reply_q->name, pci_irq_vector(pdev, index));
2736                kfree(reply_q);
2737                return -EBUSY;
2738        }
2739
2740        INIT_LIST_HEAD(&reply_q->list);
2741        list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2742        return 0;
2743}
2744
2745/**
2746 * _base_assign_reply_queues - assigning msix index for each cpu
2747 * @ioc: per adapter object
2748 *
2749 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2750 *
2751 * It would nice if we could call irq_set_affinity, however it is not
2752 * an exported symbol
2753 */
2754static void
2755_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2756{
2757        unsigned int cpu, nr_cpus, nr_msix, index = 0;
2758        struct adapter_reply_queue *reply_q;
2759
2760        if (!_base_is_controller_msix_enabled(ioc))
2761                return;
2762
2763        memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2764
2765        nr_cpus = num_online_cpus();
2766        nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2767                                               ioc->facts.MaxMSIxVectors);
2768        if (!nr_msix)
2769                return;
2770
2771        if (smp_affinity_enable) {
2772                list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2773                        const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2774                                                        reply_q->msix_index);
2775                        if (!mask) {
2776                                ioc_warn(ioc, "no affinity for msi %x\n",
2777                                         reply_q->msix_index);
2778                                continue;
2779                        }
2780
2781                        for_each_cpu_and(cpu, mask, cpu_online_mask) {
2782                                if (cpu >= ioc->cpu_msix_table_sz)
2783                                        break;
2784                                ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2785                        }
2786                }
2787                return;
2788        }
2789        cpu = cpumask_first(cpu_online_mask);
2790
2791        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2792
2793                unsigned int i, group = nr_cpus / nr_msix;
2794
2795                if (cpu >= nr_cpus)
2796                        break;
2797
2798                if (index < nr_cpus % nr_msix)
2799                        group++;
2800
2801                for (i = 0 ; i < group ; i++) {
2802                        ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2803                        cpu = cpumask_next(cpu, cpu_online_mask);
2804                }
2805                index++;
2806        }
2807}
2808
2809/**
2810 * _base_disable_msix - disables msix
2811 * @ioc: per adapter object
2812 *
2813 */
2814static void
2815_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2816{
2817        if (!ioc->msix_enable)
2818                return;
2819        pci_disable_msix(ioc->pdev);
2820        ioc->msix_enable = 0;
2821}
2822
2823/**
2824 * _base_enable_msix - enables msix, failback to io_apic
2825 * @ioc: per adapter object
2826 *
2827 */
2828static int
2829_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2830{
2831        int r;
2832        int i, local_max_msix_vectors;
2833        u8 try_msix = 0;
2834        unsigned int irq_flags = PCI_IRQ_MSIX;
2835
2836        if (msix_disable == -1 || msix_disable == 0)
2837                try_msix = 1;
2838
2839        if (!try_msix)
2840                goto try_ioapic;
2841
2842        if (_base_check_enable_msix(ioc) != 0)
2843                goto try_ioapic;
2844
2845        ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2846                ioc->msix_vector_count);
2847
2848        ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n",
2849                 ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors);
2850
2851        if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2852                local_max_msix_vectors = (reset_devices) ? 1 : 8;
2853        else
2854                local_max_msix_vectors = max_msix_vectors;
2855
2856        if (local_max_msix_vectors > 0)
2857                ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2858                        ioc->reply_queue_count);
2859        else if (local_max_msix_vectors == 0)
2860                goto try_ioapic;
2861
2862        if (ioc->msix_vector_count < ioc->cpu_count)
2863                smp_affinity_enable = 0;
2864
2865        if (smp_affinity_enable)
2866                irq_flags |= PCI_IRQ_AFFINITY;
2867
2868        r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2869                                  irq_flags);
2870        if (r < 0) {
2871                dfailprintk(ioc,
2872                            ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2873                                     r));
2874                goto try_ioapic;
2875        }
2876
2877        ioc->msix_enable = 1;
2878        ioc->reply_queue_count = r;
2879        for (i = 0; i < ioc->reply_queue_count; i++) {
2880                r = _base_request_irq(ioc, i);
2881                if (r) {
2882                        _base_free_irq(ioc);
2883                        _base_disable_msix(ioc);
2884                        goto try_ioapic;
2885                }
2886        }
2887
2888        return 0;
2889
2890/* failback to io_apic interrupt routing */
2891 try_ioapic:
2892
2893        ioc->reply_queue_count = 1;
2894        r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2895        if (r < 0) {
2896                dfailprintk(ioc,
2897                            ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2898                                     r));
2899        } else
2900                r = _base_request_irq(ioc, 0);
2901
2902        return r;
2903}
2904
2905/**
2906 * mpt3sas_base_unmap_resources - free controller resources
2907 * @ioc: per adapter object
2908 */
2909static void
2910mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2911{
2912        struct pci_dev *pdev = ioc->pdev;
2913
2914        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
2915
2916        _base_free_irq(ioc);
2917        _base_disable_msix(ioc);
2918
2919        kfree(ioc->replyPostRegisterIndex);
2920        ioc->replyPostRegisterIndex = NULL;
2921
2922
2923        if (ioc->chip_phys) {
2924                iounmap(ioc->chip);
2925                ioc->chip_phys = 0;
2926        }
2927
2928        if (pci_is_enabled(pdev)) {
2929                pci_release_selected_regions(ioc->pdev, ioc->bars);
2930                pci_disable_pcie_error_reporting(pdev);
2931                pci_disable_device(pdev);
2932        }
2933}
2934
2935/**
2936 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2937 * @ioc: per adapter object
2938 *
2939 * Return: 0 for success, non-zero for failure.
2940 */
2941int
2942mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2943{
2944        struct pci_dev *pdev = ioc->pdev;
2945        u32 memap_sz;
2946        u32 pio_sz;
2947        int i, r = 0;
2948        u64 pio_chip = 0;
2949        phys_addr_t chip_phys = 0;
2950        struct adapter_reply_queue *reply_q;
2951
2952        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
2953
2954        ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2955        if (pci_enable_device_mem(pdev)) {
2956                ioc_warn(ioc, "pci_enable_device_mem: failed\n");
2957                ioc->bars = 0;
2958                return -ENODEV;
2959        }
2960
2961
2962        if (pci_request_selected_regions(pdev, ioc->bars,
2963            ioc->driver_name)) {
2964                ioc_warn(ioc, "pci_request_selected_regions: failed\n");
2965                ioc->bars = 0;
2966                r = -ENODEV;
2967                goto out_fail;
2968        }
2969
2970/* AER (Advanced Error Reporting) hooks */
2971        pci_enable_pcie_error_reporting(pdev);
2972
2973        pci_set_master(pdev);
2974
2975
2976        if (_base_config_dma_addressing(ioc, pdev) != 0) {
2977                ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
2978                r = -ENODEV;
2979                goto out_fail;
2980        }
2981
2982        for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2983             (!memap_sz || !pio_sz); i++) {
2984                if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2985                        if (pio_sz)
2986                                continue;
2987                        pio_chip = (u64)pci_resource_start(pdev, i);
2988                        pio_sz = pci_resource_len(pdev, i);
2989                } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2990                        if (memap_sz)
2991                                continue;
2992                        ioc->chip_phys = pci_resource_start(pdev, i);
2993                        chip_phys = ioc->chip_phys;
2994                        memap_sz = pci_resource_len(pdev, i);
2995                        ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2996                }
2997        }
2998
2999        if (ioc->chip == NULL) {
3000                ioc_err(ioc, "unable to map adapter memory! or resource not found\n");
3001                r = -EINVAL;
3002                goto out_fail;
3003        }
3004
3005        _base_mask_interrupts(ioc);
3006
3007        r = _base_get_ioc_facts(ioc);
3008        if (r)
3009                goto out_fail;
3010
3011        if (!ioc->rdpq_array_enable_assigned) {
3012                ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3013                ioc->rdpq_array_enable_assigned = 1;
3014        }
3015
3016        r = _base_enable_msix(ioc);
3017        if (r)
3018                goto out_fail;
3019
3020        /* Use the Combined reply queue feature only for SAS3 C0 & higher
3021         * revision HBAs and also only when reply queue count is greater than 8
3022         */
3023        if (ioc->combined_reply_queue) {
3024                /* Determine the Supplemental Reply Post Host Index Registers
3025                 * Addresse. Supplemental Reply Post Host Index Registers
3026                 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3027                 * each register is at offset bytes of
3028                 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3029                 */
3030                ioc->replyPostRegisterIndex = kcalloc(
3031                     ioc->combined_reply_index_count,
3032                     sizeof(resource_size_t *), GFP_KERNEL);
3033                if (!ioc->replyPostRegisterIndex) {
3034                        dfailprintk(ioc,
3035                                    ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n"));
3036                        r = -ENOMEM;
3037                        goto out_fail;
3038                }
3039
3040                for (i = 0; i < ioc->combined_reply_index_count; i++) {
3041                        ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3042                             ((u8 __force *)&ioc->chip->Doorbell +
3043                             MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3044                             (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3045                }
3046        }
3047
3048        if (ioc->is_warpdrive) {
3049                ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3050                    &ioc->chip->ReplyPostHostIndex;
3051
3052                for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3053                        ioc->reply_post_host_index[i] =
3054                        (resource_size_t __iomem *)
3055                        ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3056                        * 4)));
3057        }
3058
3059        list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3060                pr_info("%s: %s enabled: IRQ %d\n",
3061                        reply_q->name,
3062                        ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3063                        pci_irq_vector(ioc->pdev, reply_q->msix_index));
3064
3065        ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3066                 &chip_phys, ioc->chip, memap_sz);
3067        ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3068                 (unsigned long long)pio_chip, pio_sz);
3069
3070        /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3071        pci_save_state(pdev);
3072        return 0;
3073
3074 out_fail:
3075        mpt3sas_base_unmap_resources(ioc);
3076        return r;
3077}
3078
3079/**
3080 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3081 * @ioc: per adapter object
3082 * @smid: system request message index(smid zero is invalid)
3083 *
3084 * Return: virt pointer to message frame.
3085 */
3086void *
3087mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3088{
3089        return (void *)(ioc->request + (smid * ioc->request_sz));
3090}
3091
3092/**
3093 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3094 * @ioc: per adapter object
3095 * @smid: system request message index
3096 *
3097 * Return: virt pointer to sense buffer.
3098 */
3099void *
3100mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3101{
3102        return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3103}
3104
3105/**
3106 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3107 * @ioc: per adapter object
3108 * @smid: system request message index
3109 *
3110 * Return: phys pointer to the low 32bit address of the sense buffer.
3111 */
3112__le32
3113mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3114{
3115        return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3116            SCSI_SENSE_BUFFERSIZE));
3117}
3118
3119/**
3120 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3121 * @ioc: per adapter object
3122 * @smid: system request message index
3123 *
3124 * Return: virt pointer to a PCIe SGL.
3125 */
3126void *
3127mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3128{
3129        return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3130}
3131
3132/**
3133 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3134 * @ioc: per adapter object
3135 * @smid: system request message index
3136 *
3137 * Return: phys pointer to the address of the PCIe buffer.
3138 */
3139dma_addr_t
3140mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3141{
3142        return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3143}
3144
3145/**
3146 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3147 * @ioc: per adapter object
3148 * @phys_addr: lower 32 physical addr of the reply
3149 *
3150 * Converts 32bit lower physical addr into a virt address.
3151 */
3152void *
3153mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3154{
3155        if (!phys_addr)
3156                return NULL;
3157        return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3158}
3159
3160static inline u8
3161_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3162{
3163        return ioc->cpu_msix_table[raw_smp_processor_id()];
3164}
3165
3166/**
3167 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3168 * @ioc: per adapter object
3169 * @cb_idx: callback index
3170 *
3171 * Return: smid (zero is invalid)
3172 */
3173u16
3174mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3175{
3176        unsigned long flags;
3177        struct request_tracker *request;
3178        u16 smid;
3179
3180        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3181        if (list_empty(&ioc->internal_free_list)) {
3182                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3183                ioc_err(ioc, "%s: smid not available\n", __func__);
3184                return 0;
3185        }
3186
3187        request = list_entry(ioc->internal_free_list.next,
3188            struct request_tracker, tracker_list);
3189        request->cb_idx = cb_idx;
3190        smid = request->smid;
3191        list_del(&request->tracker_list);
3192        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3193        return smid;
3194}
3195
3196/**
3197 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3198 * @ioc: per adapter object
3199 * @cb_idx: callback index
3200 * @scmd: pointer to scsi command object
3201 *
3202 * Return: smid (zero is invalid)
3203 */
3204u16
3205mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3206        struct scsi_cmnd *scmd)
3207{
3208        struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3209        unsigned int tag = scmd->request->tag;
3210        u16 smid;
3211
3212        smid = tag + 1;
3213        request->cb_idx = cb_idx;
3214        request->msix_io = _base_get_msix_index(ioc);
3215        request->smid = smid;
3216        INIT_LIST_HEAD(&request->chain_list);
3217        return smid;
3218}
3219
3220/**
3221 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3222 * @ioc: per adapter object
3223 * @cb_idx: callback index
3224 *
3225 * Return: smid (zero is invalid)
3226 */
3227u16
3228mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3229{
3230        unsigned long flags;
3231        struct request_tracker *request;
3232        u16 smid;
3233
3234        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3235        if (list_empty(&ioc->hpr_free_list)) {
3236                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3237                return 0;
3238        }
3239
3240        request = list_entry(ioc->hpr_free_list.next,
3241            struct request_tracker, tracker_list);
3242        request->cb_idx = cb_idx;
3243        smid = request->smid;
3244        list_del(&request->tracker_list);
3245        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3246        return smid;
3247}
3248
3249static void
3250_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3251{
3252        /*
3253         * See _wait_for_commands_to_complete() call with regards to this code.
3254         */
3255        if (ioc->shost_recovery && ioc->pending_io_count) {
3256                ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
3257                if (ioc->pending_io_count == 0)
3258                        wake_up(&ioc->reset_wq);
3259        }
3260}
3261
3262void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3263                           struct scsiio_tracker *st)
3264{
3265        if (WARN_ON(st->smid == 0))
3266                return;
3267        st->cb_idx = 0xFF;
3268        st->direct_io = 0;
3269        atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3270        st->smid = 0;
3271}
3272
3273/**
3274 * mpt3sas_base_free_smid - put smid back on free_list
3275 * @ioc: per adapter object
3276 * @smid: system request message index
3277 */
3278void
3279mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3280{
3281        unsigned long flags;
3282        int i;
3283
3284        if (smid < ioc->hi_priority_smid) {
3285                struct scsiio_tracker *st;
3286
3287                st = _get_st_from_smid(ioc, smid);
3288                if (!st) {
3289                        _base_recovery_check(ioc);
3290                        return;
3291                }
3292                mpt3sas_base_clear_st(ioc, st);
3293                _base_recovery_check(ioc);
3294                return;
3295        }
3296
3297        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3298        if (smid < ioc->internal_smid) {
3299                /* hi-priority */
3300                i = smid - ioc->hi_priority_smid;
3301                ioc->hpr_lookup[i].cb_idx = 0xFF;
3302                list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3303        } else if (smid <= ioc->hba_queue_depth) {
3304                /* internal queue */
3305                i = smid - ioc->internal_smid;
3306                ioc->internal_lookup[i].cb_idx = 0xFF;
3307                list_add(&ioc->internal_lookup[i].tracker_list,
3308                    &ioc->internal_free_list);
3309        }
3310        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3311}
3312
3313/**
3314 * _base_mpi_ep_writeq - 32 bit write to MMIO
3315 * @b: data payload
3316 * @addr: address in MMIO space
3317 * @writeq_lock: spin lock
3318 *
3319 * This special handling for MPI EP to take care of 32 bit
3320 * environment where its not quarenteed to send the entire word
3321 * in one transfer.
3322 */
3323static inline void
3324_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3325                                        spinlock_t *writeq_lock)
3326{
3327        unsigned long flags;
3328
3329        spin_lock_irqsave(writeq_lock, flags);
3330        __raw_writel((u32)(b), addr);
3331        __raw_writel((u32)(b >> 32), (addr + 4));
3332        mmiowb();
3333        spin_unlock_irqrestore(writeq_lock, flags);
3334}
3335
3336/**
3337 * _base_writeq - 64 bit write to MMIO
3338 * @b: data payload
3339 * @addr: address in MMIO space
3340 * @writeq_lock: spin lock
3341 *
3342 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3343 * care of 32 bit environment where its not quarenteed to send the entire word
3344 * in one transfer.
3345 */
3346#if defined(writeq) && defined(CONFIG_64BIT)
3347static inline void
3348_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3349{
3350        __raw_writeq(b, addr);
3351        mmiowb();
3352}
3353#else
3354static inline void
3355_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3356{
3357        _base_mpi_ep_writeq(b, addr, writeq_lock);
3358}
3359#endif
3360
3361/**
3362 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3363 * @ioc: per adapter object
3364 * @smid: system request message index
3365 * @handle: device handle
3366 */
3367static void
3368_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3369{
3370        Mpi2RequestDescriptorUnion_t descriptor;
3371        u64 *request = (u64 *)&descriptor;
3372        void *mpi_req_iomem;
3373        __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3374
3375        _clone_sg_entries(ioc, (void *) mfp, smid);
3376        mpi_req_iomem = (void __force *)ioc->chip +
3377                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3378        _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3379                                        ioc->request_sz);
3380        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3381        descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3382        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3383        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3384        descriptor.SCSIIO.LMID = 0;
3385        _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3386            &ioc->scsi_lookup_lock);
3387}
3388
3389/**
3390 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3391 * @ioc: per adapter object
3392 * @smid: system request message index
3393 * @handle: device handle
3394 */
3395static void
3396_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3397{
3398        Mpi2RequestDescriptorUnion_t descriptor;
3399        u64 *request = (u64 *)&descriptor;
3400
3401
3402        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3403        descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3404        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3405        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3406        descriptor.SCSIIO.LMID = 0;
3407        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3408            &ioc->scsi_lookup_lock);
3409}
3410
3411/**
3412 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3413 * @ioc: per adapter object
3414 * @smid: system request message index
3415 * @handle: device handle
3416 */
3417void
3418mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3419        u16 handle)
3420{
3421        Mpi2RequestDescriptorUnion_t descriptor;
3422        u64 *request = (u64 *)&descriptor;
3423
3424        descriptor.SCSIIO.RequestFlags =
3425            MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3426        descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3427        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3428        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3429        descriptor.SCSIIO.LMID = 0;
3430        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3431            &ioc->scsi_lookup_lock);
3432}
3433
3434/**
3435 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3436 * @ioc: per adapter object
3437 * @smid: system request message index
3438 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3439 */
3440void
3441mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3442        u16 msix_task)
3443{
3444        Mpi2RequestDescriptorUnion_t descriptor;
3445        void *mpi_req_iomem;
3446        u64 *request;
3447
3448        if (ioc->is_mcpu_endpoint) {
3449                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3450
3451                /* TBD 256 is offset within sys register. */
3452                mpi_req_iomem = (void __force *)ioc->chip
3453                                        + MPI_FRAME_START_OFFSET
3454                                        + (smid * ioc->request_sz);
3455                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3456                                                        ioc->request_sz);
3457        }
3458
3459        request = (u64 *)&descriptor;
3460
3461        descriptor.HighPriority.RequestFlags =
3462            MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3463        descriptor.HighPriority.MSIxIndex =  msix_task;
3464        descriptor.HighPriority.SMID = cpu_to_le16(smid);
3465        descriptor.HighPriority.LMID = 0;
3466        descriptor.HighPriority.Reserved1 = 0;
3467        if (ioc->is_mcpu_endpoint)
3468                _base_mpi_ep_writeq(*request,
3469                                &ioc->chip->RequestDescriptorPostLow,
3470                                &ioc->scsi_lookup_lock);
3471        else
3472                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3473                    &ioc->scsi_lookup_lock);
3474}
3475
3476/**
3477 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3478 *  firmware
3479 * @ioc: per adapter object
3480 * @smid: system request message index
3481 */
3482void
3483mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3484{
3485        Mpi2RequestDescriptorUnion_t descriptor;
3486        u64 *request = (u64 *)&descriptor;
3487
3488        descriptor.Default.RequestFlags =
3489                MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3490        descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3491        descriptor.Default.SMID = cpu_to_le16(smid);
3492        descriptor.Default.LMID = 0;
3493        descriptor.Default.DescriptorTypeDependent = 0;
3494        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3495            &ioc->scsi_lookup_lock);
3496}
3497
3498/**
3499 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3500 * @ioc: per adapter object
3501 * @smid: system request message index
3502 */
3503void
3504mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3505{
3506        Mpi2RequestDescriptorUnion_t descriptor;
3507        void *mpi_req_iomem;
3508        u64 *request;
3509
3510        if (ioc->is_mcpu_endpoint) {
3511                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3512
3513                _clone_sg_entries(ioc, (void *) mfp, smid);
3514                /* TBD 256 is offset within sys register */
3515                mpi_req_iomem = (void __force *)ioc->chip +
3516                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3517                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3518                                                        ioc->request_sz);
3519        }
3520        request = (u64 *)&descriptor;
3521        descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3522        descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3523        descriptor.Default.SMID = cpu_to_le16(smid);
3524        descriptor.Default.LMID = 0;
3525        descriptor.Default.DescriptorTypeDependent = 0;
3526        if (ioc->is_mcpu_endpoint)
3527                _base_mpi_ep_writeq(*request,
3528                                &ioc->chip->RequestDescriptorPostLow,
3529                                &ioc->scsi_lookup_lock);
3530        else
3531                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3532                                &ioc->scsi_lookup_lock);
3533}
3534
3535/**
3536 * _base_display_OEMs_branding - Display branding string
3537 * @ioc: per adapter object
3538 */
3539static void
3540_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3541{
3542        if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3543                return;
3544
3545        switch (ioc->pdev->subsystem_vendor) {
3546        case PCI_VENDOR_ID_INTEL:
3547                switch (ioc->pdev->device) {
3548                case MPI2_MFGPAGE_DEVID_SAS2008:
3549                        switch (ioc->pdev->subsystem_device) {
3550                        case MPT2SAS_INTEL_RMS2LL080_SSDID:
3551                                ioc_info(ioc, "%s\n",
3552                                         MPT2SAS_INTEL_RMS2LL080_BRANDING);
3553                                break;
3554                        case MPT2SAS_INTEL_RMS2LL040_SSDID:
3555                                ioc_info(ioc, "%s\n",
3556                                         MPT2SAS_INTEL_RMS2LL040_BRANDING);
3557                                break;
3558                        case MPT2SAS_INTEL_SSD910_SSDID:
3559                                ioc_info(ioc, "%s\n",
3560                                         MPT2SAS_INTEL_SSD910_BRANDING);
3561                                break;
3562                        default:
3563                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3564                                         ioc->pdev->subsystem_device);
3565                                break;
3566                        }
3567                case MPI2_MFGPAGE_DEVID_SAS2308_2:
3568                        switch (ioc->pdev->subsystem_device) {
3569                        case MPT2SAS_INTEL_RS25GB008_SSDID:
3570                                ioc_info(ioc, "%s\n",
3571                                         MPT2SAS_INTEL_RS25GB008_BRANDING);
3572                                break;
3573                        case MPT2SAS_INTEL_RMS25JB080_SSDID:
3574                                ioc_info(ioc, "%s\n",
3575                                         MPT2SAS_INTEL_RMS25JB080_BRANDING);
3576                                break;
3577                        case MPT2SAS_INTEL_RMS25JB040_SSDID:
3578                                ioc_info(ioc, "%s\n",
3579                                         MPT2SAS_INTEL_RMS25JB040_BRANDING);
3580                                break;
3581                        case MPT2SAS_INTEL_RMS25KB080_SSDID:
3582                                ioc_info(ioc, "%s\n",
3583                                         MPT2SAS_INTEL_RMS25KB080_BRANDING);
3584                                break;
3585                        case MPT2SAS_INTEL_RMS25KB040_SSDID:
3586                                ioc_info(ioc, "%s\n",
3587                                         MPT2SAS_INTEL_RMS25KB040_BRANDING);
3588                                break;
3589                        case MPT2SAS_INTEL_RMS25LB040_SSDID:
3590                                ioc_info(ioc, "%s\n",
3591                                         MPT2SAS_INTEL_RMS25LB040_BRANDING);
3592                                break;
3593                        case MPT2SAS_INTEL_RMS25LB080_SSDID:
3594                                ioc_info(ioc, "%s\n",
3595                                         MPT2SAS_INTEL_RMS25LB080_BRANDING);
3596                                break;
3597                        default:
3598                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3599                                         ioc->pdev->subsystem_device);
3600                                break;
3601                        }
3602                case MPI25_MFGPAGE_DEVID_SAS3008:
3603                        switch (ioc->pdev->subsystem_device) {
3604                        case MPT3SAS_INTEL_RMS3JC080_SSDID:
3605                                ioc_info(ioc, "%s\n",
3606                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
3607                                break;
3608
3609                        case MPT3SAS_INTEL_RS3GC008_SSDID:
3610                                ioc_info(ioc, "%s\n",
3611                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
3612                                break;
3613                        case MPT3SAS_INTEL_RS3FC044_SSDID:
3614                                ioc_info(ioc, "%s\n",
3615                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
3616                                break;
3617                        case MPT3SAS_INTEL_RS3UC080_SSDID:
3618                                ioc_info(ioc, "%s\n",
3619                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
3620                                break;
3621                        default:
3622                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3623                                         ioc->pdev->subsystem_device);
3624                                break;
3625                        }
3626                        break;
3627                default:
3628                        ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3629                                 ioc->pdev->subsystem_device);
3630                        break;
3631                }
3632                break;
3633        case PCI_VENDOR_ID_DELL:
3634                switch (ioc->pdev->device) {
3635                case MPI2_MFGPAGE_DEVID_SAS2008:
3636                        switch (ioc->pdev->subsystem_device) {
3637                        case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3638                                ioc_info(ioc, "%s\n",
3639                                         MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3640                                break;
3641                        case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3642                                ioc_info(ioc, "%s\n",
3643                                         MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3644                                break;
3645                        case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3646                                ioc_info(ioc, "%s\n",
3647                                         MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3648                                break;
3649                        case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3650                                ioc_info(ioc, "%s\n",
3651                                         MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3652                                break;
3653                        case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3654                                ioc_info(ioc, "%s\n",
3655                                         MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3656                                break;
3657                        case MPT2SAS_DELL_PERC_H200_SSDID:
3658                                ioc_info(ioc, "%s\n",
3659                                         MPT2SAS_DELL_PERC_H200_BRANDING);
3660                                break;
3661                        case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3662                                ioc_info(ioc, "%s\n",
3663                                         MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3664                                break;
3665                        default:
3666                                ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3667                                         ioc->pdev->subsystem_device);
3668                                break;
3669                        }
3670                        break;
3671                case MPI25_MFGPAGE_DEVID_SAS3008:
3672                        switch (ioc->pdev->subsystem_device) {
3673                        case MPT3SAS_DELL_12G_HBA_SSDID:
3674                                ioc_info(ioc, "%s\n",
3675                                         MPT3SAS_DELL_12G_HBA_BRANDING);
3676                                break;
3677                        default:
3678                                ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3679                                         ioc->pdev->subsystem_device);
3680                                break;
3681                        }
3682                        break;
3683                default:
3684                        ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
3685                                 ioc->pdev->subsystem_device);
3686                        break;
3687                }
3688                break;
3689        case PCI_VENDOR_ID_CISCO:
3690                switch (ioc->pdev->device) {
3691                case MPI25_MFGPAGE_DEVID_SAS3008:
3692                        switch (ioc->pdev->subsystem_device) {
3693                        case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3694                                ioc_info(ioc, "%s\n",
3695                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3696                                break;
3697                        case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3698                                ioc_info(ioc, "%s\n",
3699                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3700                                break;
3701                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3702                                ioc_info(ioc, "%s\n",
3703                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3704                                break;
3705                        default:
3706                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3707                                         ioc->pdev->subsystem_device);
3708                                break;
3709                        }
3710                        break;
3711                case MPI25_MFGPAGE_DEVID_SAS3108_1:
3712                        switch (ioc->pdev->subsystem_device) {
3713                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3714                                ioc_info(ioc, "%s\n",
3715                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3716                                break;
3717                        case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3718                                ioc_info(ioc, "%s\n",
3719                                         MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
3720                                break;
3721                        default:
3722                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3723                                         ioc->pdev->subsystem_device);
3724                                break;
3725                        }
3726                        break;
3727                default:
3728                        ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3729                                 ioc->pdev->subsystem_device);
3730                        break;
3731                }
3732                break;
3733        case MPT2SAS_HP_3PAR_SSVID:
3734                switch (ioc->pdev->device) {
3735                case MPI2_MFGPAGE_DEVID_SAS2004:
3736                        switch (ioc->pdev->subsystem_device) {
3737                        case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3738                                ioc_info(ioc, "%s\n",
3739                                         MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3740                                break;
3741                        default:
3742                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3743                                         ioc->pdev->subsystem_device);
3744                                break;
3745                        }
3746                case MPI2_MFGPAGE_DEVID_SAS2308_2:
3747                        switch (ioc->pdev->subsystem_device) {
3748                        case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3749                                ioc_info(ioc, "%s\n",
3750                                         MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3751                                break;
3752                        case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3753                                ioc_info(ioc, "%s\n",
3754                                         MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3755                                break;
3756                        case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3757                                ioc_info(ioc, "%s\n",
3758                                         MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3759                                break;
3760                        case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3761                                ioc_info(ioc, "%s\n",
3762                                         MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3763                                break;
3764                        default:
3765                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3766                                         ioc->pdev->subsystem_device);
3767                                break;
3768                        }
3769                default:
3770                        ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
3771                                 ioc->pdev->subsystem_device);
3772                        break;
3773                }
3774        default:
3775                break;
3776        }
3777}
3778
3779/**
3780 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3781 *                              version from FW Image Header.
3782 * @ioc: per adapter object
3783 *
3784 * Return: 0 for success, non-zero for failure.
3785 */
3786        static int
3787_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3788{
3789        Mpi2FWImageHeader_t *FWImgHdr;
3790        Mpi25FWUploadRequest_t *mpi_request;
3791        Mpi2FWUploadReply_t mpi_reply;
3792        int r = 0;
3793        void *fwpkg_data = NULL;
3794        dma_addr_t fwpkg_data_dma;
3795        u16 smid, ioc_status;
3796        size_t data_length;
3797
3798        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3799
3800        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3801                ioc_err(ioc, "%s: internal command already in use\n", __func__);
3802                return -EAGAIN;
3803        }
3804
3805        data_length = sizeof(Mpi2FWImageHeader_t);
3806        fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3807                        &fwpkg_data_dma);
3808        if (!fwpkg_data) {
3809                ioc_err(ioc, "failure at %s:%d/%s()!\n",
3810                        __FILE__, __LINE__, __func__);
3811                return -ENOMEM;
3812        }
3813
3814        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3815        if (!smid) {
3816                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
3817                r = -EAGAIN;
3818                goto out;
3819        }
3820
3821        ioc->base_cmds.status = MPT3_CMD_PENDING;
3822        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3823        ioc->base_cmds.smid = smid;
3824        memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3825        mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3826        mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3827        mpi_request->ImageSize = cpu_to_le32(data_length);
3828        ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3829                        data_length);
3830        init_completion(&ioc->base_cmds.done);
3831        mpt3sas_base_put_smid_default(ioc, smid);
3832        /* Wait for 15 seconds */
3833        wait_for_completion_timeout(&ioc->base_cmds.done,
3834                        FW_IMG_HDR_READ_TIMEOUT*HZ);
3835        ioc_info(ioc, "%s: complete\n", __func__);
3836        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3837                ioc_err(ioc, "%s: timeout\n", __func__);
3838                _debug_dump_mf(mpi_request,
3839                                sizeof(Mpi25FWUploadRequest_t)/4);
3840                r = -ETIME;
3841        } else {
3842                memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3843                if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3844                        memcpy(&mpi_reply, ioc->base_cmds.reply,
3845                                        sizeof(Mpi2FWUploadReply_t));
3846                        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3847                                                MPI2_IOCSTATUS_MASK;
3848                        if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3849                                FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3850                                if (FWImgHdr->PackageVersion.Word) {
3851                                        ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n",
3852                                                 FWImgHdr->PackageVersion.Struct.Major,
3853                                                 FWImgHdr->PackageVersion.Struct.Minor,
3854                                                 FWImgHdr->PackageVersion.Struct.Unit,
3855                                                 FWImgHdr->PackageVersion.Struct.Dev);
3856                                }
3857                        } else {
3858                                _debug_dump_mf(&mpi_reply,
3859                                                sizeof(Mpi2FWUploadReply_t)/4);
3860                        }
3861                }
3862        }
3863        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3864out:
3865        if (fwpkg_data)
3866                pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3867                                fwpkg_data_dma);
3868        return r;
3869}
3870
3871/**
3872 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3873 * @ioc: per adapter object
3874 */
3875static void
3876_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3877{
3878        int i = 0;
3879        char desc[16];
3880        u32 iounit_pg1_flags;
3881        u32 bios_version;
3882
3883        bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3884        strncpy(desc, ioc->manu_pg0.ChipName, 16);
3885        ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3886                 desc,
3887                 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3888                 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3889                 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3890                 ioc->facts.FWVersion.Word & 0x000000FF,
3891                 ioc->pdev->revision,
3892                 (bios_version & 0xFF000000) >> 24,
3893                 (bios_version & 0x00FF0000) >> 16,
3894                 (bios_version & 0x0000FF00) >> 8,
3895                 bios_version & 0x000000FF);
3896
3897        _base_display_OEMs_branding(ioc);
3898
3899        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3900                pr_info("%sNVMe", i ? "," : "");
3901                i++;
3902        }
3903
3904        ioc_info(ioc, "Protocol=(");
3905
3906        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3907                pr_cont("Initiator");
3908                i++;
3909        }
3910
3911        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3912                pr_cont("%sTarget", i ? "," : "");
3913                i++;
3914        }
3915
3916        i = 0;
3917        pr_cont("), Capabilities=(");
3918
3919        if (!ioc->hide_ir_msg) {
3920                if (ioc->facts.IOCCapabilities &
3921                    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3922                        pr_cont("Raid");
3923                        i++;
3924                }
3925        }
3926
3927        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3928                pr_cont("%sTLR", i ? "," : "");
3929                i++;
3930        }
3931
3932        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3933                pr_cont("%sMulticast", i ? "," : "");
3934                i++;
3935        }
3936
3937        if (ioc->facts.IOCCapabilities &
3938            MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3939                pr_cont("%sBIDI Target", i ? "," : "");
3940                i++;
3941        }
3942
3943        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3944                pr_cont("%sEEDP", i ? "," : "");
3945                i++;
3946        }
3947
3948        if (ioc->facts.IOCCapabilities &
3949            MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3950                pr_cont("%sSnapshot Buffer", i ? "," : "");
3951                i++;
3952        }
3953
3954        if (ioc->facts.IOCCapabilities &
3955            MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3956                pr_cont("%sDiag Trace Buffer", i ? "," : "");
3957                i++;
3958        }
3959
3960        if (ioc->facts.IOCCapabilities &
3961            MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3962                pr_cont("%sDiag Extended Buffer", i ? "," : "");
3963                i++;
3964        }
3965
3966        if (ioc->facts.IOCCapabilities &
3967            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3968                pr_cont("%sTask Set Full", i ? "," : "");
3969                i++;
3970        }
3971
3972        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3973        if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3974                pr_cont("%sNCQ", i ? "," : "");
3975                i++;
3976        }
3977
3978        pr_cont(")\n");
3979}
3980
3981/**
3982 * mpt3sas_base_update_missing_delay - change the missing delay timers
3983 * @ioc: per adapter object
3984 * @device_missing_delay: amount of time till device is reported missing
3985 * @io_missing_delay: interval IO is returned when there is a missing device
3986 *
3987 * Passed on the command line, this function will modify the device missing
3988 * delay, as well as the io missing delay. This should be called at driver
3989 * load time.
3990 */
3991void
3992mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3993        u16 device_missing_delay, u8 io_missing_delay)
3994{
3995        u16 dmd, dmd_new, dmd_orignal;
3996        u8 io_missing_delay_original;
3997        u16 sz;
3998        Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3999        Mpi2ConfigReply_t mpi_reply;
4000        u8 num_phys = 0;
4001        u16 ioc_status;
4002
4003        mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4004        if (!num_phys)
4005                return;
4006
4007        sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4008            sizeof(Mpi2SasIOUnit1PhyData_t));
4009        sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4010        if (!sas_iounit_pg1) {
4011                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4012                        __FILE__, __LINE__, __func__);
4013                goto out;
4014        }
4015        if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4016            sas_iounit_pg1, sz))) {
4017                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4018                        __FILE__, __LINE__, __func__);
4019                goto out;
4020        }
4021        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4022            MPI2_IOCSTATUS_MASK;
4023        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4024                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4025                        __FILE__, __LINE__, __func__);
4026                goto out;
4027        }
4028
4029        /* device missing delay */
4030        dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4031        if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4032                dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4033        else
4034                dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4035        dmd_orignal = dmd;
4036        if (device_missing_delay > 0x7F) {
4037                dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4038                    device_missing_delay;
4039                dmd = dmd / 16;
4040                dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4041        } else
4042                dmd = device_missing_delay;
4043        sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4044
4045        /* io missing delay */
4046        io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4047        sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4048
4049        if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4050            sz)) {
4051                if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4052                        dmd_new = (dmd &
4053                            MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4054                else
4055                        dmd_new =
4056                    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4057                ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4058                         dmd_orignal, dmd_new);
4059                ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4060                         io_missing_delay_original,
4061                         io_missing_delay);
4062                ioc->device_missing_delay = dmd_new;
4063                ioc->io_missing_delay = io_missing_delay;
4064        }
4065
4066out:
4067        kfree(sas_iounit_pg1);
4068}
4069
4070/**
4071 * _base_static_config_pages - static start of day config pages
4072 * @ioc: per adapter object
4073 */
4074static void
4075_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4076{
4077        Mpi2ConfigReply_t mpi_reply;
4078        u32 iounit_pg1_flags;
4079
4080        ioc->nvme_abort_timeout = 30;
4081        mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4082        if (ioc->ir_firmware)
4083                mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4084                    &ioc->manu_pg10);
4085
4086        /*
4087         * Ensure correct T10 PI operation if vendor left EEDPTagMode
4088         * flag unset in NVDATA.
4089         */
4090        mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4091        if (ioc->manu_pg11.EEDPTagMode == 0) {
4092                pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4093                    ioc->name);
4094                ioc->manu_pg11.EEDPTagMode &= ~0x3;
4095                ioc->manu_pg11.EEDPTagMode |= 0x1;
4096                mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4097                    &ioc->manu_pg11);
4098        }
4099        if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4100                ioc->tm_custom_handling = 1;
4101        else {
4102                ioc->tm_custom_handling = 0;
4103                if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4104                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4105                else if (ioc->manu_pg11.NVMeAbortTO >
4106                                        NVME_TASK_ABORT_MAX_TIMEOUT)
4107                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4108                else
4109                        ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4110        }
4111
4112        mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4113        mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4114        mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4115        mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4116        mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4117        mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4118        _base_display_ioc_capabilities(ioc);
4119
4120        /*
4121         * Enable task_set_full handling in iounit_pg1 when the
4122         * facts capabilities indicate that its supported.
4123         */
4124        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4125        if ((ioc->facts.IOCCapabilities &
4126            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4127                iounit_pg1_flags &=
4128                    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4129        else
4130                iounit_pg1_flags |=
4131                    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4132        ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4133        mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4134
4135        if (ioc->iounit_pg8.NumSensors)
4136                ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4137}
4138
4139/**
4140 * mpt3sas_free_enclosure_list - release memory
4141 * @ioc: per adapter object
4142 *
4143 * Free memory allocated during encloure add.
4144 */
4145void
4146mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4147{
4148        struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4149
4150        /* Free enclosure list */
4151        list_for_each_entry_safe(enclosure_dev,
4152                        enclosure_dev_next, &ioc->enclosure_list, list) {
4153                list_del(&enclosure_dev->list);
4154                kfree(enclosure_dev);
4155        }
4156}
4157
4158/**
4159 * _base_release_memory_pools - release memory
4160 * @ioc: per adapter object
4161 *
4162 * Free memory allocated from _base_allocate_memory_pools.
4163 */
4164static void
4165_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4166{
4167        int i = 0;
4168        int j = 0;
4169        struct chain_tracker *ct;
4170        struct reply_post_struct *rps;
4171
4172        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4173
4174        if (ioc->request) {
4175                pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4176                    ioc->request,  ioc->request_dma);
4177                dexitprintk(ioc,
4178                            ioc_info(ioc, "request_pool(0x%p): free\n",
4179                                     ioc->request));
4180                ioc->request = NULL;
4181        }
4182
4183        if (ioc->sense) {
4184                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4185                dma_pool_destroy(ioc->sense_dma_pool);
4186                dexitprintk(ioc,
4187                            ioc_info(ioc, "sense_pool(0x%p): free\n",
4188                                     ioc->sense));
4189                ioc->sense = NULL;
4190        }
4191
4192        if (ioc->reply) {
4193                dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4194                dma_pool_destroy(ioc->reply_dma_pool);
4195                dexitprintk(ioc,
4196                            ioc_info(ioc, "reply_pool(0x%p): free\n",
4197                                     ioc->reply));
4198                ioc->reply = NULL;
4199        }
4200
4201        if (ioc->reply_free) {
4202                dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4203                    ioc->reply_free_dma);
4204                dma_pool_destroy(ioc->reply_free_dma_pool);
4205                dexitprintk(ioc,
4206                            ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4207                                     ioc->reply_free));
4208                ioc->reply_free = NULL;
4209        }
4210
4211        if (ioc->reply_post) {
4212                do {
4213                        rps = &ioc->reply_post[i];
4214                        if (rps->reply_post_free) {
4215                                dma_pool_free(
4216                                    ioc->reply_post_free_dma_pool,
4217                                    rps->reply_post_free,
4218                                    rps->reply_post_free_dma);
4219                                dexitprintk(ioc,
4220                                            ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4221                                                     rps->reply_post_free));
4222                                rps->reply_post_free = NULL;
4223                        }
4224                } while (ioc->rdpq_array_enable &&
4225                           (++i < ioc->reply_queue_count));
4226                if (ioc->reply_post_free_array &&
4227                        ioc->rdpq_array_enable) {
4228                        dma_pool_free(ioc->reply_post_free_array_dma_pool,
4229                                ioc->reply_post_free_array,
4230                                ioc->reply_post_free_array_dma);
4231                        ioc->reply_post_free_array = NULL;
4232                }
4233                dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4234                dma_pool_destroy(ioc->reply_post_free_dma_pool);
4235                kfree(ioc->reply_post);
4236        }
4237
4238        if (ioc->pcie_sgl_dma_pool) {
4239                for (i = 0; i < ioc->scsiio_depth; i++) {
4240                        dma_pool_free(ioc->pcie_sgl_dma_pool,
4241                                        ioc->pcie_sg_lookup[i].pcie_sgl,
4242                                        ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4243                }
4244                if (ioc->pcie_sgl_dma_pool)
4245                        dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4246        }
4247
4248        if (ioc->config_page) {
4249                dexitprintk(ioc,
4250                            ioc_info(ioc, "config_page(0x%p): free\n",
4251                                     ioc->config_page));
4252                pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4253                    ioc->config_page, ioc->config_page_dma);
4254        }
4255
4256        kfree(ioc->hpr_lookup);
4257        kfree(ioc->internal_lookup);
4258        if (ioc->chain_lookup) {
4259                for (i = 0; i < ioc->scsiio_depth; i++) {
4260                        for (j = ioc->chains_per_prp_buffer;
4261                            j < ioc->chains_needed_per_io; j++) {
4262                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
4263                                if (ct && ct->chain_buffer)
4264                                        dma_pool_free(ioc->chain_dma_pool,
4265                                                ct->chain_buffer,
4266                                                ct->chain_buffer_dma);
4267                        }
4268                        kfree(ioc->chain_lookup[i].chains_per_smid);
4269                }
4270                dma_pool_destroy(ioc->chain_dma_pool);
4271                kfree(ioc->chain_lookup);
4272                ioc->chain_lookup = NULL;
4273        }
4274}
4275
4276/**
4277 * is_MSB_are_same - checks whether all reply queues in a set are
4278 *      having same upper 32bits in their base memory address.
4279 * @reply_pool_start_address: Base address of a reply queue set
4280 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4281 *
4282 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4283 * memory address, else 0.
4284 */
4285
4286static int
4287is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4288{
4289        long reply_pool_end_address;
4290
4291        reply_pool_end_address = reply_pool_start_address + pool_sz;
4292
4293        if (upper_32_bits(reply_pool_start_address) ==
4294                upper_32_bits(reply_pool_end_address))
4295                return 1;
4296        else
4297                return 0;
4298}
4299
4300/**
4301 * _base_allocate_memory_pools - allocate start of day memory pools
4302 * @ioc: per adapter object
4303 *
4304 * Return: 0 success, anything else error.
4305 */
4306static int
4307_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4308{
4309        struct mpt3sas_facts *facts;
4310        u16 max_sge_elements;
4311        u16 chains_needed_per_io;
4312        u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4313        u32 retry_sz;
4314        u16 max_request_credit, nvme_blocks_needed;
4315        unsigned short sg_tablesize;
4316        u16 sge_size;
4317        int i, j;
4318        struct chain_tracker *ct;
4319
4320        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4321
4322
4323        retry_sz = 0;
4324        facts = &ioc->facts;
4325
4326        /* command line tunables for max sgl entries */
4327        if (max_sgl_entries != -1)
4328                sg_tablesize = max_sgl_entries;
4329        else {
4330                if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4331                        sg_tablesize = MPT2SAS_SG_DEPTH;
4332                else
4333                        sg_tablesize = MPT3SAS_SG_DEPTH;
4334        }
4335
4336        /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4337        if (reset_devices)
4338                sg_tablesize = min_t(unsigned short, sg_tablesize,
4339                   MPT_KDUMP_MIN_PHYS_SEGMENTS);
4340
4341        if (ioc->is_mcpu_endpoint)
4342                ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4343        else {
4344                if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4345                        sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4346                else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4347                        sg_tablesize = min_t(unsigned short, sg_tablesize,
4348                                        SG_MAX_SEGMENTS);
4349                        ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4350                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4351                }
4352                ioc->shost->sg_tablesize = sg_tablesize;
4353        }
4354
4355        ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4356                (facts->RequestCredit / 4));
4357        if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4358                if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4359                                INTERNAL_SCSIIO_CMDS_COUNT)) {
4360                        ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4361                                facts->RequestCredit);
4362                        return -ENOMEM;
4363                }
4364                ioc->internal_depth = 10;
4365        }
4366
4367        ioc->hi_priority_depth = ioc->internal_depth - (5);
4368        /* command line tunables  for max controller queue depth */
4369        if (max_queue_depth != -1 && max_queue_depth != 0) {
4370                max_request_credit = min_t(u16, max_queue_depth +
4371                        ioc->internal_depth, facts->RequestCredit);
4372                if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4373                        max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4374        } else if (reset_devices)
4375                max_request_credit = min_t(u16, facts->RequestCredit,
4376                    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4377        else
4378                max_request_credit = min_t(u16, facts->RequestCredit,
4379                    MAX_HBA_QUEUE_DEPTH);
4380
4381        /* Firmware maintains additional facts->HighPriorityCredit number of
4382         * credits for HiPriprity Request messages, so hba queue depth will be
4383         * sum of max_request_credit and high priority queue depth.
4384         */
4385        ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4386
4387        /* request frame size */
4388        ioc->request_sz = facts->IOCRequestFrameSize * 4;
4389
4390        /* reply frame size */
4391        ioc->reply_sz = facts->ReplyFrameSize * 4;
4392
4393        /* chain segment size */
4394        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4395                if (facts->IOCMaxChainSegmentSize)
4396                        ioc->chain_segment_sz =
4397                                        facts->IOCMaxChainSegmentSize *
4398                                        MAX_CHAIN_ELEMT_SZ;
4399                else
4400                /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4401                        ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4402                                                    MAX_CHAIN_ELEMT_SZ;
4403        } else
4404                ioc->chain_segment_sz = ioc->request_sz;
4405
4406        /* calculate the max scatter element size */
4407        sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4408
4409 retry_allocation:
4410        total_sz = 0;
4411        /* calculate number of sg elements left over in the 1st frame */
4412        max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4413            sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4414        ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4415
4416        /* now do the same for a chain buffer */
4417        max_sge_elements = ioc->chain_segment_sz - sge_size;
4418        ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4419
4420        /*
4421         *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4422         */
4423        chains_needed_per_io = ((ioc->shost->sg_tablesize -
4424           ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4425            + 1;
4426        if (chains_needed_per_io > facts->MaxChainDepth) {
4427                chains_needed_per_io = facts->MaxChainDepth;
4428                ioc->shost->sg_tablesize = min_t(u16,
4429                ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4430                * chains_needed_per_io), ioc->shost->sg_tablesize);
4431        }
4432        ioc->chains_needed_per_io = chains_needed_per_io;
4433
4434        /* reply free queue sizing - taking into account for 64 FW events */
4435        ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4436
4437        /* mCPU manage single counters for simplicity */
4438        if (ioc->is_mcpu_endpoint)
4439                ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4440        else {
4441                /* calculate reply descriptor post queue depth */
4442                ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4443                        ioc->reply_free_queue_depth +  1;
4444                /* align the reply post queue on the next 16 count boundary */
4445                if (ioc->reply_post_queue_depth % 16)
4446                        ioc->reply_post_queue_depth += 16 -
4447                                (ioc->reply_post_queue_depth % 16);
4448        }
4449
4450        if (ioc->reply_post_queue_depth >
4451            facts->MaxReplyDescriptorPostQueueDepth) {
4452                ioc->reply_post_queue_depth =
4453                                facts->MaxReplyDescriptorPostQueueDepth -
4454                    (facts->MaxReplyDescriptorPostQueueDepth % 16);
4455                ioc->hba_queue_depth =
4456                                ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4457                ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4458        }
4459
4460        dinitprintk(ioc,
4461                    ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4462                             ioc->max_sges_in_main_message,
4463                             ioc->max_sges_in_chain_message,
4464                             ioc->shost->sg_tablesize,
4465                             ioc->chains_needed_per_io));
4466
4467        /* reply post queue, 16 byte align */
4468        reply_post_free_sz = ioc->reply_post_queue_depth *
4469            sizeof(Mpi2DefaultReplyDescriptor_t);
4470
4471        sz = reply_post_free_sz;
4472        if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4473                sz *= ioc->reply_queue_count;
4474
4475        ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4476            (ioc->reply_queue_count):1,
4477            sizeof(struct reply_post_struct), GFP_KERNEL);
4478
4479        if (!ioc->reply_post) {
4480                ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
4481                goto out;
4482        }
4483        ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4484            &ioc->pdev->dev, sz, 16, 0);
4485        if (!ioc->reply_post_free_dma_pool) {
4486                ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
4487                goto out;
4488        }
4489        i = 0;
4490        do {
4491                ioc->reply_post[i].reply_post_free =
4492                    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4493                    GFP_KERNEL,
4494                    &ioc->reply_post[i].reply_post_free_dma);
4495                if (!ioc->reply_post[i].reply_post_free) {
4496                        ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
4497                        goto out;
4498                }
4499                dinitprintk(ioc,
4500                            ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4501                                     ioc->reply_post[i].reply_post_free,
4502                                     ioc->reply_post_queue_depth,
4503                                     8, sz / 1024));
4504                dinitprintk(ioc,
4505                            ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
4506                                     (u64)ioc->reply_post[i].reply_post_free_dma));
4507                total_sz += sz;
4508        } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4509
4510        if (ioc->dma_mask == 64) {
4511                if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4512                        ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
4513                                 pci_name(ioc->pdev));
4514                        goto out;
4515                }
4516        }
4517
4518        ioc->scsiio_depth = ioc->hba_queue_depth -
4519            ioc->hi_priority_depth - ioc->internal_depth;
4520
4521        /* set the scsi host can_queue depth
4522         * with some internal commands that could be outstanding
4523         */
4524        ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4525        dinitprintk(ioc,
4526                    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
4527                             ioc->shost->can_queue));
4528
4529
4530        /* contiguous pool for request and chains, 16 byte align, one extra "
4531         * "frame for smid=0
4532         */
4533        ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4534        sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4535
4536        /* hi-priority queue */
4537        sz += (ioc->hi_priority_depth * ioc->request_sz);
4538
4539        /* internal queue */
4540        sz += (ioc->internal_depth * ioc->request_sz);
4541
4542        ioc->request_dma_sz = sz;
4543        ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4544        if (!ioc->request) {
4545                ioc_err(ioc, "request pool: pci_alloc_consistent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
4546                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
4547                        ioc->request_sz, sz / 1024);
4548                if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4549                        goto out;
4550                retry_sz = 64;
4551                ioc->hba_queue_depth -= retry_sz;
4552                _base_release_memory_pools(ioc);
4553                goto retry_allocation;
4554        }
4555
4556        if (retry_sz)
4557                ioc_err(ioc, "request pool: pci_alloc_consistent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
4558                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
4559                        ioc->request_sz, sz / 1024);
4560
4561        /* hi-priority queue */
4562        ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4563            ioc->request_sz);
4564        ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4565            ioc->request_sz);
4566
4567        /* internal queue */
4568        ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4569            ioc->request_sz);
4570        ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4571            ioc->request_sz);
4572
4573        dinitprintk(ioc,
4574                    ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4575                             ioc->request, ioc->hba_queue_depth,
4576                             ioc->request_sz,
4577                             (ioc->hba_queue_depth * ioc->request_sz) / 1024));
4578
4579        dinitprintk(ioc,
4580                    ioc_info(ioc, "request pool: dma(0x%llx)\n",
4581                             (unsigned long long)ioc->request_dma));
4582        total_sz += sz;
4583
4584        dinitprintk(ioc,
4585                    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
4586                             ioc->request, ioc->scsiio_depth));
4587
4588        ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4589        sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4590        ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4591        if (!ioc->chain_lookup) {
4592                ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
4593                goto out;
4594        }
4595
4596        sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4597        for (i = 0; i < ioc->scsiio_depth; i++) {
4598                ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4599                if (!ioc->chain_lookup[i].chains_per_smid) {
4600                        ioc_err(ioc, "chain_lookup: kzalloc failed\n");
4601                        goto out;
4602                }
4603        }
4604
4605        /* initialize hi-priority queue smid's */
4606        ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4607            sizeof(struct request_tracker), GFP_KERNEL);
4608        if (!ioc->hpr_lookup) {
4609                ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
4610                goto out;
4611        }
4612        ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4613        dinitprintk(ioc,
4614                    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4615                             ioc->hi_priority,
4616                             ioc->hi_priority_depth, ioc->hi_priority_smid));
4617
4618        /* initialize internal queue smid's */
4619        ioc->internal_lookup = kcalloc(ioc->internal_depth,
4620            sizeof(struct request_tracker), GFP_KERNEL);
4621        if (!ioc->internal_lookup) {
4622                ioc_err(ioc, "internal_lookup: kcalloc failed\n");
4623                goto out;
4624        }
4625        ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4626        dinitprintk(ioc,
4627                    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
4628                             ioc->internal,
4629                             ioc->internal_depth, ioc->internal_smid));
4630        /*
4631         * The number of NVMe page sized blocks needed is:
4632         *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4633         * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4634         * that is placed in the main message frame.  8 is the size of each PRP
4635         * entry or PRP list pointer entry.  8 is subtracted from page_size
4636         * because of the PRP list pointer entry at the end of a page, so this
4637         * is not counted as a PRP entry.  The 1 added page is a round up.
4638         *
4639         * To avoid allocation failures due to the amount of memory that could
4640         * be required for NVMe PRP's, only each set of NVMe blocks will be
4641         * contiguous, so a new set is allocated for each possible I/O.
4642         */
4643        ioc->chains_per_prp_buffer = 0;
4644        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4645                nvme_blocks_needed =
4646                        (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4647                nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4648                nvme_blocks_needed++;
4649
4650                sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4651                ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4652                if (!ioc->pcie_sg_lookup) {
4653                        ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
4654                        goto out;
4655                }
4656                sz = nvme_blocks_needed * ioc->page_size;
4657                ioc->pcie_sgl_dma_pool =
4658                        dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4659                if (!ioc->pcie_sgl_dma_pool) {
4660                        ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
4661                        goto out;
4662                }
4663
4664                ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4665                ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4666                                                ioc->chains_needed_per_io);
4667
4668                for (i = 0; i < ioc->scsiio_depth; i++) {
4669                        ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4670                                ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4671                                &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4672                        if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4673                                ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
4674                                goto out;
4675                        }
4676                        for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4677                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
4678                                ct->chain_buffer =
4679                                    ioc->pcie_sg_lookup[i].pcie_sgl +
4680                                    (j * ioc->chain_segment_sz);
4681                                ct->chain_buffer_dma =
4682                                    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4683                                    (j * ioc->chain_segment_sz);
4684                        }
4685                }
4686
4687                dinitprintk(ioc,
4688                            ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
4689                                     ioc->scsiio_depth, sz,
4690                                     (sz * ioc->scsiio_depth) / 1024));
4691                dinitprintk(ioc,
4692                            ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
4693                                     ioc->chains_per_prp_buffer));
4694                total_sz += sz * ioc->scsiio_depth;
4695        }
4696
4697        ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4698            ioc->chain_segment_sz, 16, 0);
4699        if (!ioc->chain_dma_pool) {
4700                ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
4701                goto out;
4702        }
4703        for (i = 0; i < ioc->scsiio_depth; i++) {
4704                for (j = ioc->chains_per_prp_buffer;
4705                                j < ioc->chains_needed_per_io; j++) {
4706                        ct = &ioc->chain_lookup[i].chains_per_smid[j];
4707                        ct->chain_buffer = dma_pool_alloc(
4708                                        ioc->chain_dma_pool, GFP_KERNEL,
4709                                        &ct->chain_buffer_dma);
4710                        if (!ct->chain_buffer) {
4711                                ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
4712                                _base_release_memory_pools(ioc);
4713                                goto out;
4714                        }
4715                }
4716                total_sz += ioc->chain_segment_sz;
4717        }
4718
4719        dinitprintk(ioc,
4720                    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4721                             ioc->chain_depth, ioc->chain_segment_sz,
4722                             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
4723
4724        /* sense buffers, 4 byte align */
4725        sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4726        ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4727                                              4, 0);
4728        if (!ioc->sense_dma_pool) {
4729                ioc_err(ioc, "sense pool: dma_pool_create failed\n");
4730                goto out;
4731        }
4732        ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4733            &ioc->sense_dma);
4734        if (!ioc->sense) {
4735                ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
4736                goto out;
4737        }
4738        /* sense buffer requires to be in same 4 gb region.
4739         * Below function will check the same.
4740         * In case of failure, new pci pool will be created with updated
4741         * alignment. Older allocation and pool will be destroyed.
4742         * Alignment will be used such a way that next allocation if
4743         * success, will always meet same 4gb region requirement.
4744         * Actual requirement is not alignment, but we need start and end of
4745         * DMA address must have same upper 32 bit address.
4746         */
4747        if (!is_MSB_are_same((long)ioc->sense, sz)) {
4748                //Release Sense pool & Reallocate
4749                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4750                dma_pool_destroy(ioc->sense_dma_pool);
4751                ioc->sense = NULL;
4752
4753                ioc->sense_dma_pool =
4754                        dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4755                                                roundup_pow_of_two(sz), 0);
4756                if (!ioc->sense_dma_pool) {
4757                        ioc_err(ioc, "sense pool: pci_pool_create failed\n");
4758                        goto out;
4759                }
4760                ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4761                                &ioc->sense_dma);
4762                if (!ioc->sense) {
4763                        ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
4764                        goto out;
4765                }
4766        }
4767        dinitprintk(ioc,
4768                    ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4769                             ioc->sense, ioc->scsiio_depth,
4770                             SCSI_SENSE_BUFFERSIZE, sz / 1024));
4771        dinitprintk(ioc,
4772                    ioc_info(ioc, "sense_dma(0x%llx)\n",
4773                             (unsigned long long)ioc->sense_dma));
4774        total_sz += sz;
4775
4776        /* reply pool, 4 byte align */
4777        sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4778        ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4779                                              4, 0);
4780        if (!ioc->reply_dma_pool) {
4781                ioc_err(ioc, "reply pool: dma_pool_create failed\n");
4782                goto out;
4783        }
4784        ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4785            &ioc->reply_dma);
4786        if (!ioc->reply) {
4787                ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
4788                goto out;
4789        }
4790        ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4791        ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4792        dinitprintk(ioc,
4793                    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4794                             ioc->reply, ioc->reply_free_queue_depth,
4795                             ioc->reply_sz, sz / 1024));
4796        dinitprintk(ioc,
4797                    ioc_info(ioc, "reply_dma(0x%llx)\n",
4798                             (unsigned long long)ioc->reply_dma));
4799        total_sz += sz;
4800
4801        /* reply free queue, 16 byte align */
4802        sz = ioc->reply_free_queue_depth * 4;
4803        ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4804            &ioc->pdev->dev, sz, 16, 0);
4805        if (!ioc->reply_free_dma_pool) {
4806                ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
4807                goto out;
4808        }
4809        ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4810            &ioc->reply_free_dma);
4811        if (!ioc->reply_free) {
4812                ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
4813                goto out;
4814        }
4815        dinitprintk(ioc,
4816                    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4817                             ioc->reply_free, ioc->reply_free_queue_depth,
4818                             4, sz / 1024));
4819        dinitprintk(ioc,
4820                    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
4821                             (unsigned long long)ioc->reply_free_dma));
4822        total_sz += sz;
4823
4824        if (ioc->rdpq_array_enable) {
4825                reply_post_free_array_sz = ioc->reply_queue_count *
4826                    sizeof(Mpi2IOCInitRDPQArrayEntry);
4827                ioc->reply_post_free_array_dma_pool =
4828                    dma_pool_create("reply_post_free_array pool",
4829                    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4830                if (!ioc->reply_post_free_array_dma_pool) {
4831                        dinitprintk(ioc,
4832                                    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
4833                        goto out;
4834                }
4835                ioc->reply_post_free_array =
4836                    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4837                    GFP_KERNEL, &ioc->reply_post_free_array_dma);
4838                if (!ioc->reply_post_free_array) {
4839                        dinitprintk(ioc,
4840                                    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
4841                        goto out;
4842                }
4843        }
4844        ioc->config_page_sz = 512;
4845        ioc->config_page = pci_alloc_consistent(ioc->pdev,
4846            ioc->config_page_sz, &ioc->config_page_dma);
4847        if (!ioc->config_page) {
4848                ioc_err(ioc, "config page: dma_pool_alloc failed\n");
4849                goto out;
4850        }
4851        dinitprintk(ioc,
4852                    ioc_info(ioc, "config page(0x%p): size(%d)\n",
4853                             ioc->config_page, ioc->config_page_sz));
4854        dinitprintk(ioc,
4855                    ioc_info(ioc, "config_page_dma(0x%llx)\n",
4856                             (unsigned long long)ioc->config_page_dma));
4857        total_sz += ioc->config_page_sz;
4858
4859        ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
4860                 total_sz / 1024);
4861        ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4862                 ioc->shost->can_queue, facts->RequestCredit);
4863        ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
4864                 ioc->shost->sg_tablesize);
4865        return 0;
4866
4867 out:
4868        return -ENOMEM;
4869}
4870
4871/**
4872 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4873 * @ioc: Pointer to MPT_ADAPTER structure
4874 * @cooked: Request raw or cooked IOC state
4875 *
4876 * Return: all IOC Doorbell register bits if cooked==0, else just the
4877 * Doorbell bits in MPI_IOC_STATE_MASK.
4878 */
4879u32
4880mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4881{
4882        u32 s, sc;
4883
4884        s = ioc->base_readl(&ioc->chip->Doorbell);
4885        sc = s & MPI2_IOC_STATE_MASK;
4886        return cooked ? sc : s;
4887}
4888
4889/**
4890 * _base_wait_on_iocstate - waiting on a particular ioc state
4891 * @ioc: ?
4892 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4893 * @timeout: timeout in second
4894 *
4895 * Return: 0 for success, non-zero for failure.
4896 */
4897static int
4898_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4899{
4900        u32 count, cntdn;
4901        u32 current_state;
4902
4903        count = 0;
4904        cntdn = 1000 * timeout;
4905        do {
4906                current_state = mpt3sas_base_get_iocstate(ioc, 1);
4907                if (current_state == ioc_state)
4908                        return 0;
4909                if (count && current_state == MPI2_IOC_STATE_FAULT)
4910                        break;
4911
4912                usleep_range(1000, 1500);
4913                count++;
4914        } while (--cntdn);
4915
4916        return current_state;
4917}
4918
4919/**
4920 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4921 * a write to the doorbell)
4922 * @ioc: per adapter object
4923 *
4924 * Return: 0 for success, non-zero for failure.
4925 *
4926 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4927 */
4928static int
4929_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4930
4931static int
4932_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4933{
4934        u32 cntdn, count;
4935        u32 int_status;
4936
4937        count = 0;
4938        cntdn = 1000 * timeout;
4939        do {
4940                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
4941                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4942                        dhsprintk(ioc,
4943                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
4944                                           __func__, count, timeout));
4945                        return 0;
4946                }
4947
4948                usleep_range(1000, 1500);
4949                count++;
4950        } while (--cntdn);
4951
4952        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4953                __func__, count, int_status);
4954        return -EFAULT;
4955}
4956
4957static int
4958_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4959{
4960        u32 cntdn, count;
4961        u32 int_status;
4962
4963        count = 0;
4964        cntdn = 2000 * timeout;
4965        do {
4966                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
4967                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4968                        dhsprintk(ioc,
4969                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
4970                                           __func__, count, timeout));
4971                        return 0;
4972                }
4973
4974                udelay(500);
4975                count++;
4976        } while (--cntdn);
4977
4978        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
4979                __func__, count, int_status);
4980        return -EFAULT;
4981
4982}
4983
4984/**
4985 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4986 * @ioc: per adapter object
4987 * @timeout: timeout in second
4988 *
4989 * Return: 0 for success, non-zero for failure.
4990 *
4991 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
4992 * doorbell.
4993 */
4994static int
4995_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
4996{
4997        u32 cntdn, count;
4998        u32 int_status;
4999        u32 doorbell;
5000
5001        count = 0;
5002        cntdn = 1000 * timeout;
5003        do {
5004                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5005                if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5006                        dhsprintk(ioc,
5007                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5008                                           __func__, count, timeout));
5009                        return 0;
5010                } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5011                        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5012                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
5013                            MPI2_IOC_STATE_FAULT) {
5014                                mpt3sas_base_fault_info(ioc , doorbell);
5015                                return -EFAULT;
5016                        }
5017                } else if (int_status == 0xFFFFFFFF)
5018                        goto out;
5019
5020                usleep_range(1000, 1500);
5021                count++;
5022        } while (--cntdn);
5023
5024 out:
5025        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5026                __func__, count, int_status);
5027        return -EFAULT;
5028}
5029
5030/**
5031 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5032 * @ioc: per adapter object
5033 * @timeout: timeout in second
5034 *
5035 * Return: 0 for success, non-zero for failure.
5036 */
5037static int
5038_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5039{
5040        u32 cntdn, count;
5041        u32 doorbell_reg;
5042
5043        count = 0;
5044        cntdn = 1000 * timeout;
5045        do {
5046                doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5047                if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5048                        dhsprintk(ioc,
5049                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5050                                           __func__, count, timeout));
5051                        return 0;
5052                }
5053
5054                usleep_range(1000, 1500);
5055                count++;
5056        } while (--cntdn);
5057
5058        ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5059                __func__, count, doorbell_reg);
5060        return -EFAULT;
5061}
5062
5063/**
5064 * _base_send_ioc_reset - send doorbell reset
5065 * @ioc: per adapter object
5066 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5067 * @timeout: timeout in second
5068 *
5069 * Return: 0 for success, non-zero for failure.
5070 */
5071static int
5072_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5073{
5074        u32 ioc_state;
5075        int r = 0;
5076
5077        if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5078                ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5079                return -EFAULT;
5080        }
5081
5082        if (!(ioc->facts.IOCCapabilities &
5083           MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5084                return -EFAULT;
5085
5086        ioc_info(ioc, "sending message unit reset !!\n");
5087
5088        writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5089            &ioc->chip->Doorbell);
5090        if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5091                r = -EFAULT;
5092                goto out;
5093        }
5094        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5095        if (ioc_state) {
5096                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5097                        __func__, ioc_state);
5098                r = -EFAULT;
5099                goto out;
5100        }
5101 out:
5102        ioc_info(ioc, "message unit reset: %s\n",
5103                 r == 0 ? "SUCCESS" : "FAILED");
5104        return r;
5105}
5106
5107/**
5108 * _base_handshake_req_reply_wait - send request thru doorbell interface
5109 * @ioc: per adapter object
5110 * @request_bytes: request length
5111 * @request: pointer having request payload
5112 * @reply_bytes: reply length
5113 * @reply: pointer to reply payload
5114 * @timeout: timeout in second
5115 *
5116 * Return: 0 for success, non-zero for failure.
5117 */
5118static int
5119_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5120        u32 *request, int reply_bytes, u16 *reply, int timeout)
5121{
5122        MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5123        int i;
5124        u8 failed;
5125        __le32 *mfp;
5126
5127        /* make sure doorbell is not in use */
5128        if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5129                ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5130                return -EFAULT;
5131        }
5132
5133        /* clear pending doorbell interrupts from previous state changes */
5134        if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5135            MPI2_HIS_IOC2SYS_DB_STATUS)
5136                writel(0, &ioc->chip->HostInterruptStatus);
5137
5138        /* send message to ioc */
5139        writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5140            ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5141            &ioc->chip->Doorbell);
5142
5143        if ((_base_spin_on_doorbell_int(ioc, 5))) {
5144                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5145                        __LINE__);
5146                return -EFAULT;
5147        }
5148        writel(0, &ioc->chip->HostInterruptStatus);
5149
5150        if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5151                ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5152                        __LINE__);
5153                return -EFAULT;
5154        }
5155
5156        /* send message 32-bits at a time */
5157        for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5158                writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5159                if ((_base_wait_for_doorbell_ack(ioc, 5)))
5160                        failed = 1;
5161        }
5162
5163        if (failed) {
5164                ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5165                        __LINE__);
5166                return -EFAULT;
5167        }
5168
5169        /* now wait for the reply */
5170        if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5171                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5172                        __LINE__);
5173                return -EFAULT;
5174        }
5175
5176        /* read the first two 16-bits, it gives the total length of the reply */
5177        reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5178            & MPI2_DOORBELL_DATA_MASK);
5179        writel(0, &ioc->chip->HostInterruptStatus);
5180        if ((_base_wait_for_doorbell_int(ioc, 5))) {
5181                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5182                        __LINE__);
5183                return -EFAULT;
5184        }
5185        reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5186            & MPI2_DOORBELL_DATA_MASK);
5187        writel(0, &ioc->chip->HostInterruptStatus);
5188
5189        for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5190                if ((_base_wait_for_doorbell_int(ioc, 5))) {
5191                        ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5192                                __LINE__);
5193                        return -EFAULT;
5194                }
5195                if (i >=  reply_bytes/2) /* overflow case */
5196                        ioc->base_readl(&ioc->chip->Doorbell);
5197                else
5198                        reply[i] = le16_to_cpu(
5199                            ioc->base_readl(&ioc->chip->Doorbell)
5200                            & MPI2_DOORBELL_DATA_MASK);
5201                writel(0, &ioc->chip->HostInterruptStatus);
5202        }
5203
5204        _base_wait_for_doorbell_int(ioc, 5);
5205        if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5206                dhsprintk(ioc,
5207                          ioc_info(ioc, "doorbell is in use (line=%d)\n",
5208                                   __LINE__));
5209        }
5210        writel(0, &ioc->chip->HostInterruptStatus);
5211
5212        if (ioc->logging_level & MPT_DEBUG_INIT) {
5213                mfp = (__le32 *)reply;
5214                pr_info("\toffset:data\n");
5215                for (i = 0; i < reply_bytes/4; i++)
5216                        pr_info("\t[0x%02x]:%08x\n", i*4,
5217                            le32_to_cpu(mfp[i]));
5218        }
5219        return 0;
5220}
5221
5222/**
5223 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5224 * @ioc: per adapter object
5225 * @mpi_reply: the reply payload from FW
5226 * @mpi_request: the request payload sent to FW
5227 *
5228 * The SAS IO Unit Control Request message allows the host to perform low-level
5229 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5230 * to obtain the IOC assigned device handles for a device if it has other
5231 * identifying information about the device, in addition allows the host to
5232 * remove IOC resources associated with the device.
5233 *
5234 * Return: 0 for success, non-zero for failure.
5235 */
5236int
5237mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5238        Mpi2SasIoUnitControlReply_t *mpi_reply,
5239        Mpi2SasIoUnitControlRequest_t *mpi_request)
5240{
5241        u16 smid;
5242        u32 ioc_state;
5243        u8 issue_reset = 0;
5244        int rc;
5245        void *request;
5246        u16 wait_state_count;
5247
5248        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5249
5250        mutex_lock(&ioc->base_cmds.mutex);
5251
5252        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5253                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5254                rc = -EAGAIN;
5255                goto out;
5256        }
5257
5258        wait_state_count = 0;
5259        ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5260        while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5261                if (wait_state_count++ == 10) {
5262                        ioc_err(ioc, "%s: failed due to ioc not operational\n",
5263                                __func__);
5264                        rc = -EFAULT;
5265                        goto out;
5266                }
5267                ssleep(1);
5268                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5269                ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5270                         __func__, wait_state_count);
5271        }
5272
5273        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5274        if (!smid) {
5275                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5276                rc = -EAGAIN;
5277                goto out;
5278        }
5279
5280        rc = 0;
5281        ioc->base_cmds.status = MPT3_CMD_PENDING;
5282        request = mpt3sas_base_get_msg_frame(ioc, smid);
5283        ioc->base_cmds.smid = smid;
5284        memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5285        if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5286            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5287                ioc->ioc_link_reset_in_progress = 1;
5288        init_completion(&ioc->base_cmds.done);
5289        mpt3sas_base_put_smid_default(ioc, smid);
5290        wait_for_completion_timeout(&ioc->base_cmds.done,
5291            msecs_to_jiffies(10000));
5292        if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5293            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5294            ioc->ioc_link_reset_in_progress)
5295                ioc->ioc_link_reset_in_progress = 0;
5296        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5297                issue_reset =
5298                        mpt3sas_base_check_cmd_timeout(ioc,
5299                                ioc->base_cmds.status, mpi_request,
5300                                sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5301                goto issue_host_reset;
5302        }
5303        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5304                memcpy(mpi_reply, ioc->base_cmds.reply,
5305                    sizeof(Mpi2SasIoUnitControlReply_t));
5306        else
5307                memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5308        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5309        goto out;
5310
5311 issue_host_reset:
5312        if (issue_reset)
5313                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5314        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5315        rc = -EFAULT;
5316 out:
5317        mutex_unlock(&ioc->base_cmds.mutex);
5318        return rc;
5319}
5320
5321/**
5322 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5323 * @ioc: per adapter object
5324 * @mpi_reply: the reply payload from FW
5325 * @mpi_request: the request payload sent to FW
5326 *
5327 * The SCSI Enclosure Processor request message causes the IOC to
5328 * communicate with SES devices to control LED status signals.
5329 *
5330 * Return: 0 for success, non-zero for failure.
5331 */
5332int
5333mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5334        Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5335{
5336        u16 smid;
5337        u32 ioc_state;
5338        u8 issue_reset = 0;
5339        int rc;
5340        void *request;
5341        u16 wait_state_count;
5342
5343        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5344
5345        mutex_lock(&ioc->base_cmds.mutex);
5346
5347        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5348                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5349                rc = -EAGAIN;
5350                goto out;
5351        }
5352
5353        wait_state_count = 0;
5354        ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5355        while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5356                if (wait_state_count++ == 10) {
5357                        ioc_err(ioc, "%s: failed due to ioc not operational\n",
5358                                __func__);
5359                        rc = -EFAULT;
5360                        goto out;
5361                }
5362                ssleep(1);
5363                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5364                ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5365                         __func__, wait_state_count);
5366        }
5367
5368        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5369        if (!smid) {
5370                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5371                rc = -EAGAIN;
5372                goto out;
5373        }
5374
5375        rc = 0;
5376        ioc->base_cmds.status = MPT3_CMD_PENDING;
5377        request = mpt3sas_base_get_msg_frame(ioc, smid);
5378        ioc->base_cmds.smid = smid;
5379        memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5380        init_completion(&ioc->base_cmds.done);
5381        mpt3sas_base_put_smid_default(ioc, smid);
5382        wait_for_completion_timeout(&ioc->base_cmds.done,
5383            msecs_to_jiffies(10000));
5384        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5385                issue_reset =
5386                        mpt3sas_base_check_cmd_timeout(ioc,
5387                                ioc->base_cmds.status, mpi_request,
5388                                sizeof(Mpi2SepRequest_t)/4);
5389                goto issue_host_reset;
5390        }
5391        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5392                memcpy(mpi_reply, ioc->base_cmds.reply,
5393                    sizeof(Mpi2SepReply_t));
5394        else
5395                memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5396        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5397        goto out;
5398
5399 issue_host_reset:
5400        if (issue_reset)
5401                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5402        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5403        rc = -EFAULT;
5404 out:
5405        mutex_unlock(&ioc->base_cmds.mutex);
5406        return rc;
5407}
5408
5409/**
5410 * _base_get_port_facts - obtain port facts reply and save in ioc
5411 * @ioc: per adapter object
5412 * @port: ?
5413 *
5414 * Return: 0 for success, non-zero for failure.
5415 */
5416static int
5417_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5418{
5419        Mpi2PortFactsRequest_t mpi_request;
5420        Mpi2PortFactsReply_t mpi_reply;
5421        struct mpt3sas_port_facts *pfacts;
5422        int mpi_reply_sz, mpi_request_sz, r;
5423
5424        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5425
5426        mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5427        mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5428        memset(&mpi_request, 0, mpi_request_sz);
5429        mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5430        mpi_request.PortNumber = port;
5431        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5432            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5433
5434        if (r != 0) {
5435                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5436                return r;
5437        }
5438
5439        pfacts = &ioc->pfacts[port];
5440        memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5441        pfacts->PortNumber = mpi_reply.PortNumber;
5442        pfacts->VP_ID = mpi_reply.VP_ID;
5443        pfacts->VF_ID = mpi_reply.VF_ID;
5444        pfacts->MaxPostedCmdBuffers =
5445            le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5446
5447        return 0;
5448}
5449
5450/**
5451 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5452 * @ioc: per adapter object
5453 * @timeout:
5454 *
5455 * Return: 0 for success, non-zero for failure.
5456 */
5457static int
5458_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5459{
5460        u32 ioc_state;
5461        int rc;
5462
5463        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5464
5465        if (ioc->pci_error_recovery) {
5466                dfailprintk(ioc,
5467                            ioc_info(ioc, "%s: host in pci error recovery\n",
5468                                     __func__));
5469                return -EFAULT;
5470        }
5471
5472        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5473        dhsprintk(ioc,
5474                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
5475                           __func__, ioc_state));
5476
5477        if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5478            (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5479                return 0;
5480
5481        if (ioc_state & MPI2_DOORBELL_USED) {
5482                dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
5483                goto issue_diag_reset;
5484        }
5485
5486        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5487                mpt3sas_base_fault_info(ioc, ioc_state &
5488                    MPI2_DOORBELL_DATA_MASK);
5489                goto issue_diag_reset;
5490        }
5491
5492        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5493        if (ioc_state) {
5494                dfailprintk(ioc,
5495                            ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5496                                     __func__, ioc_state));
5497                return -EFAULT;
5498        }
5499
5500 issue_diag_reset:
5501        rc = _base_diag_reset(ioc);
5502        return rc;
5503}
5504
5505/**
5506 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5507 * @ioc: per adapter object
5508 *
5509 * Return: 0 for success, non-zero for failure.
5510 */
5511static int
5512_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5513{
5514        Mpi2IOCFactsRequest_t mpi_request;
5515        Mpi2IOCFactsReply_t mpi_reply;
5516        struct mpt3sas_facts *facts;
5517        int mpi_reply_sz, mpi_request_sz, r;
5518
5519        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5520
5521        r = _base_wait_for_iocstate(ioc, 10);
5522        if (r) {
5523                dfailprintk(ioc,
5524                            ioc_info(ioc, "%s: failed getting to correct state\n",
5525                                     __func__));
5526                return r;
5527        }
5528        mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5529        mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5530        memset(&mpi_request, 0, mpi_request_sz);
5531        mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5532        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5533            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5534
5535        if (r != 0) {
5536                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5537                return r;
5538        }
5539
5540        facts = &ioc->facts;
5541        memset(facts, 0, sizeof(struct mpt3sas_facts));
5542        facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5543        facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5544        facts->VP_ID = mpi_reply.VP_ID;
5545        facts->VF_ID = mpi_reply.VF_ID;
5546        facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5547        facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5548        facts->WhoInit = mpi_reply.WhoInit;
5549        facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5550        facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5551        if (ioc->msix_enable && (facts->MaxMSIxVectors <=
5552            MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
5553                ioc->combined_reply_queue = 0;
5554        facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5555        facts->MaxReplyDescriptorPostQueueDepth =
5556            le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5557        facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5558        facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5559        if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5560                ioc->ir_firmware = 1;
5561        if ((facts->IOCCapabilities &
5562              MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5563                ioc->rdpq_array_capable = 1;
5564        facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5565        facts->IOCRequestFrameSize =
5566            le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5567        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5568                facts->IOCMaxChainSegmentSize =
5569                        le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5570        }
5571        facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5572        facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5573        ioc->shost->max_id = -1;
5574        facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5575        facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5576        facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5577        facts->HighPriorityCredit =
5578            le16_to_cpu(mpi_reply.HighPriorityCredit);
5579        facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5580        facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5581        facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5582
5583        /*
5584         * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5585         */
5586        ioc->page_size = 1 << facts->CurrentHostPageSize;
5587        if (ioc->page_size == 1) {
5588                ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
5589                ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5590        }
5591        dinitprintk(ioc,
5592                    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
5593                             facts->CurrentHostPageSize));
5594
5595        dinitprintk(ioc,
5596                    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
5597                             facts->RequestCredit, facts->MaxChainDepth));
5598        dinitprintk(ioc,
5599                    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
5600                             facts->IOCRequestFrameSize * 4,
5601                             facts->ReplyFrameSize * 4));
5602        return 0;
5603}
5604
5605/**
5606 * _base_send_ioc_init - send ioc_init to firmware
5607 * @ioc: per adapter object
5608 *
5609 * Return: 0 for success, non-zero for failure.
5610 */
5611static int
5612_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5613{
5614        Mpi2IOCInitRequest_t mpi_request;
5615        Mpi2IOCInitReply_t mpi_reply;
5616        int i, r = 0;
5617        ktime_t current_time;
5618        u16 ioc_status;
5619        u32 reply_post_free_array_sz = 0;
5620
5621        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5622
5623        memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5624        mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5625        mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5626        mpi_request.VF_ID = 0; /* TODO */
5627        mpi_request.VP_ID = 0;
5628        mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5629        mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5630        mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5631
5632        if (_base_is_controller_msix_enabled(ioc))
5633                mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5634        mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5635        mpi_request.ReplyDescriptorPostQueueDepth =
5636            cpu_to_le16(ioc->reply_post_queue_depth);
5637        mpi_request.ReplyFreeQueueDepth =
5638            cpu_to_le16(ioc->reply_free_queue_depth);
5639
5640        mpi_request.SenseBufferAddressHigh =
5641            cpu_to_le32((u64)ioc->sense_dma >> 32);
5642        mpi_request.SystemReplyAddressHigh =
5643            cpu_to_le32((u64)ioc->reply_dma >> 32);
5644        mpi_request.SystemRequestFrameBaseAddress =
5645            cpu_to_le64((u64)ioc->request_dma);
5646        mpi_request.ReplyFreeQueueAddress =
5647            cpu_to_le64((u64)ioc->reply_free_dma);
5648
5649        if (ioc->rdpq_array_enable) {
5650                reply_post_free_array_sz = ioc->reply_queue_count *
5651                    sizeof(Mpi2IOCInitRDPQArrayEntry);
5652                memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5653                for (i = 0; i < ioc->reply_queue_count; i++)
5654                        ioc->reply_post_free_array[i].RDPQBaseAddress =
5655                            cpu_to_le64(
5656                                (u64)ioc->reply_post[i].reply_post_free_dma);
5657                mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5658                mpi_request.ReplyDescriptorPostQueueAddress =
5659                    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5660        } else {
5661                mpi_request.ReplyDescriptorPostQueueAddress =
5662                    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5663        }
5664
5665        /* This time stamp specifies number of milliseconds
5666         * since epoch ~ midnight January 1, 1970.
5667         */
5668        current_time = ktime_get_real();
5669        mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5670
5671        if (ioc->logging_level & MPT_DEBUG_INIT) {
5672                __le32 *mfp;
5673                int i;
5674
5675                mfp = (__le32 *)&mpi_request;
5676                pr_info("\toffset:data\n");
5677                for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5678                        pr_info("\t[0x%02x]:%08x\n", i*4,
5679                            le32_to_cpu(mfp[i]));
5680        }
5681
5682        r = _base_handshake_req_reply_wait(ioc,
5683            sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5684            sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5685
5686        if (r != 0) {
5687                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5688                return r;
5689        }
5690
5691        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5692        if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5693            mpi_reply.IOCLogInfo) {
5694                ioc_err(ioc, "%s: failed\n", __func__);
5695                r = -EIO;
5696        }
5697
5698        return r;
5699}
5700
5701/**
5702 * mpt3sas_port_enable_done - command completion routine for port enable
5703 * @ioc: per adapter object
5704 * @smid: system request message index
5705 * @msix_index: MSIX table index supplied by the OS
5706 * @reply: reply message frame(lower 32bit addr)
5707 *
5708 * Return: 1 meaning mf should be freed from _base_interrupt
5709 *          0 means the mf is freed from this function.
5710 */
5711u8
5712mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5713        u32 reply)
5714{
5715        MPI2DefaultReply_t *mpi_reply;
5716        u16 ioc_status;
5717
5718        if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5719                return 1;
5720
5721        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5722        if (!mpi_reply)
5723                return 1;
5724
5725        if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5726                return 1;
5727
5728        ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5729        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5730        ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5731        memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5732        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5733        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5734                ioc->port_enable_failed = 1;
5735
5736        if (ioc->is_driver_loading) {
5737                if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5738                        mpt3sas_port_enable_complete(ioc);
5739                        return 1;
5740                } else {
5741                        ioc->start_scan_failed = ioc_status;
5742                        ioc->start_scan = 0;
5743                        return 1;
5744                }
5745        }
5746        complete(&ioc->port_enable_cmds.done);
5747        return 1;
5748}
5749
5750/**
5751 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5752 * @ioc: per adapter object
5753 *
5754 * Return: 0 for success, non-zero for failure.
5755 */
5756static int
5757_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5758{
5759        Mpi2PortEnableRequest_t *mpi_request;
5760        Mpi2PortEnableReply_t *mpi_reply;
5761        int r = 0;
5762        u16 smid;
5763        u16 ioc_status;
5764
5765        ioc_info(ioc, "sending port enable !!\n");
5766
5767        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5768                ioc_err(ioc, "%s: internal command already in use\n", __func__);
5769                return -EAGAIN;
5770        }
5771
5772        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5773        if (!smid) {
5774                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5775                return -EAGAIN;
5776        }
5777
5778        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5779        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5780        ioc->port_enable_cmds.smid = smid;
5781        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5782        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5783
5784        init_completion(&ioc->port_enable_cmds.done);
5785        mpt3sas_base_put_smid_default(ioc, smid);
5786        wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5787        if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5788                ioc_err(ioc, "%s: timeout\n", __func__);
5789                _debug_dump_mf(mpi_request,
5790                    sizeof(Mpi2PortEnableRequest_t)/4);
5791                if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5792                        r = -EFAULT;
5793                else
5794                        r = -ETIME;
5795                goto out;
5796        }
5797
5798        mpi_reply = ioc->port_enable_cmds.reply;
5799        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5800        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5801                ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
5802                        __func__, ioc_status);
5803                r = -EFAULT;
5804                goto out;
5805        }
5806
5807 out:
5808        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5809        ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
5810        return r;
5811}
5812
5813/**
5814 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5815 * @ioc: per adapter object
5816 *
5817 * Return: 0 for success, non-zero for failure.
5818 */
5819int
5820mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5821{
5822        Mpi2PortEnableRequest_t *mpi_request;
5823        u16 smid;
5824
5825        ioc_info(ioc, "sending port enable !!\n");
5826
5827        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5828                ioc_err(ioc, "%s: internal command already in use\n", __func__);
5829                return -EAGAIN;
5830        }
5831
5832        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5833        if (!smid) {
5834                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5835                return -EAGAIN;
5836        }
5837
5838        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5839        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5840        ioc->port_enable_cmds.smid = smid;
5841        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5842        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5843
5844        mpt3sas_base_put_smid_default(ioc, smid);
5845        return 0;
5846}
5847
5848/**
5849 * _base_determine_wait_on_discovery - desposition
5850 * @ioc: per adapter object
5851 *
5852 * Decide whether to wait on discovery to complete. Used to either
5853 * locate boot device, or report volumes ahead of physical devices.
5854 *
5855 * Return: 1 for wait, 0 for don't wait.
5856 */
5857static int
5858_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5859{
5860        /* We wait for discovery to complete if IR firmware is loaded.
5861         * The sas topology events arrive before PD events, so we need time to
5862         * turn on the bit in ioc->pd_handles to indicate PD
5863         * Also, it maybe required to report Volumes ahead of physical
5864         * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5865         */
5866        if (ioc->ir_firmware)
5867                return 1;
5868
5869        /* if no Bios, then we don't need to wait */
5870        if (!ioc->bios_pg3.BiosVersion)
5871                return 0;
5872
5873        /* Bios is present, then we drop down here.
5874         *
5875         * If there any entries in the Bios Page 2, then we wait
5876         * for discovery to complete.
5877         */
5878
5879        /* Current Boot Device */
5880        if ((ioc->bios_pg2.CurrentBootDeviceForm &
5881            MPI2_BIOSPAGE2_FORM_MASK) ==
5882            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5883        /* Request Boot Device */
5884           (ioc->bios_pg2.ReqBootDeviceForm &
5885            MPI2_BIOSPAGE2_FORM_MASK) ==
5886            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5887        /* Alternate Request Boot Device */
5888           (ioc->bios_pg2.ReqAltBootDeviceForm &
5889            MPI2_BIOSPAGE2_FORM_MASK) ==
5890            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5891                return 0;
5892
5893        return 1;
5894}
5895
5896/**
5897 * _base_unmask_events - turn on notification for this event
5898 * @ioc: per adapter object
5899 * @event: firmware event
5900 *
5901 * The mask is stored in ioc->event_masks.
5902 */
5903static void
5904_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5905{
5906        u32 desired_event;
5907
5908        if (event >= 128)
5909                return;
5910
5911        desired_event = (1 << (event % 32));
5912
5913        if (event < 32)
5914                ioc->event_masks[0] &= ~desired_event;
5915        else if (event < 64)
5916                ioc->event_masks[1] &= ~desired_event;
5917        else if (event < 96)
5918                ioc->event_masks[2] &= ~desired_event;
5919        else if (event < 128)
5920                ioc->event_masks[3] &= ~desired_event;
5921}
5922
5923/**
5924 * _base_event_notification - send event notification
5925 * @ioc: per adapter object
5926 *
5927 * Return: 0 for success, non-zero for failure.
5928 */
5929static int
5930_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
5931{
5932        Mpi2EventNotificationRequest_t *mpi_request;
5933        u16 smid;
5934        int r = 0;
5935        int i;
5936
5937        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5938
5939        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5940                ioc_err(ioc, "%s: internal command already in use\n", __func__);
5941                return -EAGAIN;
5942        }
5943
5944        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5945        if (!smid) {
5946                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5947                return -EAGAIN;
5948        }
5949        ioc->base_cmds.status = MPT3_CMD_PENDING;
5950        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5951        ioc->base_cmds.smid = smid;
5952        memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
5953        mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
5954        mpi_request->VF_ID = 0; /* TODO */
5955        mpi_request->VP_ID = 0;
5956        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5957                mpi_request->EventMasks[i] =
5958                    cpu_to_le32(ioc->event_masks[i]);
5959        init_completion(&ioc->base_cmds.done);
5960        mpt3sas_base_put_smid_default(ioc, smid);
5961        wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
5962        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5963                ioc_err(ioc, "%s: timeout\n", __func__);
5964                _debug_dump_mf(mpi_request,
5965                    sizeof(Mpi2EventNotificationRequest_t)/4);
5966                if (ioc->base_cmds.status & MPT3_CMD_RESET)
5967                        r = -EFAULT;
5968                else
5969                        r = -ETIME;
5970        } else
5971                dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
5972        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5973        return r;
5974}
5975
5976/**
5977 * mpt3sas_base_validate_event_type - validating event types
5978 * @ioc: per adapter object
5979 * @event_type: firmware event
5980 *
5981 * This will turn on firmware event notification when application
5982 * ask for that event. We don't mask events that are already enabled.
5983 */
5984void
5985mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
5986{
5987        int i, j;
5988        u32 event_mask, desired_event;
5989        u8 send_update_to_fw;
5990
5991        for (i = 0, send_update_to_fw = 0; i <
5992            MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
5993                event_mask = ~event_type[i];
5994                desired_event = 1;
5995                for (j = 0; j < 32; j++) {
5996                        if (!(event_mask & desired_event) &&
5997                            (ioc->event_masks[i] & desired_event)) {
5998                                ioc->event_masks[i] &= ~desired_event;
5999                                send_update_to_fw = 1;
6000                        }
6001                        desired_event = (desired_event << 1);
6002                }
6003        }
6004
6005        if (!send_update_to_fw)
6006                return;
6007
6008        mutex_lock(&ioc->base_cmds.mutex);
6009        _base_event_notification(ioc);
6010        mutex_unlock(&ioc->base_cmds.mutex);
6011}
6012
6013/**
6014 * _base_diag_reset - the "big hammer" start of day reset
6015 * @ioc: per adapter object
6016 *
6017 * Return: 0 for success, non-zero for failure.
6018 */
6019static int
6020_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6021{
6022        u32 host_diagnostic;
6023        u32 ioc_state;
6024        u32 count;
6025        u32 hcb_size;
6026
6027        ioc_info(ioc, "sending diag reset !!\n");
6028
6029        drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6030
6031        count = 0;
6032        do {
6033                /* Write magic sequence to WriteSequence register
6034                 * Loop until in diagnostic mode
6035                 */
6036                drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6037                writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6038                writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6039                writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6040                writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6041                writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6042                writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6043                writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6044
6045                /* wait 100 msec */
6046                msleep(100);
6047
6048                if (count++ > 20)
6049                        goto out;
6050
6051                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6052                drsprintk(ioc,
6053                          ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6054                                   count, host_diagnostic));
6055
6056        } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6057
6058        hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6059
6060        drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6061        writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6062             &ioc->chip->HostDiagnostic);
6063
6064        /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6065        msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6066
6067        /* Approximately 300 second max wait */
6068        for (count = 0; count < (300000000 /
6069                MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6070
6071                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6072
6073                if (host_diagnostic == 0xFFFFFFFF)
6074                        goto out;
6075                if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6076                        break;
6077
6078                msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6079        }
6080
6081        if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6082
6083                drsprintk(ioc,
6084                          ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6085                host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6086                host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6087                writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6088
6089                drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6090                writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6091                    &ioc->chip->HCBSize);
6092        }
6093
6094        drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6095        writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6096            &ioc->chip->HostDiagnostic);
6097
6098        drsprintk(ioc,
6099                  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6100        writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6101
6102        drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6103        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6104        if (ioc_state) {
6105                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6106                        __func__, ioc_state);
6107                goto out;
6108        }
6109
6110        ioc_info(ioc, "diag reset: SUCCESS\n");
6111        return 0;
6112
6113 out:
6114        ioc_err(ioc, "diag reset: FAILED\n");
6115        return -EFAULT;
6116}
6117
6118/**
6119 * _base_make_ioc_ready - put controller in READY state
6120 * @ioc: per adapter object
6121 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6122 *
6123 * Return: 0 for success, non-zero for failure.
6124 */
6125static int
6126_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6127{
6128        u32 ioc_state;
6129        int rc;
6130        int count;
6131
6132        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6133
6134        if (ioc->pci_error_recovery)
6135                return 0;
6136
6137        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6138        dhsprintk(ioc,
6139                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6140                           __func__, ioc_state));
6141
6142        /* if in RESET state, it should move to READY state shortly */
6143        count = 0;
6144        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6145                while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6146                    MPI2_IOC_STATE_READY) {
6147                        if (count++ == 10) {
6148                                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6149                                        __func__, ioc_state);
6150                                return -EFAULT;
6151                        }
6152                        ssleep(1);
6153                        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6154                }
6155        }
6156
6157        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6158                return 0;
6159
6160        if (ioc_state & MPI2_DOORBELL_USED) {
6161                dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6162                goto issue_diag_reset;
6163        }
6164
6165        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6166                mpt3sas_base_fault_info(ioc, ioc_state &
6167                    MPI2_DOORBELL_DATA_MASK);
6168                goto issue_diag_reset;
6169        }
6170
6171        if (type == FORCE_BIG_HAMMER)
6172                goto issue_diag_reset;
6173
6174        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6175                if (!(_base_send_ioc_reset(ioc,
6176                    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6177                        return 0;
6178        }
6179
6180 issue_diag_reset:
6181        rc = _base_diag_reset(ioc);
6182        return rc;
6183}
6184
6185/**
6186 * _base_make_ioc_operational - put controller in OPERATIONAL state
6187 * @ioc: per adapter object
6188 *
6189 * Return: 0 for success, non-zero for failure.
6190 */
6191static int
6192_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6193{
6194        int r, i, index;
6195        unsigned long   flags;
6196        u32 reply_address;
6197        u16 smid;
6198        struct _tr_list *delayed_tr, *delayed_tr_next;
6199        struct _sc_list *delayed_sc, *delayed_sc_next;
6200        struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6201        u8 hide_flag;
6202        struct adapter_reply_queue *reply_q;
6203        Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6204
6205        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6206
6207        /* clean the delayed target reset list */
6208        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6209            &ioc->delayed_tr_list, list) {
6210                list_del(&delayed_tr->list);
6211                kfree(delayed_tr);
6212        }
6213
6214
6215        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6216            &ioc->delayed_tr_volume_list, list) {
6217                list_del(&delayed_tr->list);
6218                kfree(delayed_tr);
6219        }
6220
6221        list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6222            &ioc->delayed_sc_list, list) {
6223                list_del(&delayed_sc->list);
6224                kfree(delayed_sc);
6225        }
6226
6227        list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6228            &ioc->delayed_event_ack_list, list) {
6229                list_del(&delayed_event_ack->list);
6230                kfree(delayed_event_ack);
6231        }
6232
6233        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6234
6235        /* hi-priority queue */
6236        INIT_LIST_HEAD(&ioc->hpr_free_list);
6237        smid = ioc->hi_priority_smid;
6238        for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6239                ioc->hpr_lookup[i].cb_idx = 0xFF;
6240                ioc->hpr_lookup[i].smid = smid;
6241                list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6242                    &ioc->hpr_free_list);
6243        }
6244
6245        /* internal queue */
6246        INIT_LIST_HEAD(&ioc->internal_free_list);
6247        smid = ioc->internal_smid;
6248        for (i = 0; i < ioc->internal_depth; i++, smid++) {
6249                ioc->internal_lookup[i].cb_idx = 0xFF;
6250                ioc->internal_lookup[i].smid = smid;
6251                list_add_tail(&ioc->internal_lookup[i].tracker_list,
6252                    &ioc->internal_free_list);
6253        }
6254
6255        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6256
6257        /* initialize Reply Free Queue */
6258        for (i = 0, reply_address = (u32)ioc->reply_dma ;
6259            i < ioc->reply_free_queue_depth ; i++, reply_address +=
6260            ioc->reply_sz) {
6261                ioc->reply_free[i] = cpu_to_le32(reply_address);
6262                if (ioc->is_mcpu_endpoint)
6263                        _base_clone_reply_to_sys_mem(ioc,
6264                                        reply_address, i);
6265        }
6266
6267        /* initialize reply queues */
6268        if (ioc->is_driver_loading)
6269                _base_assign_reply_queues(ioc);
6270
6271        /* initialize Reply Post Free Queue */
6272        index = 0;
6273        reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6274        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6275                /*
6276                 * If RDPQ is enabled, switch to the next allocation.
6277                 * Otherwise advance within the contiguous region.
6278                 */
6279                if (ioc->rdpq_array_enable) {
6280                        reply_q->reply_post_free =
6281                                ioc->reply_post[index++].reply_post_free;
6282                } else {
6283                        reply_q->reply_post_free = reply_post_free_contig;
6284                        reply_post_free_contig += ioc->reply_post_queue_depth;
6285                }
6286
6287                reply_q->reply_post_host_index = 0;
6288                for (i = 0; i < ioc->reply_post_queue_depth; i++)
6289                        reply_q->reply_post_free[i].Words =
6290                            cpu_to_le64(ULLONG_MAX);
6291                if (!_base_is_controller_msix_enabled(ioc))
6292                        goto skip_init_reply_post_free_queue;
6293        }
6294 skip_init_reply_post_free_queue:
6295
6296        r = _base_send_ioc_init(ioc);
6297        if (r)
6298                return r;
6299
6300        /* initialize reply free host index */
6301        ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6302        writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6303
6304        /* initialize reply post host index */
6305        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6306                if (ioc->combined_reply_queue)
6307                        writel((reply_q->msix_index & 7)<<
6308                           MPI2_RPHI_MSIX_INDEX_SHIFT,
6309                           ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6310                else
6311                        writel(reply_q->msix_index <<
6312                                MPI2_RPHI_MSIX_INDEX_SHIFT,
6313                                &ioc->chip->ReplyPostHostIndex);
6314
6315                if (!_base_is_controller_msix_enabled(ioc))
6316                        goto skip_init_reply_post_host_index;
6317        }
6318
6319 skip_init_reply_post_host_index:
6320
6321        _base_unmask_interrupts(ioc);
6322
6323        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6324                r = _base_display_fwpkg_version(ioc);
6325                if (r)
6326                        return r;
6327        }
6328
6329        _base_static_config_pages(ioc);
6330        r = _base_event_notification(ioc);
6331        if (r)
6332                return r;
6333
6334        if (ioc->is_driver_loading) {
6335
6336                if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6337                    == 0x80) {
6338                        hide_flag = (u8) (
6339                            le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6340                            MFG_PAGE10_HIDE_SSDS_MASK);
6341                        if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6342                                ioc->mfg_pg10_hide_flag = hide_flag;
6343                }
6344
6345                ioc->wait_for_discovery_to_complete =
6346                    _base_determine_wait_on_discovery(ioc);
6347
6348                return r; /* scan_start and scan_finished support */
6349        }
6350
6351        r = _base_send_port_enable(ioc);
6352        if (r)
6353                return r;
6354
6355        return r;
6356}
6357
6358/**
6359 * mpt3sas_base_free_resources - free resources controller resources
6360 * @ioc: per adapter object
6361 */
6362void
6363mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6364{
6365        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6366
6367        /* synchronizing freeing resource with pci_access_mutex lock */
6368        mutex_lock(&ioc->pci_access_mutex);
6369        if (ioc->chip_phys && ioc->chip) {
6370                _base_mask_interrupts(ioc);
6371                ioc->shost_recovery = 1;
6372                _base_make_ioc_ready(ioc, SOFT_RESET);
6373                ioc->shost_recovery = 0;
6374        }
6375
6376        mpt3sas_base_unmap_resources(ioc);
6377        mutex_unlock(&ioc->pci_access_mutex);
6378        return;
6379}
6380
6381/**
6382 * mpt3sas_base_attach - attach controller instance
6383 * @ioc: per adapter object
6384 *
6385 * Return: 0 for success, non-zero for failure.
6386 */
6387int
6388mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6389{
6390        int r, i;
6391        int cpu_id, last_cpu_id = 0;
6392
6393        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6394
6395        /* setup cpu_msix_table */
6396        ioc->cpu_count = num_online_cpus();
6397        for_each_online_cpu(cpu_id)
6398                last_cpu_id = cpu_id;
6399        ioc->cpu_msix_table_sz = last_cpu_id + 1;
6400        ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6401        ioc->reply_queue_count = 1;
6402        if (!ioc->cpu_msix_table) {
6403                dfailprintk(ioc,
6404                            ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n"));
6405                r = -ENOMEM;
6406                goto out_free_resources;
6407        }
6408
6409        if (ioc->is_warpdrive) {
6410                ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6411                    sizeof(resource_size_t *), GFP_KERNEL);
6412                if (!ioc->reply_post_host_index) {
6413                        dfailprintk(ioc,
6414                                    ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n"));
6415                        r = -ENOMEM;
6416                        goto out_free_resources;
6417                }
6418        }
6419
6420        ioc->rdpq_array_enable_assigned = 0;
6421        ioc->dma_mask = 0;
6422        if (ioc->is_aero_ioc)
6423                ioc->base_readl = &_base_readl_aero;
6424        else
6425                ioc->base_readl = &_base_readl;
6426        r = mpt3sas_base_map_resources(ioc);
6427        if (r)
6428                goto out_free_resources;
6429
6430        pci_set_drvdata(ioc->pdev, ioc->shost);
6431        r = _base_get_ioc_facts(ioc);
6432        if (r)
6433                goto out_free_resources;
6434
6435        switch (ioc->hba_mpi_version_belonged) {
6436        case MPI2_VERSION:
6437                ioc->build_sg_scmd = &_base_build_sg_scmd;
6438                ioc->build_sg = &_base_build_sg;
6439                ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6440                break;
6441        case MPI25_VERSION:
6442        case MPI26_VERSION:
6443                /*
6444                 * In SAS3.0,
6445                 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6446                 * Target Status - all require the IEEE formated scatter gather
6447                 * elements.
6448                 */
6449                ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6450                ioc->build_sg = &_base_build_sg_ieee;
6451                ioc->build_nvme_prp = &_base_build_nvme_prp;
6452                ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6453                ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6454
6455                break;
6456        }
6457
6458        if (ioc->is_mcpu_endpoint)
6459                ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6460        else
6461                ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6462
6463        /*
6464         * These function pointers for other requests that don't
6465         * the require IEEE scatter gather elements.
6466         *
6467         * For example Configuration Pages and SAS IOUNIT Control don't.
6468         */
6469        ioc->build_sg_mpi = &_base_build_sg;
6470        ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6471
6472        r = _base_make_ioc_ready(ioc, SOFT_RESET);
6473        if (r)
6474                goto out_free_resources;
6475
6476        ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6477            sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6478        if (!ioc->pfacts) {
6479                r = -ENOMEM;
6480                goto out_free_resources;
6481        }
6482
6483        for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6484                r = _base_get_port_facts(ioc, i);
6485                if (r)
6486                        goto out_free_resources;
6487        }
6488
6489        r = _base_allocate_memory_pools(ioc);
6490        if (r)
6491                goto out_free_resources;
6492
6493        init_waitqueue_head(&ioc->reset_wq);
6494
6495        /* allocate memory pd handle bitmask list */
6496        ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6497        if (ioc->facts.MaxDevHandle % 8)
6498                ioc->pd_handles_sz++;
6499        ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6500            GFP_KERNEL);
6501        if (!ioc->pd_handles) {
6502                r = -ENOMEM;
6503                goto out_free_resources;
6504        }
6505        ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6506            GFP_KERNEL);
6507        if (!ioc->blocking_handles) {
6508                r = -ENOMEM;
6509                goto out_free_resources;
6510        }
6511
6512        /* allocate memory for pending OS device add list */
6513        ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6514        if (ioc->facts.MaxDevHandle % 8)
6515                ioc->pend_os_device_add_sz++;
6516        ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6517            GFP_KERNEL);
6518        if (!ioc->pend_os_device_add)
6519                goto out_free_resources;
6520
6521        ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6522        ioc->device_remove_in_progress =
6523                kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6524        if (!ioc->device_remove_in_progress)
6525                goto out_free_resources;
6526
6527        ioc->fwfault_debug = mpt3sas_fwfault_debug;
6528
6529        /* base internal command bits */
6530        mutex_init(&ioc->base_cmds.mutex);
6531        ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6532        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6533
6534        /* port_enable command bits */
6535        ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6536        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6537
6538        /* transport internal command bits */
6539        ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6540        ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6541        mutex_init(&ioc->transport_cmds.mutex);
6542
6543        /* scsih internal command bits */
6544        ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6545        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6546        mutex_init(&ioc->scsih_cmds.mutex);
6547
6548        /* task management internal command bits */
6549        ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6550        ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6551        mutex_init(&ioc->tm_cmds.mutex);
6552
6553        /* config page internal command bits */
6554        ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6555        ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6556        mutex_init(&ioc->config_cmds.mutex);
6557
6558        /* ctl module internal command bits */
6559        ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6560        ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6561        ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6562        mutex_init(&ioc->ctl_cmds.mutex);
6563
6564        if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6565            !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6566            !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6567            !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6568                r = -ENOMEM;
6569                goto out_free_resources;
6570        }
6571
6572        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6573                ioc->event_masks[i] = -1;
6574
6575        /* here we enable the events we care about */
6576        _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6577        _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6578        _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6579        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6580        _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6581        _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6582        _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6583        _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6584        _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6585        _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6586        _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6587        _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6588        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6589        if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6590                if (ioc->is_gen35_ioc) {
6591                        _base_unmask_events(ioc,
6592                                MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6593                        _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6594                        _base_unmask_events(ioc,
6595                                MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6596                }
6597        }
6598        r = _base_make_ioc_operational(ioc);
6599        if (r)
6600                goto out_free_resources;
6601
6602        ioc->non_operational_loop = 0;
6603        ioc->got_task_abort_from_ioctl = 0;
6604        return 0;
6605
6606 out_free_resources:
6607
6608        ioc->remove_host = 1;
6609
6610        mpt3sas_base_free_resources(ioc);
6611        _base_release_memory_pools(ioc);
6612        pci_set_drvdata(ioc->pdev, NULL);
6613        kfree(ioc->cpu_msix_table);
6614        if (ioc->is_warpdrive)
6615                kfree(ioc->reply_post_host_index);
6616        kfree(ioc->pd_handles);
6617        kfree(ioc->blocking_handles);
6618        kfree(ioc->device_remove_in_progress);
6619        kfree(ioc->pend_os_device_add);
6620        kfree(ioc->tm_cmds.reply);
6621        kfree(ioc->transport_cmds.reply);
6622        kfree(ioc->scsih_cmds.reply);
6623        kfree(ioc->config_cmds.reply);
6624        kfree(ioc->base_cmds.reply);
6625        kfree(ioc->port_enable_cmds.reply);
6626        kfree(ioc->ctl_cmds.reply);
6627        kfree(ioc->ctl_cmds.sense);
6628        kfree(ioc->pfacts);
6629        ioc->ctl_cmds.reply = NULL;
6630        ioc->base_cmds.reply = NULL;
6631        ioc->tm_cmds.reply = NULL;
6632        ioc->scsih_cmds.reply = NULL;
6633        ioc->transport_cmds.reply = NULL;
6634        ioc->config_cmds.reply = NULL;
6635        ioc->pfacts = NULL;
6636        return r;
6637}
6638
6639
6640/**
6641 * mpt3sas_base_detach - remove controller instance
6642 * @ioc: per adapter object
6643 */
6644void
6645mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6646{
6647        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6648
6649        mpt3sas_base_stop_watchdog(ioc);
6650        mpt3sas_base_free_resources(ioc);
6651        _base_release_memory_pools(ioc);
6652        mpt3sas_free_enclosure_list(ioc);
6653        pci_set_drvdata(ioc->pdev, NULL);
6654        kfree(ioc->cpu_msix_table);
6655        if (ioc->is_warpdrive)
6656                kfree(ioc->reply_post_host_index);
6657        kfree(ioc->pd_handles);
6658        kfree(ioc->blocking_handles);
6659        kfree(ioc->device_remove_in_progress);
6660        kfree(ioc->pend_os_device_add);
6661        kfree(ioc->pfacts);
6662        kfree(ioc->ctl_cmds.reply);
6663        kfree(ioc->ctl_cmds.sense);
6664        kfree(ioc->base_cmds.reply);
6665        kfree(ioc->port_enable_cmds.reply);
6666        kfree(ioc->tm_cmds.reply);
6667        kfree(ioc->transport_cmds.reply);
6668        kfree(ioc->scsih_cmds.reply);
6669        kfree(ioc->config_cmds.reply);
6670}
6671
6672/**
6673 * _base_pre_reset_handler - pre reset handler
6674 * @ioc: per adapter object
6675 */
6676static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6677{
6678        mpt3sas_scsih_pre_reset_handler(ioc);
6679        mpt3sas_ctl_pre_reset_handler(ioc);
6680        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
6681}
6682
6683/**
6684 * _base_after_reset_handler - after reset handler
6685 * @ioc: per adapter object
6686 */
6687static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6688{
6689        mpt3sas_scsih_after_reset_handler(ioc);
6690        mpt3sas_ctl_after_reset_handler(ioc);
6691        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
6692        if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6693                ioc->transport_cmds.status |= MPT3_CMD_RESET;
6694                mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6695                complete(&ioc->transport_cmds.done);
6696        }
6697        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6698                ioc->base_cmds.status |= MPT3_CMD_RESET;
6699                mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6700                complete(&ioc->base_cmds.done);
6701        }
6702        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6703                ioc->port_enable_failed = 1;
6704                ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6705                mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6706                if (ioc->is_driver_loading) {
6707                        ioc->start_scan_failed =
6708                                MPI2_IOCSTATUS_INTERNAL_ERROR;
6709                        ioc->start_scan = 0;
6710                        ioc->port_enable_cmds.status =
6711                                MPT3_CMD_NOT_USED;
6712                } else {
6713                        complete(&ioc->port_enable_cmds.done);
6714                }
6715        }
6716        if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6717                ioc->config_cmds.status |= MPT3_CMD_RESET;
6718                mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6719                ioc->config_cmds.smid = USHRT_MAX;
6720                complete(&ioc->config_cmds.done);
6721        }
6722}
6723
6724/**
6725 * _base_reset_done_handler - reset done handler
6726 * @ioc: per adapter object
6727 */
6728static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
6729{
6730        mpt3sas_scsih_reset_done_handler(ioc);
6731        mpt3sas_ctl_reset_done_handler(ioc);
6732        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
6733}
6734
6735/**
6736 * mpt3sas_wait_for_commands_to_complete - reset controller
6737 * @ioc: Pointer to MPT_ADAPTER structure
6738 *
6739 * This function is waiting 10s for all pending commands to complete
6740 * prior to putting controller in reset.
6741 */
6742void
6743mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6744{
6745        u32 ioc_state;
6746
6747        ioc->pending_io_count = 0;
6748
6749        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6750        if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6751                return;
6752
6753        /* pending command count */
6754        ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6755
6756        if (!ioc->pending_io_count)
6757                return;
6758
6759        /* wait for pending commands to complete */
6760        wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6761}
6762
6763/**
6764 * mpt3sas_base_hard_reset_handler - reset controller
6765 * @ioc: Pointer to MPT_ADAPTER structure
6766 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6767 *
6768 * Return: 0 for success, non-zero for failure.
6769 */
6770int
6771mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6772        enum reset_type type)
6773{
6774        int r;
6775        unsigned long flags;
6776        u32 ioc_state;
6777        u8 is_fault = 0, is_trigger = 0;
6778
6779        dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
6780
6781        if (ioc->pci_error_recovery) {
6782                ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
6783                r = 0;
6784                goto out_unlocked;
6785        }
6786
6787        if (mpt3sas_fwfault_debug)
6788                mpt3sas_halt_firmware(ioc);
6789
6790        /* wait for an active reset in progress to complete */
6791        mutex_lock(&ioc->reset_in_progress_mutex);
6792
6793        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6794        ioc->shost_recovery = 1;
6795        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6796
6797        if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6798            MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6799            (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6800            MPT3_DIAG_BUFFER_IS_RELEASED))) {
6801                is_trigger = 1;
6802                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6803                if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6804                        is_fault = 1;
6805        }
6806        _base_pre_reset_handler(ioc);
6807        mpt3sas_wait_for_commands_to_complete(ioc);
6808        _base_mask_interrupts(ioc);
6809        r = _base_make_ioc_ready(ioc, type);
6810        if (r)
6811                goto out;
6812        _base_after_reset_handler(ioc);
6813
6814        /* If this hard reset is called while port enable is active, then
6815         * there is no reason to call make_ioc_operational
6816         */
6817        if (ioc->is_driver_loading && ioc->port_enable_failed) {
6818                ioc->remove_host = 1;
6819                r = -EFAULT;
6820                goto out;
6821        }
6822        r = _base_get_ioc_facts(ioc);
6823        if (r)
6824                goto out;
6825
6826        if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6827                panic("%s: Issue occurred with flashing controller firmware."
6828                      "Please reboot the system and ensure that the correct"
6829                      " firmware version is running\n", ioc->name);
6830
6831        r = _base_make_ioc_operational(ioc);
6832        if (!r)
6833                _base_reset_done_handler(ioc);
6834
6835 out:
6836        dtmprintk(ioc,
6837                  ioc_info(ioc, "%s: %s\n",
6838                           __func__, r == 0 ? "SUCCESS" : "FAILED"));
6839
6840        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6841        ioc->shost_recovery = 0;
6842        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6843        ioc->ioc_reset_count++;
6844        mutex_unlock(&ioc->reset_in_progress_mutex);
6845
6846 out_unlocked:
6847        if ((r == 0) && is_trigger) {
6848                if (is_fault)
6849                        mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6850                else
6851                        mpt3sas_trigger_master(ioc,
6852                            MASTER_TRIGGER_ADAPTER_RESET);
6853        }
6854        dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
6855        return r;
6856}
6857