linux/drivers/vfio/vfio_iommu_type1.c
<<
>>
Prefs
   1/*
   2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
   3 *
   4 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   5 *     Author: Alex Williamson <alex.williamson@redhat.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * Derived from original vfio:
  12 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
  13 * Author: Tom Lyon, pugs@cisco.com
  14 *
  15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
  16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
  17 * VT-d, but that makes it harder to re-use as theoretically anyone
  18 * implementing a similar IOMMU could make use of this.  We expect the
  19 * IOMMU to support the IOMMU API and have few to no restrictions around
  20 * the IOVA range that can be mapped.  The Type1 IOMMU is currently
  21 * optimized for relatively static mappings of a userspace process with
  22 * userpsace pages pinned into memory.  We also assume devices and IOMMU
  23 * domains are PCI based as the IOMMU API is still centered around a
  24 * device/bus interface rather than a group interface.
  25 */
  26
  27#include <linux/compat.h>
  28#include <linux/device.h>
  29#include <linux/fs.h>
  30#include <linux/iommu.h>
  31#include <linux/module.h>
  32#include <linux/mm.h>
  33#include <linux/rbtree.h>
  34#include <linux/sched/signal.h>
  35#include <linux/sched/mm.h>
  36#include <linux/slab.h>
  37#include <linux/uaccess.h>
  38#include <linux/vfio.h>
  39#include <linux/workqueue.h>
  40#include <linux/mdev.h>
  41#include <linux/notifier.h>
  42#include <linux/dma-iommu.h>
  43#include <linux/irqdomain.h>
  44
  45#define DRIVER_VERSION  "0.2"
  46#define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
  47#define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
  48
  49static bool allow_unsafe_interrupts;
  50module_param_named(allow_unsafe_interrupts,
  51                   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
  52MODULE_PARM_DESC(allow_unsafe_interrupts,
  53                 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
  54
  55static bool disable_hugepages;
  56module_param_named(disable_hugepages,
  57                   disable_hugepages, bool, S_IRUGO | S_IWUSR);
  58MODULE_PARM_DESC(disable_hugepages,
  59                 "Disable VFIO IOMMU support for IOMMU hugepages.");
  60
  61struct vfio_iommu {
  62        struct list_head        domain_list;
  63        struct vfio_domain      *external_domain; /* domain for external user */
  64        struct mutex            lock;
  65        struct rb_root          dma_list;
  66        struct blocking_notifier_head notifier;
  67        bool                    v2;
  68        bool                    nesting;
  69};
  70
  71struct vfio_domain {
  72        struct iommu_domain     *domain;
  73        struct list_head        next;
  74        struct list_head        group_list;
  75        int                     prot;           /* IOMMU_CACHE */
  76        bool                    fgsp;           /* Fine-grained super pages */
  77};
  78
  79struct vfio_dma {
  80        struct rb_node          node;
  81        dma_addr_t              iova;           /* Device address */
  82        unsigned long           vaddr;          /* Process virtual addr */
  83        size_t                  size;           /* Map size (bytes) */
  84        int                     prot;           /* IOMMU_READ/WRITE */
  85        bool                    iommu_mapped;
  86        bool                    lock_cap;       /* capable(CAP_IPC_LOCK) */
  87        struct task_struct      *task;
  88        struct rb_root          pfn_list;       /* Ex-user pinned pfn list */
  89};
  90
  91struct vfio_group {
  92        struct iommu_group      *iommu_group;
  93        struct list_head        next;
  94};
  95
  96/*
  97 * Guest RAM pinning working set or DMA target
  98 */
  99struct vfio_pfn {
 100        struct rb_node          node;
 101        dma_addr_t              iova;           /* Device address */
 102        unsigned long           pfn;            /* Host pfn */
 103        atomic_t                ref_count;
 104};
 105
 106struct vfio_regions {
 107        struct list_head list;
 108        dma_addr_t iova;
 109        phys_addr_t phys;
 110        size_t len;
 111};
 112
 113#define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
 114                                        (!list_empty(&iommu->domain_list))
 115
 116static int put_pfn(unsigned long pfn, int prot);
 117
 118/*
 119 * This code handles mapping and unmapping of user data buffers
 120 * into DMA'ble space using the IOMMU
 121 */
 122
 123static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
 124                                      dma_addr_t start, size_t size)
 125{
 126        struct rb_node *node = iommu->dma_list.rb_node;
 127
 128        while (node) {
 129                struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
 130
 131                if (start + size <= dma->iova)
 132                        node = node->rb_left;
 133                else if (start >= dma->iova + dma->size)
 134                        node = node->rb_right;
 135                else
 136                        return dma;
 137        }
 138
 139        return NULL;
 140}
 141
 142static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
 143{
 144        struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
 145        struct vfio_dma *dma;
 146
 147        while (*link) {
 148                parent = *link;
 149                dma = rb_entry(parent, struct vfio_dma, node);
 150
 151                if (new->iova + new->size <= dma->iova)
 152                        link = &(*link)->rb_left;
 153                else
 154                        link = &(*link)->rb_right;
 155        }
 156
 157        rb_link_node(&new->node, parent, link);
 158        rb_insert_color(&new->node, &iommu->dma_list);
 159}
 160
 161static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
 162{
 163        rb_erase(&old->node, &iommu->dma_list);
 164}
 165
 166/*
 167 * Helper Functions for host iova-pfn list
 168 */
 169static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
 170{
 171        struct vfio_pfn *vpfn;
 172        struct rb_node *node = dma->pfn_list.rb_node;
 173
 174        while (node) {
 175                vpfn = rb_entry(node, struct vfio_pfn, node);
 176
 177                if (iova < vpfn->iova)
 178                        node = node->rb_left;
 179                else if (iova > vpfn->iova)
 180                        node = node->rb_right;
 181                else
 182                        return vpfn;
 183        }
 184        return NULL;
 185}
 186
 187static void vfio_link_pfn(struct vfio_dma *dma,
 188                          struct vfio_pfn *new)
 189{
 190        struct rb_node **link, *parent = NULL;
 191        struct vfio_pfn *vpfn;
 192
 193        link = &dma->pfn_list.rb_node;
 194        while (*link) {
 195                parent = *link;
 196                vpfn = rb_entry(parent, struct vfio_pfn, node);
 197
 198                if (new->iova < vpfn->iova)
 199                        link = &(*link)->rb_left;
 200                else
 201                        link = &(*link)->rb_right;
 202        }
 203
 204        rb_link_node(&new->node, parent, link);
 205        rb_insert_color(&new->node, &dma->pfn_list);
 206}
 207
 208static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
 209{
 210        rb_erase(&old->node, &dma->pfn_list);
 211}
 212
 213static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
 214                                unsigned long pfn)
 215{
 216        struct vfio_pfn *vpfn;
 217
 218        vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
 219        if (!vpfn)
 220                return -ENOMEM;
 221
 222        vpfn->iova = iova;
 223        vpfn->pfn = pfn;
 224        atomic_set(&vpfn->ref_count, 1);
 225        vfio_link_pfn(dma, vpfn);
 226        return 0;
 227}
 228
 229static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
 230                                      struct vfio_pfn *vpfn)
 231{
 232        vfio_unlink_pfn(dma, vpfn);
 233        kfree(vpfn);
 234}
 235
 236static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
 237                                               unsigned long iova)
 238{
 239        struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
 240
 241        if (vpfn)
 242                atomic_inc(&vpfn->ref_count);
 243        return vpfn;
 244}
 245
 246static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
 247{
 248        int ret = 0;
 249
 250        if (atomic_dec_and_test(&vpfn->ref_count)) {
 251                ret = put_pfn(vpfn->pfn, dma->prot);
 252                vfio_remove_from_pfn_list(dma, vpfn);
 253        }
 254        return ret;
 255}
 256
 257static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
 258{
 259        struct mm_struct *mm;
 260        int ret;
 261
 262        if (!npage)
 263                return 0;
 264
 265        mm = async ? get_task_mm(dma->task) : dma->task->mm;
 266        if (!mm)
 267                return -ESRCH; /* process exited */
 268
 269        ret = down_write_killable(&mm->mmap_sem);
 270        if (!ret) {
 271                if (npage > 0) {
 272                        if (!dma->lock_cap) {
 273                                unsigned long limit;
 274
 275                                limit = task_rlimit(dma->task,
 276                                                RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 277
 278                                if (mm->locked_vm + npage > limit)
 279                                        ret = -ENOMEM;
 280                        }
 281                }
 282
 283                if (!ret)
 284                        mm->locked_vm += npage;
 285
 286                up_write(&mm->mmap_sem);
 287        }
 288
 289        if (async)
 290                mmput(mm);
 291
 292        return ret;
 293}
 294
 295/*
 296 * Some mappings aren't backed by a struct page, for example an mmap'd
 297 * MMIO range for our own or another device.  These use a different
 298 * pfn conversion and shouldn't be tracked as locked pages.
 299 */
 300static bool is_invalid_reserved_pfn(unsigned long pfn)
 301{
 302        if (pfn_valid(pfn)) {
 303                bool reserved;
 304                struct page *tail = pfn_to_page(pfn);
 305                struct page *head = compound_head(tail);
 306                reserved = !!(PageReserved(head));
 307                if (head != tail) {
 308                        /*
 309                         * "head" is not a dangling pointer
 310                         * (compound_head takes care of that)
 311                         * but the hugepage may have been split
 312                         * from under us (and we may not hold a
 313                         * reference count on the head page so it can
 314                         * be reused before we run PageReferenced), so
 315                         * we've to check PageTail before returning
 316                         * what we just read.
 317                         */
 318                        smp_rmb();
 319                        if (PageTail(tail))
 320                                return reserved;
 321                }
 322                return PageReserved(tail);
 323        }
 324
 325        return true;
 326}
 327
 328static int put_pfn(unsigned long pfn, int prot)
 329{
 330        if (!is_invalid_reserved_pfn(pfn)) {
 331                struct page *page = pfn_to_page(pfn);
 332                if (prot & IOMMU_WRITE)
 333                        SetPageDirty(page);
 334                put_page(page);
 335                return 1;
 336        }
 337        return 0;
 338}
 339
 340static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
 341                         int prot, unsigned long *pfn)
 342{
 343        struct page *page[1];
 344        struct vm_area_struct *vma;
 345        struct vm_area_struct *vmas[1];
 346        unsigned int flags = 0;
 347        int ret;
 348
 349        if (prot & IOMMU_WRITE)
 350                flags |= FOLL_WRITE;
 351
 352        down_read(&mm->mmap_sem);
 353        if (mm == current->mm) {
 354                ret = get_user_pages_longterm(vaddr, 1, flags, page, vmas);
 355        } else {
 356                ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
 357                                            vmas, NULL);
 358                /*
 359                 * The lifetime of a vaddr_get_pfn() page pin is
 360                 * userspace-controlled. In the fs-dax case this could
 361                 * lead to indefinite stalls in filesystem operations.
 362                 * Disallow attempts to pin fs-dax pages via this
 363                 * interface.
 364                 */
 365                if (ret > 0 && vma_is_fsdax(vmas[0])) {
 366                        ret = -EOPNOTSUPP;
 367                        put_page(page[0]);
 368                }
 369        }
 370        up_read(&mm->mmap_sem);
 371
 372        if (ret == 1) {
 373                *pfn = page_to_pfn(page[0]);
 374                return 0;
 375        }
 376
 377        down_read(&mm->mmap_sem);
 378
 379        vma = find_vma_intersection(mm, vaddr, vaddr + 1);
 380
 381        if (vma && vma->vm_flags & VM_PFNMAP) {
 382                *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 383                if (is_invalid_reserved_pfn(*pfn))
 384                        ret = 0;
 385        }
 386
 387        up_read(&mm->mmap_sem);
 388        return ret;
 389}
 390
 391/*
 392 * Attempt to pin pages.  We really don't want to track all the pfns and
 393 * the iommu can only map chunks of consecutive pfns anyway, so get the
 394 * first page and all consecutive pages with the same locking.
 395 */
 396static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
 397                                  long npage, unsigned long *pfn_base,
 398                                  unsigned long limit)
 399{
 400        unsigned long pfn = 0;
 401        long ret, pinned = 0, lock_acct = 0;
 402        bool rsvd;
 403        dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
 404
 405        /* This code path is only user initiated */
 406        if (!current->mm)
 407                return -ENODEV;
 408
 409        ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
 410        if (ret)
 411                return ret;
 412
 413        pinned++;
 414        rsvd = is_invalid_reserved_pfn(*pfn_base);
 415
 416        /*
 417         * Reserved pages aren't counted against the user, externally pinned
 418         * pages are already counted against the user.
 419         */
 420        if (!rsvd && !vfio_find_vpfn(dma, iova)) {
 421                if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
 422                        put_pfn(*pfn_base, dma->prot);
 423                        pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
 424                                        limit << PAGE_SHIFT);
 425                        return -ENOMEM;
 426                }
 427                lock_acct++;
 428        }
 429
 430        if (unlikely(disable_hugepages))
 431                goto out;
 432
 433        /* Lock all the consecutive pages from pfn_base */
 434        for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
 435             pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
 436                ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
 437                if (ret)
 438                        break;
 439
 440                if (pfn != *pfn_base + pinned ||
 441                    rsvd != is_invalid_reserved_pfn(pfn)) {
 442                        put_pfn(pfn, dma->prot);
 443                        break;
 444                }
 445
 446                if (!rsvd && !vfio_find_vpfn(dma, iova)) {
 447                        if (!dma->lock_cap &&
 448                            current->mm->locked_vm + lock_acct + 1 > limit) {
 449                                put_pfn(pfn, dma->prot);
 450                                pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
 451                                        __func__, limit << PAGE_SHIFT);
 452                                ret = -ENOMEM;
 453                                goto unpin_out;
 454                        }
 455                        lock_acct++;
 456                }
 457        }
 458
 459out:
 460        ret = vfio_lock_acct(dma, lock_acct, false);
 461
 462unpin_out:
 463        if (ret) {
 464                if (!rsvd) {
 465                        for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
 466                                put_pfn(pfn, dma->prot);
 467                }
 468
 469                return ret;
 470        }
 471
 472        return pinned;
 473}
 474
 475static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
 476                                    unsigned long pfn, long npage,
 477                                    bool do_accounting)
 478{
 479        long unlocked = 0, locked = 0;
 480        long i;
 481
 482        for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
 483                if (put_pfn(pfn++, dma->prot)) {
 484                        unlocked++;
 485                        if (vfio_find_vpfn(dma, iova))
 486                                locked++;
 487                }
 488        }
 489
 490        if (do_accounting)
 491                vfio_lock_acct(dma, locked - unlocked, true);
 492
 493        return unlocked;
 494}
 495
 496static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
 497                                  unsigned long *pfn_base, bool do_accounting)
 498{
 499        struct mm_struct *mm;
 500        int ret;
 501
 502        mm = get_task_mm(dma->task);
 503        if (!mm)
 504                return -ENODEV;
 505
 506        ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
 507        if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
 508                ret = vfio_lock_acct(dma, 1, true);
 509                if (ret) {
 510                        put_pfn(*pfn_base, dma->prot);
 511                        if (ret == -ENOMEM)
 512                                pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
 513                                        "(%ld) exceeded\n", __func__,
 514                                        dma->task->comm, task_pid_nr(dma->task),
 515                                        task_rlimit(dma->task, RLIMIT_MEMLOCK));
 516                }
 517        }
 518
 519        mmput(mm);
 520        return ret;
 521}
 522
 523static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
 524                                    bool do_accounting)
 525{
 526        int unlocked;
 527        struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
 528
 529        if (!vpfn)
 530                return 0;
 531
 532        unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
 533
 534        if (do_accounting)
 535                vfio_lock_acct(dma, -unlocked, true);
 536
 537        return unlocked;
 538}
 539
 540static int vfio_iommu_type1_pin_pages(void *iommu_data,
 541                                      unsigned long *user_pfn,
 542                                      int npage, int prot,
 543                                      unsigned long *phys_pfn)
 544{
 545        struct vfio_iommu *iommu = iommu_data;
 546        int i, j, ret;
 547        unsigned long remote_vaddr;
 548        struct vfio_dma *dma;
 549        bool do_accounting;
 550
 551        if (!iommu || !user_pfn || !phys_pfn)
 552                return -EINVAL;
 553
 554        /* Supported for v2 version only */
 555        if (!iommu->v2)
 556                return -EACCES;
 557
 558        mutex_lock(&iommu->lock);
 559
 560        /* Fail if notifier list is empty */
 561        if ((!iommu->external_domain) || (!iommu->notifier.head)) {
 562                ret = -EINVAL;
 563                goto pin_done;
 564        }
 565
 566        /*
 567         * If iommu capable domain exist in the container then all pages are
 568         * already pinned and accounted. Accouting should be done if there is no
 569         * iommu capable domain in the container.
 570         */
 571        do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
 572
 573        for (i = 0; i < npage; i++) {
 574                dma_addr_t iova;
 575                struct vfio_pfn *vpfn;
 576
 577                iova = user_pfn[i] << PAGE_SHIFT;
 578                dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
 579                if (!dma) {
 580                        ret = -EINVAL;
 581                        goto pin_unwind;
 582                }
 583
 584                if ((dma->prot & prot) != prot) {
 585                        ret = -EPERM;
 586                        goto pin_unwind;
 587                }
 588
 589                vpfn = vfio_iova_get_vfio_pfn(dma, iova);
 590                if (vpfn) {
 591                        phys_pfn[i] = vpfn->pfn;
 592                        continue;
 593                }
 594
 595                remote_vaddr = dma->vaddr + iova - dma->iova;
 596                ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
 597                                             do_accounting);
 598                if (ret)
 599                        goto pin_unwind;
 600
 601                ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
 602                if (ret) {
 603                        vfio_unpin_page_external(dma, iova, do_accounting);
 604                        goto pin_unwind;
 605                }
 606        }
 607
 608        ret = i;
 609        goto pin_done;
 610
 611pin_unwind:
 612        phys_pfn[i] = 0;
 613        for (j = 0; j < i; j++) {
 614                dma_addr_t iova;
 615
 616                iova = user_pfn[j] << PAGE_SHIFT;
 617                dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
 618                vfio_unpin_page_external(dma, iova, do_accounting);
 619                phys_pfn[j] = 0;
 620        }
 621pin_done:
 622        mutex_unlock(&iommu->lock);
 623        return ret;
 624}
 625
 626static int vfio_iommu_type1_unpin_pages(void *iommu_data,
 627                                        unsigned long *user_pfn,
 628                                        int npage)
 629{
 630        struct vfio_iommu *iommu = iommu_data;
 631        bool do_accounting;
 632        int i;
 633
 634        if (!iommu || !user_pfn)
 635                return -EINVAL;
 636
 637        /* Supported for v2 version only */
 638        if (!iommu->v2)
 639                return -EACCES;
 640
 641        mutex_lock(&iommu->lock);
 642
 643        if (!iommu->external_domain) {
 644                mutex_unlock(&iommu->lock);
 645                return -EINVAL;
 646        }
 647
 648        do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
 649        for (i = 0; i < npage; i++) {
 650                struct vfio_dma *dma;
 651                dma_addr_t iova;
 652
 653                iova = user_pfn[i] << PAGE_SHIFT;
 654                dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
 655                if (!dma)
 656                        goto unpin_exit;
 657                vfio_unpin_page_external(dma, iova, do_accounting);
 658        }
 659
 660unpin_exit:
 661        mutex_unlock(&iommu->lock);
 662        return i > npage ? npage : (i > 0 ? i : -EINVAL);
 663}
 664
 665static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
 666                                struct list_head *regions)
 667{
 668        long unlocked = 0;
 669        struct vfio_regions *entry, *next;
 670
 671        iommu_tlb_sync(domain->domain);
 672
 673        list_for_each_entry_safe(entry, next, regions, list) {
 674                unlocked += vfio_unpin_pages_remote(dma,
 675                                                    entry->iova,
 676                                                    entry->phys >> PAGE_SHIFT,
 677                                                    entry->len >> PAGE_SHIFT,
 678                                                    false);
 679                list_del(&entry->list);
 680                kfree(entry);
 681        }
 682
 683        cond_resched();
 684
 685        return unlocked;
 686}
 687
 688/*
 689 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
 690 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
 691 * of these regions (currently using a list).
 692 *
 693 * This value specifies maximum number of regions for each IOTLB flush sync.
 694 */
 695#define VFIO_IOMMU_TLB_SYNC_MAX         512
 696
 697static size_t unmap_unpin_fast(struct vfio_domain *domain,
 698                               struct vfio_dma *dma, dma_addr_t *iova,
 699                               size_t len, phys_addr_t phys, long *unlocked,
 700                               struct list_head *unmapped_list,
 701                               int *unmapped_cnt)
 702{
 703        size_t unmapped = 0;
 704        struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 705
 706        if (entry) {
 707                unmapped = iommu_unmap_fast(domain->domain, *iova, len);
 708
 709                if (!unmapped) {
 710                        kfree(entry);
 711                } else {
 712                        iommu_tlb_range_add(domain->domain, *iova, unmapped);
 713                        entry->iova = *iova;
 714                        entry->phys = phys;
 715                        entry->len  = unmapped;
 716                        list_add_tail(&entry->list, unmapped_list);
 717
 718                        *iova += unmapped;
 719                        (*unmapped_cnt)++;
 720                }
 721        }
 722
 723        /*
 724         * Sync if the number of fast-unmap regions hits the limit
 725         * or in case of errors.
 726         */
 727        if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
 728                *unlocked += vfio_sync_unpin(dma, domain,
 729                                             unmapped_list);
 730                *unmapped_cnt = 0;
 731        }
 732
 733        return unmapped;
 734}
 735
 736static size_t unmap_unpin_slow(struct vfio_domain *domain,
 737                               struct vfio_dma *dma, dma_addr_t *iova,
 738                               size_t len, phys_addr_t phys,
 739                               long *unlocked)
 740{
 741        size_t unmapped = iommu_unmap(domain->domain, *iova, len);
 742
 743        if (unmapped) {
 744                *unlocked += vfio_unpin_pages_remote(dma, *iova,
 745                                                     phys >> PAGE_SHIFT,
 746                                                     unmapped >> PAGE_SHIFT,
 747                                                     false);
 748                *iova += unmapped;
 749                cond_resched();
 750        }
 751        return unmapped;
 752}
 753
 754static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
 755                             bool do_accounting)
 756{
 757        dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
 758        struct vfio_domain *domain, *d;
 759        LIST_HEAD(unmapped_region_list);
 760        int unmapped_region_cnt = 0;
 761        long unlocked = 0;
 762
 763        if (!dma->size)
 764                return 0;
 765
 766        if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
 767                return 0;
 768
 769        /*
 770         * We use the IOMMU to track the physical addresses, otherwise we'd
 771         * need a much more complicated tracking system.  Unfortunately that
 772         * means we need to use one of the iommu domains to figure out the
 773         * pfns to unpin.  The rest need to be unmapped in advance so we have
 774         * no iommu translations remaining when the pages are unpinned.
 775         */
 776        domain = d = list_first_entry(&iommu->domain_list,
 777                                      struct vfio_domain, next);
 778
 779        list_for_each_entry_continue(d, &iommu->domain_list, next) {
 780                iommu_unmap(d->domain, dma->iova, dma->size);
 781                cond_resched();
 782        }
 783
 784        while (iova < end) {
 785                size_t unmapped, len;
 786                phys_addr_t phys, next;
 787
 788                phys = iommu_iova_to_phys(domain->domain, iova);
 789                if (WARN_ON(!phys)) {
 790                        iova += PAGE_SIZE;
 791                        continue;
 792                }
 793
 794                /*
 795                 * To optimize for fewer iommu_unmap() calls, each of which
 796                 * may require hardware cache flushing, try to find the
 797                 * largest contiguous physical memory chunk to unmap.
 798                 */
 799                for (len = PAGE_SIZE;
 800                     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
 801                        next = iommu_iova_to_phys(domain->domain, iova + len);
 802                        if (next != phys + len)
 803                                break;
 804                }
 805
 806                /*
 807                 * First, try to use fast unmap/unpin. In case of failure,
 808                 * switch to slow unmap/unpin path.
 809                 */
 810                unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
 811                                            &unlocked, &unmapped_region_list,
 812                                            &unmapped_region_cnt);
 813                if (!unmapped) {
 814                        unmapped = unmap_unpin_slow(domain, dma, &iova, len,
 815                                                    phys, &unlocked);
 816                        if (WARN_ON(!unmapped))
 817                                break;
 818                }
 819        }
 820
 821        dma->iommu_mapped = false;
 822
 823        if (unmapped_region_cnt)
 824                unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list);
 825
 826        if (do_accounting) {
 827                vfio_lock_acct(dma, -unlocked, true);
 828                return 0;
 829        }
 830        return unlocked;
 831}
 832
 833static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
 834{
 835        vfio_unmap_unpin(iommu, dma, true);
 836        vfio_unlink_dma(iommu, dma);
 837        put_task_struct(dma->task);
 838        kfree(dma);
 839}
 840
 841static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
 842{
 843        struct vfio_domain *domain;
 844        unsigned long bitmap = ULONG_MAX;
 845
 846        mutex_lock(&iommu->lock);
 847        list_for_each_entry(domain, &iommu->domain_list, next)
 848                bitmap &= domain->domain->pgsize_bitmap;
 849        mutex_unlock(&iommu->lock);
 850
 851        /*
 852         * In case the IOMMU supports page sizes smaller than PAGE_SIZE
 853         * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
 854         * That way the user will be able to map/unmap buffers whose size/
 855         * start address is aligned with PAGE_SIZE. Pinning code uses that
 856         * granularity while iommu driver can use the sub-PAGE_SIZE size
 857         * to map the buffer.
 858         */
 859        if (bitmap & ~PAGE_MASK) {
 860                bitmap &= PAGE_MASK;
 861                bitmap |= PAGE_SIZE;
 862        }
 863
 864        return bitmap;
 865}
 866
 867static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
 868                             struct vfio_iommu_type1_dma_unmap *unmap)
 869{
 870        uint64_t mask;
 871        struct vfio_dma *dma, *dma_last = NULL;
 872        size_t unmapped = 0;
 873        int ret = 0, retries = 0;
 874
 875        mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
 876
 877        if (unmap->iova & mask)
 878                return -EINVAL;
 879        if (!unmap->size || unmap->size & mask)
 880                return -EINVAL;
 881        if (unmap->iova + unmap->size - 1 < unmap->iova ||
 882            unmap->size > SIZE_MAX)
 883                return -EINVAL;
 884
 885        WARN_ON(mask & PAGE_MASK);
 886again:
 887        mutex_lock(&iommu->lock);
 888
 889        /*
 890         * vfio-iommu-type1 (v1) - User mappings were coalesced together to
 891         * avoid tracking individual mappings.  This means that the granularity
 892         * of the original mapping was lost and the user was allowed to attempt
 893         * to unmap any range.  Depending on the contiguousness of physical
 894         * memory and page sizes supported by the IOMMU, arbitrary unmaps may
 895         * or may not have worked.  We only guaranteed unmap granularity
 896         * matching the original mapping; even though it was untracked here,
 897         * the original mappings are reflected in IOMMU mappings.  This
 898         * resulted in a couple unusual behaviors.  First, if a range is not
 899         * able to be unmapped, ex. a set of 4k pages that was mapped as a
 900         * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
 901         * a zero sized unmap.  Also, if an unmap request overlaps the first
 902         * address of a hugepage, the IOMMU will unmap the entire hugepage.
 903         * This also returns success and the returned unmap size reflects the
 904         * actual size unmapped.
 905         *
 906         * We attempt to maintain compatibility with this "v1" interface, but
 907         * we take control out of the hands of the IOMMU.  Therefore, an unmap
 908         * request offset from the beginning of the original mapping will
 909         * return success with zero sized unmap.  And an unmap request covering
 910         * the first iova of mapping will unmap the entire range.
 911         *
 912         * The v2 version of this interface intends to be more deterministic.
 913         * Unmap requests must fully cover previous mappings.  Multiple
 914         * mappings may still be unmaped by specifying large ranges, but there
 915         * must not be any previous mappings bisected by the range.  An error
 916         * will be returned if these conditions are not met.  The v2 interface
 917         * will only return success and a size of zero if there were no
 918         * mappings within the range.
 919         */
 920        if (iommu->v2) {
 921                dma = vfio_find_dma(iommu, unmap->iova, 1);
 922                if (dma && dma->iova != unmap->iova) {
 923                        ret = -EINVAL;
 924                        goto unlock;
 925                }
 926                dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
 927                if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
 928                        ret = -EINVAL;
 929                        goto unlock;
 930                }
 931        }
 932
 933        while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
 934                if (!iommu->v2 && unmap->iova > dma->iova)
 935                        break;
 936                /*
 937                 * Task with same address space who mapped this iova range is
 938                 * allowed to unmap the iova range.
 939                 */
 940                if (dma->task->mm != current->mm)
 941                        break;
 942
 943                if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
 944                        struct vfio_iommu_type1_dma_unmap nb_unmap;
 945
 946                        if (dma_last == dma) {
 947                                BUG_ON(++retries > 10);
 948                        } else {
 949                                dma_last = dma;
 950                                retries = 0;
 951                        }
 952
 953                        nb_unmap.iova = dma->iova;
 954                        nb_unmap.size = dma->size;
 955
 956                        /*
 957                         * Notify anyone (mdev vendor drivers) to invalidate and
 958                         * unmap iovas within the range we're about to unmap.
 959                         * Vendor drivers MUST unpin pages in response to an
 960                         * invalidation.
 961                         */
 962                        mutex_unlock(&iommu->lock);
 963                        blocking_notifier_call_chain(&iommu->notifier,
 964                                                    VFIO_IOMMU_NOTIFY_DMA_UNMAP,
 965                                                    &nb_unmap);
 966                        goto again;
 967                }
 968                unmapped += dma->size;
 969                vfio_remove_dma(iommu, dma);
 970        }
 971
 972unlock:
 973        mutex_unlock(&iommu->lock);
 974
 975        /* Report how much was unmapped */
 976        unmap->size = unmapped;
 977
 978        return ret;
 979}
 980
 981/*
 982 * Turns out AMD IOMMU has a page table bug where it won't map large pages
 983 * to a region that previously mapped smaller pages.  This should be fixed
 984 * soon, so this is just a temporary workaround to break mappings down into
 985 * PAGE_SIZE.  Better to map smaller pages than nothing.
 986 */
 987static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
 988                          unsigned long pfn, long npage, int prot)
 989{
 990        long i;
 991        int ret = 0;
 992
 993        for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
 994                ret = iommu_map(domain->domain, iova,
 995                                (phys_addr_t)pfn << PAGE_SHIFT,
 996                                PAGE_SIZE, prot | domain->prot);
 997                if (ret)
 998                        break;
 999        }
1000
1001        for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
1002                iommu_unmap(domain->domain, iova, PAGE_SIZE);
1003
1004        return ret;
1005}
1006
1007static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1008                          unsigned long pfn, long npage, int prot)
1009{
1010        struct vfio_domain *d;
1011        int ret;
1012
1013        list_for_each_entry(d, &iommu->domain_list, next) {
1014                ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1015                                npage << PAGE_SHIFT, prot | d->prot);
1016                if (ret) {
1017                        if (ret != -EBUSY ||
1018                            map_try_harder(d, iova, pfn, npage, prot))
1019                                goto unwind;
1020                }
1021
1022                cond_resched();
1023        }
1024
1025        return 0;
1026
1027unwind:
1028        list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
1029                iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1030
1031        return ret;
1032}
1033
1034static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1035                            size_t map_size)
1036{
1037        dma_addr_t iova = dma->iova;
1038        unsigned long vaddr = dma->vaddr;
1039        size_t size = map_size;
1040        long npage;
1041        unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1042        int ret = 0;
1043
1044        while (size) {
1045                /* Pin a contiguous chunk of memory */
1046                npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1047                                              size >> PAGE_SHIFT, &pfn, limit);
1048                if (npage <= 0) {
1049                        WARN_ON(!npage);
1050                        ret = (int)npage;
1051                        break;
1052                }
1053
1054                /* Map it! */
1055                ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1056                                     dma->prot);
1057                if (ret) {
1058                        vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1059                                                npage, true);
1060                        break;
1061                }
1062
1063                size -= npage << PAGE_SHIFT;
1064                dma->size += npage << PAGE_SHIFT;
1065        }
1066
1067        dma->iommu_mapped = true;
1068
1069        if (ret)
1070                vfio_remove_dma(iommu, dma);
1071
1072        return ret;
1073}
1074
1075static int vfio_dma_do_map(struct vfio_iommu *iommu,
1076                           struct vfio_iommu_type1_dma_map *map)
1077{
1078        dma_addr_t iova = map->iova;
1079        unsigned long vaddr = map->vaddr;
1080        size_t size = map->size;
1081        int ret = 0, prot = 0;
1082        uint64_t mask;
1083        struct vfio_dma *dma;
1084
1085        /* Verify that none of our __u64 fields overflow */
1086        if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1087                return -EINVAL;
1088
1089        mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
1090
1091        WARN_ON(mask & PAGE_MASK);
1092
1093        /* READ/WRITE from device perspective */
1094        if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1095                prot |= IOMMU_WRITE;
1096        if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1097                prot |= IOMMU_READ;
1098
1099        if (!prot || !size || (size | iova | vaddr) & mask)
1100                return -EINVAL;
1101
1102        /* Don't allow IOVA or virtual address wrap */
1103        if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
1104                return -EINVAL;
1105
1106        mutex_lock(&iommu->lock);
1107
1108        if (vfio_find_dma(iommu, iova, size)) {
1109                ret = -EEXIST;
1110                goto out_unlock;
1111        }
1112
1113        dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1114        if (!dma) {
1115                ret = -ENOMEM;
1116                goto out_unlock;
1117        }
1118
1119        dma->iova = iova;
1120        dma->vaddr = vaddr;
1121        dma->prot = prot;
1122
1123        /*
1124         * We need to be able to both add to a task's locked memory and test
1125         * against the locked memory limit and we need to be able to do both
1126         * outside of this call path as pinning can be asynchronous via the
1127         * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1128         * task_struct and VM locked pages requires an mm_struct, however
1129         * holding an indefinite mm reference is not recommended, therefore we
1130         * only hold a reference to a task.  We could hold a reference to
1131         * current, however QEMU uses this call path through vCPU threads,
1132         * which can be killed resulting in a NULL mm and failure in the unmap
1133         * path when called via a different thread.  Avoid this problem by
1134         * using the group_leader as threads within the same group require
1135         * both CLONE_THREAD and CLONE_VM and will therefore use the same
1136         * mm_struct.
1137         *
1138         * Previously we also used the task for testing CAP_IPC_LOCK at the
1139         * time of pinning and accounting, however has_capability() makes use
1140         * of real_cred, a copy-on-write field, so we can't guarantee that it
1141         * matches group_leader, or in fact that it might not change by the
1142         * time it's evaluated.  If a process were to call MAP_DMA with
1143         * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1144         * possibly see different results for an iommu_mapped vfio_dma vs
1145         * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1146         * time of calling MAP_DMA.
1147         */
1148        get_task_struct(current->group_leader);
1149        dma->task = current->group_leader;
1150        dma->lock_cap = capable(CAP_IPC_LOCK);
1151
1152        dma->pfn_list = RB_ROOT;
1153
1154        /* Insert zero-sized and grow as we map chunks of it */
1155        vfio_link_dma(iommu, dma);
1156
1157        /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1158        if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1159                dma->size = size;
1160        else
1161                ret = vfio_pin_map_dma(iommu, dma, size);
1162
1163out_unlock:
1164        mutex_unlock(&iommu->lock);
1165        return ret;
1166}
1167
1168static int vfio_bus_type(struct device *dev, void *data)
1169{
1170        struct bus_type **bus = data;
1171
1172        if (*bus && *bus != dev->bus)
1173                return -EINVAL;
1174
1175        *bus = dev->bus;
1176
1177        return 0;
1178}
1179
1180static int vfio_iommu_replay(struct vfio_iommu *iommu,
1181                             struct vfio_domain *domain)
1182{
1183        struct vfio_domain *d;
1184        struct rb_node *n;
1185        unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1186        int ret;
1187
1188        /* Arbitrarily pick the first domain in the list for lookups */
1189        d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1190        n = rb_first(&iommu->dma_list);
1191
1192        for (; n; n = rb_next(n)) {
1193                struct vfio_dma *dma;
1194                dma_addr_t iova;
1195
1196                dma = rb_entry(n, struct vfio_dma, node);
1197                iova = dma->iova;
1198
1199                while (iova < dma->iova + dma->size) {
1200                        phys_addr_t phys;
1201                        size_t size;
1202
1203                        if (dma->iommu_mapped) {
1204                                phys_addr_t p;
1205                                dma_addr_t i;
1206
1207                                phys = iommu_iova_to_phys(d->domain, iova);
1208
1209                                if (WARN_ON(!phys)) {
1210                                        iova += PAGE_SIZE;
1211                                        continue;
1212                                }
1213
1214                                size = PAGE_SIZE;
1215                                p = phys + size;
1216                                i = iova + size;
1217                                while (i < dma->iova + dma->size &&
1218                                       p == iommu_iova_to_phys(d->domain, i)) {
1219                                        size += PAGE_SIZE;
1220                                        p += PAGE_SIZE;
1221                                        i += PAGE_SIZE;
1222                                }
1223                        } else {
1224                                unsigned long pfn;
1225                                unsigned long vaddr = dma->vaddr +
1226                                                     (iova - dma->iova);
1227                                size_t n = dma->iova + dma->size - iova;
1228                                long npage;
1229
1230                                npage = vfio_pin_pages_remote(dma, vaddr,
1231                                                              n >> PAGE_SHIFT,
1232                                                              &pfn, limit);
1233                                if (npage <= 0) {
1234                                        WARN_ON(!npage);
1235                                        ret = (int)npage;
1236                                        return ret;
1237                                }
1238
1239                                phys = pfn << PAGE_SHIFT;
1240                                size = npage << PAGE_SHIFT;
1241                        }
1242
1243                        ret = iommu_map(domain->domain, iova, phys,
1244                                        size, dma->prot | domain->prot);
1245                        if (ret)
1246                                return ret;
1247
1248                        iova += size;
1249                }
1250                dma->iommu_mapped = true;
1251        }
1252        return 0;
1253}
1254
1255/*
1256 * We change our unmap behavior slightly depending on whether the IOMMU
1257 * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1258 * for practically any contiguous power-of-two mapping we give it.  This means
1259 * we don't need to look for contiguous chunks ourselves to make unmapping
1260 * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1261 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1262 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1263 * hugetlbfs is in use.
1264 */
1265static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1266{
1267        struct page *pages;
1268        int ret, order = get_order(PAGE_SIZE * 2);
1269
1270        pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1271        if (!pages)
1272                return;
1273
1274        ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1275                        IOMMU_READ | IOMMU_WRITE | domain->prot);
1276        if (!ret) {
1277                size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1278
1279                if (unmapped == PAGE_SIZE)
1280                        iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1281                else
1282                        domain->fgsp = true;
1283        }
1284
1285        __free_pages(pages, order);
1286}
1287
1288static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1289                                           struct iommu_group *iommu_group)
1290{
1291        struct vfio_group *g;
1292
1293        list_for_each_entry(g, &domain->group_list, next) {
1294                if (g->iommu_group == iommu_group)
1295                        return g;
1296        }
1297
1298        return NULL;
1299}
1300
1301static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
1302{
1303        struct list_head group_resv_regions;
1304        struct iommu_resv_region *region, *next;
1305        bool ret = false;
1306
1307        INIT_LIST_HEAD(&group_resv_regions);
1308        iommu_get_group_resv_regions(group, &group_resv_regions);
1309        list_for_each_entry(region, &group_resv_regions, list) {
1310                /*
1311                 * The presence of any 'real' MSI regions should take
1312                 * precedence over the software-managed one if the
1313                 * IOMMU driver happens to advertise both types.
1314                 */
1315                if (region->type == IOMMU_RESV_MSI) {
1316                        ret = false;
1317                        break;
1318                }
1319
1320                if (region->type == IOMMU_RESV_SW_MSI) {
1321                        *base = region->start;
1322                        ret = true;
1323                }
1324        }
1325        list_for_each_entry_safe(region, next, &group_resv_regions, list)
1326                kfree(region);
1327        return ret;
1328}
1329
1330static int vfio_iommu_type1_attach_group(void *iommu_data,
1331                                         struct iommu_group *iommu_group)
1332{
1333        struct vfio_iommu *iommu = iommu_data;
1334        struct vfio_group *group;
1335        struct vfio_domain *domain, *d;
1336        struct bus_type *bus = NULL, *mdev_bus;
1337        int ret;
1338        bool resv_msi, msi_remap;
1339        phys_addr_t resv_msi_base;
1340
1341        mutex_lock(&iommu->lock);
1342
1343        list_for_each_entry(d, &iommu->domain_list, next) {
1344                if (find_iommu_group(d, iommu_group)) {
1345                        mutex_unlock(&iommu->lock);
1346                        return -EINVAL;
1347                }
1348        }
1349
1350        if (iommu->external_domain) {
1351                if (find_iommu_group(iommu->external_domain, iommu_group)) {
1352                        mutex_unlock(&iommu->lock);
1353                        return -EINVAL;
1354                }
1355        }
1356
1357        group = kzalloc(sizeof(*group), GFP_KERNEL);
1358        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1359        if (!group || !domain) {
1360                ret = -ENOMEM;
1361                goto out_free;
1362        }
1363
1364        group->iommu_group = iommu_group;
1365
1366        /* Determine bus_type in order to allocate a domain */
1367        ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1368        if (ret)
1369                goto out_free;
1370
1371        mdev_bus = symbol_get(mdev_bus_type);
1372
1373        if (mdev_bus) {
1374                if ((bus == mdev_bus) && !iommu_present(bus)) {
1375                        symbol_put(mdev_bus_type);
1376                        if (!iommu->external_domain) {
1377                                INIT_LIST_HEAD(&domain->group_list);
1378                                iommu->external_domain = domain;
1379                        } else
1380                                kfree(domain);
1381
1382                        list_add(&group->next,
1383                                 &iommu->external_domain->group_list);
1384                        mutex_unlock(&iommu->lock);
1385                        return 0;
1386                }
1387                symbol_put(mdev_bus_type);
1388        }
1389
1390        domain->domain = iommu_domain_alloc(bus);
1391        if (!domain->domain) {
1392                ret = -EIO;
1393                goto out_free;
1394        }
1395
1396        if (iommu->nesting) {
1397                int attr = 1;
1398
1399                ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1400                                            &attr);
1401                if (ret)
1402                        goto out_domain;
1403        }
1404
1405        ret = iommu_attach_group(domain->domain, iommu_group);
1406        if (ret)
1407                goto out_domain;
1408
1409        resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
1410
1411        INIT_LIST_HEAD(&domain->group_list);
1412        list_add(&group->next, &domain->group_list);
1413
1414        msi_remap = irq_domain_check_msi_remap() ||
1415                    iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1416
1417        if (!allow_unsafe_interrupts && !msi_remap) {
1418                pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1419                       __func__);
1420                ret = -EPERM;
1421                goto out_detach;
1422        }
1423
1424        if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1425                domain->prot |= IOMMU_CACHE;
1426
1427        /*
1428         * Try to match an existing compatible domain.  We don't want to
1429         * preclude an IOMMU driver supporting multiple bus_types and being
1430         * able to include different bus_types in the same IOMMU domain, so
1431         * we test whether the domains use the same iommu_ops rather than
1432         * testing if they're on the same bus_type.
1433         */
1434        list_for_each_entry(d, &iommu->domain_list, next) {
1435                if (d->domain->ops == domain->domain->ops &&
1436                    d->prot == domain->prot) {
1437                        iommu_detach_group(domain->domain, iommu_group);
1438                        if (!iommu_attach_group(d->domain, iommu_group)) {
1439                                list_add(&group->next, &d->group_list);
1440                                iommu_domain_free(domain->domain);
1441                                kfree(domain);
1442                                mutex_unlock(&iommu->lock);
1443                                return 0;
1444                        }
1445
1446                        ret = iommu_attach_group(domain->domain, iommu_group);
1447                        if (ret)
1448                                goto out_domain;
1449                }
1450        }
1451
1452        vfio_test_domain_fgsp(domain);
1453
1454        /* replay mappings on new domains */
1455        ret = vfio_iommu_replay(iommu, domain);
1456        if (ret)
1457                goto out_detach;
1458
1459        if (resv_msi) {
1460                ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1461                if (ret)
1462                        goto out_detach;
1463        }
1464
1465        list_add(&domain->next, &iommu->domain_list);
1466
1467        mutex_unlock(&iommu->lock);
1468
1469        return 0;
1470
1471out_detach:
1472        iommu_detach_group(domain->domain, iommu_group);
1473out_domain:
1474        iommu_domain_free(domain->domain);
1475out_free:
1476        kfree(domain);
1477        kfree(group);
1478        mutex_unlock(&iommu->lock);
1479        return ret;
1480}
1481
1482static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1483{
1484        struct rb_node *node;
1485
1486        while ((node = rb_first(&iommu->dma_list)))
1487                vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1488}
1489
1490static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1491{
1492        struct rb_node *n, *p;
1493
1494        n = rb_first(&iommu->dma_list);
1495        for (; n; n = rb_next(n)) {
1496                struct vfio_dma *dma;
1497                long locked = 0, unlocked = 0;
1498
1499                dma = rb_entry(n, struct vfio_dma, node);
1500                unlocked += vfio_unmap_unpin(iommu, dma, false);
1501                p = rb_first(&dma->pfn_list);
1502                for (; p; p = rb_next(p)) {
1503                        struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1504                                                         node);
1505
1506                        if (!is_invalid_reserved_pfn(vpfn->pfn))
1507                                locked++;
1508                }
1509                vfio_lock_acct(dma, locked - unlocked, true);
1510        }
1511}
1512
1513static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1514{
1515        struct rb_node *n;
1516
1517        n = rb_first(&iommu->dma_list);
1518        for (; n; n = rb_next(n)) {
1519                struct vfio_dma *dma;
1520
1521                dma = rb_entry(n, struct vfio_dma, node);
1522
1523                if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1524                        break;
1525        }
1526        /* mdev vendor driver must unregister notifier */
1527        WARN_ON(iommu->notifier.head);
1528}
1529
1530static void vfio_iommu_type1_detach_group(void *iommu_data,
1531                                          struct iommu_group *iommu_group)
1532{
1533        struct vfio_iommu *iommu = iommu_data;
1534        struct vfio_domain *domain;
1535        struct vfio_group *group;
1536
1537        mutex_lock(&iommu->lock);
1538
1539        if (iommu->external_domain) {
1540                group = find_iommu_group(iommu->external_domain, iommu_group);
1541                if (group) {
1542                        list_del(&group->next);
1543                        kfree(group);
1544
1545                        if (list_empty(&iommu->external_domain->group_list)) {
1546                                vfio_sanity_check_pfn_list(iommu);
1547
1548                                if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1549                                        vfio_iommu_unmap_unpin_all(iommu);
1550
1551                                kfree(iommu->external_domain);
1552                                iommu->external_domain = NULL;
1553                        }
1554                        goto detach_group_done;
1555                }
1556        }
1557
1558        list_for_each_entry(domain, &iommu->domain_list, next) {
1559                group = find_iommu_group(domain, iommu_group);
1560                if (!group)
1561                        continue;
1562
1563                iommu_detach_group(domain->domain, iommu_group);
1564                list_del(&group->next);
1565                kfree(group);
1566                /*
1567                 * Group ownership provides privilege, if the group list is
1568                 * empty, the domain goes away. If it's the last domain with
1569                 * iommu and external domain doesn't exist, then all the
1570                 * mappings go away too. If it's the last domain with iommu and
1571                 * external domain exist, update accounting
1572                 */
1573                if (list_empty(&domain->group_list)) {
1574                        if (list_is_singular(&iommu->domain_list)) {
1575                                if (!iommu->external_domain)
1576                                        vfio_iommu_unmap_unpin_all(iommu);
1577                                else
1578                                        vfio_iommu_unmap_unpin_reaccount(iommu);
1579                        }
1580                        iommu_domain_free(domain->domain);
1581                        list_del(&domain->next);
1582                        kfree(domain);
1583                }
1584                break;
1585        }
1586
1587detach_group_done:
1588        mutex_unlock(&iommu->lock);
1589}
1590
1591static void *vfio_iommu_type1_open(unsigned long arg)
1592{
1593        struct vfio_iommu *iommu;
1594
1595        iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1596        if (!iommu)
1597                return ERR_PTR(-ENOMEM);
1598
1599        switch (arg) {
1600        case VFIO_TYPE1_IOMMU:
1601                break;
1602        case VFIO_TYPE1_NESTING_IOMMU:
1603                iommu->nesting = true;
1604        case VFIO_TYPE1v2_IOMMU:
1605                iommu->v2 = true;
1606                break;
1607        default:
1608                kfree(iommu);
1609                return ERR_PTR(-EINVAL);
1610        }
1611
1612        INIT_LIST_HEAD(&iommu->domain_list);
1613        iommu->dma_list = RB_ROOT;
1614        mutex_init(&iommu->lock);
1615        BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1616
1617        return iommu;
1618}
1619
1620static void vfio_release_domain(struct vfio_domain *domain, bool external)
1621{
1622        struct vfio_group *group, *group_tmp;
1623
1624        list_for_each_entry_safe(group, group_tmp,
1625                                 &domain->group_list, next) {
1626                if (!external)
1627                        iommu_detach_group(domain->domain, group->iommu_group);
1628                list_del(&group->next);
1629                kfree(group);
1630        }
1631
1632        if (!external)
1633                iommu_domain_free(domain->domain);
1634}
1635
1636static void vfio_iommu_type1_release(void *iommu_data)
1637{
1638        struct vfio_iommu *iommu = iommu_data;
1639        struct vfio_domain *domain, *domain_tmp;
1640
1641        if (iommu->external_domain) {
1642                vfio_release_domain(iommu->external_domain, true);
1643                vfio_sanity_check_pfn_list(iommu);
1644                kfree(iommu->external_domain);
1645        }
1646
1647        vfio_iommu_unmap_unpin_all(iommu);
1648
1649        list_for_each_entry_safe(domain, domain_tmp,
1650                                 &iommu->domain_list, next) {
1651                vfio_release_domain(domain, false);
1652                list_del(&domain->next);
1653                kfree(domain);
1654        }
1655        kfree(iommu);
1656}
1657
1658static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1659{
1660        struct vfio_domain *domain;
1661        int ret = 1;
1662
1663        mutex_lock(&iommu->lock);
1664        list_for_each_entry(domain, &iommu->domain_list, next) {
1665                if (!(domain->prot & IOMMU_CACHE)) {
1666                        ret = 0;
1667                        break;
1668                }
1669        }
1670        mutex_unlock(&iommu->lock);
1671
1672        return ret;
1673}
1674
1675static long vfio_iommu_type1_ioctl(void *iommu_data,
1676                                   unsigned int cmd, unsigned long arg)
1677{
1678        struct vfio_iommu *iommu = iommu_data;
1679        unsigned long minsz;
1680
1681        if (cmd == VFIO_CHECK_EXTENSION) {
1682                switch (arg) {
1683                case VFIO_TYPE1_IOMMU:
1684                case VFIO_TYPE1v2_IOMMU:
1685                case VFIO_TYPE1_NESTING_IOMMU:
1686                        return 1;
1687                case VFIO_DMA_CC_IOMMU:
1688                        if (!iommu)
1689                                return 0;
1690                        return vfio_domains_have_iommu_cache(iommu);
1691                default:
1692                        return 0;
1693                }
1694        } else if (cmd == VFIO_IOMMU_GET_INFO) {
1695                struct vfio_iommu_type1_info info;
1696
1697                minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1698
1699                if (copy_from_user(&info, (void __user *)arg, minsz))
1700                        return -EFAULT;
1701
1702                if (info.argsz < minsz)
1703                        return -EINVAL;
1704
1705                info.flags = VFIO_IOMMU_INFO_PGSIZES;
1706
1707                info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1708
1709                return copy_to_user((void __user *)arg, &info, minsz) ?
1710                        -EFAULT : 0;
1711
1712        } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1713                struct vfio_iommu_type1_dma_map map;
1714                uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1715                                VFIO_DMA_MAP_FLAG_WRITE;
1716
1717                minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1718
1719                if (copy_from_user(&map, (void __user *)arg, minsz))
1720                        return -EFAULT;
1721
1722                if (map.argsz < minsz || map.flags & ~mask)
1723                        return -EINVAL;
1724
1725                return vfio_dma_do_map(iommu, &map);
1726
1727        } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1728                struct vfio_iommu_type1_dma_unmap unmap;
1729                long ret;
1730
1731                minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1732
1733                if (copy_from_user(&unmap, (void __user *)arg, minsz))
1734                        return -EFAULT;
1735
1736                if (unmap.argsz < minsz || unmap.flags)
1737                        return -EINVAL;
1738
1739                ret = vfio_dma_do_unmap(iommu, &unmap);
1740                if (ret)
1741                        return ret;
1742
1743                return copy_to_user((void __user *)arg, &unmap, minsz) ?
1744                        -EFAULT : 0;
1745        }
1746
1747        return -ENOTTY;
1748}
1749
1750static int vfio_iommu_type1_register_notifier(void *iommu_data,
1751                                              unsigned long *events,
1752                                              struct notifier_block *nb)
1753{
1754        struct vfio_iommu *iommu = iommu_data;
1755
1756        /* clear known events */
1757        *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1758
1759        /* refuse to register if still events remaining */
1760        if (*events)
1761                return -EINVAL;
1762
1763        return blocking_notifier_chain_register(&iommu->notifier, nb);
1764}
1765
1766static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1767                                                struct notifier_block *nb)
1768{
1769        struct vfio_iommu *iommu = iommu_data;
1770
1771        return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1772}
1773
1774static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1775        .name                   = "vfio-iommu-type1",
1776        .owner                  = THIS_MODULE,
1777        .open                   = vfio_iommu_type1_open,
1778        .release                = vfio_iommu_type1_release,
1779        .ioctl                  = vfio_iommu_type1_ioctl,
1780        .attach_group           = vfio_iommu_type1_attach_group,
1781        .detach_group           = vfio_iommu_type1_detach_group,
1782        .pin_pages              = vfio_iommu_type1_pin_pages,
1783        .unpin_pages            = vfio_iommu_type1_unpin_pages,
1784        .register_notifier      = vfio_iommu_type1_register_notifier,
1785        .unregister_notifier    = vfio_iommu_type1_unregister_notifier,
1786};
1787
1788static int __init vfio_iommu_type1_init(void)
1789{
1790        return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1791}
1792
1793static void __exit vfio_iommu_type1_cleanup(void)
1794{
1795        vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1796}
1797
1798module_init(vfio_iommu_type1_init);
1799module_exit(vfio_iommu_type1_cleanup);
1800
1801MODULE_VERSION(DRIVER_VERSION);
1802MODULE_LICENSE("GPL v2");
1803MODULE_AUTHOR(DRIVER_AUTHOR);
1804MODULE_DESCRIPTION(DRIVER_DESC);
1805