linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "ctree.h"
  12#include "tree-log.h"
  13#include "disk-io.h"
  14#include "locking.h"
  15#include "print-tree.h"
  16#include "backref.h"
  17#include "compression.h"
  18#include "qgroup.h"
  19#include "inode-map.h"
  20
  21/* magic values for the inode_only field in btrfs_log_inode:
  22 *
  23 * LOG_INODE_ALL means to log everything
  24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  25 * during log replay
  26 */
  27#define LOG_INODE_ALL 0
  28#define LOG_INODE_EXISTS 1
  29#define LOG_OTHER_INODE 2
  30
  31/*
  32 * directory trouble cases
  33 *
  34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  35 * log, we must force a full commit before doing an fsync of the directory
  36 * where the unlink was done.
  37 * ---> record transid of last unlink/rename per directory
  38 *
  39 * mkdir foo/some_dir
  40 * normal commit
  41 * rename foo/some_dir foo2/some_dir
  42 * mkdir foo/some_dir
  43 * fsync foo/some_dir/some_file
  44 *
  45 * The fsync above will unlink the original some_dir without recording
  46 * it in its new location (foo2).  After a crash, some_dir will be gone
  47 * unless the fsync of some_file forces a full commit
  48 *
  49 * 2) we must log any new names for any file or dir that is in the fsync
  50 * log. ---> check inode while renaming/linking.
  51 *
  52 * 2a) we must log any new names for any file or dir during rename
  53 * when the directory they are being removed from was logged.
  54 * ---> check inode and old parent dir during rename
  55 *
  56 *  2a is actually the more important variant.  With the extra logging
  57 *  a crash might unlink the old name without recreating the new one
  58 *
  59 * 3) after a crash, we must go through any directories with a link count
  60 * of zero and redo the rm -rf
  61 *
  62 * mkdir f1/foo
  63 * normal commit
  64 * rm -rf f1/foo
  65 * fsync(f1)
  66 *
  67 * The directory f1 was fully removed from the FS, but fsync was never
  68 * called on f1, only its parent dir.  After a crash the rm -rf must
  69 * be replayed.  This must be able to recurse down the entire
  70 * directory tree.  The inode link count fixup code takes care of the
  71 * ugly details.
  72 */
  73
  74/*
  75 * stages for the tree walking.  The first
  76 * stage (0) is to only pin down the blocks we find
  77 * the second stage (1) is to make sure that all the inodes
  78 * we find in the log are created in the subvolume.
  79 *
  80 * The last stage is to deal with directories and links and extents
  81 * and all the other fun semantics
  82 */
  83#define LOG_WALK_PIN_ONLY 0
  84#define LOG_WALK_REPLAY_INODES 1
  85#define LOG_WALK_REPLAY_DIR_INDEX 2
  86#define LOG_WALK_REPLAY_ALL 3
  87
  88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  89                           struct btrfs_root *root, struct btrfs_inode *inode,
  90                           int inode_only,
  91                           const loff_t start,
  92                           const loff_t end,
  93                           struct btrfs_log_ctx *ctx);
  94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  95                             struct btrfs_root *root,
  96                             struct btrfs_path *path, u64 objectid);
  97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
  98                                       struct btrfs_root *root,
  99                                       struct btrfs_root *log,
 100                                       struct btrfs_path *path,
 101                                       u64 dirid, int del_all);
 102
 103/*
 104 * tree logging is a special write ahead log used to make sure that
 105 * fsyncs and O_SYNCs can happen without doing full tree commits.
 106 *
 107 * Full tree commits are expensive because they require commonly
 108 * modified blocks to be recowed, creating many dirty pages in the
 109 * extent tree an 4x-6x higher write load than ext3.
 110 *
 111 * Instead of doing a tree commit on every fsync, we use the
 112 * key ranges and transaction ids to find items for a given file or directory
 113 * that have changed in this transaction.  Those items are copied into
 114 * a special tree (one per subvolume root), that tree is written to disk
 115 * and then the fsync is considered complete.
 116 *
 117 * After a crash, items are copied out of the log-tree back into the
 118 * subvolume tree.  Any file data extents found are recorded in the extent
 119 * allocation tree, and the log-tree freed.
 120 *
 121 * The log tree is read three times, once to pin down all the extents it is
 122 * using in ram and once, once to create all the inodes logged in the tree
 123 * and once to do all the other items.
 124 */
 125
 126/*
 127 * start a sub transaction and setup the log tree
 128 * this increments the log tree writer count to make the people
 129 * syncing the tree wait for us to finish
 130 */
 131static int start_log_trans(struct btrfs_trans_handle *trans,
 132                           struct btrfs_root *root,
 133                           struct btrfs_log_ctx *ctx)
 134{
 135        struct btrfs_fs_info *fs_info = root->fs_info;
 136        int ret = 0;
 137
 138        mutex_lock(&root->log_mutex);
 139
 140        if (root->log_root) {
 141                if (btrfs_need_log_full_commit(fs_info, trans)) {
 142                        ret = -EAGAIN;
 143                        goto out;
 144                }
 145
 146                if (!root->log_start_pid) {
 147                        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 148                        root->log_start_pid = current->pid;
 149                } else if (root->log_start_pid != current->pid) {
 150                        set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 151                }
 152        } else {
 153                mutex_lock(&fs_info->tree_log_mutex);
 154                if (!fs_info->log_root_tree)
 155                        ret = btrfs_init_log_root_tree(trans, fs_info);
 156                mutex_unlock(&fs_info->tree_log_mutex);
 157                if (ret)
 158                        goto out;
 159
 160                ret = btrfs_add_log_tree(trans, root);
 161                if (ret)
 162                        goto out;
 163
 164                clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 165                root->log_start_pid = current->pid;
 166        }
 167
 168        atomic_inc(&root->log_batch);
 169        atomic_inc(&root->log_writers);
 170        if (ctx) {
 171                int index = root->log_transid % 2;
 172                list_add_tail(&ctx->list, &root->log_ctxs[index]);
 173                ctx->log_transid = root->log_transid;
 174        }
 175
 176out:
 177        mutex_unlock(&root->log_mutex);
 178        return ret;
 179}
 180
 181/*
 182 * returns 0 if there was a log transaction running and we were able
 183 * to join, or returns -ENOENT if there were not transactions
 184 * in progress
 185 */
 186static int join_running_log_trans(struct btrfs_root *root)
 187{
 188        int ret = -ENOENT;
 189
 190        smp_mb();
 191        if (!root->log_root)
 192                return -ENOENT;
 193
 194        mutex_lock(&root->log_mutex);
 195        if (root->log_root) {
 196                ret = 0;
 197                atomic_inc(&root->log_writers);
 198        }
 199        mutex_unlock(&root->log_mutex);
 200        return ret;
 201}
 202
 203/*
 204 * This either makes the current running log transaction wait
 205 * until you call btrfs_end_log_trans() or it makes any future
 206 * log transactions wait until you call btrfs_end_log_trans()
 207 */
 208int btrfs_pin_log_trans(struct btrfs_root *root)
 209{
 210        int ret = -ENOENT;
 211
 212        mutex_lock(&root->log_mutex);
 213        atomic_inc(&root->log_writers);
 214        mutex_unlock(&root->log_mutex);
 215        return ret;
 216}
 217
 218/*
 219 * indicate we're done making changes to the log tree
 220 * and wake up anyone waiting to do a sync
 221 */
 222void btrfs_end_log_trans(struct btrfs_root *root)
 223{
 224        if (atomic_dec_and_test(&root->log_writers)) {
 225                /* atomic_dec_and_test implies a barrier */
 226                cond_wake_up_nomb(&root->log_writer_wait);
 227        }
 228}
 229
 230
 231/*
 232 * the walk control struct is used to pass state down the chain when
 233 * processing the log tree.  The stage field tells us which part
 234 * of the log tree processing we are currently doing.  The others
 235 * are state fields used for that specific part
 236 */
 237struct walk_control {
 238        /* should we free the extent on disk when done?  This is used
 239         * at transaction commit time while freeing a log tree
 240         */
 241        int free;
 242
 243        /* should we write out the extent buffer?  This is used
 244         * while flushing the log tree to disk during a sync
 245         */
 246        int write;
 247
 248        /* should we wait for the extent buffer io to finish?  Also used
 249         * while flushing the log tree to disk for a sync
 250         */
 251        int wait;
 252
 253        /* pin only walk, we record which extents on disk belong to the
 254         * log trees
 255         */
 256        int pin;
 257
 258        /* what stage of the replay code we're currently in */
 259        int stage;
 260
 261        /* the root we are currently replaying */
 262        struct btrfs_root *replay_dest;
 263
 264        /* the trans handle for the current replay */
 265        struct btrfs_trans_handle *trans;
 266
 267        /* the function that gets used to process blocks we find in the
 268         * tree.  Note the extent_buffer might not be up to date when it is
 269         * passed in, and it must be checked or read if you need the data
 270         * inside it
 271         */
 272        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 273                            struct walk_control *wc, u64 gen, int level);
 274};
 275
 276/*
 277 * process_func used to pin down extents, write them or wait on them
 278 */
 279static int process_one_buffer(struct btrfs_root *log,
 280                              struct extent_buffer *eb,
 281                              struct walk_control *wc, u64 gen, int level)
 282{
 283        struct btrfs_fs_info *fs_info = log->fs_info;
 284        int ret = 0;
 285
 286        /*
 287         * If this fs is mixed then we need to be able to process the leaves to
 288         * pin down any logged extents, so we have to read the block.
 289         */
 290        if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 291                ret = btrfs_read_buffer(eb, gen, level, NULL);
 292                if (ret)
 293                        return ret;
 294        }
 295
 296        if (wc->pin)
 297                ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 298                                                      eb->len);
 299
 300        if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 301                if (wc->pin && btrfs_header_level(eb) == 0)
 302                        ret = btrfs_exclude_logged_extents(fs_info, eb);
 303                if (wc->write)
 304                        btrfs_write_tree_block(eb);
 305                if (wc->wait)
 306                        btrfs_wait_tree_block_writeback(eb);
 307        }
 308        return ret;
 309}
 310
 311/*
 312 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 313 * to the src data we are copying out.
 314 *
 315 * root is the tree we are copying into, and path is a scratch
 316 * path for use in this function (it should be released on entry and
 317 * will be released on exit).
 318 *
 319 * If the key is already in the destination tree the existing item is
 320 * overwritten.  If the existing item isn't big enough, it is extended.
 321 * If it is too large, it is truncated.
 322 *
 323 * If the key isn't in the destination yet, a new item is inserted.
 324 */
 325static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 326                                   struct btrfs_root *root,
 327                                   struct btrfs_path *path,
 328                                   struct extent_buffer *eb, int slot,
 329                                   struct btrfs_key *key)
 330{
 331        struct btrfs_fs_info *fs_info = root->fs_info;
 332        int ret;
 333        u32 item_size;
 334        u64 saved_i_size = 0;
 335        int save_old_i_size = 0;
 336        unsigned long src_ptr;
 337        unsigned long dst_ptr;
 338        int overwrite_root = 0;
 339        bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 340
 341        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 342                overwrite_root = 1;
 343
 344        item_size = btrfs_item_size_nr(eb, slot);
 345        src_ptr = btrfs_item_ptr_offset(eb, slot);
 346
 347        /* look for the key in the destination tree */
 348        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 349        if (ret < 0)
 350                return ret;
 351
 352        if (ret == 0) {
 353                char *src_copy;
 354                char *dst_copy;
 355                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 356                                                  path->slots[0]);
 357                if (dst_size != item_size)
 358                        goto insert;
 359
 360                if (item_size == 0) {
 361                        btrfs_release_path(path);
 362                        return 0;
 363                }
 364                dst_copy = kmalloc(item_size, GFP_NOFS);
 365                src_copy = kmalloc(item_size, GFP_NOFS);
 366                if (!dst_copy || !src_copy) {
 367                        btrfs_release_path(path);
 368                        kfree(dst_copy);
 369                        kfree(src_copy);
 370                        return -ENOMEM;
 371                }
 372
 373                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 374
 375                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 376                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 377                                   item_size);
 378                ret = memcmp(dst_copy, src_copy, item_size);
 379
 380                kfree(dst_copy);
 381                kfree(src_copy);
 382                /*
 383                 * they have the same contents, just return, this saves
 384                 * us from cowing blocks in the destination tree and doing
 385                 * extra writes that may not have been done by a previous
 386                 * sync
 387                 */
 388                if (ret == 0) {
 389                        btrfs_release_path(path);
 390                        return 0;
 391                }
 392
 393                /*
 394                 * We need to load the old nbytes into the inode so when we
 395                 * replay the extents we've logged we get the right nbytes.
 396                 */
 397                if (inode_item) {
 398                        struct btrfs_inode_item *item;
 399                        u64 nbytes;
 400                        u32 mode;
 401
 402                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 403                                              struct btrfs_inode_item);
 404                        nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 405                        item = btrfs_item_ptr(eb, slot,
 406                                              struct btrfs_inode_item);
 407                        btrfs_set_inode_nbytes(eb, item, nbytes);
 408
 409                        /*
 410                         * If this is a directory we need to reset the i_size to
 411                         * 0 so that we can set it up properly when replaying
 412                         * the rest of the items in this log.
 413                         */
 414                        mode = btrfs_inode_mode(eb, item);
 415                        if (S_ISDIR(mode))
 416                                btrfs_set_inode_size(eb, item, 0);
 417                }
 418        } else if (inode_item) {
 419                struct btrfs_inode_item *item;
 420                u32 mode;
 421
 422                /*
 423                 * New inode, set nbytes to 0 so that the nbytes comes out
 424                 * properly when we replay the extents.
 425                 */
 426                item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 427                btrfs_set_inode_nbytes(eb, item, 0);
 428
 429                /*
 430                 * If this is a directory we need to reset the i_size to 0 so
 431                 * that we can set it up properly when replaying the rest of
 432                 * the items in this log.
 433                 */
 434                mode = btrfs_inode_mode(eb, item);
 435                if (S_ISDIR(mode))
 436                        btrfs_set_inode_size(eb, item, 0);
 437        }
 438insert:
 439        btrfs_release_path(path);
 440        /* try to insert the key into the destination tree */
 441        path->skip_release_on_error = 1;
 442        ret = btrfs_insert_empty_item(trans, root, path,
 443                                      key, item_size);
 444        path->skip_release_on_error = 0;
 445
 446        /* make sure any existing item is the correct size */
 447        if (ret == -EEXIST || ret == -EOVERFLOW) {
 448                u32 found_size;
 449                found_size = btrfs_item_size_nr(path->nodes[0],
 450                                                path->slots[0]);
 451                if (found_size > item_size)
 452                        btrfs_truncate_item(fs_info, path, item_size, 1);
 453                else if (found_size < item_size)
 454                        btrfs_extend_item(fs_info, path,
 455                                          item_size - found_size);
 456        } else if (ret) {
 457                return ret;
 458        }
 459        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 460                                        path->slots[0]);
 461
 462        /* don't overwrite an existing inode if the generation number
 463         * was logged as zero.  This is done when the tree logging code
 464         * is just logging an inode to make sure it exists after recovery.
 465         *
 466         * Also, don't overwrite i_size on directories during replay.
 467         * log replay inserts and removes directory items based on the
 468         * state of the tree found in the subvolume, and i_size is modified
 469         * as it goes
 470         */
 471        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 472                struct btrfs_inode_item *src_item;
 473                struct btrfs_inode_item *dst_item;
 474
 475                src_item = (struct btrfs_inode_item *)src_ptr;
 476                dst_item = (struct btrfs_inode_item *)dst_ptr;
 477
 478                if (btrfs_inode_generation(eb, src_item) == 0) {
 479                        struct extent_buffer *dst_eb = path->nodes[0];
 480                        const u64 ino_size = btrfs_inode_size(eb, src_item);
 481
 482                        /*
 483                         * For regular files an ino_size == 0 is used only when
 484                         * logging that an inode exists, as part of a directory
 485                         * fsync, and the inode wasn't fsynced before. In this
 486                         * case don't set the size of the inode in the fs/subvol
 487                         * tree, otherwise we would be throwing valid data away.
 488                         */
 489                        if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 490                            S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 491                            ino_size != 0) {
 492                                struct btrfs_map_token token;
 493
 494                                btrfs_init_map_token(&token);
 495                                btrfs_set_token_inode_size(dst_eb, dst_item,
 496                                                           ino_size, &token);
 497                        }
 498                        goto no_copy;
 499                }
 500
 501                if (overwrite_root &&
 502                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 503                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 504                        save_old_i_size = 1;
 505                        saved_i_size = btrfs_inode_size(path->nodes[0],
 506                                                        dst_item);
 507                }
 508        }
 509
 510        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 511                           src_ptr, item_size);
 512
 513        if (save_old_i_size) {
 514                struct btrfs_inode_item *dst_item;
 515                dst_item = (struct btrfs_inode_item *)dst_ptr;
 516                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 517        }
 518
 519        /* make sure the generation is filled in */
 520        if (key->type == BTRFS_INODE_ITEM_KEY) {
 521                struct btrfs_inode_item *dst_item;
 522                dst_item = (struct btrfs_inode_item *)dst_ptr;
 523                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 524                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 525                                                   trans->transid);
 526                }
 527        }
 528no_copy:
 529        btrfs_mark_buffer_dirty(path->nodes[0]);
 530        btrfs_release_path(path);
 531        return 0;
 532}
 533
 534/*
 535 * simple helper to read an inode off the disk from a given root
 536 * This can only be called for subvolume roots and not for the log
 537 */
 538static noinline struct inode *read_one_inode(struct btrfs_root *root,
 539                                             u64 objectid)
 540{
 541        struct btrfs_key key;
 542        struct inode *inode;
 543
 544        key.objectid = objectid;
 545        key.type = BTRFS_INODE_ITEM_KEY;
 546        key.offset = 0;
 547        inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 548        if (IS_ERR(inode)) {
 549                inode = NULL;
 550        } else if (is_bad_inode(inode)) {
 551                iput(inode);
 552                inode = NULL;
 553        }
 554        return inode;
 555}
 556
 557/* replays a single extent in 'eb' at 'slot' with 'key' into the
 558 * subvolume 'root'.  path is released on entry and should be released
 559 * on exit.
 560 *
 561 * extents in the log tree have not been allocated out of the extent
 562 * tree yet.  So, this completes the allocation, taking a reference
 563 * as required if the extent already exists or creating a new extent
 564 * if it isn't in the extent allocation tree yet.
 565 *
 566 * The extent is inserted into the file, dropping any existing extents
 567 * from the file that overlap the new one.
 568 */
 569static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 570                                      struct btrfs_root *root,
 571                                      struct btrfs_path *path,
 572                                      struct extent_buffer *eb, int slot,
 573                                      struct btrfs_key *key)
 574{
 575        struct btrfs_fs_info *fs_info = root->fs_info;
 576        int found_type;
 577        u64 extent_end;
 578        u64 start = key->offset;
 579        u64 nbytes = 0;
 580        struct btrfs_file_extent_item *item;
 581        struct inode *inode = NULL;
 582        unsigned long size;
 583        int ret = 0;
 584
 585        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 586        found_type = btrfs_file_extent_type(eb, item);
 587
 588        if (found_type == BTRFS_FILE_EXTENT_REG ||
 589            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 590                nbytes = btrfs_file_extent_num_bytes(eb, item);
 591                extent_end = start + nbytes;
 592
 593                /*
 594                 * We don't add to the inodes nbytes if we are prealloc or a
 595                 * hole.
 596                 */
 597                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 598                        nbytes = 0;
 599        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 600                size = btrfs_file_extent_inline_len(eb, slot, item);
 601                nbytes = btrfs_file_extent_ram_bytes(eb, item);
 602                extent_end = ALIGN(start + size,
 603                                   fs_info->sectorsize);
 604        } else {
 605                ret = 0;
 606                goto out;
 607        }
 608
 609        inode = read_one_inode(root, key->objectid);
 610        if (!inode) {
 611                ret = -EIO;
 612                goto out;
 613        }
 614
 615        /*
 616         * first check to see if we already have this extent in the
 617         * file.  This must be done before the btrfs_drop_extents run
 618         * so we don't try to drop this extent.
 619         */
 620        ret = btrfs_lookup_file_extent(trans, root, path,
 621                        btrfs_ino(BTRFS_I(inode)), start, 0);
 622
 623        if (ret == 0 &&
 624            (found_type == BTRFS_FILE_EXTENT_REG ||
 625             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 626                struct btrfs_file_extent_item cmp1;
 627                struct btrfs_file_extent_item cmp2;
 628                struct btrfs_file_extent_item *existing;
 629                struct extent_buffer *leaf;
 630
 631                leaf = path->nodes[0];
 632                existing = btrfs_item_ptr(leaf, path->slots[0],
 633                                          struct btrfs_file_extent_item);
 634
 635                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 636                                   sizeof(cmp1));
 637                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 638                                   sizeof(cmp2));
 639
 640                /*
 641                 * we already have a pointer to this exact extent,
 642                 * we don't have to do anything
 643                 */
 644                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 645                        btrfs_release_path(path);
 646                        goto out;
 647                }
 648        }
 649        btrfs_release_path(path);
 650
 651        /* drop any overlapping extents */
 652        ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 653        if (ret)
 654                goto out;
 655
 656        if (found_type == BTRFS_FILE_EXTENT_REG ||
 657            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 658                u64 offset;
 659                unsigned long dest_offset;
 660                struct btrfs_key ins;
 661
 662                if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 663                    btrfs_fs_incompat(fs_info, NO_HOLES))
 664                        goto update_inode;
 665
 666                ret = btrfs_insert_empty_item(trans, root, path, key,
 667                                              sizeof(*item));
 668                if (ret)
 669                        goto out;
 670                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 671                                                    path->slots[0]);
 672                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 673                                (unsigned long)item,  sizeof(*item));
 674
 675                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 676                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 677                ins.type = BTRFS_EXTENT_ITEM_KEY;
 678                offset = key->offset - btrfs_file_extent_offset(eb, item);
 679
 680                /*
 681                 * Manually record dirty extent, as here we did a shallow
 682                 * file extent item copy and skip normal backref update,
 683                 * but modifying extent tree all by ourselves.
 684                 * So need to manually record dirty extent for qgroup,
 685                 * as the owner of the file extent changed from log tree
 686                 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 687                 */
 688                ret = btrfs_qgroup_trace_extent(trans, fs_info,
 689                                btrfs_file_extent_disk_bytenr(eb, item),
 690                                btrfs_file_extent_disk_num_bytes(eb, item),
 691                                GFP_NOFS);
 692                if (ret < 0)
 693                        goto out;
 694
 695                if (ins.objectid > 0) {
 696                        u64 csum_start;
 697                        u64 csum_end;
 698                        LIST_HEAD(ordered_sums);
 699                        /*
 700                         * is this extent already allocated in the extent
 701                         * allocation tree?  If so, just add a reference
 702                         */
 703                        ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 704                                                ins.offset);
 705                        if (ret == 0) {
 706                                ret = btrfs_inc_extent_ref(trans, root,
 707                                                ins.objectid, ins.offset,
 708                                                0, root->root_key.objectid,
 709                                                key->objectid, offset);
 710                                if (ret)
 711                                        goto out;
 712                        } else {
 713                                /*
 714                                 * insert the extent pointer in the extent
 715                                 * allocation tree
 716                                 */
 717                                ret = btrfs_alloc_logged_file_extent(trans,
 718                                                fs_info,
 719                                                root->root_key.objectid,
 720                                                key->objectid, offset, &ins);
 721                                if (ret)
 722                                        goto out;
 723                        }
 724                        btrfs_release_path(path);
 725
 726                        if (btrfs_file_extent_compression(eb, item)) {
 727                                csum_start = ins.objectid;
 728                                csum_end = csum_start + ins.offset;
 729                        } else {
 730                                csum_start = ins.objectid +
 731                                        btrfs_file_extent_offset(eb, item);
 732                                csum_end = csum_start +
 733                                        btrfs_file_extent_num_bytes(eb, item);
 734                        }
 735
 736                        ret = btrfs_lookup_csums_range(root->log_root,
 737                                                csum_start, csum_end - 1,
 738                                                &ordered_sums, 0);
 739                        if (ret)
 740                                goto out;
 741                        /*
 742                         * Now delete all existing cums in the csum root that
 743                         * cover our range. We do this because we can have an
 744                         * extent that is completely referenced by one file
 745                         * extent item and partially referenced by another
 746                         * file extent item (like after using the clone or
 747                         * extent_same ioctls). In this case if we end up doing
 748                         * the replay of the one that partially references the
 749                         * extent first, and we do not do the csum deletion
 750                         * below, we can get 2 csum items in the csum tree that
 751                         * overlap each other. For example, imagine our log has
 752                         * the two following file extent items:
 753                         *
 754                         * key (257 EXTENT_DATA 409600)
 755                         *     extent data disk byte 12845056 nr 102400
 756                         *     extent data offset 20480 nr 20480 ram 102400
 757                         *
 758                         * key (257 EXTENT_DATA 819200)
 759                         *     extent data disk byte 12845056 nr 102400
 760                         *     extent data offset 0 nr 102400 ram 102400
 761                         *
 762                         * Where the second one fully references the 100K extent
 763                         * that starts at disk byte 12845056, and the log tree
 764                         * has a single csum item that covers the entire range
 765                         * of the extent:
 766                         *
 767                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 768                         *
 769                         * After the first file extent item is replayed, the
 770                         * csum tree gets the following csum item:
 771                         *
 772                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 773                         *
 774                         * Which covers the 20K sub-range starting at offset 20K
 775                         * of our extent. Now when we replay the second file
 776                         * extent item, if we do not delete existing csum items
 777                         * that cover any of its blocks, we end up getting two
 778                         * csum items in our csum tree that overlap each other:
 779                         *
 780                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 781                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 782                         *
 783                         * Which is a problem, because after this anyone trying
 784                         * to lookup up for the checksum of any block of our
 785                         * extent starting at an offset of 40K or higher, will
 786                         * end up looking at the second csum item only, which
 787                         * does not contain the checksum for any block starting
 788                         * at offset 40K or higher of our extent.
 789                         */
 790                        while (!list_empty(&ordered_sums)) {
 791                                struct btrfs_ordered_sum *sums;
 792                                sums = list_entry(ordered_sums.next,
 793                                                struct btrfs_ordered_sum,
 794                                                list);
 795                                if (!ret)
 796                                        ret = btrfs_del_csums(trans, fs_info,
 797                                                              sums->bytenr,
 798                                                              sums->len);
 799                                if (!ret)
 800                                        ret = btrfs_csum_file_blocks(trans,
 801                                                fs_info->csum_root, sums);
 802                                list_del(&sums->list);
 803                                kfree(sums);
 804                        }
 805                        if (ret)
 806                                goto out;
 807                } else {
 808                        btrfs_release_path(path);
 809                }
 810        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 811                /* inline extents are easy, we just overwrite them */
 812                ret = overwrite_item(trans, root, path, eb, slot, key);
 813                if (ret)
 814                        goto out;
 815        }
 816
 817        inode_add_bytes(inode, nbytes);
 818update_inode:
 819        ret = btrfs_update_inode(trans, root, inode);
 820out:
 821        if (inode)
 822                iput(inode);
 823        return ret;
 824}
 825
 826/*
 827 * when cleaning up conflicts between the directory names in the
 828 * subvolume, directory names in the log and directory names in the
 829 * inode back references, we may have to unlink inodes from directories.
 830 *
 831 * This is a helper function to do the unlink of a specific directory
 832 * item
 833 */
 834static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 835                                      struct btrfs_root *root,
 836                                      struct btrfs_path *path,
 837                                      struct btrfs_inode *dir,
 838                                      struct btrfs_dir_item *di)
 839{
 840        struct inode *inode;
 841        char *name;
 842        int name_len;
 843        struct extent_buffer *leaf;
 844        struct btrfs_key location;
 845        int ret;
 846
 847        leaf = path->nodes[0];
 848
 849        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 850        name_len = btrfs_dir_name_len(leaf, di);
 851        name = kmalloc(name_len, GFP_NOFS);
 852        if (!name)
 853                return -ENOMEM;
 854
 855        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 856        btrfs_release_path(path);
 857
 858        inode = read_one_inode(root, location.objectid);
 859        if (!inode) {
 860                ret = -EIO;
 861                goto out;
 862        }
 863
 864        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 865        if (ret)
 866                goto out;
 867
 868        ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 869                        name_len);
 870        if (ret)
 871                goto out;
 872        else
 873                ret = btrfs_run_delayed_items(trans);
 874out:
 875        kfree(name);
 876        iput(inode);
 877        return ret;
 878}
 879
 880/*
 881 * helper function to see if a given name and sequence number found
 882 * in an inode back reference are already in a directory and correctly
 883 * point to this inode
 884 */
 885static noinline int inode_in_dir(struct btrfs_root *root,
 886                                 struct btrfs_path *path,
 887                                 u64 dirid, u64 objectid, u64 index,
 888                                 const char *name, int name_len)
 889{
 890        struct btrfs_dir_item *di;
 891        struct btrfs_key location;
 892        int match = 0;
 893
 894        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 895                                         index, name, name_len, 0);
 896        if (di && !IS_ERR(di)) {
 897                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 898                if (location.objectid != objectid)
 899                        goto out;
 900        } else
 901                goto out;
 902        btrfs_release_path(path);
 903
 904        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 905        if (di && !IS_ERR(di)) {
 906                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907                if (location.objectid != objectid)
 908                        goto out;
 909        } else
 910                goto out;
 911        match = 1;
 912out:
 913        btrfs_release_path(path);
 914        return match;
 915}
 916
 917/*
 918 * helper function to check a log tree for a named back reference in
 919 * an inode.  This is used to decide if a back reference that is
 920 * found in the subvolume conflicts with what we find in the log.
 921 *
 922 * inode backreferences may have multiple refs in a single item,
 923 * during replay we process one reference at a time, and we don't
 924 * want to delete valid links to a file from the subvolume if that
 925 * link is also in the log.
 926 */
 927static noinline int backref_in_log(struct btrfs_root *log,
 928                                   struct btrfs_key *key,
 929                                   u64 ref_objectid,
 930                                   const char *name, int namelen)
 931{
 932        struct btrfs_path *path;
 933        struct btrfs_inode_ref *ref;
 934        unsigned long ptr;
 935        unsigned long ptr_end;
 936        unsigned long name_ptr;
 937        int found_name_len;
 938        int item_size;
 939        int ret;
 940        int match = 0;
 941
 942        path = btrfs_alloc_path();
 943        if (!path)
 944                return -ENOMEM;
 945
 946        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 947        if (ret != 0)
 948                goto out;
 949
 950        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 951
 952        if (key->type == BTRFS_INODE_EXTREF_KEY) {
 953                if (btrfs_find_name_in_ext_backref(path->nodes[0],
 954                                                   path->slots[0],
 955                                                   ref_objectid,
 956                                                   name, namelen, NULL))
 957                        match = 1;
 958
 959                goto out;
 960        }
 961
 962        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 963        ptr_end = ptr + item_size;
 964        while (ptr < ptr_end) {
 965                ref = (struct btrfs_inode_ref *)ptr;
 966                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 967                if (found_name_len == namelen) {
 968                        name_ptr = (unsigned long)(ref + 1);
 969                        ret = memcmp_extent_buffer(path->nodes[0], name,
 970                                                   name_ptr, namelen);
 971                        if (ret == 0) {
 972                                match = 1;
 973                                goto out;
 974                        }
 975                }
 976                ptr = (unsigned long)(ref + 1) + found_name_len;
 977        }
 978out:
 979        btrfs_free_path(path);
 980        return match;
 981}
 982
 983static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 984                                  struct btrfs_root *root,
 985                                  struct btrfs_path *path,
 986                                  struct btrfs_root *log_root,
 987                                  struct btrfs_inode *dir,
 988                                  struct btrfs_inode *inode,
 989                                  u64 inode_objectid, u64 parent_objectid,
 990                                  u64 ref_index, char *name, int namelen,
 991                                  int *search_done)
 992{
 993        int ret;
 994        char *victim_name;
 995        int victim_name_len;
 996        struct extent_buffer *leaf;
 997        struct btrfs_dir_item *di;
 998        struct btrfs_key search_key;
 999        struct btrfs_inode_extref *extref;
1000
1001again:
1002        /* Search old style refs */
1003        search_key.objectid = inode_objectid;
1004        search_key.type = BTRFS_INODE_REF_KEY;
1005        search_key.offset = parent_objectid;
1006        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1007        if (ret == 0) {
1008                struct btrfs_inode_ref *victim_ref;
1009                unsigned long ptr;
1010                unsigned long ptr_end;
1011
1012                leaf = path->nodes[0];
1013
1014                /* are we trying to overwrite a back ref for the root directory
1015                 * if so, just jump out, we're done
1016                 */
1017                if (search_key.objectid == search_key.offset)
1018                        return 1;
1019
1020                /* check all the names in this back reference to see
1021                 * if they are in the log.  if so, we allow them to stay
1022                 * otherwise they must be unlinked as a conflict
1023                 */
1024                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1025                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1026                while (ptr < ptr_end) {
1027                        victim_ref = (struct btrfs_inode_ref *)ptr;
1028                        victim_name_len = btrfs_inode_ref_name_len(leaf,
1029                                                                   victim_ref);
1030                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1031                        if (!victim_name)
1032                                return -ENOMEM;
1033
1034                        read_extent_buffer(leaf, victim_name,
1035                                           (unsigned long)(victim_ref + 1),
1036                                           victim_name_len);
1037
1038                        if (!backref_in_log(log_root, &search_key,
1039                                            parent_objectid,
1040                                            victim_name,
1041                                            victim_name_len)) {
1042                                inc_nlink(&inode->vfs_inode);
1043                                btrfs_release_path(path);
1044
1045                                ret = btrfs_unlink_inode(trans, root, dir, inode,
1046                                                victim_name, victim_name_len);
1047                                kfree(victim_name);
1048                                if (ret)
1049                                        return ret;
1050                                ret = btrfs_run_delayed_items(trans);
1051                                if (ret)
1052                                        return ret;
1053                                *search_done = 1;
1054                                goto again;
1055                        }
1056                        kfree(victim_name);
1057
1058                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1059                }
1060
1061                /*
1062                 * NOTE: we have searched root tree and checked the
1063                 * corresponding ref, it does not need to check again.
1064                 */
1065                *search_done = 1;
1066        }
1067        btrfs_release_path(path);
1068
1069        /* Same search but for extended refs */
1070        extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1071                                           inode_objectid, parent_objectid, 0,
1072                                           0);
1073        if (!IS_ERR_OR_NULL(extref)) {
1074                u32 item_size;
1075                u32 cur_offset = 0;
1076                unsigned long base;
1077                struct inode *victim_parent;
1078
1079                leaf = path->nodes[0];
1080
1081                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1082                base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083
1084                while (cur_offset < item_size) {
1085                        extref = (struct btrfs_inode_extref *)(base + cur_offset);
1086
1087                        victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088
1089                        if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1090                                goto next;
1091
1092                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1093                        if (!victim_name)
1094                                return -ENOMEM;
1095                        read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1096                                           victim_name_len);
1097
1098                        search_key.objectid = inode_objectid;
1099                        search_key.type = BTRFS_INODE_EXTREF_KEY;
1100                        search_key.offset = btrfs_extref_hash(parent_objectid,
1101                                                              victim_name,
1102                                                              victim_name_len);
1103                        ret = 0;
1104                        if (!backref_in_log(log_root, &search_key,
1105                                            parent_objectid, victim_name,
1106                                            victim_name_len)) {
1107                                ret = -ENOENT;
1108                                victim_parent = read_one_inode(root,
1109                                                parent_objectid);
1110                                if (victim_parent) {
1111                                        inc_nlink(&inode->vfs_inode);
1112                                        btrfs_release_path(path);
1113
1114                                        ret = btrfs_unlink_inode(trans, root,
1115                                                        BTRFS_I(victim_parent),
1116                                                        inode,
1117                                                        victim_name,
1118                                                        victim_name_len);
1119                                        if (!ret)
1120                                                ret = btrfs_run_delayed_items(
1121                                                                  trans);
1122                                }
1123                                iput(victim_parent);
1124                                kfree(victim_name);
1125                                if (ret)
1126                                        return ret;
1127                                *search_done = 1;
1128                                goto again;
1129                        }
1130                        kfree(victim_name);
1131next:
1132                        cur_offset += victim_name_len + sizeof(*extref);
1133                }
1134                *search_done = 1;
1135        }
1136        btrfs_release_path(path);
1137
1138        /* look for a conflicting sequence number */
1139        di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1140                                         ref_index, name, namelen, 0);
1141        if (di && !IS_ERR(di)) {
1142                ret = drop_one_dir_item(trans, root, path, dir, di);
1143                if (ret)
1144                        return ret;
1145        }
1146        btrfs_release_path(path);
1147
1148        /* look for a conflicing name */
1149        di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1150                                   name, namelen, 0);
1151        if (di && !IS_ERR(di)) {
1152                ret = drop_one_dir_item(trans, root, path, dir, di);
1153                if (ret)
1154                        return ret;
1155        }
1156        btrfs_release_path(path);
1157
1158        return 0;
1159}
1160
1161static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1162                             u32 *namelen, char **name, u64 *index,
1163                             u64 *parent_objectid)
1164{
1165        struct btrfs_inode_extref *extref;
1166
1167        extref = (struct btrfs_inode_extref *)ref_ptr;
1168
1169        *namelen = btrfs_inode_extref_name_len(eb, extref);
1170        *name = kmalloc(*namelen, GFP_NOFS);
1171        if (*name == NULL)
1172                return -ENOMEM;
1173
1174        read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1175                           *namelen);
1176
1177        if (index)
1178                *index = btrfs_inode_extref_index(eb, extref);
1179        if (parent_objectid)
1180                *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181
1182        return 0;
1183}
1184
1185static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1186                          u32 *namelen, char **name, u64 *index)
1187{
1188        struct btrfs_inode_ref *ref;
1189
1190        ref = (struct btrfs_inode_ref *)ref_ptr;
1191
1192        *namelen = btrfs_inode_ref_name_len(eb, ref);
1193        *name = kmalloc(*namelen, GFP_NOFS);
1194        if (*name == NULL)
1195                return -ENOMEM;
1196
1197        read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198
1199        if (index)
1200                *index = btrfs_inode_ref_index(eb, ref);
1201
1202        return 0;
1203}
1204
1205/*
1206 * Take an inode reference item from the log tree and iterate all names from the
1207 * inode reference item in the subvolume tree with the same key (if it exists).
1208 * For any name that is not in the inode reference item from the log tree, do a
1209 * proper unlink of that name (that is, remove its entry from the inode
1210 * reference item and both dir index keys).
1211 */
1212static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1213                                 struct btrfs_root *root,
1214                                 struct btrfs_path *path,
1215                                 struct btrfs_inode *inode,
1216                                 struct extent_buffer *log_eb,
1217                                 int log_slot,
1218                                 struct btrfs_key *key)
1219{
1220        int ret;
1221        unsigned long ref_ptr;
1222        unsigned long ref_end;
1223        struct extent_buffer *eb;
1224
1225again:
1226        btrfs_release_path(path);
1227        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1228        if (ret > 0) {
1229                ret = 0;
1230                goto out;
1231        }
1232        if (ret < 0)
1233                goto out;
1234
1235        eb = path->nodes[0];
1236        ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1237        ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1238        while (ref_ptr < ref_end) {
1239                char *name = NULL;
1240                int namelen;
1241                u64 parent_id;
1242
1243                if (key->type == BTRFS_INODE_EXTREF_KEY) {
1244                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1245                                                NULL, &parent_id);
1246                } else {
1247                        parent_id = key->offset;
1248                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1249                                             NULL);
1250                }
1251                if (ret)
1252                        goto out;
1253
1254                if (key->type == BTRFS_INODE_EXTREF_KEY)
1255                        ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1256                                                             parent_id, name,
1257                                                             namelen, NULL);
1258                else
1259                        ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1260                                                         namelen, NULL);
1261
1262                if (!ret) {
1263                        struct inode *dir;
1264
1265                        btrfs_release_path(path);
1266                        dir = read_one_inode(root, parent_id);
1267                        if (!dir) {
1268                                ret = -ENOENT;
1269                                kfree(name);
1270                                goto out;
1271                        }
1272                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1273                                                 inode, name, namelen);
1274                        kfree(name);
1275                        iput(dir);
1276                        if (ret)
1277                                goto out;
1278                        goto again;
1279                }
1280
1281                kfree(name);
1282                ref_ptr += namelen;
1283                if (key->type == BTRFS_INODE_EXTREF_KEY)
1284                        ref_ptr += sizeof(struct btrfs_inode_extref);
1285                else
1286                        ref_ptr += sizeof(struct btrfs_inode_ref);
1287        }
1288        ret = 0;
1289 out:
1290        btrfs_release_path(path);
1291        return ret;
1292}
1293
1294/*
1295 * replay one inode back reference item found in the log tree.
1296 * eb, slot and key refer to the buffer and key found in the log tree.
1297 * root is the destination we are replaying into, and path is for temp
1298 * use by this function.  (it should be released on return).
1299 */
1300static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1301                                  struct btrfs_root *root,
1302                                  struct btrfs_root *log,
1303                                  struct btrfs_path *path,
1304                                  struct extent_buffer *eb, int slot,
1305                                  struct btrfs_key *key)
1306{
1307        struct inode *dir = NULL;
1308        struct inode *inode = NULL;
1309        unsigned long ref_ptr;
1310        unsigned long ref_end;
1311        char *name = NULL;
1312        int namelen;
1313        int ret;
1314        int search_done = 0;
1315        int log_ref_ver = 0;
1316        u64 parent_objectid;
1317        u64 inode_objectid;
1318        u64 ref_index = 0;
1319        int ref_struct_size;
1320
1321        ref_ptr = btrfs_item_ptr_offset(eb, slot);
1322        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1323
1324        if (key->type == BTRFS_INODE_EXTREF_KEY) {
1325                struct btrfs_inode_extref *r;
1326
1327                ref_struct_size = sizeof(struct btrfs_inode_extref);
1328                log_ref_ver = 1;
1329                r = (struct btrfs_inode_extref *)ref_ptr;
1330                parent_objectid = btrfs_inode_extref_parent(eb, r);
1331        } else {
1332                ref_struct_size = sizeof(struct btrfs_inode_ref);
1333                parent_objectid = key->offset;
1334        }
1335        inode_objectid = key->objectid;
1336
1337        /*
1338         * it is possible that we didn't log all the parent directories
1339         * for a given inode.  If we don't find the dir, just don't
1340         * copy the back ref in.  The link count fixup code will take
1341         * care of the rest
1342         */
1343        dir = read_one_inode(root, parent_objectid);
1344        if (!dir) {
1345                ret = -ENOENT;
1346                goto out;
1347        }
1348
1349        inode = read_one_inode(root, inode_objectid);
1350        if (!inode) {
1351                ret = -EIO;
1352                goto out;
1353        }
1354
1355        while (ref_ptr < ref_end) {
1356                if (log_ref_ver) {
1357                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1358                                                &ref_index, &parent_objectid);
1359                        /*
1360                         * parent object can change from one array
1361                         * item to another.
1362                         */
1363                        if (!dir)
1364                                dir = read_one_inode(root, parent_objectid);
1365                        if (!dir) {
1366                                ret = -ENOENT;
1367                                goto out;
1368                        }
1369                } else {
1370                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1371                                             &ref_index);
1372                }
1373                if (ret)
1374                        goto out;
1375
1376                /* if we already have a perfect match, we're done */
1377                if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1378                                        btrfs_ino(BTRFS_I(inode)), ref_index,
1379                                        name, namelen)) {
1380                        /*
1381                         * look for a conflicting back reference in the
1382                         * metadata. if we find one we have to unlink that name
1383                         * of the file before we add our new link.  Later on, we
1384                         * overwrite any existing back reference, and we don't
1385                         * want to create dangling pointers in the directory.
1386                         */
1387
1388                        if (!search_done) {
1389                                ret = __add_inode_ref(trans, root, path, log,
1390                                                      BTRFS_I(dir),
1391                                                      BTRFS_I(inode),
1392                                                      inode_objectid,
1393                                                      parent_objectid,
1394                                                      ref_index, name, namelen,
1395                                                      &search_done);
1396                                if (ret) {
1397                                        if (ret == 1)
1398                                                ret = 0;
1399                                        goto out;
1400                                }
1401                        }
1402
1403                        /* insert our name */
1404                        ret = btrfs_add_link(trans, BTRFS_I(dir),
1405                                        BTRFS_I(inode),
1406                                        name, namelen, 0, ref_index);
1407                        if (ret)
1408                                goto out;
1409
1410                        btrfs_update_inode(trans, root, inode);
1411                }
1412
1413                ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1414                kfree(name);
1415                name = NULL;
1416                if (log_ref_ver) {
1417                        iput(dir);
1418                        dir = NULL;
1419                }
1420        }
1421
1422        /*
1423         * Before we overwrite the inode reference item in the subvolume tree
1424         * with the item from the log tree, we must unlink all names from the
1425         * parent directory that are in the subvolume's tree inode reference
1426         * item, otherwise we end up with an inconsistent subvolume tree where
1427         * dir index entries exist for a name but there is no inode reference
1428         * item with the same name.
1429         */
1430        ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1431                                    key);
1432        if (ret)
1433                goto out;
1434
1435        /* finally write the back reference in the inode */
1436        ret = overwrite_item(trans, root, path, eb, slot, key);
1437out:
1438        btrfs_release_path(path);
1439        kfree(name);
1440        iput(dir);
1441        iput(inode);
1442        return ret;
1443}
1444
1445static int insert_orphan_item(struct btrfs_trans_handle *trans,
1446                              struct btrfs_root *root, u64 ino)
1447{
1448        int ret;
1449
1450        ret = btrfs_insert_orphan_item(trans, root, ino);
1451        if (ret == -EEXIST)
1452                ret = 0;
1453
1454        return ret;
1455}
1456
1457static int count_inode_extrefs(struct btrfs_root *root,
1458                struct btrfs_inode *inode, struct btrfs_path *path)
1459{
1460        int ret = 0;
1461        int name_len;
1462        unsigned int nlink = 0;
1463        u32 item_size;
1464        u32 cur_offset = 0;
1465        u64 inode_objectid = btrfs_ino(inode);
1466        u64 offset = 0;
1467        unsigned long ptr;
1468        struct btrfs_inode_extref *extref;
1469        struct extent_buffer *leaf;
1470
1471        while (1) {
1472                ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1473                                            &extref, &offset);
1474                if (ret)
1475                        break;
1476
1477                leaf = path->nodes[0];
1478                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1479                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1480                cur_offset = 0;
1481
1482                while (cur_offset < item_size) {
1483                        extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1484                        name_len = btrfs_inode_extref_name_len(leaf, extref);
1485
1486                        nlink++;
1487
1488                        cur_offset += name_len + sizeof(*extref);
1489                }
1490
1491                offset++;
1492                btrfs_release_path(path);
1493        }
1494        btrfs_release_path(path);
1495
1496        if (ret < 0 && ret != -ENOENT)
1497                return ret;
1498        return nlink;
1499}
1500
1501static int count_inode_refs(struct btrfs_root *root,
1502                        struct btrfs_inode *inode, struct btrfs_path *path)
1503{
1504        int ret;
1505        struct btrfs_key key;
1506        unsigned int nlink = 0;
1507        unsigned long ptr;
1508        unsigned long ptr_end;
1509        int name_len;
1510        u64 ino = btrfs_ino(inode);
1511
1512        key.objectid = ino;
1513        key.type = BTRFS_INODE_REF_KEY;
1514        key.offset = (u64)-1;
1515
1516        while (1) {
1517                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1518                if (ret < 0)
1519                        break;
1520                if (ret > 0) {
1521                        if (path->slots[0] == 0)
1522                                break;
1523                        path->slots[0]--;
1524                }
1525process_slot:
1526                btrfs_item_key_to_cpu(path->nodes[0], &key,
1527                                      path->slots[0]);
1528                if (key.objectid != ino ||
1529                    key.type != BTRFS_INODE_REF_KEY)
1530                        break;
1531                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1532                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1533                                                   path->slots[0]);
1534                while (ptr < ptr_end) {
1535                        struct btrfs_inode_ref *ref;
1536
1537                        ref = (struct btrfs_inode_ref *)ptr;
1538                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1539                                                            ref);
1540                        ptr = (unsigned long)(ref + 1) + name_len;
1541                        nlink++;
1542                }
1543
1544                if (key.offset == 0)
1545                        break;
1546                if (path->slots[0] > 0) {
1547                        path->slots[0]--;
1548                        goto process_slot;
1549                }
1550                key.offset--;
1551                btrfs_release_path(path);
1552        }
1553        btrfs_release_path(path);
1554
1555        return nlink;
1556}
1557
1558/*
1559 * There are a few corners where the link count of the file can't
1560 * be properly maintained during replay.  So, instead of adding
1561 * lots of complexity to the log code, we just scan the backrefs
1562 * for any file that has been through replay.
1563 *
1564 * The scan will update the link count on the inode to reflect the
1565 * number of back refs found.  If it goes down to zero, the iput
1566 * will free the inode.
1567 */
1568static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1569                                           struct btrfs_root *root,
1570                                           struct inode *inode)
1571{
1572        struct btrfs_path *path;
1573        int ret;
1574        u64 nlink = 0;
1575        u64 ino = btrfs_ino(BTRFS_I(inode));
1576
1577        path = btrfs_alloc_path();
1578        if (!path)
1579                return -ENOMEM;
1580
1581        ret = count_inode_refs(root, BTRFS_I(inode), path);
1582        if (ret < 0)
1583                goto out;
1584
1585        nlink = ret;
1586
1587        ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1588        if (ret < 0)
1589                goto out;
1590
1591        nlink += ret;
1592
1593        ret = 0;
1594
1595        if (nlink != inode->i_nlink) {
1596                set_nlink(inode, nlink);
1597                btrfs_update_inode(trans, root, inode);
1598        }
1599        BTRFS_I(inode)->index_cnt = (u64)-1;
1600
1601        if (inode->i_nlink == 0) {
1602                if (S_ISDIR(inode->i_mode)) {
1603                        ret = replay_dir_deletes(trans, root, NULL, path,
1604                                                 ino, 1);
1605                        if (ret)
1606                                goto out;
1607                }
1608                ret = insert_orphan_item(trans, root, ino);
1609        }
1610
1611out:
1612        btrfs_free_path(path);
1613        return ret;
1614}
1615
1616static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1617                                            struct btrfs_root *root,
1618                                            struct btrfs_path *path)
1619{
1620        int ret;
1621        struct btrfs_key key;
1622        struct inode *inode;
1623
1624        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1625        key.type = BTRFS_ORPHAN_ITEM_KEY;
1626        key.offset = (u64)-1;
1627        while (1) {
1628                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1629                if (ret < 0)
1630                        break;
1631
1632                if (ret == 1) {
1633                        if (path->slots[0] == 0)
1634                                break;
1635                        path->slots[0]--;
1636                }
1637
1638                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1639                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1640                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1641                        break;
1642
1643                ret = btrfs_del_item(trans, root, path);
1644                if (ret)
1645                        goto out;
1646
1647                btrfs_release_path(path);
1648                inode = read_one_inode(root, key.offset);
1649                if (!inode)
1650                        return -EIO;
1651
1652                ret = fixup_inode_link_count(trans, root, inode);
1653                iput(inode);
1654                if (ret)
1655                        goto out;
1656
1657                /*
1658                 * fixup on a directory may create new entries,
1659                 * make sure we always look for the highset possible
1660                 * offset
1661                 */
1662                key.offset = (u64)-1;
1663        }
1664        ret = 0;
1665out:
1666        btrfs_release_path(path);
1667        return ret;
1668}
1669
1670
1671/*
1672 * record a given inode in the fixup dir so we can check its link
1673 * count when replay is done.  The link count is incremented here
1674 * so the inode won't go away until we check it
1675 */
1676static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1677                                      struct btrfs_root *root,
1678                                      struct btrfs_path *path,
1679                                      u64 objectid)
1680{
1681        struct btrfs_key key;
1682        int ret = 0;
1683        struct inode *inode;
1684
1685        inode = read_one_inode(root, objectid);
1686        if (!inode)
1687                return -EIO;
1688
1689        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1690        key.type = BTRFS_ORPHAN_ITEM_KEY;
1691        key.offset = objectid;
1692
1693        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1694
1695        btrfs_release_path(path);
1696        if (ret == 0) {
1697                if (!inode->i_nlink)
1698                        set_nlink(inode, 1);
1699                else
1700                        inc_nlink(inode);
1701                ret = btrfs_update_inode(trans, root, inode);
1702        } else if (ret == -EEXIST) {
1703                ret = 0;
1704        } else {
1705                BUG(); /* Logic Error */
1706        }
1707        iput(inode);
1708
1709        return ret;
1710}
1711
1712/*
1713 * when replaying the log for a directory, we only insert names
1714 * for inodes that actually exist.  This means an fsync on a directory
1715 * does not implicitly fsync all the new files in it
1716 */
1717static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1718                                    struct btrfs_root *root,
1719                                    u64 dirid, u64 index,
1720                                    char *name, int name_len,
1721                                    struct btrfs_key *location)
1722{
1723        struct inode *inode;
1724        struct inode *dir;
1725        int ret;
1726
1727        inode = read_one_inode(root, location->objectid);
1728        if (!inode)
1729                return -ENOENT;
1730
1731        dir = read_one_inode(root, dirid);
1732        if (!dir) {
1733                iput(inode);
1734                return -EIO;
1735        }
1736
1737        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1738                        name_len, 1, index);
1739
1740        /* FIXME, put inode into FIXUP list */
1741
1742        iput(inode);
1743        iput(dir);
1744        return ret;
1745}
1746
1747/*
1748 * Return true if an inode reference exists in the log for the given name,
1749 * inode and parent inode.
1750 */
1751static bool name_in_log_ref(struct btrfs_root *log_root,
1752                            const char *name, const int name_len,
1753                            const u64 dirid, const u64 ino)
1754{
1755        struct btrfs_key search_key;
1756
1757        search_key.objectid = ino;
1758        search_key.type = BTRFS_INODE_REF_KEY;
1759        search_key.offset = dirid;
1760        if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1761                return true;
1762
1763        search_key.type = BTRFS_INODE_EXTREF_KEY;
1764        search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1765        if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1766                return true;
1767
1768        return false;
1769}
1770
1771/*
1772 * take a single entry in a log directory item and replay it into
1773 * the subvolume.
1774 *
1775 * if a conflicting item exists in the subdirectory already,
1776 * the inode it points to is unlinked and put into the link count
1777 * fix up tree.
1778 *
1779 * If a name from the log points to a file or directory that does
1780 * not exist in the FS, it is skipped.  fsyncs on directories
1781 * do not force down inodes inside that directory, just changes to the
1782 * names or unlinks in a directory.
1783 *
1784 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1785 * non-existing inode) and 1 if the name was replayed.
1786 */
1787static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1788                                    struct btrfs_root *root,
1789                                    struct btrfs_path *path,
1790                                    struct extent_buffer *eb,
1791                                    struct btrfs_dir_item *di,
1792                                    struct btrfs_key *key)
1793{
1794        char *name;
1795        int name_len;
1796        struct btrfs_dir_item *dst_di;
1797        struct btrfs_key found_key;
1798        struct btrfs_key log_key;
1799        struct inode *dir;
1800        u8 log_type;
1801        int exists;
1802        int ret = 0;
1803        bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1804        bool name_added = false;
1805
1806        dir = read_one_inode(root, key->objectid);
1807        if (!dir)
1808                return -EIO;
1809
1810        name_len = btrfs_dir_name_len(eb, di);
1811        name = kmalloc(name_len, GFP_NOFS);
1812        if (!name) {
1813                ret = -ENOMEM;
1814                goto out;
1815        }
1816
1817        log_type = btrfs_dir_type(eb, di);
1818        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1819                   name_len);
1820
1821        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1822        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1823        if (exists == 0)
1824                exists = 1;
1825        else
1826                exists = 0;
1827        btrfs_release_path(path);
1828
1829        if (key->type == BTRFS_DIR_ITEM_KEY) {
1830                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1831                                       name, name_len, 1);
1832        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1833                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1834                                                     key->objectid,
1835                                                     key->offset, name,
1836                                                     name_len, 1);
1837        } else {
1838                /* Corruption */
1839                ret = -EINVAL;
1840                goto out;
1841        }
1842        if (IS_ERR_OR_NULL(dst_di)) {
1843                /* we need a sequence number to insert, so we only
1844                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1845                 */
1846                if (key->type != BTRFS_DIR_INDEX_KEY)
1847                        goto out;
1848                goto insert;
1849        }
1850
1851        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1852        /* the existing item matches the logged item */
1853        if (found_key.objectid == log_key.objectid &&
1854            found_key.type == log_key.type &&
1855            found_key.offset == log_key.offset &&
1856            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1857                update_size = false;
1858                goto out;
1859        }
1860
1861        /*
1862         * don't drop the conflicting directory entry if the inode
1863         * for the new entry doesn't exist
1864         */
1865        if (!exists)
1866                goto out;
1867
1868        ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1869        if (ret)
1870                goto out;
1871
1872        if (key->type == BTRFS_DIR_INDEX_KEY)
1873                goto insert;
1874out:
1875        btrfs_release_path(path);
1876        if (!ret && update_size) {
1877                btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1878                ret = btrfs_update_inode(trans, root, dir);
1879        }
1880        kfree(name);
1881        iput(dir);
1882        if (!ret && name_added)
1883                ret = 1;
1884        return ret;
1885
1886insert:
1887        if (name_in_log_ref(root->log_root, name, name_len,
1888                            key->objectid, log_key.objectid)) {
1889                /* The dentry will be added later. */
1890                ret = 0;
1891                update_size = false;
1892                goto out;
1893        }
1894        btrfs_release_path(path);
1895        ret = insert_one_name(trans, root, key->objectid, key->offset,
1896                              name, name_len, &log_key);
1897        if (ret && ret != -ENOENT && ret != -EEXIST)
1898                goto out;
1899        if (!ret)
1900                name_added = true;
1901        update_size = false;
1902        ret = 0;
1903        goto out;
1904}
1905
1906/*
1907 * find all the names in a directory item and reconcile them into
1908 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1909 * one name in a directory item, but the same code gets used for
1910 * both directory index types
1911 */
1912static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1913                                        struct btrfs_root *root,
1914                                        struct btrfs_path *path,
1915                                        struct extent_buffer *eb, int slot,
1916                                        struct btrfs_key *key)
1917{
1918        int ret = 0;
1919        u32 item_size = btrfs_item_size_nr(eb, slot);
1920        struct btrfs_dir_item *di;
1921        int name_len;
1922        unsigned long ptr;
1923        unsigned long ptr_end;
1924        struct btrfs_path *fixup_path = NULL;
1925
1926        ptr = btrfs_item_ptr_offset(eb, slot);
1927        ptr_end = ptr + item_size;
1928        while (ptr < ptr_end) {
1929                di = (struct btrfs_dir_item *)ptr;
1930                name_len = btrfs_dir_name_len(eb, di);
1931                ret = replay_one_name(trans, root, path, eb, di, key);
1932                if (ret < 0)
1933                        break;
1934                ptr = (unsigned long)(di + 1);
1935                ptr += name_len;
1936
1937                /*
1938                 * If this entry refers to a non-directory (directories can not
1939                 * have a link count > 1) and it was added in the transaction
1940                 * that was not committed, make sure we fixup the link count of
1941                 * the inode it the entry points to. Otherwise something like
1942                 * the following would result in a directory pointing to an
1943                 * inode with a wrong link that does not account for this dir
1944                 * entry:
1945                 *
1946                 * mkdir testdir
1947                 * touch testdir/foo
1948                 * touch testdir/bar
1949                 * sync
1950                 *
1951                 * ln testdir/bar testdir/bar_link
1952                 * ln testdir/foo testdir/foo_link
1953                 * xfs_io -c "fsync" testdir/bar
1954                 *
1955                 * <power failure>
1956                 *
1957                 * mount fs, log replay happens
1958                 *
1959                 * File foo would remain with a link count of 1 when it has two
1960                 * entries pointing to it in the directory testdir. This would
1961                 * make it impossible to ever delete the parent directory has
1962                 * it would result in stale dentries that can never be deleted.
1963                 */
1964                if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1965                        struct btrfs_key di_key;
1966
1967                        if (!fixup_path) {
1968                                fixup_path = btrfs_alloc_path();
1969                                if (!fixup_path) {
1970                                        ret = -ENOMEM;
1971                                        break;
1972                                }
1973                        }
1974
1975                        btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1976                        ret = link_to_fixup_dir(trans, root, fixup_path,
1977                                                di_key.objectid);
1978                        if (ret)
1979                                break;
1980                }
1981                ret = 0;
1982        }
1983        btrfs_free_path(fixup_path);
1984        return ret;
1985}
1986
1987/*
1988 * directory replay has two parts.  There are the standard directory
1989 * items in the log copied from the subvolume, and range items
1990 * created in the log while the subvolume was logged.
1991 *
1992 * The range items tell us which parts of the key space the log
1993 * is authoritative for.  During replay, if a key in the subvolume
1994 * directory is in a logged range item, but not actually in the log
1995 * that means it was deleted from the directory before the fsync
1996 * and should be removed.
1997 */
1998static noinline int find_dir_range(struct btrfs_root *root,
1999                                   struct btrfs_path *path,
2000                                   u64 dirid, int key_type,
2001                                   u64 *start_ret, u64 *end_ret)
2002{
2003        struct btrfs_key key;
2004        u64 found_end;
2005        struct btrfs_dir_log_item *item;
2006        int ret;
2007        int nritems;
2008
2009        if (*start_ret == (u64)-1)
2010                return 1;
2011
2012        key.objectid = dirid;
2013        key.type = key_type;
2014        key.offset = *start_ret;
2015
2016        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2017        if (ret < 0)
2018                goto out;
2019        if (ret > 0) {
2020                if (path->slots[0] == 0)
2021                        goto out;
2022                path->slots[0]--;
2023        }
2024        if (ret != 0)
2025                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2026
2027        if (key.type != key_type || key.objectid != dirid) {
2028                ret = 1;
2029                goto next;
2030        }
2031        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2032                              struct btrfs_dir_log_item);
2033        found_end = btrfs_dir_log_end(path->nodes[0], item);
2034
2035        if (*start_ret >= key.offset && *start_ret <= found_end) {
2036                ret = 0;
2037                *start_ret = key.offset;
2038                *end_ret = found_end;
2039                goto out;
2040        }
2041        ret = 1;
2042next:
2043        /* check the next slot in the tree to see if it is a valid item */
2044        nritems = btrfs_header_nritems(path->nodes[0]);
2045        path->slots[0]++;
2046        if (path->slots[0] >= nritems) {
2047                ret = btrfs_next_leaf(root, path);
2048                if (ret)
2049                        goto out;
2050        }
2051
2052        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2053
2054        if (key.type != key_type || key.objectid != dirid) {
2055                ret = 1;
2056                goto out;
2057        }
2058        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059                              struct btrfs_dir_log_item);
2060        found_end = btrfs_dir_log_end(path->nodes[0], item);
2061        *start_ret = key.offset;
2062        *end_ret = found_end;
2063        ret = 0;
2064out:
2065        btrfs_release_path(path);
2066        return ret;
2067}
2068
2069/*
2070 * this looks for a given directory item in the log.  If the directory
2071 * item is not in the log, the item is removed and the inode it points
2072 * to is unlinked
2073 */
2074static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2075                                      struct btrfs_root *root,
2076                                      struct btrfs_root *log,
2077                                      struct btrfs_path *path,
2078                                      struct btrfs_path *log_path,
2079                                      struct inode *dir,
2080                                      struct btrfs_key *dir_key)
2081{
2082        int ret;
2083        struct extent_buffer *eb;
2084        int slot;
2085        u32 item_size;
2086        struct btrfs_dir_item *di;
2087        struct btrfs_dir_item *log_di;
2088        int name_len;
2089        unsigned long ptr;
2090        unsigned long ptr_end;
2091        char *name;
2092        struct inode *inode;
2093        struct btrfs_key location;
2094
2095again:
2096        eb = path->nodes[0];
2097        slot = path->slots[0];
2098        item_size = btrfs_item_size_nr(eb, slot);
2099        ptr = btrfs_item_ptr_offset(eb, slot);
2100        ptr_end = ptr + item_size;
2101        while (ptr < ptr_end) {
2102                di = (struct btrfs_dir_item *)ptr;
2103                name_len = btrfs_dir_name_len(eb, di);
2104                name = kmalloc(name_len, GFP_NOFS);
2105                if (!name) {
2106                        ret = -ENOMEM;
2107                        goto out;
2108                }
2109                read_extent_buffer(eb, name, (unsigned long)(di + 1),
2110                                  name_len);
2111                log_di = NULL;
2112                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2113                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
2114                                                       dir_key->objectid,
2115                                                       name, name_len, 0);
2116                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2117                        log_di = btrfs_lookup_dir_index_item(trans, log,
2118                                                     log_path,
2119                                                     dir_key->objectid,
2120                                                     dir_key->offset,
2121                                                     name, name_len, 0);
2122                }
2123                if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2124                        btrfs_dir_item_key_to_cpu(eb, di, &location);
2125                        btrfs_release_path(path);
2126                        btrfs_release_path(log_path);
2127                        inode = read_one_inode(root, location.objectid);
2128                        if (!inode) {
2129                                kfree(name);
2130                                return -EIO;
2131                        }
2132
2133                        ret = link_to_fixup_dir(trans, root,
2134                                                path, location.objectid);
2135                        if (ret) {
2136                                kfree(name);
2137                                iput(inode);
2138                                goto out;
2139                        }
2140
2141                        inc_nlink(inode);
2142                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2143                                        BTRFS_I(inode), name, name_len);
2144                        if (!ret)
2145                                ret = btrfs_run_delayed_items(trans);
2146                        kfree(name);
2147                        iput(inode);
2148                        if (ret)
2149                                goto out;
2150
2151                        /* there might still be more names under this key
2152                         * check and repeat if required
2153                         */
2154                        ret = btrfs_search_slot(NULL, root, dir_key, path,
2155                                                0, 0);
2156                        if (ret == 0)
2157                                goto again;
2158                        ret = 0;
2159                        goto out;
2160                } else if (IS_ERR(log_di)) {
2161                        kfree(name);
2162                        return PTR_ERR(log_di);
2163                }
2164                btrfs_release_path(log_path);
2165                kfree(name);
2166
2167                ptr = (unsigned long)(di + 1);
2168                ptr += name_len;
2169        }
2170        ret = 0;
2171out:
2172        btrfs_release_path(path);
2173        btrfs_release_path(log_path);
2174        return ret;
2175}
2176
2177static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2178                              struct btrfs_root *root,
2179                              struct btrfs_root *log,
2180                              struct btrfs_path *path,
2181                              const u64 ino)
2182{
2183        struct btrfs_key search_key;
2184        struct btrfs_path *log_path;
2185        int i;
2186        int nritems;
2187        int ret;
2188
2189        log_path = btrfs_alloc_path();
2190        if (!log_path)
2191                return -ENOMEM;
2192
2193        search_key.objectid = ino;
2194        search_key.type = BTRFS_XATTR_ITEM_KEY;
2195        search_key.offset = 0;
2196again:
2197        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2198        if (ret < 0)
2199                goto out;
2200process_leaf:
2201        nritems = btrfs_header_nritems(path->nodes[0]);
2202        for (i = path->slots[0]; i < nritems; i++) {
2203                struct btrfs_key key;
2204                struct btrfs_dir_item *di;
2205                struct btrfs_dir_item *log_di;
2206                u32 total_size;
2207                u32 cur;
2208
2209                btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2210                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2211                        ret = 0;
2212                        goto out;
2213                }
2214
2215                di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2216                total_size = btrfs_item_size_nr(path->nodes[0], i);
2217                cur = 0;
2218                while (cur < total_size) {
2219                        u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2220                        u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2221                        u32 this_len = sizeof(*di) + name_len + data_len;
2222                        char *name;
2223
2224                        name = kmalloc(name_len, GFP_NOFS);
2225                        if (!name) {
2226                                ret = -ENOMEM;
2227                                goto out;
2228                        }
2229                        read_extent_buffer(path->nodes[0], name,
2230                                           (unsigned long)(di + 1), name_len);
2231
2232                        log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2233                                                    name, name_len, 0);
2234                        btrfs_release_path(log_path);
2235                        if (!log_di) {
2236                                /* Doesn't exist in log tree, so delete it. */
2237                                btrfs_release_path(path);
2238                                di = btrfs_lookup_xattr(trans, root, path, ino,
2239                                                        name, name_len, -1);
2240                                kfree(name);
2241                                if (IS_ERR(di)) {
2242                                        ret = PTR_ERR(di);
2243                                        goto out;
2244                                }
2245                                ASSERT(di);
2246                                ret = btrfs_delete_one_dir_name(trans, root,
2247                                                                path, di);
2248                                if (ret)
2249                                        goto out;
2250                                btrfs_release_path(path);
2251                                search_key = key;
2252                                goto again;
2253                        }
2254                        kfree(name);
2255                        if (IS_ERR(log_di)) {
2256                                ret = PTR_ERR(log_di);
2257                                goto out;
2258                        }
2259                        cur += this_len;
2260                        di = (struct btrfs_dir_item *)((char *)di + this_len);
2261                }
2262        }
2263        ret = btrfs_next_leaf(root, path);
2264        if (ret > 0)
2265                ret = 0;
2266        else if (ret == 0)
2267                goto process_leaf;
2268out:
2269        btrfs_free_path(log_path);
2270        btrfs_release_path(path);
2271        return ret;
2272}
2273
2274
2275/*
2276 * deletion replay happens before we copy any new directory items
2277 * out of the log or out of backreferences from inodes.  It
2278 * scans the log to find ranges of keys that log is authoritative for,
2279 * and then scans the directory to find items in those ranges that are
2280 * not present in the log.
2281 *
2282 * Anything we don't find in the log is unlinked and removed from the
2283 * directory.
2284 */
2285static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2286                                       struct btrfs_root *root,
2287                                       struct btrfs_root *log,
2288                                       struct btrfs_path *path,
2289                                       u64 dirid, int del_all)
2290{
2291        u64 range_start;
2292        u64 range_end;
2293        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2294        int ret = 0;
2295        struct btrfs_key dir_key;
2296        struct btrfs_key found_key;
2297        struct btrfs_path *log_path;
2298        struct inode *dir;
2299
2300        dir_key.objectid = dirid;
2301        dir_key.type = BTRFS_DIR_ITEM_KEY;
2302        log_path = btrfs_alloc_path();
2303        if (!log_path)
2304                return -ENOMEM;
2305
2306        dir = read_one_inode(root, dirid);
2307        /* it isn't an error if the inode isn't there, that can happen
2308         * because we replay the deletes before we copy in the inode item
2309         * from the log
2310         */
2311        if (!dir) {
2312                btrfs_free_path(log_path);
2313                return 0;
2314        }
2315again:
2316        range_start = 0;
2317        range_end = 0;
2318        while (1) {
2319                if (del_all)
2320                        range_end = (u64)-1;
2321                else {
2322                        ret = find_dir_range(log, path, dirid, key_type,
2323                                             &range_start, &range_end);
2324                        if (ret != 0)
2325                                break;
2326                }
2327
2328                dir_key.offset = range_start;
2329                while (1) {
2330                        int nritems;
2331                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
2332                                                0, 0);
2333                        if (ret < 0)
2334                                goto out;
2335
2336                        nritems = btrfs_header_nritems(path->nodes[0]);
2337                        if (path->slots[0] >= nritems) {
2338                                ret = btrfs_next_leaf(root, path);
2339                                if (ret == 1)
2340                                        break;
2341                                else if (ret < 0)
2342                                        goto out;
2343                        }
2344                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2345                                              path->slots[0]);
2346                        if (found_key.objectid != dirid ||
2347                            found_key.type != dir_key.type)
2348                                goto next_type;
2349
2350                        if (found_key.offset > range_end)
2351                                break;
2352
2353                        ret = check_item_in_log(trans, root, log, path,
2354                                                log_path, dir,
2355                                                &found_key);
2356                        if (ret)
2357                                goto out;
2358                        if (found_key.offset == (u64)-1)
2359                                break;
2360                        dir_key.offset = found_key.offset + 1;
2361                }
2362                btrfs_release_path(path);
2363                if (range_end == (u64)-1)
2364                        break;
2365                range_start = range_end + 1;
2366        }
2367
2368next_type:
2369        ret = 0;
2370        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2371                key_type = BTRFS_DIR_LOG_INDEX_KEY;
2372                dir_key.type = BTRFS_DIR_INDEX_KEY;
2373                btrfs_release_path(path);
2374                goto again;
2375        }
2376out:
2377        btrfs_release_path(path);
2378        btrfs_free_path(log_path);
2379        iput(dir);
2380        return ret;
2381}
2382
2383/*
2384 * the process_func used to replay items from the log tree.  This
2385 * gets called in two different stages.  The first stage just looks
2386 * for inodes and makes sure they are all copied into the subvolume.
2387 *
2388 * The second stage copies all the other item types from the log into
2389 * the subvolume.  The two stage approach is slower, but gets rid of
2390 * lots of complexity around inodes referencing other inodes that exist
2391 * only in the log (references come from either directory items or inode
2392 * back refs).
2393 */
2394static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2395                             struct walk_control *wc, u64 gen, int level)
2396{
2397        int nritems;
2398        struct btrfs_path *path;
2399        struct btrfs_root *root = wc->replay_dest;
2400        struct btrfs_key key;
2401        int i;
2402        int ret;
2403
2404        ret = btrfs_read_buffer(eb, gen, level, NULL);
2405        if (ret)
2406                return ret;
2407
2408        level = btrfs_header_level(eb);
2409
2410        if (level != 0)
2411                return 0;
2412
2413        path = btrfs_alloc_path();
2414        if (!path)
2415                return -ENOMEM;
2416
2417        nritems = btrfs_header_nritems(eb);
2418        for (i = 0; i < nritems; i++) {
2419                btrfs_item_key_to_cpu(eb, &key, i);
2420
2421                /* inode keys are done during the first stage */
2422                if (key.type == BTRFS_INODE_ITEM_KEY &&
2423                    wc->stage == LOG_WALK_REPLAY_INODES) {
2424                        struct btrfs_inode_item *inode_item;
2425                        u32 mode;
2426
2427                        inode_item = btrfs_item_ptr(eb, i,
2428                                            struct btrfs_inode_item);
2429                        ret = replay_xattr_deletes(wc->trans, root, log,
2430                                                   path, key.objectid);
2431                        if (ret)
2432                                break;
2433                        mode = btrfs_inode_mode(eb, inode_item);
2434                        if (S_ISDIR(mode)) {
2435                                ret = replay_dir_deletes(wc->trans,
2436                                         root, log, path, key.objectid, 0);
2437                                if (ret)
2438                                        break;
2439                        }
2440                        ret = overwrite_item(wc->trans, root, path,
2441                                             eb, i, &key);
2442                        if (ret)
2443                                break;
2444
2445                        /*
2446                         * Before replaying extents, truncate the inode to its
2447                         * size. We need to do it now and not after log replay
2448                         * because before an fsync we can have prealloc extents
2449                         * added beyond the inode's i_size. If we did it after,
2450                         * through orphan cleanup for example, we would drop
2451                         * those prealloc extents just after replaying them.
2452                         */
2453                        if (S_ISREG(mode)) {
2454                                struct inode *inode;
2455                                u64 from;
2456
2457                                inode = read_one_inode(root, key.objectid);
2458                                if (!inode) {
2459                                        ret = -EIO;
2460                                        break;
2461                                }
2462                                from = ALIGN(i_size_read(inode),
2463                                             root->fs_info->sectorsize);
2464                                ret = btrfs_drop_extents(wc->trans, root, inode,
2465                                                         from, (u64)-1, 1);
2466                                /*
2467                                 * If the nlink count is zero here, the iput
2468                                 * will free the inode.  We bump it to make
2469                                 * sure it doesn't get freed until the link
2470                                 * count fixup is done.
2471                                 */
2472                                if (!ret) {
2473                                        if (inode->i_nlink == 0)
2474                                                inc_nlink(inode);
2475                                        /* Update link count and nbytes. */
2476                                        ret = btrfs_update_inode(wc->trans,
2477                                                                 root, inode);
2478                                }
2479                                iput(inode);
2480                                if (ret)
2481                                        break;
2482                        }
2483
2484                        ret = link_to_fixup_dir(wc->trans, root,
2485                                                path, key.objectid);
2486                        if (ret)
2487                                break;
2488                }
2489
2490                if (key.type == BTRFS_DIR_INDEX_KEY &&
2491                    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2492                        ret = replay_one_dir_item(wc->trans, root, path,
2493                                                  eb, i, &key);
2494                        if (ret)
2495                                break;
2496                }
2497
2498                if (wc->stage < LOG_WALK_REPLAY_ALL)
2499                        continue;
2500
2501                /* these keys are simply copied */
2502                if (key.type == BTRFS_XATTR_ITEM_KEY) {
2503                        ret = overwrite_item(wc->trans, root, path,
2504                                             eb, i, &key);
2505                        if (ret)
2506                                break;
2507                } else if (key.type == BTRFS_INODE_REF_KEY ||
2508                           key.type == BTRFS_INODE_EXTREF_KEY) {
2509                        ret = add_inode_ref(wc->trans, root, log, path,
2510                                            eb, i, &key);
2511                        if (ret && ret != -ENOENT)
2512                                break;
2513                        ret = 0;
2514                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2515                        ret = replay_one_extent(wc->trans, root, path,
2516                                                eb, i, &key);
2517                        if (ret)
2518                                break;
2519                } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2520                        ret = replay_one_dir_item(wc->trans, root, path,
2521                                                  eb, i, &key);
2522                        if (ret)
2523                                break;
2524                }
2525        }
2526        btrfs_free_path(path);
2527        return ret;
2528}
2529
2530static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2531                                   struct btrfs_root *root,
2532                                   struct btrfs_path *path, int *level,
2533                                   struct walk_control *wc)
2534{
2535        struct btrfs_fs_info *fs_info = root->fs_info;
2536        u64 root_owner;
2537        u64 bytenr;
2538        u64 ptr_gen;
2539        struct extent_buffer *next;
2540        struct extent_buffer *cur;
2541        struct extent_buffer *parent;
2542        u32 blocksize;
2543        int ret = 0;
2544
2545        WARN_ON(*level < 0);
2546        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2547
2548        while (*level > 0) {
2549                struct btrfs_key first_key;
2550
2551                WARN_ON(*level < 0);
2552                WARN_ON(*level >= BTRFS_MAX_LEVEL);
2553                cur = path->nodes[*level];
2554
2555                WARN_ON(btrfs_header_level(cur) != *level);
2556
2557                if (path->slots[*level] >=
2558                    btrfs_header_nritems(cur))
2559                        break;
2560
2561                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2562                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2563                btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2564                blocksize = fs_info->nodesize;
2565
2566                parent = path->nodes[*level];
2567                root_owner = btrfs_header_owner(parent);
2568
2569                next = btrfs_find_create_tree_block(fs_info, bytenr);
2570                if (IS_ERR(next))
2571                        return PTR_ERR(next);
2572
2573                if (*level == 1) {
2574                        ret = wc->process_func(root, next, wc, ptr_gen,
2575                                               *level - 1);
2576                        if (ret) {
2577                                free_extent_buffer(next);
2578                                return ret;
2579                        }
2580
2581                        path->slots[*level]++;
2582                        if (wc->free) {
2583                                ret = btrfs_read_buffer(next, ptr_gen,
2584                                                        *level - 1, &first_key);
2585                                if (ret) {
2586                                        free_extent_buffer(next);
2587                                        return ret;
2588                                }
2589
2590                                if (trans) {
2591                                        btrfs_tree_lock(next);
2592                                        btrfs_set_lock_blocking(next);
2593                                        clean_tree_block(fs_info, next);
2594                                        btrfs_wait_tree_block_writeback(next);
2595                                        btrfs_tree_unlock(next);
2596                                } else {
2597                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2598                                                clear_extent_buffer_dirty(next);
2599                                }
2600
2601                                WARN_ON(root_owner !=
2602                                        BTRFS_TREE_LOG_OBJECTID);
2603                                ret = btrfs_free_and_pin_reserved_extent(
2604                                                        fs_info, bytenr,
2605                                                        blocksize);
2606                                if (ret) {
2607                                        free_extent_buffer(next);
2608                                        return ret;
2609                                }
2610                        }
2611                        free_extent_buffer(next);
2612                        continue;
2613                }
2614                ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2615                if (ret) {
2616                        free_extent_buffer(next);
2617                        return ret;
2618                }
2619
2620                WARN_ON(*level <= 0);
2621                if (path->nodes[*level-1])
2622                        free_extent_buffer(path->nodes[*level-1]);
2623                path->nodes[*level-1] = next;
2624                *level = btrfs_header_level(next);
2625                path->slots[*level] = 0;
2626                cond_resched();
2627        }
2628        WARN_ON(*level < 0);
2629        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2630
2631        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2632
2633        cond_resched();
2634        return 0;
2635}
2636
2637static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2638                                 struct btrfs_root *root,
2639                                 struct btrfs_path *path, int *level,
2640                                 struct walk_control *wc)
2641{
2642        struct btrfs_fs_info *fs_info = root->fs_info;
2643        u64 root_owner;
2644        int i;
2645        int slot;
2646        int ret;
2647
2648        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2649                slot = path->slots[i];
2650                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2651                        path->slots[i]++;
2652                        *level = i;
2653                        WARN_ON(*level == 0);
2654                        return 0;
2655                } else {
2656                        struct extent_buffer *parent;
2657                        if (path->nodes[*level] == root->node)
2658                                parent = path->nodes[*level];
2659                        else
2660                                parent = path->nodes[*level + 1];
2661
2662                        root_owner = btrfs_header_owner(parent);
2663                        ret = wc->process_func(root, path->nodes[*level], wc,
2664                                 btrfs_header_generation(path->nodes[*level]),
2665                                 *level);
2666                        if (ret)
2667                                return ret;
2668
2669                        if (wc->free) {
2670                                struct extent_buffer *next;
2671
2672                                next = path->nodes[*level];
2673
2674                                if (trans) {
2675                                        btrfs_tree_lock(next);
2676                                        btrfs_set_lock_blocking(next);
2677                                        clean_tree_block(fs_info, next);
2678                                        btrfs_wait_tree_block_writeback(next);
2679                                        btrfs_tree_unlock(next);
2680                                } else {
2681                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2682                                                clear_extent_buffer_dirty(next);
2683                                }
2684
2685                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2686                                ret = btrfs_free_and_pin_reserved_extent(
2687                                                fs_info,
2688                                                path->nodes[*level]->start,
2689                                                path->nodes[*level]->len);
2690                                if (ret)
2691                                        return ret;
2692                        }
2693                        free_extent_buffer(path->nodes[*level]);
2694                        path->nodes[*level] = NULL;
2695                        *level = i + 1;
2696                }
2697        }
2698        return 1;
2699}
2700
2701/*
2702 * drop the reference count on the tree rooted at 'snap'.  This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2704 * decremented.
2705 */
2706static int walk_log_tree(struct btrfs_trans_handle *trans,
2707                         struct btrfs_root *log, struct walk_control *wc)
2708{
2709        struct btrfs_fs_info *fs_info = log->fs_info;
2710        int ret = 0;
2711        int wret;
2712        int level;
2713        struct btrfs_path *path;
2714        int orig_level;
2715
2716        path = btrfs_alloc_path();
2717        if (!path)
2718                return -ENOMEM;
2719
2720        level = btrfs_header_level(log->node);
2721        orig_level = level;
2722        path->nodes[level] = log->node;
2723        extent_buffer_get(log->node);
2724        path->slots[level] = 0;
2725
2726        while (1) {
2727                wret = walk_down_log_tree(trans, log, path, &level, wc);
2728                if (wret > 0)
2729                        break;
2730                if (wret < 0) {
2731                        ret = wret;
2732                        goto out;
2733                }
2734
2735                wret = walk_up_log_tree(trans, log, path, &level, wc);
2736                if (wret > 0)
2737                        break;
2738                if (wret < 0) {
2739                        ret = wret;
2740                        goto out;
2741                }
2742        }
2743
2744        /* was the root node processed? if not, catch it here */
2745        if (path->nodes[orig_level]) {
2746                ret = wc->process_func(log, path->nodes[orig_level], wc,
2747                         btrfs_header_generation(path->nodes[orig_level]),
2748                         orig_level);
2749                if (ret)
2750                        goto out;
2751                if (wc->free) {
2752                        struct extent_buffer *next;
2753
2754                        next = path->nodes[orig_level];
2755
2756                        if (trans) {
2757                                btrfs_tree_lock(next);
2758                                btrfs_set_lock_blocking(next);
2759                                clean_tree_block(fs_info, next);
2760                                btrfs_wait_tree_block_writeback(next);
2761                                btrfs_tree_unlock(next);
2762                        } else {
2763                                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2764                                        clear_extent_buffer_dirty(next);
2765                        }
2766
2767                        WARN_ON(log->root_key.objectid !=
2768                                BTRFS_TREE_LOG_OBJECTID);
2769                        ret = btrfs_free_and_pin_reserved_extent(fs_info,
2770                                                        next->start, next->len);
2771                        if (ret)
2772                                goto out;
2773                }
2774        }
2775
2776out:
2777        btrfs_free_path(path);
2778        return ret;
2779}
2780
2781/*
2782 * helper function to update the item for a given subvolumes log root
2783 * in the tree of log roots
2784 */
2785static int update_log_root(struct btrfs_trans_handle *trans,
2786                           struct btrfs_root *log)
2787{
2788        struct btrfs_fs_info *fs_info = log->fs_info;
2789        int ret;
2790
2791        if (log->log_transid == 1) {
2792                /* insert root item on the first sync */
2793                ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2794                                &log->root_key, &log->root_item);
2795        } else {
2796                ret = btrfs_update_root(trans, fs_info->log_root_tree,
2797                                &log->root_key, &log->root_item);
2798        }
2799        return ret;
2800}
2801
2802static void wait_log_commit(struct btrfs_root *root, int transid)
2803{
2804        DEFINE_WAIT(wait);
2805        int index = transid % 2;
2806
2807        /*
2808         * we only allow two pending log transactions at a time,
2809         * so we know that if ours is more than 2 older than the
2810         * current transaction, we're done
2811         */
2812        for (;;) {
2813                prepare_to_wait(&root->log_commit_wait[index],
2814                                &wait, TASK_UNINTERRUPTIBLE);
2815
2816                if (!(root->log_transid_committed < transid &&
2817                      atomic_read(&root->log_commit[index])))
2818                        break;
2819
2820                mutex_unlock(&root->log_mutex);
2821                schedule();
2822                mutex_lock(&root->log_mutex);
2823        }
2824        finish_wait(&root->log_commit_wait[index], &wait);
2825}
2826
2827static void wait_for_writer(struct btrfs_root *root)
2828{
2829        DEFINE_WAIT(wait);
2830
2831        for (;;) {
2832                prepare_to_wait(&root->log_writer_wait, &wait,
2833                                TASK_UNINTERRUPTIBLE);
2834                if (!atomic_read(&root->log_writers))
2835                        break;
2836
2837                mutex_unlock(&root->log_mutex);
2838                schedule();
2839                mutex_lock(&root->log_mutex);
2840        }
2841        finish_wait(&root->log_writer_wait, &wait);
2842}
2843
2844static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2845                                        struct btrfs_log_ctx *ctx)
2846{
2847        if (!ctx)
2848                return;
2849
2850        mutex_lock(&root->log_mutex);
2851        list_del_init(&ctx->list);
2852        mutex_unlock(&root->log_mutex);
2853}
2854
2855/* 
2856 * Invoked in log mutex context, or be sure there is no other task which
2857 * can access the list.
2858 */
2859static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2860                                             int index, int error)
2861{
2862        struct btrfs_log_ctx *ctx;
2863        struct btrfs_log_ctx *safe;
2864
2865        list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2866                list_del_init(&ctx->list);
2867                ctx->log_ret = error;
2868        }
2869
2870        INIT_LIST_HEAD(&root->log_ctxs[index]);
2871}
2872
2873/*
2874 * btrfs_sync_log does sends a given tree log down to the disk and
2875 * updates the super blocks to record it.  When this call is done,
2876 * you know that any inodes previously logged are safely on disk only
2877 * if it returns 0.
2878 *
2879 * Any other return value means you need to call btrfs_commit_transaction.
2880 * Some of the edge cases for fsyncing directories that have had unlinks
2881 * or renames done in the past mean that sometimes the only safe
2882 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2883 * that has happened.
2884 */
2885int btrfs_sync_log(struct btrfs_trans_handle *trans,
2886                   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2887{
2888        int index1;
2889        int index2;
2890        int mark;
2891        int ret;
2892        struct btrfs_fs_info *fs_info = root->fs_info;
2893        struct btrfs_root *log = root->log_root;
2894        struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2895        int log_transid = 0;
2896        struct btrfs_log_ctx root_log_ctx;
2897        struct blk_plug plug;
2898
2899        mutex_lock(&root->log_mutex);
2900        log_transid = ctx->log_transid;
2901        if (root->log_transid_committed >= log_transid) {
2902                mutex_unlock(&root->log_mutex);
2903                return ctx->log_ret;
2904        }
2905
2906        index1 = log_transid % 2;
2907        if (atomic_read(&root->log_commit[index1])) {
2908                wait_log_commit(root, log_transid);
2909                mutex_unlock(&root->log_mutex);
2910                return ctx->log_ret;
2911        }
2912        ASSERT(log_transid == root->log_transid);
2913        atomic_set(&root->log_commit[index1], 1);
2914
2915        /* wait for previous tree log sync to complete */
2916        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2917                wait_log_commit(root, log_transid - 1);
2918
2919        while (1) {
2920                int batch = atomic_read(&root->log_batch);
2921                /* when we're on an ssd, just kick the log commit out */
2922                if (!btrfs_test_opt(fs_info, SSD) &&
2923                    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2924                        mutex_unlock(&root->log_mutex);
2925                        schedule_timeout_uninterruptible(1);
2926                        mutex_lock(&root->log_mutex);
2927                }
2928                wait_for_writer(root);
2929                if (batch == atomic_read(&root->log_batch))
2930                        break;
2931        }
2932
2933        /* bail out if we need to do a full commit */
2934        if (btrfs_need_log_full_commit(fs_info, trans)) {
2935                ret = -EAGAIN;
2936                btrfs_free_logged_extents(log, log_transid);
2937                mutex_unlock(&root->log_mutex);
2938                goto out;
2939        }
2940
2941        if (log_transid % 2 == 0)
2942                mark = EXTENT_DIRTY;
2943        else
2944                mark = EXTENT_NEW;
2945
2946        /* we start IO on  all the marked extents here, but we don't actually
2947         * wait for them until later.
2948         */
2949        blk_start_plug(&plug);
2950        ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2951        if (ret) {
2952                blk_finish_plug(&plug);
2953                btrfs_abort_transaction(trans, ret);
2954                btrfs_free_logged_extents(log, log_transid);
2955                btrfs_set_log_full_commit(fs_info, trans);
2956                mutex_unlock(&root->log_mutex);
2957                goto out;
2958        }
2959
2960        btrfs_set_root_node(&log->root_item, log->node);
2961
2962        root->log_transid++;
2963        log->log_transid = root->log_transid;
2964        root->log_start_pid = 0;
2965        /*
2966         * IO has been started, blocks of the log tree have WRITTEN flag set
2967         * in their headers. new modifications of the log will be written to
2968         * new positions. so it's safe to allow log writers to go in.
2969         */
2970        mutex_unlock(&root->log_mutex);
2971
2972        btrfs_init_log_ctx(&root_log_ctx, NULL);
2973
2974        mutex_lock(&log_root_tree->log_mutex);
2975        atomic_inc(&log_root_tree->log_batch);
2976        atomic_inc(&log_root_tree->log_writers);
2977
2978        index2 = log_root_tree->log_transid % 2;
2979        list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2980        root_log_ctx.log_transid = log_root_tree->log_transid;
2981
2982        mutex_unlock(&log_root_tree->log_mutex);
2983
2984        ret = update_log_root(trans, log);
2985
2986        mutex_lock(&log_root_tree->log_mutex);
2987        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2988                /* atomic_dec_and_test implies a barrier */
2989                cond_wake_up_nomb(&log_root_tree->log_writer_wait);
2990        }
2991
2992        if (ret) {
2993                if (!list_empty(&root_log_ctx.list))
2994                        list_del_init(&root_log_ctx.list);
2995
2996                blk_finish_plug(&plug);
2997                btrfs_set_log_full_commit(fs_info, trans);
2998
2999                if (ret != -ENOSPC) {
3000                        btrfs_abort_transaction(trans, ret);
3001                        mutex_unlock(&log_root_tree->log_mutex);
3002                        goto out;
3003                }
3004                btrfs_wait_tree_log_extents(log, mark);
3005                btrfs_free_logged_extents(log, log_transid);
3006                mutex_unlock(&log_root_tree->log_mutex);
3007                ret = -EAGAIN;
3008                goto out;
3009        }
3010
3011        if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3012                blk_finish_plug(&plug);
3013                list_del_init(&root_log_ctx.list);
3014                mutex_unlock(&log_root_tree->log_mutex);
3015                ret = root_log_ctx.log_ret;
3016                goto out;
3017        }
3018
3019        index2 = root_log_ctx.log_transid % 2;
3020        if (atomic_read(&log_root_tree->log_commit[index2])) {
3021                blk_finish_plug(&plug);
3022                ret = btrfs_wait_tree_log_extents(log, mark);
3023                btrfs_wait_logged_extents(trans, log, log_transid);
3024                wait_log_commit(log_root_tree,
3025                                root_log_ctx.log_transid);
3026                mutex_unlock(&log_root_tree->log_mutex);
3027                if (!ret)
3028                        ret = root_log_ctx.log_ret;
3029                goto out;
3030        }
3031        ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3032        atomic_set(&log_root_tree->log_commit[index2], 1);
3033
3034        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3035                wait_log_commit(log_root_tree,
3036                                root_log_ctx.log_transid - 1);
3037        }
3038
3039        wait_for_writer(log_root_tree);
3040
3041        /*
3042         * now that we've moved on to the tree of log tree roots,
3043         * check the full commit flag again
3044         */
3045        if (btrfs_need_log_full_commit(fs_info, trans)) {
3046                blk_finish_plug(&plug);
3047                btrfs_wait_tree_log_extents(log, mark);
3048                btrfs_free_logged_extents(log, log_transid);
3049                mutex_unlock(&log_root_tree->log_mutex);
3050                ret = -EAGAIN;
3051                goto out_wake_log_root;
3052        }
3053
3054        ret = btrfs_write_marked_extents(fs_info,
3055                                         &log_root_tree->dirty_log_pages,
3056                                         EXTENT_DIRTY | EXTENT_NEW);
3057        blk_finish_plug(&plug);
3058        if (ret) {
3059                btrfs_set_log_full_commit(fs_info, trans);
3060                btrfs_abort_transaction(trans, ret);
3061                btrfs_free_logged_extents(log, log_transid);
3062                mutex_unlock(&log_root_tree->log_mutex);
3063                goto out_wake_log_root;
3064        }
3065        ret = btrfs_wait_tree_log_extents(log, mark);
3066        if (!ret)
3067                ret = btrfs_wait_tree_log_extents(log_root_tree,
3068                                                  EXTENT_NEW | EXTENT_DIRTY);
3069        if (ret) {
3070                btrfs_set_log_full_commit(fs_info, trans);
3071                btrfs_free_logged_extents(log, log_transid);
3072                mutex_unlock(&log_root_tree->log_mutex);
3073                goto out_wake_log_root;
3074        }
3075        btrfs_wait_logged_extents(trans, log, log_transid);
3076
3077        btrfs_set_super_log_root(fs_info->super_for_commit,
3078                                 log_root_tree->node->start);
3079        btrfs_set_super_log_root_level(fs_info->super_for_commit,
3080                                       btrfs_header_level(log_root_tree->node));
3081
3082        log_root_tree->log_transid++;
3083        mutex_unlock(&log_root_tree->log_mutex);
3084
3085        /*
3086         * nobody else is going to jump in and write the the ctree
3087         * super here because the log_commit atomic below is protecting
3088         * us.  We must be called with a transaction handle pinning
3089         * the running transaction open, so a full commit can't hop
3090         * in and cause problems either.
3091         */
3092        ret = write_all_supers(fs_info, 1);
3093        if (ret) {
3094                btrfs_set_log_full_commit(fs_info, trans);
3095                btrfs_abort_transaction(trans, ret);
3096                goto out_wake_log_root;
3097        }
3098
3099        mutex_lock(&root->log_mutex);
3100        if (root->last_log_commit < log_transid)
3101                root->last_log_commit = log_transid;
3102        mutex_unlock(&root->log_mutex);
3103
3104out_wake_log_root:
3105        mutex_lock(&log_root_tree->log_mutex);
3106        btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3107
3108        log_root_tree->log_transid_committed++;
3109        atomic_set(&log_root_tree->log_commit[index2], 0);
3110        mutex_unlock(&log_root_tree->log_mutex);
3111
3112        /*
3113         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3114         * all the updates above are seen by the woken threads. It might not be
3115         * necessary, but proving that seems to be hard.
3116         */
3117        cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3118out:
3119        mutex_lock(&root->log_mutex);
3120        btrfs_remove_all_log_ctxs(root, index1, ret);
3121        root->log_transid_committed++;
3122        atomic_set(&root->log_commit[index1], 0);
3123        mutex_unlock(&root->log_mutex);
3124
3125        /*
3126         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3127         * all the updates above are seen by the woken threads. It might not be
3128         * necessary, but proving that seems to be hard.
3129         */
3130        cond_wake_up(&root->log_commit_wait[index1]);
3131        return ret;
3132}
3133
3134static void free_log_tree(struct btrfs_trans_handle *trans,
3135                          struct btrfs_root *log)
3136{
3137        int ret;
3138        u64 start;
3139        u64 end;
3140        struct walk_control wc = {
3141                .free = 1,
3142                .process_func = process_one_buffer
3143        };
3144
3145        ret = walk_log_tree(trans, log, &wc);
3146        /* I don't think this can happen but just in case */
3147        if (ret)
3148                btrfs_abort_transaction(trans, ret);
3149
3150        while (1) {
3151                ret = find_first_extent_bit(&log->dirty_log_pages,
3152                                0, &start, &end,
3153                                EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3154                                NULL);
3155                if (ret)
3156                        break;
3157
3158                clear_extent_bits(&log->dirty_log_pages, start, end,
3159                                  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3160        }
3161
3162        /*
3163         * We may have short-circuited the log tree with the full commit logic
3164         * and left ordered extents on our list, so clear these out to keep us
3165         * from leaking inodes and memory.
3166         */
3167        btrfs_free_logged_extents(log, 0);
3168        btrfs_free_logged_extents(log, 1);
3169
3170        free_extent_buffer(log->node);
3171        kfree(log);
3172}
3173
3174/*
3175 * free all the extents used by the tree log.  This should be called
3176 * at commit time of the full transaction
3177 */
3178int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3179{
3180        if (root->log_root) {
3181                free_log_tree(trans, root->log_root);
3182                root->log_root = NULL;
3183        }
3184        return 0;
3185}
3186
3187int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3188                             struct btrfs_fs_info *fs_info)
3189{
3190        if (fs_info->log_root_tree) {
3191                free_log_tree(trans, fs_info->log_root_tree);
3192                fs_info->log_root_tree = NULL;
3193        }
3194        return 0;
3195}
3196
3197/*
3198 * If both a file and directory are logged, and unlinks or renames are
3199 * mixed in, we have a few interesting corners:
3200 *
3201 * create file X in dir Y
3202 * link file X to X.link in dir Y
3203 * fsync file X
3204 * unlink file X but leave X.link
3205 * fsync dir Y
3206 *
3207 * After a crash we would expect only X.link to exist.  But file X
3208 * didn't get fsync'd again so the log has back refs for X and X.link.
3209 *
3210 * We solve this by removing directory entries and inode backrefs from the
3211 * log when a file that was logged in the current transaction is
3212 * unlinked.  Any later fsync will include the updated log entries, and
3213 * we'll be able to reconstruct the proper directory items from backrefs.
3214 *
3215 * This optimizations allows us to avoid relogging the entire inode
3216 * or the entire directory.
3217 */
3218int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3219                                 struct btrfs_root *root,
3220                                 const char *name, int name_len,
3221                                 struct btrfs_inode *dir, u64 index)
3222{
3223        struct btrfs_root *log;
3224        struct btrfs_dir_item *di;
3225        struct btrfs_path *path;
3226        int ret;
3227        int err = 0;
3228        int bytes_del = 0;
3229        u64 dir_ino = btrfs_ino(dir);
3230
3231        if (dir->logged_trans < trans->transid)
3232                return 0;
3233
3234        ret = join_running_log_trans(root);
3235        if (ret)
3236                return 0;
3237
3238        mutex_lock(&dir->log_mutex);
3239
3240        log = root->log_root;
3241        path = btrfs_alloc_path();
3242        if (!path) {
3243                err = -ENOMEM;
3244                goto out_unlock;
3245        }
3246
3247        di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3248                                   name, name_len, -1);
3249        if (IS_ERR(di)) {
3250                err = PTR_ERR(di);
3251                goto fail;
3252        }
3253        if (di) {
3254                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3255                bytes_del += name_len;
3256                if (ret) {
3257                        err = ret;
3258                        goto fail;
3259                }
3260        }
3261        btrfs_release_path(path);
3262        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3263                                         index, name, name_len, -1);
3264        if (IS_ERR(di)) {
3265                err = PTR_ERR(di);
3266                goto fail;
3267        }
3268        if (di) {
3269                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3270                bytes_del += name_len;
3271                if (ret) {
3272                        err = ret;
3273                        goto fail;
3274                }
3275        }
3276
3277        /* update the directory size in the log to reflect the names
3278         * we have removed
3279         */
3280        if (bytes_del) {
3281                struct btrfs_key key;
3282
3283                key.objectid = dir_ino;
3284                key.offset = 0;
3285                key.type = BTRFS_INODE_ITEM_KEY;
3286                btrfs_release_path(path);
3287
3288                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3289                if (ret < 0) {
3290                        err = ret;
3291                        goto fail;
3292                }
3293                if (ret == 0) {
3294                        struct btrfs_inode_item *item;
3295                        u64 i_size;
3296
3297                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3298                                              struct btrfs_inode_item);
3299                        i_size = btrfs_inode_size(path->nodes[0], item);
3300                        if (i_size > bytes_del)
3301                                i_size -= bytes_del;
3302                        else
3303                                i_size = 0;
3304                        btrfs_set_inode_size(path->nodes[0], item, i_size);
3305                        btrfs_mark_buffer_dirty(path->nodes[0]);
3306                } else
3307                        ret = 0;
3308                btrfs_release_path(path);
3309        }
3310fail:
3311        btrfs_free_path(path);
3312out_unlock:
3313        mutex_unlock(&dir->log_mutex);
3314        if (ret == -ENOSPC) {
3315                btrfs_set_log_full_commit(root->fs_info, trans);
3316                ret = 0;
3317        } else if (ret < 0)
3318                btrfs_abort_transaction(trans, ret);
3319
3320        btrfs_end_log_trans(root);
3321
3322        return err;
3323}
3324
3325/* see comments for btrfs_del_dir_entries_in_log */
3326int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3327                               struct btrfs_root *root,
3328                               const char *name, int name_len,
3329                               struct btrfs_inode *inode, u64 dirid)
3330{
3331        struct btrfs_fs_info *fs_info = root->fs_info;
3332        struct btrfs_root *log;
3333        u64 index;
3334        int ret;
3335
3336        if (inode->logged_trans < trans->transid)
3337                return 0;
3338
3339        ret = join_running_log_trans(root);
3340        if (ret)
3341                return 0;
3342        log = root->log_root;
3343        mutex_lock(&inode->log_mutex);
3344
3345        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3346                                  dirid, &index);
3347        mutex_unlock(&inode->log_mutex);
3348        if (ret == -ENOSPC) {
3349                btrfs_set_log_full_commit(fs_info, trans);
3350                ret = 0;
3351        } else if (ret < 0 && ret != -ENOENT)
3352                btrfs_abort_transaction(trans, ret);
3353        btrfs_end_log_trans(root);
3354
3355        return ret;
3356}
3357
3358/*
3359 * creates a range item in the log for 'dirid'.  first_offset and
3360 * last_offset tell us which parts of the key space the log should
3361 * be considered authoritative for.
3362 */
3363static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3364                                       struct btrfs_root *log,
3365                                       struct btrfs_path *path,
3366                                       int key_type, u64 dirid,
3367                                       u64 first_offset, u64 last_offset)
3368{
3369        int ret;
3370        struct btrfs_key key;
3371        struct btrfs_dir_log_item *item;
3372
3373        key.objectid = dirid;
3374        key.offset = first_offset;
3375        if (key_type == BTRFS_DIR_ITEM_KEY)
3376                key.type = BTRFS_DIR_LOG_ITEM_KEY;
3377        else
3378                key.type = BTRFS_DIR_LOG_INDEX_KEY;
3379        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3380        if (ret)
3381                return ret;
3382
3383        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3384                              struct btrfs_dir_log_item);
3385        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3386        btrfs_mark_buffer_dirty(path->nodes[0]);
3387        btrfs_release_path(path);
3388        return 0;
3389}
3390
3391/*
3392 * log all the items included in the current transaction for a given
3393 * directory.  This also creates the range items in the log tree required
3394 * to replay anything deleted before the fsync
3395 */
3396static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3397                          struct btrfs_root *root, struct btrfs_inode *inode,
3398                          struct btrfs_path *path,
3399                          struct btrfs_path *dst_path, int key_type,
3400                          struct btrfs_log_ctx *ctx,
3401                          u64 min_offset, u64 *last_offset_ret)
3402{
3403        struct btrfs_key min_key;
3404        struct btrfs_root *log = root->log_root;
3405        struct extent_buffer *src;
3406        int err = 0;
3407        int ret;
3408        int i;
3409        int nritems;
3410        u64 first_offset = min_offset;
3411        u64 last_offset = (u64)-1;
3412        u64 ino = btrfs_ino(inode);
3413
3414        log = root->log_root;
3415
3416        min_key.objectid = ino;
3417        min_key.type = key_type;
3418        min_key.offset = min_offset;
3419
3420        ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3421
3422        /*
3423         * we didn't find anything from this transaction, see if there
3424         * is anything at all
3425         */
3426        if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3427                min_key.objectid = ino;
3428                min_key.type = key_type;
3429                min_key.offset = (u64)-1;
3430                btrfs_release_path(path);
3431                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3432                if (ret < 0) {
3433                        btrfs_release_path(path);
3434                        return ret;
3435                }
3436                ret = btrfs_previous_item(root, path, ino, key_type);
3437
3438                /* if ret == 0 there are items for this type,
3439                 * create a range to tell us the last key of this type.
3440                 * otherwise, there are no items in this directory after
3441                 * *min_offset, and we create a range to indicate that.
3442                 */
3443                if (ret == 0) {
3444                        struct btrfs_key tmp;
3445                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3446                                              path->slots[0]);
3447                        if (key_type == tmp.type)
3448                                first_offset = max(min_offset, tmp.offset) + 1;
3449                }
3450                goto done;
3451        }
3452
3453        /* go backward to find any previous key */
3454        ret = btrfs_previous_item(root, path, ino, key_type);
3455        if (ret == 0) {
3456                struct btrfs_key tmp;
3457                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3458                if (key_type == tmp.type) {
3459                        first_offset = tmp.offset;
3460                        ret = overwrite_item(trans, log, dst_path,
3461                                             path->nodes[0], path->slots[0],
3462                                             &tmp);
3463                        if (ret) {
3464                                err = ret;
3465                                goto done;
3466                        }
3467                }
3468        }
3469        btrfs_release_path(path);
3470
3471        /* find the first key from this transaction again */
3472        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3473        if (WARN_ON(ret != 0))
3474                goto done;
3475
3476        /*
3477         * we have a block from this transaction, log every item in it
3478         * from our directory
3479         */
3480        while (1) {
3481                struct btrfs_key tmp;
3482                src = path->nodes[0];
3483                nritems = btrfs_header_nritems(src);
3484                for (i = path->slots[0]; i < nritems; i++) {
3485                        struct btrfs_dir_item *di;
3486
3487                        btrfs_item_key_to_cpu(src, &min_key, i);
3488
3489                        if (min_key.objectid != ino || min_key.type != key_type)
3490                                goto done;
3491                        ret = overwrite_item(trans, log, dst_path, src, i,
3492                                             &min_key);
3493                        if (ret) {
3494                                err = ret;
3495                                goto done;
3496                        }
3497
3498                        /*
3499                         * We must make sure that when we log a directory entry,
3500                         * the corresponding inode, after log replay, has a
3501                         * matching link count. For example:
3502                         *
3503                         * touch foo
3504                         * mkdir mydir
3505                         * sync
3506                         * ln foo mydir/bar
3507                         * xfs_io -c "fsync" mydir
3508                         * <crash>
3509                         * <mount fs and log replay>
3510                         *
3511                         * Would result in a fsync log that when replayed, our
3512                         * file inode would have a link count of 1, but we get
3513                         * two directory entries pointing to the same inode.
3514                         * After removing one of the names, it would not be
3515                         * possible to remove the other name, which resulted
3516                         * always in stale file handle errors, and would not
3517                         * be possible to rmdir the parent directory, since
3518                         * its i_size could never decrement to the value
3519                         * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3520                         */
3521                        di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3522                        btrfs_dir_item_key_to_cpu(src, di, &tmp);
3523                        if (ctx &&
3524                            (btrfs_dir_transid(src, di) == trans->transid ||
3525                             btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3526                            tmp.type != BTRFS_ROOT_ITEM_KEY)
3527                                ctx->log_new_dentries = true;
3528                }
3529                path->slots[0] = nritems;
3530
3531                /*
3532                 * look ahead to the next item and see if it is also
3533                 * from this directory and from this transaction
3534                 */
3535                ret = btrfs_next_leaf(root, path);
3536                if (ret) {
3537                        if (ret == 1)
3538                                last_offset = (u64)-1;
3539                        else
3540                                err = ret;
3541                        goto done;
3542                }
3543                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3544                if (tmp.objectid != ino || tmp.type != key_type) {
3545                        last_offset = (u64)-1;
3546                        goto done;
3547                }
3548                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3549                        ret = overwrite_item(trans, log, dst_path,
3550                                             path->nodes[0], path->slots[0],
3551                                             &tmp);
3552                        if (ret)
3553                                err = ret;
3554                        else
3555                                last_offset = tmp.offset;
3556                        goto done;
3557                }
3558        }
3559done:
3560        btrfs_release_path(path);
3561        btrfs_release_path(dst_path);
3562
3563        if (err == 0) {
3564                *last_offset_ret = last_offset;
3565                /*
3566                 * insert the log range keys to indicate where the log
3567                 * is valid
3568                 */
3569                ret = insert_dir_log_key(trans, log, path, key_type,
3570                                         ino, first_offset, last_offset);
3571                if (ret)
3572                        err = ret;
3573        }
3574        return err;
3575}
3576
3577/*
3578 * logging directories is very similar to logging inodes, We find all the items
3579 * from the current transaction and write them to the log.
3580 *
3581 * The recovery code scans the directory in the subvolume, and if it finds a
3582 * key in the range logged that is not present in the log tree, then it means
3583 * that dir entry was unlinked during the transaction.
3584 *
3585 * In order for that scan to work, we must include one key smaller than
3586 * the smallest logged by this transaction and one key larger than the largest
3587 * key logged by this transaction.
3588 */
3589static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3590                          struct btrfs_root *root, struct btrfs_inode *inode,
3591                          struct btrfs_path *path,
3592                          struct btrfs_path *dst_path,
3593                          struct btrfs_log_ctx *ctx)
3594{
3595        u64 min_key;
3596        u64 max_key;
3597        int ret;
3598        int key_type = BTRFS_DIR_ITEM_KEY;
3599
3600again:
3601        min_key = 0;
3602        max_key = 0;
3603        while (1) {
3604                ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3605                                ctx, min_key, &max_key);
3606                if (ret)
3607                        return ret;
3608                if (max_key == (u64)-1)
3609                        break;
3610                min_key = max_key + 1;
3611        }
3612
3613        if (key_type == BTRFS_DIR_ITEM_KEY) {
3614                key_type = BTRFS_DIR_INDEX_KEY;
3615                goto again;
3616        }
3617        return 0;
3618}
3619
3620/*
3621 * a helper function to drop items from the log before we relog an
3622 * inode.  max_key_type indicates the highest item type to remove.
3623 * This cannot be run for file data extents because it does not
3624 * free the extents they point to.
3625 */
3626static int drop_objectid_items(struct btrfs_trans_handle *trans,
3627                                  struct btrfs_root *log,
3628                                  struct btrfs_path *path,
3629                                  u64 objectid, int max_key_type)
3630{
3631        int ret;
3632        struct btrfs_key key;
3633        struct btrfs_key found_key;
3634        int start_slot;
3635
3636        key.objectid = objectid;
3637        key.type = max_key_type;
3638        key.offset = (u64)-1;
3639
3640        while (1) {
3641                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3642                BUG_ON(ret == 0); /* Logic error */
3643                if (ret < 0)
3644                        break;
3645
3646                if (path->slots[0] == 0)
3647                        break;
3648
3649                path->slots[0]--;
3650                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3651                                      path->slots[0]);
3652
3653                if (found_key.objectid != objectid)
3654                        break;
3655
3656                found_key.offset = 0;
3657                found_key.type = 0;
3658                ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3659                                       &start_slot);
3660
3661                ret = btrfs_del_items(trans, log, path, start_slot,
3662                                      path->slots[0] - start_slot + 1);
3663                /*
3664                 * If start slot isn't 0 then we don't need to re-search, we've
3665                 * found the last guy with the objectid in this tree.
3666                 */
3667                if (ret || start_slot != 0)
3668                        break;
3669                btrfs_release_path(path);
3670        }
3671        btrfs_release_path(path);
3672        if (ret > 0)
3673                ret = 0;
3674        return ret;
3675}
3676
3677static void fill_inode_item(struct btrfs_trans_handle *trans,
3678                            struct extent_buffer *leaf,
3679                            struct btrfs_inode_item *item,
3680                            struct inode *inode, int log_inode_only,
3681                            u64 logged_isize)
3682{
3683        struct btrfs_map_token token;
3684
3685        btrfs_init_map_token(&token);
3686
3687        if (log_inode_only) {
3688                /* set the generation to zero so the recover code
3689                 * can tell the difference between an logging
3690                 * just to say 'this inode exists' and a logging
3691                 * to say 'update this inode with these values'
3692                 */
3693                btrfs_set_token_inode_generation(leaf, item, 0, &token);
3694                btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3695        } else {
3696                btrfs_set_token_inode_generation(leaf, item,
3697                                                 BTRFS_I(inode)->generation,
3698                                                 &token);
3699                btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3700        }
3701
3702        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3703        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3704        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3705        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3706
3707        btrfs_set_token_timespec_sec(leaf, &item->atime,
3708                                     inode->i_atime.tv_sec, &token);
3709        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3710                                      inode->i_atime.tv_nsec, &token);
3711
3712        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3713                                     inode->i_mtime.tv_sec, &token);
3714        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3715                                      inode->i_mtime.tv_nsec, &token);
3716
3717        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3718                                     inode->i_ctime.tv_sec, &token);
3719        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3720                                      inode->i_ctime.tv_nsec, &token);
3721
3722        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3723                                     &token);
3724
3725        btrfs_set_token_inode_sequence(leaf, item,
3726                                       inode_peek_iversion(inode), &token);
3727        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3728        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3729        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3730        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3731}
3732
3733static int log_inode_item(struct btrfs_trans_handle *trans,
3734                          struct btrfs_root *log, struct btrfs_path *path,
3735                          struct btrfs_inode *inode)
3736{
3737        struct btrfs_inode_item *inode_item;
3738        int ret;
3739
3740        ret = btrfs_insert_empty_item(trans, log, path,
3741                                      &inode->location, sizeof(*inode_item));
3742        if (ret && ret != -EEXIST)
3743                return ret;
3744        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3745                                    struct btrfs_inode_item);
3746        fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3747                        0, 0);
3748        btrfs_release_path(path);
3749        return 0;
3750}
3751
3752static noinline int copy_items(struct btrfs_trans_handle *trans,
3753                               struct btrfs_inode *inode,
3754                               struct btrfs_path *dst_path,
3755                               struct btrfs_path *src_path, u64 *last_extent,
3756                               int start_slot, int nr, int inode_only,
3757                               u64 logged_isize)
3758{
3759        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3760        unsigned long src_offset;
3761        unsigned long dst_offset;
3762        struct btrfs_root *log = inode->root->log_root;
3763        struct btrfs_file_extent_item *extent;
3764        struct btrfs_inode_item *inode_item;
3765        struct extent_buffer *src = src_path->nodes[0];
3766        struct btrfs_key first_key, last_key, key;
3767        int ret;
3768        struct btrfs_key *ins_keys;
3769        u32 *ins_sizes;
3770        char *ins_data;
3771        int i;
3772        struct list_head ordered_sums;
3773        int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3774        bool has_extents = false;
3775        bool need_find_last_extent = true;
3776        bool done = false;
3777
3778        INIT_LIST_HEAD(&ordered_sums);
3779
3780        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3781                           nr * sizeof(u32), GFP_NOFS);
3782        if (!ins_data)
3783                return -ENOMEM;
3784
3785        first_key.objectid = (u64)-1;
3786
3787        ins_sizes = (u32 *)ins_data;
3788        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3789
3790        for (i = 0; i < nr; i++) {
3791                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3792                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3793        }
3794        ret = btrfs_insert_empty_items(trans, log, dst_path,
3795                                       ins_keys, ins_sizes, nr);
3796        if (ret) {
3797                kfree(ins_data);
3798                return ret;
3799        }
3800
3801        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3802                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3803                                                   dst_path->slots[0]);
3804
3805                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3806
3807                if (i == nr - 1)
3808                        last_key = ins_keys[i];
3809
3810                if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3811                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
3812                                                    dst_path->slots[0],
3813                                                    struct btrfs_inode_item);
3814                        fill_inode_item(trans, dst_path->nodes[0], inode_item,
3815                                        &inode->vfs_inode,
3816                                        inode_only == LOG_INODE_EXISTS,
3817                                        logged_isize);
3818                } else {
3819                        copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3820                                           src_offset, ins_sizes[i]);
3821                }
3822
3823                /*
3824                 * We set need_find_last_extent here in case we know we were
3825                 * processing other items and then walk into the first extent in
3826                 * the inode.  If we don't hit an extent then nothing changes,
3827                 * we'll do the last search the next time around.
3828                 */
3829                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3830                        has_extents = true;
3831                        if (first_key.objectid == (u64)-1)
3832                                first_key = ins_keys[i];
3833                } else {
3834                        need_find_last_extent = false;
3835                }
3836
3837                /* take a reference on file data extents so that truncates
3838                 * or deletes of this inode don't have to relog the inode
3839                 * again
3840                 */
3841                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3842                    !skip_csum) {
3843                        int found_type;
3844                        extent = btrfs_item_ptr(src, start_slot + i,
3845                                                struct btrfs_file_extent_item);
3846
3847                        if (btrfs_file_extent_generation(src, extent) < trans->transid)
3848                                continue;
3849
3850                        found_type = btrfs_file_extent_type(src, extent);
3851                        if (found_type == BTRFS_FILE_EXTENT_REG) {
3852                                u64 ds, dl, cs, cl;
3853                                ds = btrfs_file_extent_disk_bytenr(src,
3854                                                                extent);
3855                                /* ds == 0 is a hole */
3856                                if (ds == 0)
3857                                        continue;
3858
3859                                dl = btrfs_file_extent_disk_num_bytes(src,
3860                                                                extent);
3861                                cs = btrfs_file_extent_offset(src, extent);
3862                                cl = btrfs_file_extent_num_bytes(src,
3863                                                                extent);
3864                                if (btrfs_file_extent_compression(src,
3865                                                                  extent)) {
3866                                        cs = 0;
3867                                        cl = dl;
3868                                }
3869
3870                                ret = btrfs_lookup_csums_range(
3871                                                fs_info->csum_root,
3872                                                ds + cs, ds + cs + cl - 1,
3873                                                &ordered_sums, 0);
3874                                if (ret) {
3875                                        btrfs_release_path(dst_path);
3876                                        kfree(ins_data);
3877                                        return ret;
3878                                }
3879                        }
3880                }
3881        }
3882
3883        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3884        btrfs_release_path(dst_path);
3885        kfree(ins_data);
3886
3887        /*
3888         * we have to do this after the loop above to avoid changing the
3889         * log tree while trying to change the log tree.
3890         */
3891        ret = 0;
3892        while (!list_empty(&ordered_sums)) {
3893                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3894                                                   struct btrfs_ordered_sum,
3895                                                   list);
3896                if (!ret)
3897                        ret = btrfs_csum_file_blocks(trans, log, sums);
3898                list_del(&sums->list);
3899                kfree(sums);
3900        }
3901
3902        if (!has_extents)
3903                return ret;
3904
3905        if (need_find_last_extent && *last_extent == first_key.offset) {
3906                /*
3907                 * We don't have any leafs between our current one and the one
3908                 * we processed before that can have file extent items for our
3909                 * inode (and have a generation number smaller than our current
3910                 * transaction id).
3911                 */
3912                need_find_last_extent = false;
3913        }
3914
3915        /*
3916         * Because we use btrfs_search_forward we could skip leaves that were
3917         * not modified and then assume *last_extent is valid when it really
3918         * isn't.  So back up to the previous leaf and read the end of the last
3919         * extent before we go and fill in holes.
3920         */
3921        if (need_find_last_extent) {
3922                u64 len;
3923
3924                ret = btrfs_prev_leaf(inode->root, src_path);
3925                if (ret < 0)
3926                        return ret;
3927                if (ret)
3928                        goto fill_holes;
3929                if (src_path->slots[0])
3930                        src_path->slots[0]--;
3931                src = src_path->nodes[0];
3932                btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3933                if (key.objectid != btrfs_ino(inode) ||
3934                    key.type != BTRFS_EXTENT_DATA_KEY)
3935                        goto fill_holes;
3936                extent = btrfs_item_ptr(src, src_path->slots[0],
3937                                        struct btrfs_file_extent_item);
3938                if (btrfs_file_extent_type(src, extent) ==
3939                    BTRFS_FILE_EXTENT_INLINE) {
3940                        len = btrfs_file_extent_inline_len(src,
3941                                                           src_path->slots[0],
3942                                                           extent);
3943                        *last_extent = ALIGN(key.offset + len,
3944                                             fs_info->sectorsize);
3945                } else {
3946                        len = btrfs_file_extent_num_bytes(src, extent);
3947                        *last_extent = key.offset + len;
3948                }
3949        }
3950fill_holes:
3951        /* So we did prev_leaf, now we need to move to the next leaf, but a few
3952         * things could have happened
3953         *
3954         * 1) A merge could have happened, so we could currently be on a leaf
3955         * that holds what we were copying in the first place.
3956         * 2) A split could have happened, and now not all of the items we want
3957         * are on the same leaf.
3958         *
3959         * So we need to adjust how we search for holes, we need to drop the
3960         * path and re-search for the first extent key we found, and then walk
3961         * forward until we hit the last one we copied.
3962         */
3963        if (need_find_last_extent) {
3964                /* btrfs_prev_leaf could return 1 without releasing the path */
3965                btrfs_release_path(src_path);
3966                ret = btrfs_search_slot(NULL, inode->root, &first_key,
3967                                src_path, 0, 0);
3968                if (ret < 0)
3969                        return ret;
3970                ASSERT(ret == 0);
3971                src = src_path->nodes[0];
3972                i = src_path->slots[0];
3973        } else {
3974                i = start_slot;
3975        }
3976
3977        /*
3978         * Ok so here we need to go through and fill in any holes we may have
3979         * to make sure that holes are punched for those areas in case they had
3980         * extents previously.
3981         */
3982        while (!done) {
3983                u64 offset, len;
3984                u64 extent_end;
3985
3986                if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3987                        ret = btrfs_next_leaf(inode->root, src_path);
3988                        if (ret < 0)
3989                                return ret;
3990                        ASSERT(ret == 0);
3991                        src = src_path->nodes[0];
3992                        i = 0;
3993                        need_find_last_extent = true;
3994                }
3995
3996                btrfs_item_key_to_cpu(src, &key, i);
3997                if (!btrfs_comp_cpu_keys(&key, &last_key))
3998                        done = true;
3999                if (key.objectid != btrfs_ino(inode) ||
4000                    key.type != BTRFS_EXTENT_DATA_KEY) {
4001                        i++;
4002                        continue;
4003                }
4004                extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4005                if (btrfs_file_extent_type(src, extent) ==
4006                    BTRFS_FILE_EXTENT_INLINE) {
4007                        len = btrfs_file_extent_inline_len(src, i, extent);
4008                        extent_end = ALIGN(key.offset + len,
4009                                           fs_info->sectorsize);
4010                } else {
4011                        len = btrfs_file_extent_num_bytes(src, extent);
4012                        extent_end = key.offset + len;
4013                }
4014                i++;
4015
4016                if (*last_extent == key.offset) {
4017                        *last_extent = extent_end;
4018                        continue;
4019                }
4020                offset = *last_extent;
4021                len = key.offset - *last_extent;
4022                ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4023                                offset, 0, 0, len, 0, len, 0, 0, 0);
4024                if (ret)
4025                        break;
4026                *last_extent = extent_end;
4027        }
4028
4029        /*
4030         * Check if there is a hole between the last extent found in our leaf
4031         * and the first extent in the next leaf. If there is one, we need to
4032         * log an explicit hole so that at replay time we can punch the hole.
4033         */
4034        if (ret == 0 &&
4035            key.objectid == btrfs_ino(inode) &&
4036            key.type == BTRFS_EXTENT_DATA_KEY &&
4037            i == btrfs_header_nritems(src_path->nodes[0])) {
4038                ret = btrfs_next_leaf(inode->root, src_path);
4039                need_find_last_extent = true;
4040                if (ret > 0) {
4041                        ret = 0;
4042                } else if (ret == 0) {
4043                        btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4044                                              src_path->slots[0]);
4045                        if (key.objectid == btrfs_ino(inode) &&
4046                            key.type == BTRFS_EXTENT_DATA_KEY &&
4047                            *last_extent < key.offset) {
4048                                const u64 len = key.offset - *last_extent;
4049
4050                                ret = btrfs_insert_file_extent(trans, log,
4051                                                               btrfs_ino(inode),
4052                                                               *last_extent, 0,
4053                                                               0, len, 0, len,
4054                                                               0, 0, 0);
4055                        }
4056                }
4057        }
4058        /*
4059         * Need to let the callers know we dropped the path so they should
4060         * re-search.
4061         */
4062        if (!ret && need_find_last_extent)
4063                ret = 1;
4064        return ret;
4065}
4066
4067static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4068{
4069        struct extent_map *em1, *em2;
4070
4071        em1 = list_entry(a, struct extent_map, list);
4072        em2 = list_entry(b, struct extent_map, list);
4073
4074        if (em1->start < em2->start)
4075                return -1;
4076        else if (em1->start > em2->start)
4077                return 1;
4078        return 0;
4079}
4080
4081static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4082                                struct inode *inode,
4083                                struct btrfs_root *root,
4084                                const struct extent_map *em,
4085                                const struct list_head *logged_list,
4086                                bool *ordered_io_error)
4087{
4088        struct btrfs_fs_info *fs_info = root->fs_info;
4089        struct btrfs_ordered_extent *ordered;
4090        struct btrfs_root *log = root->log_root;
4091        u64 mod_start = em->mod_start;
4092        u64 mod_len = em->mod_len;
4093        const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4094        u64 csum_offset;
4095        u64 csum_len;
4096        LIST_HEAD(ordered_sums);
4097        int ret = 0;
4098
4099        *ordered_io_error = false;
4100
4101        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4102            em->block_start == EXTENT_MAP_HOLE)
4103                return 0;
4104
4105        /*
4106         * Wait far any ordered extent that covers our extent map. If it
4107         * finishes without an error, first check and see if our csums are on
4108         * our outstanding ordered extents.
4109         */
4110        list_for_each_entry(ordered, logged_list, log_list) {
4111                struct btrfs_ordered_sum *sum;
4112
4113                if (!mod_len)
4114                        break;
4115
4116                if (ordered->file_offset + ordered->len <= mod_start ||
4117                    mod_start + mod_len <= ordered->file_offset)
4118                        continue;
4119
4120                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4121                    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4122                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4123                        const u64 start = ordered->file_offset;
4124                        const u64 end = ordered->file_offset + ordered->len - 1;
4125
4126                        WARN_ON(ordered->inode != inode);
4127                        filemap_fdatawrite_range(inode->i_mapping, start, end);
4128                }
4129
4130                wait_event(ordered->wait,
4131                           (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4132                            test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4133
4134                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4135                        /*
4136                         * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4137                         * i_mapping flags, so that the next fsync won't get
4138                         * an outdated io error too.
4139                         */
4140                        filemap_check_errors(inode->i_mapping);
4141                        *ordered_io_error = true;
4142                        break;
4143                }
4144                /*
4145                 * We are going to copy all the csums on this ordered extent, so
4146                 * go ahead and adjust mod_start and mod_len in case this
4147                 * ordered extent has already been logged.
4148                 */
4149                if (ordered->file_offset > mod_start) {
4150                        if (ordered->file_offset + ordered->len >=
4151                            mod_start + mod_len)
4152                                mod_len = ordered->file_offset - mod_start;
4153                        /*
4154                         * If we have this case
4155                         *
4156                         * |--------- logged extent ---------|
4157                         *       |----- ordered extent ----|
4158                         *
4159                         * Just don't mess with mod_start and mod_len, we'll
4160                         * just end up logging more csums than we need and it
4161                         * will be ok.
4162                         */
4163                } else {
4164                        if (ordered->file_offset + ordered->len <
4165                            mod_start + mod_len) {
4166                                mod_len = (mod_start + mod_len) -
4167                                        (ordered->file_offset + ordered->len);
4168                                mod_start = ordered->file_offset +
4169                                        ordered->len;
4170                        } else {
4171                                mod_len = 0;
4172                        }
4173                }
4174
4175                if (skip_csum)
4176                        continue;
4177
4178                /*
4179                 * To keep us from looping for the above case of an ordered
4180                 * extent that falls inside of the logged extent.
4181                 */
4182                if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4183                                     &ordered->flags))
4184                        continue;
4185
4186                list_for_each_entry(sum, &ordered->list, list) {
4187                        ret = btrfs_csum_file_blocks(trans, log, sum);
4188                        if (ret)
4189                                break;
4190                }
4191        }
4192
4193        if (*ordered_io_error || !mod_len || ret || skip_csum)
4194                return ret;
4195
4196        if (em->compress_type) {
4197                csum_offset = 0;
4198                csum_len = max(em->block_len, em->orig_block_len);
4199        } else {
4200                csum_offset = mod_start - em->start;
4201                csum_len = mod_len;
4202        }
4203
4204        /* block start is already adjusted for the file extent offset. */
4205        ret = btrfs_lookup_csums_range(fs_info->csum_root,
4206                                       em->block_start + csum_offset,
4207                                       em->block_start + csum_offset +
4208                                       csum_len - 1, &ordered_sums, 0);
4209        if (ret)
4210                return ret;
4211
4212        while (!list_empty(&ordered_sums)) {
4213                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4214                                                   struct btrfs_ordered_sum,
4215                                                   list);
4216                if (!ret)
4217                        ret = btrfs_csum_file_blocks(trans, log, sums);
4218                list_del(&sums->list);
4219                kfree(sums);
4220        }
4221
4222        return ret;
4223}
4224
4225static int log_one_extent(struct btrfs_trans_handle *trans,
4226                          struct btrfs_inode *inode, struct btrfs_root *root,
4227                          const struct extent_map *em,
4228                          struct btrfs_path *path,
4229                          const struct list_head *logged_list,
4230                          struct btrfs_log_ctx *ctx)
4231{
4232        struct btrfs_root *log = root->log_root;
4233        struct btrfs_file_extent_item *fi;
4234        struct extent_buffer *leaf;
4235        struct btrfs_map_token token;
4236        struct btrfs_key key;
4237        u64 extent_offset = em->start - em->orig_start;
4238        u64 block_len;
4239        int ret;
4240        int extent_inserted = 0;
4241        bool ordered_io_err = false;
4242
4243        ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4244                        logged_list, &ordered_io_err);
4245        if (ret)
4246                return ret;
4247
4248        if (ordered_io_err) {
4249                ctx->io_err = -EIO;
4250                return ctx->io_err;
4251        }
4252
4253        btrfs_init_map_token(&token);
4254
4255        ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4256                                   em->start + em->len, NULL, 0, 1,
4257                                   sizeof(*fi), &extent_inserted);
4258        if (ret)
4259                return ret;
4260
4261        if (!extent_inserted) {
4262                key.objectid = btrfs_ino(inode);
4263                key.type = BTRFS_EXTENT_DATA_KEY;
4264                key.offset = em->start;
4265
4266                ret = btrfs_insert_empty_item(trans, log, path, &key,
4267                                              sizeof(*fi));
4268                if (ret)
4269                        return ret;
4270        }
4271        leaf = path->nodes[0];
4272        fi = btrfs_item_ptr(leaf, path->slots[0],
4273                            struct btrfs_file_extent_item);
4274
4275        btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4276                                               &token);
4277        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4278                btrfs_set_token_file_extent_type(leaf, fi,
4279                                                 BTRFS_FILE_EXTENT_PREALLOC,
4280                                                 &token);
4281        else
4282                btrfs_set_token_file_extent_type(leaf, fi,
4283                                                 BTRFS_FILE_EXTENT_REG,
4284                                                 &token);
4285
4286        block_len = max(em->block_len, em->orig_block_len);
4287        if (em->compress_type != BTRFS_COMPRESS_NONE) {
4288                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4289                                                        em->block_start,
4290                                                        &token);
4291                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4292                                                           &token);
4293        } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4294                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4295                                                        em->block_start -
4296                                                        extent_offset, &token);
4297                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4298                                                           &token);
4299        } else {
4300                btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4301                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4302                                                           &token);
4303        }
4304
4305        btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4306        btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4307        btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4308        btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4309                                                &token);
4310        btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4311        btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4312        btrfs_mark_buffer_dirty(leaf);
4313
4314        btrfs_release_path(path);
4315
4316        return ret;
4317}
4318
4319/*
4320 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4321 * lose them after doing a fast fsync and replaying the log. We scan the
4322 * subvolume's root instead of iterating the inode's extent map tree because
4323 * otherwise we can log incorrect extent items based on extent map conversion.
4324 * That can happen due to the fact that extent maps are merged when they
4325 * are not in the extent map tree's list of modified extents.
4326 */
4327static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4328                                      struct btrfs_inode *inode,
4329                                      struct btrfs_path *path)
4330{
4331        struct btrfs_root *root = inode->root;
4332        struct btrfs_key key;
4333        const u64 i_size = i_size_read(&inode->vfs_inode);
4334        const u64 ino = btrfs_ino(inode);
4335        struct btrfs_path *dst_path = NULL;
4336        u64 last_extent = (u64)-1;
4337        int ins_nr = 0;
4338        int start_slot;
4339        int ret;
4340
4341        if (!(inode->flags & BTRFS_INODE_PREALLOC))
4342                return 0;
4343
4344        key.objectid = ino;
4345        key.type = BTRFS_EXTENT_DATA_KEY;
4346        key.offset = i_size;
4347        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4348        if (ret < 0)
4349                goto out;
4350
4351        while (true) {
4352                struct extent_buffer *leaf = path->nodes[0];
4353                int slot = path->slots[0];
4354
4355                if (slot >= btrfs_header_nritems(leaf)) {
4356                        if (ins_nr > 0) {
4357                                ret = copy_items(trans, inode, dst_path, path,
4358                                                 &last_extent, start_slot,
4359                                                 ins_nr, 1, 0);
4360                                if (ret < 0)
4361                                        goto out;
4362                                ins_nr = 0;
4363                        }
4364                        ret = btrfs_next_leaf(root, path);
4365                        if (ret < 0)
4366                                goto out;
4367                        if (ret > 0) {
4368                                ret = 0;
4369                                break;
4370                        }
4371                        continue;
4372                }
4373
4374                btrfs_item_key_to_cpu(leaf, &key, slot);
4375                if (key.objectid > ino)
4376                        break;
4377                if (WARN_ON_ONCE(key.objectid < ino) ||
4378                    key.type < BTRFS_EXTENT_DATA_KEY ||
4379                    key.offset < i_size) {
4380                        path->slots[0]++;
4381                        continue;
4382                }
4383                if (last_extent == (u64)-1) {
4384                        last_extent = key.offset;
4385                        /*
4386                         * Avoid logging extent items logged in past fsync calls
4387                         * and leading to duplicate keys in the log tree.
4388                         */
4389                        do {
4390                                ret = btrfs_truncate_inode_items(trans,
4391                                                         root->log_root,
4392                                                         &inode->vfs_inode,
4393                                                         i_size,
4394                                                         BTRFS_EXTENT_DATA_KEY);
4395                        } while (ret == -EAGAIN);
4396                        if (ret)
4397                                goto out;
4398                }
4399                if (ins_nr == 0)
4400                        start_slot = slot;
4401                ins_nr++;
4402                path->slots[0]++;
4403                if (!dst_path) {
4404                        dst_path = btrfs_alloc_path();
4405                        if (!dst_path) {
4406                                ret = -ENOMEM;
4407                                goto out;
4408                        }
4409                }
4410        }
4411        if (ins_nr > 0) {
4412                ret = copy_items(trans, inode, dst_path, path, &last_extent,
4413                                 start_slot, ins_nr, 1, 0);
4414                if (ret > 0)
4415                        ret = 0;
4416        }
4417out:
4418        btrfs_release_path(path);
4419        btrfs_free_path(dst_path);
4420        return ret;
4421}
4422
4423static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4424                                     struct btrfs_root *root,
4425                                     struct btrfs_inode *inode,
4426                                     struct btrfs_path *path,
4427                                     struct list_head *logged_list,
4428                                     struct btrfs_log_ctx *ctx,
4429                                     const u64 start,
4430                                     const u64 end)
4431{
4432        struct extent_map *em, *n;
4433        struct list_head extents;
4434        struct extent_map_tree *tree = &inode->extent_tree;
4435        u64 logged_start, logged_end;
4436        u64 test_gen;
4437        int ret = 0;
4438        int num = 0;
4439
4440        INIT_LIST_HEAD(&extents);
4441
4442        down_write(&inode->dio_sem);
4443        write_lock(&tree->lock);
4444        test_gen = root->fs_info->last_trans_committed;
4445        logged_start = start;
4446        logged_end = end;
4447
4448        list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4449                list_del_init(&em->list);
4450                /*
4451                 * Just an arbitrary number, this can be really CPU intensive
4452                 * once we start getting a lot of extents, and really once we
4453                 * have a bunch of extents we just want to commit since it will
4454                 * be faster.
4455                 */
4456                if (++num > 32768) {
4457                        list_del_init(&tree->modified_extents);
4458                        ret = -EFBIG;
4459                        goto process;
4460                }
4461
4462                if (em->generation <= test_gen)
4463                        continue;
4464
4465                /* We log prealloc extents beyond eof later. */
4466                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4467                    em->start >= i_size_read(&inode->vfs_inode))
4468                        continue;
4469
4470                if (em->start < logged_start)
4471                        logged_start = em->start;
4472                if ((em->start + em->len - 1) > logged_end)
4473                        logged_end = em->start + em->len - 1;
4474
4475                /* Need a ref to keep it from getting evicted from cache */
4476                refcount_inc(&em->refs);
4477                set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4478                list_add_tail(&em->list, &extents);
4479                num++;
4480        }
4481
4482        list_sort(NULL, &extents, extent_cmp);
4483        btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4484        /*
4485         * Some ordered extents started by fsync might have completed
4486         * before we could collect them into the list logged_list, which
4487         * means they're gone, not in our logged_list nor in the inode's
4488         * ordered tree. We want the application/user space to know an
4489         * error happened while attempting to persist file data so that
4490         * it can take proper action. If such error happened, we leave
4491         * without writing to the log tree and the fsync must report the
4492         * file data write error and not commit the current transaction.
4493         */
4494        ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4495        if (ret)
4496                ctx->io_err = ret;
4497process:
4498        while (!list_empty(&extents)) {
4499                em = list_entry(extents.next, struct extent_map, list);
4500
4501                list_del_init(&em->list);
4502
4503                /*
4504                 * If we had an error we just need to delete everybody from our
4505                 * private list.
4506                 */
4507                if (ret) {
4508                        clear_em_logging(tree, em);
4509                        free_extent_map(em);
4510                        continue;
4511                }
4512
4513                write_unlock(&tree->lock);
4514
4515                ret = log_one_extent(trans, inode, root, em, path, logged_list,
4516                                     ctx);
4517                write_lock(&tree->lock);
4518                clear_em_logging(tree, em);
4519                free_extent_map(em);
4520        }
4521        WARN_ON(!list_empty(&extents));
4522        write_unlock(&tree->lock);
4523        up_write(&inode->dio_sem);
4524
4525        btrfs_release_path(path);
4526        if (!ret)
4527                ret = btrfs_log_prealloc_extents(trans, inode, path);
4528
4529        return ret;
4530}
4531
4532static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4533                             struct btrfs_path *path, u64 *size_ret)
4534{
4535        struct btrfs_key key;
4536        int ret;
4537
4538        key.objectid = btrfs_ino(inode);
4539        key.type = BTRFS_INODE_ITEM_KEY;
4540        key.offset = 0;
4541
4542        ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4543        if (ret < 0) {
4544                return ret;
4545        } else if (ret > 0) {
4546                *size_ret = 0;
4547        } else {
4548                struct btrfs_inode_item *item;
4549
4550                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4551                                      struct btrfs_inode_item);
4552                *size_ret = btrfs_inode_size(path->nodes[0], item);
4553        }
4554
4555        btrfs_release_path(path);
4556        return 0;
4557}
4558
4559/*
4560 * At the moment we always log all xattrs. This is to figure out at log replay
4561 * time which xattrs must have their deletion replayed. If a xattr is missing
4562 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4563 * because if a xattr is deleted, the inode is fsynced and a power failure
4564 * happens, causing the log to be replayed the next time the fs is mounted,
4565 * we want the xattr to not exist anymore (same behaviour as other filesystems
4566 * with a journal, ext3/4, xfs, f2fs, etc).
4567 */
4568static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4569                                struct btrfs_root *root,
4570                                struct btrfs_inode *inode,
4571                                struct btrfs_path *path,
4572                                struct btrfs_path *dst_path)
4573{
4574        int ret;
4575        struct btrfs_key key;
4576        const u64 ino = btrfs_ino(inode);
4577        int ins_nr = 0;
4578        int start_slot = 0;
4579
4580        key.objectid = ino;
4581        key.type = BTRFS_XATTR_ITEM_KEY;
4582        key.offset = 0;
4583
4584        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4585        if (ret < 0)
4586                return ret;
4587
4588        while (true) {
4589                int slot = path->slots[0];
4590                struct extent_buffer *leaf = path->nodes[0];
4591                int nritems = btrfs_header_nritems(leaf);
4592
4593                if (slot >= nritems) {
4594                        if (ins_nr > 0) {
4595                                u64 last_extent = 0;
4596
4597                                ret = copy_items(trans, inode, dst_path, path,
4598                                                 &last_extent, start_slot,
4599                                                 ins_nr, 1, 0);
4600                                /* can't be 1, extent items aren't processed */
4601                                ASSERT(ret <= 0);
4602                                if (ret < 0)
4603                                        return ret;
4604                                ins_nr = 0;
4605                        }
4606                        ret = btrfs_next_leaf(root, path);
4607                        if (ret < 0)
4608                                return ret;
4609                        else if (ret > 0)
4610                                break;
4611                        continue;
4612                }
4613
4614                btrfs_item_key_to_cpu(leaf, &key, slot);
4615                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4616                        break;
4617
4618                if (ins_nr == 0)
4619                        start_slot = slot;
4620                ins_nr++;
4621                path->slots[0]++;
4622                cond_resched();
4623        }
4624        if (ins_nr > 0) {
4625                u64 last_extent = 0;
4626
4627                ret = copy_items(trans, inode, dst_path, path,
4628                                 &last_extent, start_slot,
4629                                 ins_nr, 1, 0);
4630                /* can't be 1, extent items aren't processed */
4631                ASSERT(ret <= 0);
4632                if (ret < 0)
4633                        return ret;
4634        }
4635
4636        return 0;
4637}
4638
4639/*
4640 * If the no holes feature is enabled we need to make sure any hole between the
4641 * last extent and the i_size of our inode is explicitly marked in the log. This
4642 * is to make sure that doing something like:
4643 *
4644 *      1) create file with 128Kb of data
4645 *      2) truncate file to 64Kb
4646 *      3) truncate file to 256Kb
4647 *      4) fsync file
4648 *      5) <crash/power failure>
4649 *      6) mount fs and trigger log replay
4650 *
4651 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4652 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4653 * file correspond to a hole. The presence of explicit holes in a log tree is
4654 * what guarantees that log replay will remove/adjust file extent items in the
4655 * fs/subvol tree.
4656 *
4657 * Here we do not need to care about holes between extents, that is already done
4658 * by copy_items(). We also only need to do this in the full sync path, where we
4659 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4660 * lookup the list of modified extent maps and if any represents a hole, we
4661 * insert a corresponding extent representing a hole in the log tree.
4662 */
4663static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4664                                   struct btrfs_root *root,
4665                                   struct btrfs_inode *inode,
4666                                   struct btrfs_path *path)
4667{
4668        struct btrfs_fs_info *fs_info = root->fs_info;
4669        int ret;
4670        struct btrfs_key key;
4671        u64 hole_start;
4672        u64 hole_size;
4673        struct extent_buffer *leaf;
4674        struct btrfs_root *log = root->log_root;
4675        const u64 ino = btrfs_ino(inode);
4676        const u64 i_size = i_size_read(&inode->vfs_inode);
4677
4678        if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4679                return 0;
4680
4681        key.objectid = ino;
4682        key.type = BTRFS_EXTENT_DATA_KEY;
4683        key.offset = (u64)-1;
4684
4685        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4686        ASSERT(ret != 0);
4687        if (ret < 0)
4688                return ret;
4689
4690        ASSERT(path->slots[0] > 0);
4691        path->slots[0]--;
4692        leaf = path->nodes[0];
4693        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4694
4695        if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4696                /* inode does not have any extents */
4697                hole_start = 0;
4698                hole_size = i_size;
4699        } else {
4700                struct btrfs_file_extent_item *extent;
4701                u64 len;
4702
4703                /*
4704                 * If there's an extent beyond i_size, an explicit hole was
4705                 * already inserted by copy_items().
4706                 */
4707                if (key.offset >= i_size)
4708                        return 0;
4709
4710                extent = btrfs_item_ptr(leaf, path->slots[0],
4711                                        struct btrfs_file_extent_item);
4712
4713                if (btrfs_file_extent_type(leaf, extent) ==
4714                    BTRFS_FILE_EXTENT_INLINE) {
4715                        len = btrfs_file_extent_inline_len(leaf,
4716                                                           path->slots[0],
4717                                                           extent);
4718                        ASSERT(len == i_size ||
4719                               (len == fs_info->sectorsize &&
4720                                btrfs_file_extent_compression(leaf, extent) !=
4721                                BTRFS_COMPRESS_NONE));
4722                        return 0;
4723                }
4724
4725                len = btrfs_file_extent_num_bytes(leaf, extent);
4726                /* Last extent goes beyond i_size, no need to log a hole. */
4727                if (key.offset + len > i_size)
4728                        return 0;
4729                hole_start = key.offset + len;
4730                hole_size = i_size - hole_start;
4731        }
4732        btrfs_release_path(path);
4733
4734        /* Last extent ends at i_size. */
4735        if (hole_size == 0)
4736                return 0;
4737
4738        hole_size = ALIGN(hole_size, fs_info->sectorsize);
4739        ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4740                                       hole_size, 0, hole_size, 0, 0, 0);
4741        return ret;
4742}
4743
4744/*
4745 * When we are logging a new inode X, check if it doesn't have a reference that
4746 * matches the reference from some other inode Y created in a past transaction
4747 * and that was renamed in the current transaction. If we don't do this, then at
4748 * log replay time we can lose inode Y (and all its files if it's a directory):
4749 *
4750 * mkdir /mnt/x
4751 * echo "hello world" > /mnt/x/foobar
4752 * sync
4753 * mv /mnt/x /mnt/y
4754 * mkdir /mnt/x                 # or touch /mnt/x
4755 * xfs_io -c fsync /mnt/x
4756 * <power fail>
4757 * mount fs, trigger log replay
4758 *
4759 * After the log replay procedure, we would lose the first directory and all its
4760 * files (file foobar).
4761 * For the case where inode Y is not a directory we simply end up losing it:
4762 *
4763 * echo "123" > /mnt/foo
4764 * sync
4765 * mv /mnt/foo /mnt/bar
4766 * echo "abc" > /mnt/foo
4767 * xfs_io -c fsync /mnt/foo
4768 * <power fail>
4769 *
4770 * We also need this for cases where a snapshot entry is replaced by some other
4771 * entry (file or directory) otherwise we end up with an unreplayable log due to
4772 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4773 * if it were a regular entry:
4774 *
4775 * mkdir /mnt/x
4776 * btrfs subvolume snapshot /mnt /mnt/x/snap
4777 * btrfs subvolume delete /mnt/x/snap
4778 * rmdir /mnt/x
4779 * mkdir /mnt/x
4780 * fsync /mnt/x or fsync some new file inside it
4781 * <power fail>
4782 *
4783 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4784 * the same transaction.
4785 */
4786static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4787                                         const int slot,
4788                                         const struct btrfs_key *key,
4789                                         struct btrfs_inode *inode,
4790                                         u64 *other_ino)
4791{
4792        int ret;
4793        struct btrfs_path *search_path;
4794        char *name = NULL;
4795        u32 name_len = 0;
4796        u32 item_size = btrfs_item_size_nr(eb, slot);
4797        u32 cur_offset = 0;
4798        unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4799
4800        search_path = btrfs_alloc_path();
4801        if (!search_path)
4802                return -ENOMEM;
4803        search_path->search_commit_root = 1;
4804        search_path->skip_locking = 1;
4805
4806        while (cur_offset < item_size) {
4807                u64 parent;
4808                u32 this_name_len;
4809                u32 this_len;
4810                unsigned long name_ptr;
4811                struct btrfs_dir_item *di;
4812
4813                if (key->type == BTRFS_INODE_REF_KEY) {
4814                        struct btrfs_inode_ref *iref;
4815
4816                        iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4817                        parent = key->offset;
4818                        this_name_len = btrfs_inode_ref_name_len(eb, iref);
4819                        name_ptr = (unsigned long)(iref + 1);
4820                        this_len = sizeof(*iref) + this_name_len;
4821                } else {
4822                        struct btrfs_inode_extref *extref;
4823
4824                        extref = (struct btrfs_inode_extref *)(ptr +
4825                                                               cur_offset);
4826                        parent = btrfs_inode_extref_parent(eb, extref);
4827                        this_name_len = btrfs_inode_extref_name_len(eb, extref);
4828                        name_ptr = (unsigned long)&extref->name;
4829                        this_len = sizeof(*extref) + this_name_len;
4830                }
4831
4832                if (this_name_len > name_len) {
4833                        char *new_name;
4834
4835                        new_name = krealloc(name, this_name_len, GFP_NOFS);
4836                        if (!new_name) {
4837                                ret = -ENOMEM;
4838                                goto out;
4839                        }
4840                        name_len = this_name_len;
4841                        name = new_name;
4842                }
4843
4844                read_extent_buffer(eb, name, name_ptr, this_name_len);
4845                di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4846                                parent, name, this_name_len, 0);
4847                if (di && !IS_ERR(di)) {
4848                        struct btrfs_key di_key;
4849
4850                        btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4851                                                  di, &di_key);
4852                        if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4853                                ret = 1;
4854                                *other_ino = di_key.objectid;
4855                        } else {
4856                                ret = -EAGAIN;
4857                        }
4858                        goto out;
4859                } else if (IS_ERR(di)) {
4860                        ret = PTR_ERR(di);
4861                        goto out;
4862                }
4863                btrfs_release_path(search_path);
4864
4865                cur_offset += this_len;
4866        }
4867        ret = 0;
4868out:
4869        btrfs_free_path(search_path);
4870        kfree(name);
4871        return ret;
4872}
4873
4874/* log a single inode in the tree log.
4875 * At least one parent directory for this inode must exist in the tree
4876 * or be logged already.
4877 *
4878 * Any items from this inode changed by the current transaction are copied
4879 * to the log tree.  An extra reference is taken on any extents in this
4880 * file, allowing us to avoid a whole pile of corner cases around logging
4881 * blocks that have been removed from the tree.
4882 *
4883 * See LOG_INODE_ALL and related defines for a description of what inode_only
4884 * does.
4885 *
4886 * This handles both files and directories.
4887 */
4888static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4889                           struct btrfs_root *root, struct btrfs_inode *inode,
4890                           int inode_only,
4891                           const loff_t start,
4892                           const loff_t end,
4893                           struct btrfs_log_ctx *ctx)
4894{
4895        struct btrfs_fs_info *fs_info = root->fs_info;
4896        struct btrfs_path *path;
4897        struct btrfs_path *dst_path;
4898        struct btrfs_key min_key;
4899        struct btrfs_key max_key;
4900        struct btrfs_root *log = root->log_root;
4901        LIST_HEAD(logged_list);
4902        u64 last_extent = 0;
4903        int err = 0;
4904        int ret;
4905        int nritems;
4906        int ins_start_slot = 0;
4907        int ins_nr;
4908        bool fast_search = false;
4909        u64 ino = btrfs_ino(inode);
4910        struct extent_map_tree *em_tree = &inode->extent_tree;
4911        u64 logged_isize = 0;
4912        bool need_log_inode_item = true;
4913        bool xattrs_logged = false;
4914
4915        path = btrfs_alloc_path();
4916        if (!path)
4917                return -ENOMEM;
4918        dst_path = btrfs_alloc_path();
4919        if (!dst_path) {
4920                btrfs_free_path(path);
4921                return -ENOMEM;
4922        }
4923
4924        min_key.objectid = ino;
4925        min_key.type = BTRFS_INODE_ITEM_KEY;
4926        min_key.offset = 0;
4927
4928        max_key.objectid = ino;
4929
4930
4931        /* today the code can only do partial logging of directories */
4932        if (S_ISDIR(inode->vfs_inode.i_mode) ||
4933            (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4934                       &inode->runtime_flags) &&
4935             inode_only >= LOG_INODE_EXISTS))
4936                max_key.type = BTRFS_XATTR_ITEM_KEY;
4937        else
4938                max_key.type = (u8)-1;
4939        max_key.offset = (u64)-1;
4940
4941        /*
4942         * Only run delayed items if we are a dir or a new file.
4943         * Otherwise commit the delayed inode only, which is needed in
4944         * order for the log replay code to mark inodes for link count
4945         * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4946         */
4947        if (S_ISDIR(inode->vfs_inode.i_mode) ||
4948            inode->generation > fs_info->last_trans_committed)
4949                ret = btrfs_commit_inode_delayed_items(trans, inode);
4950        else
4951                ret = btrfs_commit_inode_delayed_inode(inode);
4952
4953        if (ret) {
4954                btrfs_free_path(path);
4955                btrfs_free_path(dst_path);
4956                return ret;
4957        }
4958
4959        if (inode_only == LOG_OTHER_INODE) {
4960                inode_only = LOG_INODE_EXISTS;
4961                mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4962        } else {
4963                mutex_lock(&inode->log_mutex);
4964        }
4965
4966        /*
4967         * a brute force approach to making sure we get the most uptodate
4968         * copies of everything.
4969         */
4970        if (S_ISDIR(inode->vfs_inode.i_mode)) {
4971                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4972
4973                if (inode_only == LOG_INODE_EXISTS)
4974                        max_key_type = BTRFS_XATTR_ITEM_KEY;
4975                ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4976        } else {
4977                if (inode_only == LOG_INODE_EXISTS) {
4978                        /*
4979                         * Make sure the new inode item we write to the log has
4980                         * the same isize as the current one (if it exists).
4981                         * This is necessary to prevent data loss after log
4982                         * replay, and also to prevent doing a wrong expanding
4983                         * truncate - for e.g. create file, write 4K into offset
4984                         * 0, fsync, write 4K into offset 4096, add hard link,
4985                         * fsync some other file (to sync log), power fail - if
4986                         * we use the inode's current i_size, after log replay
4987                         * we get a 8Kb file, with the last 4Kb extent as a hole
4988                         * (zeroes), as if an expanding truncate happened,
4989                         * instead of getting a file of 4Kb only.
4990                         */
4991                        err = logged_inode_size(log, inode, path, &logged_isize);
4992                        if (err)
4993                                goto out_unlock;
4994                }
4995                if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4996                             &inode->runtime_flags)) {
4997                        if (inode_only == LOG_INODE_EXISTS) {
4998                                max_key.type = BTRFS_XATTR_ITEM_KEY;
4999                                ret = drop_objectid_items(trans, log, path, ino,
5000                                                          max_key.type);
5001                        } else {
5002                                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5003                                          &inode->runtime_flags);
5004                                clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5005                                          &inode->runtime_flags);
5006                                while(1) {
5007                                        ret = btrfs_truncate_inode_items(trans,
5008                                                log, &inode->vfs_inode, 0, 0);
5009                                        if (ret != -EAGAIN)
5010                                                break;
5011                                }
5012                        }
5013                } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5014                                              &inode->runtime_flags) ||
5015                           inode_only == LOG_INODE_EXISTS) {
5016                        if (inode_only == LOG_INODE_ALL)
5017                                fast_search = true;
5018                        max_key.type = BTRFS_XATTR_ITEM_KEY;
5019                        ret = drop_objectid_items(trans, log, path, ino,
5020                                                  max_key.type);
5021                } else {
5022                        if (inode_only == LOG_INODE_ALL)
5023                                fast_search = true;
5024                        goto log_extents;
5025                }
5026
5027        }
5028        if (ret) {
5029                err = ret;
5030                goto out_unlock;
5031        }
5032
5033        while (1) {
5034                ins_nr = 0;
5035                ret = btrfs_search_forward(root, &min_key,
5036                                           path, trans->transid);
5037                if (ret < 0) {
5038                        err = ret;
5039                        goto out_unlock;
5040                }
5041                if (ret != 0)
5042                        break;
5043again:
5044                /* note, ins_nr might be > 0 here, cleanup outside the loop */
5045                if (min_key.objectid != ino)
5046                        break;
5047                if (min_key.type > max_key.type)
5048                        break;
5049
5050                if (min_key.type == BTRFS_INODE_ITEM_KEY)
5051                        need_log_inode_item = false;
5052
5053                if ((min_key.type == BTRFS_INODE_REF_KEY ||
5054                     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5055                    inode->generation == trans->transid) {
5056                        u64 other_ino = 0;
5057
5058                        ret = btrfs_check_ref_name_override(path->nodes[0],
5059                                        path->slots[0], &min_key, inode,
5060                                        &other_ino);
5061                        if (ret < 0) {
5062                                err = ret;
5063                                goto out_unlock;
5064                        } else if (ret > 0 && ctx &&
5065                                   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5066                                struct btrfs_key inode_key;
5067                                struct inode *other_inode;
5068
5069                                if (ins_nr > 0) {
5070                                        ins_nr++;
5071                                } else {
5072                                        ins_nr = 1;
5073                                        ins_start_slot = path->slots[0];
5074                                }
5075                                ret = copy_items(trans, inode, dst_path, path,
5076                                                 &last_extent, ins_start_slot,
5077                                                 ins_nr, inode_only,
5078                                                 logged_isize);
5079                                if (ret < 0) {
5080                                        err = ret;
5081                                        goto out_unlock;
5082                                }
5083                                ins_nr = 0;
5084                                btrfs_release_path(path);
5085                                inode_key.objectid = other_ino;
5086                                inode_key.type = BTRFS_INODE_ITEM_KEY;
5087                                inode_key.offset = 0;
5088                                other_inode = btrfs_iget(fs_info->sb,
5089                                                         &inode_key, root,
5090                                                         NULL);
5091                                /*
5092                                 * If the other inode that had a conflicting dir
5093                                 * entry was deleted in the current transaction,
5094                                 * we don't need to do more work nor fallback to
5095                                 * a transaction commit.
5096                                 */
5097                                if (IS_ERR(other_inode) &&
5098                                    PTR_ERR(other_inode) == -ENOENT) {
5099                                        goto next_key;
5100                                } else if (IS_ERR(other_inode)) {
5101                                        err = PTR_ERR(other_inode);
5102                                        goto out_unlock;
5103                                }
5104                                /*
5105                                 * We are safe logging the other inode without
5106                                 * acquiring its i_mutex as long as we log with
5107                                 * the LOG_INODE_EXISTS mode. We're safe against
5108                                 * concurrent renames of the other inode as well
5109                                 * because during a rename we pin the log and
5110                                 * update the log with the new name before we
5111                                 * unpin it.
5112                                 */
5113                                err = btrfs_log_inode(trans, root,
5114                                                BTRFS_I(other_inode),
5115                                                LOG_OTHER_INODE, 0, LLONG_MAX,
5116                                                ctx);
5117                                iput(other_inode);
5118                                if (err)
5119                                        goto out_unlock;
5120                                else
5121                                        goto next_key;
5122                        }
5123                }
5124
5125                /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5126                if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5127                        if (ins_nr == 0)
5128                                goto next_slot;
5129                        ret = copy_items(trans, inode, dst_path, path,
5130                                         &last_extent, ins_start_slot,
5131                                         ins_nr, inode_only, logged_isize);
5132                        if (ret < 0) {
5133                                err = ret;
5134                                goto out_unlock;
5135                        }
5136                        ins_nr = 0;
5137                        if (ret) {
5138                                btrfs_release_path(path);
5139                                continue;
5140                        }
5141                        goto next_slot;
5142                }
5143
5144                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5145                        ins_nr++;
5146                        goto next_slot;
5147                } else if (!ins_nr) {
5148                        ins_start_slot = path->slots[0];
5149                        ins_nr = 1;
5150                        goto next_slot;
5151                }
5152
5153                ret = copy_items(trans, inode, dst_path, path, &last_extent,
5154                                 ins_start_slot, ins_nr, inode_only,
5155                                 logged_isize);
5156                if (ret < 0) {
5157                        err = ret;
5158                        goto out_unlock;
5159                }
5160                if (ret) {
5161                        ins_nr = 0;
5162                        btrfs_release_path(path);
5163                        continue;
5164                }
5165                ins_nr = 1;
5166                ins_start_slot = path->slots[0];
5167next_slot:
5168
5169                nritems = btrfs_header_nritems(path->nodes[0]);
5170                path->slots[0]++;
5171                if (path->slots[0] < nritems) {
5172                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5173                                              path->slots[0]);
5174                        goto again;
5175                }
5176                if (ins_nr) {
5177                        ret = copy_items(trans, inode, dst_path, path,
5178                                         &last_extent, ins_start_slot,
5179                                         ins_nr, inode_only, logged_isize);
5180                        if (ret < 0) {
5181                                err = ret;
5182                                goto out_unlock;
5183                        }
5184                        ret = 0;
5185                        ins_nr = 0;
5186                }
5187                btrfs_release_path(path);
5188next_key:
5189                if (min_key.offset < (u64)-1) {
5190                        min_key.offset++;
5191                } else if (min_key.type < max_key.type) {
5192                        min_key.type++;
5193                        min_key.offset = 0;
5194                } else {
5195                        break;
5196                }
5197        }
5198        if (ins_nr) {
5199                ret = copy_items(trans, inode, dst_path, path, &last_extent,
5200                                 ins_start_slot, ins_nr, inode_only,
5201                                 logged_isize);
5202                if (ret < 0) {
5203                        err = ret;
5204                        goto out_unlock;
5205                }
5206                ret = 0;
5207                ins_nr = 0;
5208        }
5209
5210        btrfs_release_path(path);
5211        btrfs_release_path(dst_path);
5212        err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5213        if (err)
5214                goto out_unlock;
5215        xattrs_logged = true;
5216        if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5217                btrfs_release_path(path);
5218                btrfs_release_path(dst_path);
5219                err = btrfs_log_trailing_hole(trans, root, inode, path);
5220                if (err)
5221                        goto out_unlock;
5222        }
5223log_extents:
5224        btrfs_release_path(path);
5225        btrfs_release_path(dst_path);
5226        if (need_log_inode_item) {
5227                err = log_inode_item(trans, log, dst_path, inode);
5228                if (!err && !xattrs_logged) {
5229                        err = btrfs_log_all_xattrs(trans, root, inode, path,
5230                                                   dst_path);
5231                        btrfs_release_path(path);
5232                }
5233                if (err)
5234                        goto out_unlock;
5235        }
5236        if (fast_search) {
5237                ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5238                                                &logged_list, ctx, start, end);
5239                if (ret) {
5240                        err = ret;
5241                        goto out_unlock;
5242                }
5243        } else if (inode_only == LOG_INODE_ALL) {
5244                struct extent_map *em, *n;
5245
5246                write_lock(&em_tree->lock);
5247                /*
5248                 * We can't just remove every em if we're called for a ranged
5249                 * fsync - that is, one that doesn't cover the whole possible
5250                 * file range (0 to LLONG_MAX). This is because we can have
5251                 * em's that fall outside the range we're logging and therefore
5252                 * their ordered operations haven't completed yet
5253                 * (btrfs_finish_ordered_io() not invoked yet). This means we
5254                 * didn't get their respective file extent item in the fs/subvol
5255                 * tree yet, and need to let the next fast fsync (one which
5256                 * consults the list of modified extent maps) find the em so
5257                 * that it logs a matching file extent item and waits for the
5258                 * respective ordered operation to complete (if it's still
5259                 * running).
5260                 *
5261                 * Removing every em outside the range we're logging would make
5262                 * the next fast fsync not log their matching file extent items,
5263                 * therefore making us lose data after a log replay.
5264                 */
5265                list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5266                                         list) {
5267                        const u64 mod_end = em->mod_start + em->mod_len - 1;
5268
5269                        if (em->mod_start >= start && mod_end <= end)
5270                                list_del_init(&em->list);
5271                }
5272                write_unlock(&em_tree->lock);
5273        }
5274
5275        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5276                ret = log_directory_changes(trans, root, inode, path, dst_path,
5277                                        ctx);
5278                if (ret) {
5279                        err = ret;
5280                        goto out_unlock;
5281                }
5282        }
5283
5284        spin_lock(&inode->lock);
5285        inode->logged_trans = trans->transid;
5286        inode->last_log_commit = inode->last_sub_trans;
5287        spin_unlock(&inode->lock);
5288out_unlock:
5289        if (unlikely(err))
5290                btrfs_put_logged_extents(&logged_list);
5291        else
5292                btrfs_submit_logged_extents(&logged_list, log);
5293        mutex_unlock(&inode->log_mutex);
5294
5295        btrfs_free_path(path);
5296        btrfs_free_path(dst_path);
5297        return err;
5298}
5299
5300/*
5301 * Check if we must fallback to a transaction commit when logging an inode.
5302 * This must be called after logging the inode and is used only in the context
5303 * when fsyncing an inode requires the need to log some other inode - in which
5304 * case we can't lock the i_mutex of each other inode we need to log as that
5305 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5306 * log inodes up or down in the hierarchy) or rename operations for example. So
5307 * we take the log_mutex of the inode after we have logged it and then check for
5308 * its last_unlink_trans value - this is safe because any task setting
5309 * last_unlink_trans must take the log_mutex and it must do this before it does
5310 * the actual unlink operation, so if we do this check before a concurrent task
5311 * sets last_unlink_trans it means we've logged a consistent version/state of
5312 * all the inode items, otherwise we are not sure and must do a transaction
5313 * commit (the concurrent task might have only updated last_unlink_trans before
5314 * we logged the inode or it might have also done the unlink).
5315 */
5316static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5317                                          struct btrfs_inode *inode)
5318{
5319        struct btrfs_fs_info *fs_info = inode->root->fs_info;
5320        bool ret = false;
5321
5322        mutex_lock(&inode->log_mutex);
5323        if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5324                /*
5325                 * Make sure any commits to the log are forced to be full
5326                 * commits.
5327                 */
5328                btrfs_set_log_full_commit(fs_info, trans);
5329                ret = true;
5330        }
5331        mutex_unlock(&inode->log_mutex);
5332
5333        return ret;
5334}
5335
5336/*
5337 * follow the dentry parent pointers up the chain and see if any
5338 * of the directories in it require a full commit before they can
5339 * be logged.  Returns zero if nothing special needs to be done or 1 if
5340 * a full commit is required.
5341 */
5342static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5343                                               struct btrfs_inode *inode,
5344                                               struct dentry *parent,
5345                                               struct super_block *sb,
5346                                               u64 last_committed)
5347{
5348        int ret = 0;
5349        struct dentry *old_parent = NULL;
5350        struct btrfs_inode *orig_inode = inode;
5351
5352        /*
5353         * for regular files, if its inode is already on disk, we don't
5354         * have to worry about the parents at all.  This is because
5355         * we can use the last_unlink_trans field to record renames
5356         * and other fun in this file.
5357         */
5358        if (S_ISREG(inode->vfs_inode.i_mode) &&
5359            inode->generation <= last_committed &&
5360            inode->last_unlink_trans <= last_committed)
5361                goto out;
5362
5363        if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5364                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5365                        goto out;
5366                inode = BTRFS_I(d_inode(parent));
5367        }
5368
5369        while (1) {
5370                /*
5371                 * If we are logging a directory then we start with our inode,
5372                 * not our parent's inode, so we need to skip setting the
5373                 * logged_trans so that further down in the log code we don't
5374                 * think this inode has already been logged.
5375                 */
5376                if (inode != orig_inode)
5377                        inode->logged_trans = trans->transid;
5378                smp_mb();
5379
5380                if (btrfs_must_commit_transaction(trans, inode)) {
5381                        ret = 1;
5382                        break;
5383                }
5384
5385                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5386                        break;
5387
5388                if (IS_ROOT(parent)) {
5389                        inode = BTRFS_I(d_inode(parent));
5390                        if (btrfs_must_commit_transaction(trans, inode))
5391                                ret = 1;
5392                        break;
5393                }
5394
5395                parent = dget_parent(parent);
5396                dput(old_parent);
5397                old_parent = parent;
5398                inode = BTRFS_I(d_inode(parent));
5399
5400        }
5401        dput(old_parent);
5402out:
5403        return ret;
5404}
5405
5406struct btrfs_dir_list {
5407        u64 ino;
5408        struct list_head list;
5409};
5410
5411/*
5412 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5413 * details about the why it is needed.
5414 * This is a recursive operation - if an existing dentry corresponds to a
5415 * directory, that directory's new entries are logged too (same behaviour as
5416 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5417 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5418 * complains about the following circular lock dependency / possible deadlock:
5419 *
5420 *        CPU0                                        CPU1
5421 *        ----                                        ----
5422 * lock(&type->i_mutex_dir_key#3/2);
5423 *                                            lock(sb_internal#2);
5424 *                                            lock(&type->i_mutex_dir_key#3/2);
5425 * lock(&sb->s_type->i_mutex_key#14);
5426 *
5427 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5428 * sb_start_intwrite() in btrfs_start_transaction().
5429 * Not locking i_mutex of the inodes is still safe because:
5430 *
5431 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5432 *    that while logging the inode new references (names) are added or removed
5433 *    from the inode, leaving the logged inode item with a link count that does
5434 *    not match the number of logged inode reference items. This is fine because
5435 *    at log replay time we compute the real number of links and correct the
5436 *    link count in the inode item (see replay_one_buffer() and
5437 *    link_to_fixup_dir());
5438 *
5439 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5440 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5441 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5442 *    has a size that doesn't match the sum of the lengths of all the logged
5443 *    names. This does not result in a problem because if a dir_item key is
5444 *    logged but its matching dir_index key is not logged, at log replay time we
5445 *    don't use it to replay the respective name (see replay_one_name()). On the
5446 *    other hand if only the dir_index key ends up being logged, the respective
5447 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5448 *    keys created (see replay_one_name()).
5449 *    The directory's inode item with a wrong i_size is not a problem as well,
5450 *    since we don't use it at log replay time to set the i_size in the inode
5451 *    item of the fs/subvol tree (see overwrite_item()).
5452 */
5453static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5454                                struct btrfs_root *root,
5455                                struct btrfs_inode *start_inode,
5456                                struct btrfs_log_ctx *ctx)
5457{
5458        struct btrfs_fs_info *fs_info = root->fs_info;
5459        struct btrfs_root *log = root->log_root;
5460        struct btrfs_path *path;
5461        LIST_HEAD(dir_list);
5462        struct btrfs_dir_list *dir_elem;
5463        int ret = 0;
5464
5465        path = btrfs_alloc_path();
5466        if (!path)
5467                return -ENOMEM;
5468
5469        dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5470        if (!dir_elem) {
5471                btrfs_free_path(path);
5472                return -ENOMEM;
5473        }
5474        dir_elem->ino = btrfs_ino(start_inode);
5475        list_add_tail(&dir_elem->list, &dir_list);
5476
5477        while (!list_empty(&dir_list)) {
5478                struct extent_buffer *leaf;
5479                struct btrfs_key min_key;
5480                int nritems;
5481                int i;
5482
5483                dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5484                                            list);
5485                if (ret)
5486                        goto next_dir_inode;
5487
5488                min_key.objectid = dir_elem->ino;
5489                min_key.type = BTRFS_DIR_ITEM_KEY;
5490                min_key.offset = 0;
5491again:
5492                btrfs_release_path(path);
5493                ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5494                if (ret < 0) {
5495                        goto next_dir_inode;
5496                } else if (ret > 0) {
5497                        ret = 0;
5498                        goto next_dir_inode;
5499                }
5500
5501process_leaf:
5502                leaf = path->nodes[0];
5503                nritems = btrfs_header_nritems(leaf);
5504                for (i = path->slots[0]; i < nritems; i++) {
5505                        struct btrfs_dir_item *di;
5506                        struct btrfs_key di_key;
5507                        struct inode *di_inode;
5508                        struct btrfs_dir_list *new_dir_elem;
5509                        int log_mode = LOG_INODE_EXISTS;
5510                        int type;
5511
5512                        btrfs_item_key_to_cpu(leaf, &min_key, i);
5513                        if (min_key.objectid != dir_elem->ino ||
5514                            min_key.type != BTRFS_DIR_ITEM_KEY)
5515                                goto next_dir_inode;
5516
5517                        di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5518                        type = btrfs_dir_type(leaf, di);
5519                        if (btrfs_dir_transid(leaf, di) < trans->transid &&
5520                            type != BTRFS_FT_DIR)
5521                                continue;
5522                        btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5523                        if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5524                                continue;
5525
5526                        btrfs_release_path(path);
5527                        di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5528                        if (IS_ERR(di_inode)) {
5529                                ret = PTR_ERR(di_inode);
5530                                goto next_dir_inode;
5531                        }
5532
5533                        if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5534                                iput(di_inode);
5535                                break;
5536                        }
5537
5538                        ctx->log_new_dentries = false;
5539                        if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5540                                log_mode = LOG_INODE_ALL;
5541                        ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5542                                              log_mode, 0, LLONG_MAX, ctx);
5543                        if (!ret &&
5544                            btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5545                                ret = 1;
5546                        iput(di_inode);
5547                        if (ret)
5548                                goto next_dir_inode;
5549                        if (ctx->log_new_dentries) {
5550                                new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5551                                                       GFP_NOFS);
5552                                if (!new_dir_elem) {
5553                                        ret = -ENOMEM;
5554                                        goto next_dir_inode;
5555                                }
5556                                new_dir_elem->ino = di_key.objectid;
5557                                list_add_tail(&new_dir_elem->list, &dir_list);
5558                        }
5559                        break;
5560                }
5561                if (i == nritems) {
5562                        ret = btrfs_next_leaf(log, path);
5563                        if (ret < 0) {
5564                                goto next_dir_inode;
5565                        } else if (ret > 0) {
5566                                ret = 0;
5567                                goto next_dir_inode;
5568                        }
5569                        goto process_leaf;
5570                }
5571                if (min_key.offset < (u64)-1) {
5572                        min_key.offset++;
5573                        goto again;
5574                }
5575next_dir_inode:
5576                list_del(&dir_elem->list);
5577                kfree(dir_elem);
5578        }
5579
5580        btrfs_free_path(path);
5581        return ret;
5582}
5583
5584static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5585                                 struct btrfs_inode *inode,
5586                                 struct btrfs_log_ctx *ctx)
5587{
5588        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5589        int ret;
5590        struct btrfs_path *path;
5591        struct btrfs_key key;
5592        struct btrfs_root *root = inode->root;
5593        const u64 ino = btrfs_ino(inode);
5594
5595        path = btrfs_alloc_path();
5596        if (!path)
5597                return -ENOMEM;
5598        path->skip_locking = 1;
5599        path->search_commit_root = 1;
5600
5601        key.objectid = ino;
5602        key.type = BTRFS_INODE_REF_KEY;
5603        key.offset = 0;
5604        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5605        if (ret < 0)
5606                goto out;
5607
5608        while (true) {
5609                struct extent_buffer *leaf = path->nodes[0];
5610                int slot = path->slots[0];
5611                u32 cur_offset = 0;
5612                u32 item_size;
5613                unsigned long ptr;
5614
5615                if (slot >= btrfs_header_nritems(leaf)) {
5616                        ret = btrfs_next_leaf(root, path);
5617                        if (ret < 0)
5618                                goto out;
5619                        else if (ret > 0)
5620                                break;
5621                        continue;
5622                }
5623
5624                btrfs_item_key_to_cpu(leaf, &key, slot);
5625                /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5626                if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5627                        break;
5628
5629                item_size = btrfs_item_size_nr(leaf, slot);
5630                ptr = btrfs_item_ptr_offset(leaf, slot);
5631                while (cur_offset < item_size) {
5632                        struct btrfs_key inode_key;
5633                        struct inode *dir_inode;
5634
5635                        inode_key.type = BTRFS_INODE_ITEM_KEY;
5636                        inode_key.offset = 0;
5637
5638                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
5639                                struct btrfs_inode_extref *extref;
5640
5641                                extref = (struct btrfs_inode_extref *)
5642                                        (ptr + cur_offset);
5643                                inode_key.objectid = btrfs_inode_extref_parent(
5644                                        leaf, extref);
5645                                cur_offset += sizeof(*extref);
5646                                cur_offset += btrfs_inode_extref_name_len(leaf,
5647                                        extref);
5648                        } else {
5649                                inode_key.objectid = key.offset;
5650                                cur_offset = item_size;
5651                        }
5652
5653                        dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5654                                               root, NULL);
5655                        /* If parent inode was deleted, skip it. */
5656                        if (IS_ERR(dir_inode))
5657                                continue;
5658
5659                        if (ctx)
5660                                ctx->log_new_dentries = false;
5661                        ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5662                                              LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5663                        if (!ret &&
5664                            btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5665                                ret = 1;
5666                        if (!ret && ctx && ctx->log_new_dentries)
5667                                ret = log_new_dir_dentries(trans, root,
5668                                                   BTRFS_I(dir_inode), ctx);
5669                        iput(dir_inode);
5670                        if (ret)
5671                                goto out;
5672                }
5673                path->slots[0]++;
5674        }
5675        ret = 0;
5676out:
5677        btrfs_free_path(path);
5678        return ret;
5679}
5680
5681/*
5682 * helper function around btrfs_log_inode to make sure newly created
5683 * parent directories also end up in the log.  A minimal inode and backref
5684 * only logging is done of any parent directories that are older than
5685 * the last committed transaction
5686 */
5687static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5688                                  struct btrfs_inode *inode,
5689                                  struct dentry *parent,
5690                                  const loff_t start,
5691                                  const loff_t end,
5692                                  int inode_only,
5693                                  struct btrfs_log_ctx *ctx)
5694{
5695        struct btrfs_root *root = inode->root;
5696        struct btrfs_fs_info *fs_info = root->fs_info;
5697        struct super_block *sb;
5698        struct dentry *old_parent = NULL;
5699        int ret = 0;
5700        u64 last_committed = fs_info->last_trans_committed;
5701        bool log_dentries = false;
5702        struct btrfs_inode *orig_inode = inode;
5703
5704        sb = inode->vfs_inode.i_sb;
5705
5706        if (btrfs_test_opt(fs_info, NOTREELOG)) {
5707                ret = 1;
5708                goto end_no_trans;
5709        }
5710
5711        /*
5712         * The prev transaction commit doesn't complete, we need do
5713         * full commit by ourselves.
5714         */
5715        if (fs_info->last_trans_log_full_commit >
5716            fs_info->last_trans_committed) {
5717                ret = 1;
5718                goto end_no_trans;
5719        }
5720
5721        if (btrfs_root_refs(&root->root_item) == 0) {
5722                ret = 1;
5723                goto end_no_trans;
5724        }
5725
5726        ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5727                        last_committed);
5728        if (ret)
5729                goto end_no_trans;
5730
5731        if (btrfs_inode_in_log(inode, trans->transid)) {
5732                ret = BTRFS_NO_LOG_SYNC;
5733                goto end_no_trans;
5734        }
5735
5736        ret = start_log_trans(trans, root, ctx);
5737        if (ret)
5738                goto end_no_trans;
5739
5740        ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5741        if (ret)
5742                goto end_trans;
5743
5744        /*
5745         * for regular files, if its inode is already on disk, we don't
5746         * have to worry about the parents at all.  This is because
5747         * we can use the last_unlink_trans field to record renames
5748         * and other fun in this file.
5749         */
5750        if (S_ISREG(inode->vfs_inode.i_mode) &&
5751            inode->generation <= last_committed &&
5752            inode->last_unlink_trans <= last_committed) {
5753                ret = 0;
5754                goto end_trans;
5755        }
5756
5757        if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5758                log_dentries = true;
5759
5760        /*
5761         * On unlink we must make sure all our current and old parent directory
5762         * inodes are fully logged. This is to prevent leaving dangling
5763         * directory index entries in directories that were our parents but are
5764         * not anymore. Not doing this results in old parent directory being
5765         * impossible to delete after log replay (rmdir will always fail with
5766         * error -ENOTEMPTY).
5767         *
5768         * Example 1:
5769         *
5770         * mkdir testdir
5771         * touch testdir/foo
5772         * ln testdir/foo testdir/bar
5773         * sync
5774         * unlink testdir/bar
5775         * xfs_io -c fsync testdir/foo
5776         * <power failure>
5777         * mount fs, triggers log replay
5778         *
5779         * If we don't log the parent directory (testdir), after log replay the
5780         * directory still has an entry pointing to the file inode using the bar
5781         * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5782         * the file inode has a link count of 1.
5783         *
5784         * Example 2:
5785         *
5786         * mkdir testdir
5787         * touch foo
5788         * ln foo testdir/foo2
5789         * ln foo testdir/foo3
5790         * sync
5791         * unlink testdir/foo3
5792         * xfs_io -c fsync foo
5793         * <power failure>
5794         * mount fs, triggers log replay
5795         *
5796         * Similar as the first example, after log replay the parent directory
5797         * testdir still has an entry pointing to the inode file with name foo3
5798         * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5799         * and has a link count of 2.
5800         */
5801        if (inode->last_unlink_trans > last_committed) {
5802                ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5803                if (ret)
5804                        goto end_trans;
5805        }
5806
5807        while (1) {
5808                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5809                        break;
5810
5811                inode = BTRFS_I(d_inode(parent));
5812                if (root != inode->root)
5813                        break;
5814
5815                if (inode->generation > last_committed) {
5816                        ret = btrfs_log_inode(trans, root, inode,
5817                                        LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5818                        if (ret)
5819                                goto end_trans;
5820                }
5821                if (IS_ROOT(parent))
5822                        break;
5823
5824                parent = dget_parent(parent);
5825                dput(old_parent);
5826                old_parent = parent;
5827        }
5828        if (log_dentries)
5829                ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5830        else
5831                ret = 0;
5832end_trans:
5833        dput(old_parent);
5834        if (ret < 0) {
5835                btrfs_set_log_full_commit(fs_info, trans);
5836                ret = 1;
5837        }
5838
5839        if (ret)
5840                btrfs_remove_log_ctx(root, ctx);
5841        btrfs_end_log_trans(root);
5842end_no_trans:
5843        return ret;
5844}
5845
5846/*
5847 * it is not safe to log dentry if the chunk root has added new
5848 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5849 * If this returns 1, you must commit the transaction to safely get your
5850 * data on disk.
5851 */
5852int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5853                          struct dentry *dentry,
5854                          const loff_t start,
5855                          const loff_t end,
5856                          struct btrfs_log_ctx *ctx)
5857{
5858        struct dentry *parent = dget_parent(dentry);
5859        int ret;
5860
5861        ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5862                                     start, end, LOG_INODE_ALL, ctx);
5863        dput(parent);
5864
5865        return ret;
5866}
5867
5868/*
5869 * should be called during mount to recover any replay any log trees
5870 * from the FS
5871 */
5872int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5873{
5874        int ret;
5875        struct btrfs_path *path;
5876        struct btrfs_trans_handle *trans;
5877        struct btrfs_key key;
5878        struct btrfs_key found_key;
5879        struct btrfs_key tmp_key;
5880        struct btrfs_root *log;
5881        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5882        struct walk_control wc = {
5883                .process_func = process_one_buffer,
5884                .stage = 0,
5885        };
5886
5887        path = btrfs_alloc_path();
5888        if (!path)
5889                return -ENOMEM;
5890
5891        set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5892
5893        trans = btrfs_start_transaction(fs_info->tree_root, 0);
5894        if (IS_ERR(trans)) {
5895                ret = PTR_ERR(trans);
5896                goto error;
5897        }
5898
5899        wc.trans = trans;
5900        wc.pin = 1;
5901
5902        ret = walk_log_tree(trans, log_root_tree, &wc);
5903        if (ret) {
5904                btrfs_handle_fs_error(fs_info, ret,
5905                        "Failed to pin buffers while recovering log root tree.");
5906                goto error;
5907        }
5908
5909again:
5910        key.objectid = BTRFS_TREE_LOG_OBJECTID;
5911        key.offset = (u64)-1;
5912        key.type = BTRFS_ROOT_ITEM_KEY;
5913
5914        while (1) {
5915                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5916
5917                if (ret < 0) {
5918                        btrfs_handle_fs_error(fs_info, ret,
5919                                    "Couldn't find tree log root.");
5920                        goto error;
5921                }
5922                if (ret > 0) {
5923                        if (path->slots[0] == 0)
5924                                break;
5925                        path->slots[0]--;
5926                }
5927                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5928                                      path->slots[0]);
5929                btrfs_release_path(path);
5930                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5931                        break;
5932
5933                log = btrfs_read_fs_root(log_root_tree, &found_key);
5934                if (IS_ERR(log)) {
5935                        ret = PTR_ERR(log);
5936                        btrfs_handle_fs_error(fs_info, ret,
5937                                    "Couldn't read tree log root.");
5938                        goto error;
5939                }
5940
5941                tmp_key.objectid = found_key.offset;
5942                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5943                tmp_key.offset = (u64)-1;
5944
5945                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5946                if (IS_ERR(wc.replay_dest)) {
5947                        ret = PTR_ERR(wc.replay_dest);
5948                        free_extent_buffer(log->node);
5949                        free_extent_buffer(log->commit_root);
5950                        kfree(log);
5951                        btrfs_handle_fs_error(fs_info, ret,
5952                                "Couldn't read target root for tree log recovery.");
5953                        goto error;
5954                }
5955
5956                wc.replay_dest->log_root = log;
5957                btrfs_record_root_in_trans(trans, wc.replay_dest);
5958                ret = walk_log_tree(trans, log, &wc);
5959
5960                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5961                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
5962                                                      path);
5963                }
5964
5965                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5966                        struct btrfs_root *root = wc.replay_dest;
5967
5968                        btrfs_release_path(path);
5969
5970                        /*
5971                         * We have just replayed everything, and the highest
5972                         * objectid of fs roots probably has changed in case
5973                         * some inode_item's got replayed.
5974                         *
5975                         * root->objectid_mutex is not acquired as log replay
5976                         * could only happen during mount.
5977                         */
5978                        ret = btrfs_find_highest_objectid(root,
5979                                                  &root->highest_objectid);
5980                }
5981
5982                key.offset = found_key.offset - 1;
5983                wc.replay_dest->log_root = NULL;
5984                free_extent_buffer(log->node);
5985                free_extent_buffer(log->commit_root);
5986                kfree(log);
5987
5988                if (ret)
5989                        goto error;
5990
5991                if (found_key.offset == 0)
5992                        break;
5993        }
5994        btrfs_release_path(path);
5995
5996        /* step one is to pin it all, step two is to replay just inodes */
5997        if (wc.pin) {
5998                wc.pin = 0;
5999                wc.process_func = replay_one_buffer;
6000                wc.stage = LOG_WALK_REPLAY_INODES;
6001                goto again;
6002        }
6003        /* step three is to replay everything */
6004        if (wc.stage < LOG_WALK_REPLAY_ALL) {
6005                wc.stage++;
6006                goto again;
6007        }
6008
6009        btrfs_free_path(path);
6010
6011        /* step 4: commit the transaction, which also unpins the blocks */
6012        ret = btrfs_commit_transaction(trans);
6013        if (ret)
6014                return ret;
6015
6016        free_extent_buffer(log_root_tree->node);
6017        log_root_tree->log_root = NULL;
6018        clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6019        kfree(log_root_tree);
6020
6021        return 0;
6022error:
6023        if (wc.trans)
6024                btrfs_end_transaction(wc.trans);
6025        btrfs_free_path(path);
6026        return ret;
6027}
6028
6029/*
6030 * there are some corner cases where we want to force a full
6031 * commit instead of allowing a directory to be logged.
6032 *
6033 * They revolve around files there were unlinked from the directory, and
6034 * this function updates the parent directory so that a full commit is
6035 * properly done if it is fsync'd later after the unlinks are done.
6036 *
6037 * Must be called before the unlink operations (updates to the subvolume tree,
6038 * inodes, etc) are done.
6039 */
6040void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6041                             struct btrfs_inode *dir, struct btrfs_inode *inode,
6042                             int for_rename)
6043{
6044        /*
6045         * when we're logging a file, if it hasn't been renamed
6046         * or unlinked, and its inode is fully committed on disk,
6047         * we don't have to worry about walking up the directory chain
6048         * to log its parents.
6049         *
6050         * So, we use the last_unlink_trans field to put this transid
6051         * into the file.  When the file is logged we check it and
6052         * don't log the parents if the file is fully on disk.
6053         */
6054        mutex_lock(&inode->log_mutex);
6055        inode->last_unlink_trans = trans->transid;
6056        mutex_unlock(&inode->log_mutex);
6057
6058        /*
6059         * if this directory was already logged any new
6060         * names for this file/dir will get recorded
6061         */
6062        smp_mb();
6063        if (dir->logged_trans == trans->transid)
6064                return;
6065
6066        /*
6067         * if the inode we're about to unlink was logged,
6068         * the log will be properly updated for any new names
6069         */
6070        if (inode->logged_trans == trans->transid)
6071                return;
6072
6073        /*
6074         * when renaming files across directories, if the directory
6075         * there we're unlinking from gets fsync'd later on, there's
6076         * no way to find the destination directory later and fsync it
6077         * properly.  So, we have to be conservative and force commits
6078         * so the new name gets discovered.
6079         */
6080        if (for_rename)
6081                goto record;
6082
6083        /* we can safely do the unlink without any special recording */
6084        return;
6085
6086record:
6087        mutex_lock(&dir->log_mutex);
6088        dir->last_unlink_trans = trans->transid;
6089        mutex_unlock(&dir->log_mutex);
6090}
6091
6092/*
6093 * Make sure that if someone attempts to fsync the parent directory of a deleted
6094 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6095 * that after replaying the log tree of the parent directory's root we will not
6096 * see the snapshot anymore and at log replay time we will not see any log tree
6097 * corresponding to the deleted snapshot's root, which could lead to replaying
6098 * it after replaying the log tree of the parent directory (which would replay
6099 * the snapshot delete operation).
6100 *
6101 * Must be called before the actual snapshot destroy operation (updates to the
6102 * parent root and tree of tree roots trees, etc) are done.
6103 */
6104void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6105                                   struct btrfs_inode *dir)
6106{
6107        mutex_lock(&dir->log_mutex);
6108        dir->last_unlink_trans = trans->transid;
6109        mutex_unlock(&dir->log_mutex);
6110}
6111
6112/*
6113 * Call this after adding a new name for a file and it will properly
6114 * update the log to reflect the new name.
6115 *
6116 * It will return zero if all goes well, and it will return 1 if a
6117 * full transaction commit is required.
6118 */
6119int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6120                        struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6121                        struct dentry *parent)
6122{
6123        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6124
6125        /*
6126         * this will force the logging code to walk the dentry chain
6127         * up for the file
6128         */
6129        if (!S_ISDIR(inode->vfs_inode.i_mode))
6130                inode->last_unlink_trans = trans->transid;
6131
6132        /*
6133         * if this inode hasn't been logged and directory we're renaming it
6134         * from hasn't been logged, we don't need to log it
6135         */
6136        if (inode->logged_trans <= fs_info->last_trans_committed &&
6137            (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6138                return 0;
6139
6140        return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6141                                      LOG_INODE_EXISTS, NULL);
6142}
6143
6144