linux/fs/exofs/ore_raid.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011
   3 * Boaz Harrosh <ooo@electrozaur.com>
   4 *
   5 * This file is part of the objects raid engine (ore).
   6 *
   7 * It is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with "ore". If not, write to the Free Software Foundation, Inc:
  13 *      "Free Software Foundation <info@fsf.org>"
  14 */
  15
  16#include <linux/gfp.h>
  17#include <linux/async_tx.h>
  18
  19#include "ore_raid.h"
  20
  21#undef ORE_DBGMSG2
  22#define ORE_DBGMSG2 ORE_DBGMSG
  23
  24static struct page *_raid_page_alloc(void)
  25{
  26        return alloc_page(GFP_KERNEL);
  27}
  28
  29static void _raid_page_free(struct page *p)
  30{
  31        __free_page(p);
  32}
  33
  34/* This struct is forward declare in ore_io_state, but is private to here.
  35 * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
  36 *
  37 * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
  38 * Ascending page index access is sp2d(p-minor, c-major). But storage is
  39 * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
  40 * API.
  41 */
  42struct __stripe_pages_2d {
  43        /* Cache some hot path repeated calculations */
  44        unsigned parity;
  45        unsigned data_devs;
  46        unsigned pages_in_unit;
  47
  48        bool needed ;
  49
  50        /* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
  51        struct __1_page_stripe {
  52                bool alloc;
  53                unsigned write_count;
  54                struct async_submit_ctl submit;
  55                struct dma_async_tx_descriptor *tx;
  56
  57                /* The size of this array is data_devs + parity */
  58                struct page **pages;
  59                struct page **scribble;
  60                /* bool array, size of this array is data_devs */
  61                char *page_is_read;
  62        } _1p_stripes[];
  63};
  64
  65/* This can get bigger then a page. So support multiple page allocations
  66 * _sp2d_free should be called even if _sp2d_alloc fails (by returning
  67 * none-zero).
  68 */
  69static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
  70                       unsigned parity, struct __stripe_pages_2d **psp2d)
  71{
  72        struct __stripe_pages_2d *sp2d;
  73        unsigned data_devs = group_width - parity;
  74
  75        /*
  76         * Desired allocation layout is, though when larger than PAGE_SIZE,
  77         * each struct __alloc_1p_arrays is separately allocated:
  78
  79        struct _alloc_all_bytes {
  80                struct __alloc_stripe_pages_2d {
  81                        struct __stripe_pages_2d sp2d;
  82                        struct __1_page_stripe _1p_stripes[pages_in_unit];
  83                } __asp2d;
  84                struct __alloc_1p_arrays {
  85                        struct page *pages[group_width];
  86                        struct page *scribble[group_width];
  87                        char page_is_read[data_devs];
  88                } __a1pa[pages_in_unit];
  89        } *_aab;
  90
  91        struct __alloc_1p_arrays *__a1pa;
  92        struct __alloc_1p_arrays *__a1pa_end;
  93
  94        */
  95
  96        char *__a1pa;
  97        char *__a1pa_end;
  98
  99        const size_t sizeof_stripe_pages_2d =
 100                sizeof(struct __stripe_pages_2d) +
 101                sizeof(struct __1_page_stripe) * pages_in_unit;
 102        const size_t sizeof__a1pa =
 103                ALIGN(sizeof(struct page *) * (2 * group_width) + data_devs,
 104                      sizeof(void *));
 105        const size_t sizeof__a1pa_arrays = sizeof__a1pa * pages_in_unit;
 106        const size_t alloc_total = sizeof_stripe_pages_2d +
 107                                   sizeof__a1pa_arrays;
 108
 109        unsigned num_a1pa, alloc_size, i;
 110
 111        /* FIXME: check these numbers in ore_verify_layout */
 112        BUG_ON(sizeof_stripe_pages_2d > PAGE_SIZE);
 113        BUG_ON(sizeof__a1pa > PAGE_SIZE);
 114
 115        /*
 116         * If alloc_total would be larger than PAGE_SIZE, only allocate
 117         * as many a1pa items as would fill the rest of the page, instead
 118         * of the full pages_in_unit count.
 119         */
 120        if (alloc_total > PAGE_SIZE) {
 121                num_a1pa = (PAGE_SIZE - sizeof_stripe_pages_2d) / sizeof__a1pa;
 122                alloc_size = sizeof_stripe_pages_2d + sizeof__a1pa * num_a1pa;
 123        } else {
 124                num_a1pa = pages_in_unit;
 125                alloc_size = alloc_total;
 126        }
 127
 128        *psp2d = sp2d = kzalloc(alloc_size, GFP_KERNEL);
 129        if (unlikely(!sp2d)) {
 130                ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
 131                return -ENOMEM;
 132        }
 133        /* From here Just call _sp2d_free */
 134
 135        /* Find start of a1pa area. */
 136        __a1pa = (char *)sp2d + sizeof_stripe_pages_2d;
 137        /* Find end of the _allocated_ a1pa area. */
 138        __a1pa_end = __a1pa + alloc_size;
 139
 140        /* Allocate additionally needed a1pa items in PAGE_SIZE chunks. */
 141        for (i = 0; i < pages_in_unit; ++i) {
 142                struct __1_page_stripe *stripe = &sp2d->_1p_stripes[i];
 143
 144                if (unlikely(__a1pa >= __a1pa_end)) {
 145                        num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
 146                                                        pages_in_unit - i);
 147                        alloc_size = sizeof__a1pa * num_a1pa;
 148
 149                        __a1pa = kzalloc(alloc_size, GFP_KERNEL);
 150                        if (unlikely(!__a1pa)) {
 151                                ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
 152                                           num_a1pa);
 153                                return -ENOMEM;
 154                        }
 155                        __a1pa_end = __a1pa + alloc_size;
 156                        /* First *pages is marked for kfree of the buffer */
 157                        stripe->alloc = true;
 158                }
 159
 160                /*
 161                 * Attach all _lp_stripes pointers to the allocation for
 162                 * it which was either part of the original PAGE_SIZE
 163                 * allocation or the subsequent allocation in this loop.
 164                 */
 165                stripe->pages = (void *)__a1pa;
 166                stripe->scribble = stripe->pages + group_width;
 167                stripe->page_is_read = (char *)stripe->scribble + group_width;
 168                __a1pa += sizeof__a1pa;
 169        }
 170
 171        sp2d->parity = parity;
 172        sp2d->data_devs = data_devs;
 173        sp2d->pages_in_unit = pages_in_unit;
 174        return 0;
 175}
 176
 177static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
 178                        const struct _ore_r4w_op *r4w, void *priv)
 179{
 180        unsigned data_devs = sp2d->data_devs;
 181        unsigned group_width = data_devs + sp2d->parity;
 182        int p, c;
 183
 184        if (!sp2d->needed)
 185                return;
 186
 187        for (c = data_devs - 1; c >= 0; --c)
 188                for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
 189                        struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 190
 191                        if (_1ps->page_is_read[c]) {
 192                                struct page *page = _1ps->pages[c];
 193
 194                                r4w->put_page(priv, page);
 195                                _1ps->page_is_read[c] = false;
 196                        }
 197                }
 198
 199        for (p = 0; p < sp2d->pages_in_unit; p++) {
 200                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 201
 202                memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
 203                _1ps->write_count = 0;
 204                _1ps->tx = NULL;
 205        }
 206
 207        sp2d->needed = false;
 208}
 209
 210static void _sp2d_free(struct __stripe_pages_2d *sp2d)
 211{
 212        unsigned i;
 213
 214        if (!sp2d)
 215                return;
 216
 217        for (i = 0; i < sp2d->pages_in_unit; ++i) {
 218                if (sp2d->_1p_stripes[i].alloc)
 219                        kfree(sp2d->_1p_stripes[i].pages);
 220        }
 221
 222        kfree(sp2d);
 223}
 224
 225static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
 226{
 227        unsigned p;
 228
 229        for (p = 0; p < sp2d->pages_in_unit; p++) {
 230                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 231
 232                if (_1ps->write_count)
 233                        return p;
 234        }
 235
 236        return ~0;
 237}
 238
 239static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
 240{
 241        int p;
 242
 243        for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
 244                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 245
 246                if (_1ps->write_count)
 247                        return p;
 248        }
 249
 250        return ~0;
 251}
 252
 253static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
 254{
 255        unsigned p;
 256        unsigned tx_flags = ASYNC_TX_ACK;
 257
 258        if (sp2d->parity == 1)
 259                tx_flags |= ASYNC_TX_XOR_ZERO_DST;
 260
 261        for (p = 0; p < sp2d->pages_in_unit; p++) {
 262                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 263
 264                if (!_1ps->write_count)
 265                        continue;
 266
 267                init_async_submit(&_1ps->submit, tx_flags,
 268                        NULL, NULL, NULL, (addr_conv_t *)_1ps->scribble);
 269
 270                if (sp2d->parity == 1)
 271                        _1ps->tx = async_xor(_1ps->pages[sp2d->data_devs],
 272                                                _1ps->pages, 0, sp2d->data_devs,
 273                                                PAGE_SIZE, &_1ps->submit);
 274                else /* parity == 2 */
 275                        _1ps->tx = async_gen_syndrome(_1ps->pages, 0,
 276                                                sp2d->data_devs + sp2d->parity,
 277                                                PAGE_SIZE, &_1ps->submit);
 278        }
 279
 280        for (p = 0; p < sp2d->pages_in_unit; p++) {
 281                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 282                /* NOTE: We wait for HW synchronously (I don't have such HW
 283                 * to test with.) Is parallelism needed with today's multi
 284                 * cores?
 285                 */
 286                async_tx_issue_pending(_1ps->tx);
 287        }
 288}
 289
 290void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
 291                       struct ore_striping_info *si, struct page *page)
 292{
 293        struct __1_page_stripe *_1ps;
 294
 295        sp2d->needed = true;
 296
 297        _1ps = &sp2d->_1p_stripes[si->cur_pg];
 298        _1ps->pages[si->cur_comp] = page;
 299        ++_1ps->write_count;
 300
 301        si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
 302        /* si->cur_comp is advanced outside at main loop */
 303}
 304
 305void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
 306                     bool not_last)
 307{
 308        struct osd_sg_entry *sge;
 309
 310        ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
 311                     "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
 312                     per_dev->dev, cur_len, not_last, per_dev->cur_sg,
 313                     _LLU(per_dev->offset), per_dev->length,
 314                     per_dev->last_sgs_total);
 315
 316        if (!per_dev->cur_sg) {
 317                sge = per_dev->sglist;
 318
 319                /* First time we prepare two entries */
 320                if (per_dev->length) {
 321                        ++per_dev->cur_sg;
 322                        sge->offset = per_dev->offset;
 323                        sge->len = per_dev->length;
 324                } else {
 325                        /* Here the parity is the first unit of this object.
 326                         * This happens every time we reach a parity device on
 327                         * the same stripe as the per_dev->offset. We need to
 328                         * just skip this unit.
 329                         */
 330                        per_dev->offset += cur_len;
 331                        return;
 332                }
 333        } else {
 334                /* finalize the last one */
 335                sge = &per_dev->sglist[per_dev->cur_sg - 1];
 336                sge->len = per_dev->length - per_dev->last_sgs_total;
 337        }
 338
 339        if (not_last) {
 340                /* Partly prepare the next one */
 341                struct osd_sg_entry *next_sge = sge + 1;
 342
 343                ++per_dev->cur_sg;
 344                next_sge->offset = sge->offset + sge->len + cur_len;
 345                /* Save cur len so we know how mutch was added next time */
 346                per_dev->last_sgs_total = per_dev->length;
 347                next_sge->len = 0;
 348        } else if (!sge->len) {
 349                /* Optimize for when the last unit is a parity */
 350                --per_dev->cur_sg;
 351        }
 352}
 353
 354static int _alloc_read_4_write(struct ore_io_state *ios)
 355{
 356        struct ore_layout *layout = ios->layout;
 357        int ret;
 358        /* We want to only read those pages not in cache so worst case
 359         * is a stripe populated with every other page
 360         */
 361        unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
 362
 363        ret = _ore_get_io_state(layout, ios->oc,
 364                                layout->group_width * layout->mirrors_p1,
 365                                sgs_per_dev, 0, &ios->ios_read_4_write);
 366        return ret;
 367}
 368
 369/* @si contains info of the to-be-inserted page. Update of @si should be
 370 * maintained by caller. Specificaly si->dev, si->obj_offset, ...
 371 */
 372static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
 373                       struct page *page, unsigned pg_len)
 374{
 375        struct request_queue *q;
 376        struct ore_per_dev_state *per_dev;
 377        struct ore_io_state *read_ios;
 378        unsigned first_dev = si->dev - (si->dev %
 379                          (ios->layout->group_width * ios->layout->mirrors_p1));
 380        unsigned comp = si->dev - first_dev;
 381        unsigned added_len;
 382
 383        if (!ios->ios_read_4_write) {
 384                int ret = _alloc_read_4_write(ios);
 385
 386                if (unlikely(ret))
 387                        return ret;
 388        }
 389
 390        read_ios = ios->ios_read_4_write;
 391        read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
 392
 393        per_dev = &read_ios->per_dev[comp];
 394        if (!per_dev->length) {
 395                per_dev->bio = bio_kmalloc(GFP_KERNEL,
 396                                           ios->sp2d->pages_in_unit);
 397                if (unlikely(!per_dev->bio)) {
 398                        ORE_DBGMSG("Failed to allocate BIO size=%u\n",
 399                                     ios->sp2d->pages_in_unit);
 400                        return -ENOMEM;
 401                }
 402                per_dev->offset = si->obj_offset;
 403                per_dev->dev = si->dev;
 404        } else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
 405                u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
 406
 407                _ore_add_sg_seg(per_dev, gap, true);
 408        }
 409        q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
 410        added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
 411                                    si->obj_offset % PAGE_SIZE);
 412        if (unlikely(added_len != pg_len)) {
 413                ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
 414                              per_dev->bio->bi_vcnt);
 415                return -ENOMEM;
 416        }
 417
 418        per_dev->length += pg_len;
 419        return 0;
 420}
 421
 422/* read the beginning of an unaligned first page */
 423static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
 424{
 425        struct ore_striping_info si;
 426        unsigned pg_len;
 427
 428        ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
 429
 430        pg_len = si.obj_offset % PAGE_SIZE;
 431        si.obj_offset -= pg_len;
 432
 433        ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
 434                   _LLU(si.obj_offset), pg_len, page->index, si.dev);
 435
 436        return _add_to_r4w(ios, &si, page, pg_len);
 437}
 438
 439/* read the end of an incomplete last page */
 440static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
 441{
 442        struct ore_striping_info si;
 443        struct page *page;
 444        unsigned pg_len, p, c;
 445
 446        ore_calc_stripe_info(ios->layout, *offset, 0, &si);
 447
 448        p = si.cur_pg;
 449        c = si.cur_comp;
 450        page = ios->sp2d->_1p_stripes[p].pages[c];
 451
 452        pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
 453        *offset += pg_len;
 454
 455        ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
 456                   p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
 457
 458        BUG_ON(!page);
 459
 460        return _add_to_r4w(ios, &si, page, pg_len);
 461}
 462
 463static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
 464{
 465        struct bio_vec *bv;
 466        unsigned i, d;
 467
 468        /* loop on all devices all pages */
 469        for (d = 0; d < ios->numdevs; d++) {
 470                struct bio *bio = ios->per_dev[d].bio;
 471
 472                if (!bio)
 473                        continue;
 474
 475                bio_for_each_segment_all(bv, bio, i) {
 476                        struct page *page = bv->bv_page;
 477
 478                        SetPageUptodate(page);
 479                        if (PageError(page))
 480                                ClearPageError(page);
 481                }
 482        }
 483}
 484
 485/* read_4_write is hacked to read the start of the first stripe and/or
 486 * the end of the last stripe. If needed, with an sg-gap at each device/page.
 487 * It is assumed to be called after the to_be_written pages of the first stripe
 488 * are populating ios->sp2d[][]
 489 *
 490 * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
 491 * These pages are held at sp2d[p].pages[c] but with
 492 * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
 493 * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
 494 * @uptodate=true, so we don't need to read it, only unlock, after IO.
 495 *
 496 * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
 497 * to-be-written count, we should consider the xor-in-place mode.
 498 * need_to_read_pages_count is the actual number of pages not present in cache.
 499 * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
 500 * approximation? In this mode the read pages are put in the empty places of
 501 * ios->sp2d[p][*], xor is calculated the same way. These pages are
 502 * allocated/freed and don't go through cache
 503 */
 504static int _read_4_write_first_stripe(struct ore_io_state *ios)
 505{
 506        struct ore_striping_info read_si;
 507        struct __stripe_pages_2d *sp2d = ios->sp2d;
 508        u64 offset = ios->si.first_stripe_start;
 509        unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
 510
 511        if (offset == ios->offset) /* Go to start collect $200 */
 512                goto read_last_stripe;
 513
 514        min_p = _sp2d_min_pg(sp2d);
 515        max_p = _sp2d_max_pg(sp2d);
 516
 517        ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n",
 518                   offset, ios->offset, min_p, max_p);
 519
 520        for (c = 0; ; c++) {
 521                ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
 522                read_si.obj_offset += min_p * PAGE_SIZE;
 523                offset += min_p * PAGE_SIZE;
 524                for (p = min_p; p <= max_p; p++) {
 525                        struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 526                        struct page **pp = &_1ps->pages[c];
 527                        bool uptodate;
 528
 529                        if (*pp) {
 530                                if (ios->offset % PAGE_SIZE)
 531                                        /* Read the remainder of the page */
 532                                        _add_to_r4w_first_page(ios, *pp);
 533                                /* to-be-written pages start here */
 534                                goto read_last_stripe;
 535                        }
 536
 537                        *pp = ios->r4w->get_page(ios->private, offset,
 538                                                 &uptodate);
 539                        if (unlikely(!*pp))
 540                                return -ENOMEM;
 541
 542                        if (!uptodate)
 543                                _add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
 544
 545                        /* Mark read-pages to be cache_released */
 546                        _1ps->page_is_read[c] = true;
 547                        read_si.obj_offset += PAGE_SIZE;
 548                        offset += PAGE_SIZE;
 549                }
 550                offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
 551        }
 552
 553read_last_stripe:
 554        return 0;
 555}
 556
 557static int _read_4_write_last_stripe(struct ore_io_state *ios)
 558{
 559        struct ore_striping_info read_si;
 560        struct __stripe_pages_2d *sp2d = ios->sp2d;
 561        u64 offset;
 562        u64 last_stripe_end;
 563        unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
 564        unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
 565
 566        offset = ios->offset + ios->length;
 567        if (offset % PAGE_SIZE)
 568                _add_to_r4w_last_page(ios, &offset);
 569                /* offset will be aligned to next page */
 570
 571        last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
 572                                 * bytes_in_stripe;
 573        if (offset == last_stripe_end) /* Optimize for the aligned case */
 574                goto read_it;
 575
 576        ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
 577        p = read_si.cur_pg;
 578        c = read_si.cur_comp;
 579
 580        if (min_p == sp2d->pages_in_unit) {
 581                /* Didn't do it yet */
 582                min_p = _sp2d_min_pg(sp2d);
 583                max_p = _sp2d_max_pg(sp2d);
 584        }
 585
 586        ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n",
 587                   offset, last_stripe_end, min_p, max_p);
 588
 589        while (offset < last_stripe_end) {
 590                struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
 591
 592                if ((min_p <= p) && (p <= max_p)) {
 593                        struct page *page;
 594                        bool uptodate;
 595
 596                        BUG_ON(_1ps->pages[c]);
 597                        page = ios->r4w->get_page(ios->private, offset,
 598                                                  &uptodate);
 599                        if (unlikely(!page))
 600                                return -ENOMEM;
 601
 602                        _1ps->pages[c] = page;
 603                        /* Mark read-pages to be cache_released */
 604                        _1ps->page_is_read[c] = true;
 605                        if (!uptodate)
 606                                _add_to_r4w(ios, &read_si, page, PAGE_SIZE);
 607                }
 608
 609                offset += PAGE_SIZE;
 610                if (p == (sp2d->pages_in_unit - 1)) {
 611                        ++c;
 612                        p = 0;
 613                        ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
 614                } else {
 615                        read_si.obj_offset += PAGE_SIZE;
 616                        ++p;
 617                }
 618        }
 619
 620read_it:
 621        return 0;
 622}
 623
 624static int _read_4_write_execute(struct ore_io_state *ios)
 625{
 626        struct ore_io_state *ios_read;
 627        unsigned i;
 628        int ret;
 629
 630        ios_read = ios->ios_read_4_write;
 631        if (!ios_read)
 632                return 0;
 633
 634        /* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
 635         * to check for per_dev->bio
 636         */
 637        ios_read->pages = ios->pages;
 638
 639        /* Now read these devices */
 640        for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
 641                ret = _ore_read_mirror(ios_read, i);
 642                if (unlikely(ret))
 643                        return ret;
 644        }
 645
 646        ret = ore_io_execute(ios_read); /* Synchronus execution */
 647        if (unlikely(ret)) {
 648                ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
 649                return ret;
 650        }
 651
 652        _mark_read4write_pages_uptodate(ios_read, ret);
 653        ore_put_io_state(ios_read);
 654        ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */
 655        return 0;
 656}
 657
 658/* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
 659int _ore_add_parity_unit(struct ore_io_state *ios,
 660                            struct ore_striping_info *si,
 661                            struct ore_per_dev_state *per_dev,
 662                            unsigned cur_len, bool do_xor)
 663{
 664        if (ios->reading) {
 665                if (per_dev->cur_sg >= ios->sgs_per_dev) {
 666                        ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
 667                                per_dev->cur_sg, ios->sgs_per_dev);
 668                        return -ENOMEM;
 669                }
 670                _ore_add_sg_seg(per_dev, cur_len, true);
 671        } else {
 672                struct __stripe_pages_2d *sp2d = ios->sp2d;
 673                struct page **pages = ios->parity_pages + ios->cur_par_page;
 674                unsigned num_pages;
 675                unsigned array_start = 0;
 676                unsigned i;
 677                int ret;
 678
 679                si->cur_pg = _sp2d_min_pg(sp2d);
 680                num_pages  = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
 681
 682                if (!per_dev->length) {
 683                        per_dev->offset += si->cur_pg * PAGE_SIZE;
 684                        /* If first stripe, Read in all read4write pages
 685                         * (if needed) before we calculate the first parity.
 686                         */
 687                        if (do_xor)
 688                                _read_4_write_first_stripe(ios);
 689                }
 690                if (!cur_len && do_xor)
 691                        /* If last stripe r4w pages of last stripe */
 692                        _read_4_write_last_stripe(ios);
 693                _read_4_write_execute(ios);
 694
 695                for (i = 0; i < num_pages; i++) {
 696                        pages[i] = _raid_page_alloc();
 697                        if (unlikely(!pages[i]))
 698                                return -ENOMEM;
 699
 700                        ++(ios->cur_par_page);
 701                }
 702
 703                BUG_ON(si->cur_comp < sp2d->data_devs);
 704                BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
 705
 706                ret = _ore_add_stripe_unit(ios,  &array_start, 0, pages,
 707                                           per_dev, num_pages * PAGE_SIZE);
 708                if (unlikely(ret))
 709                        return ret;
 710
 711                if (do_xor) {
 712                        _gen_xor_unit(sp2d);
 713                        _sp2d_reset(sp2d, ios->r4w, ios->private);
 714                }
 715        }
 716        return 0;
 717}
 718
 719int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
 720{
 721        if (ios->parity_pages) {
 722                struct ore_layout *layout = ios->layout;
 723                unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
 724
 725                if (_sp2d_alloc(pages_in_unit, layout->group_width,
 726                                layout->parity, &ios->sp2d)) {
 727                        return -ENOMEM;
 728                }
 729        }
 730        return 0;
 731}
 732
 733void _ore_free_raid_stuff(struct ore_io_state *ios)
 734{
 735        if (ios->sp2d) { /* writing and raid */
 736                unsigned i;
 737
 738                for (i = 0; i < ios->cur_par_page; i++) {
 739                        struct page *page = ios->parity_pages[i];
 740
 741                        if (page)
 742                                _raid_page_free(page);
 743                }
 744                if (ios->extra_part_alloc)
 745                        kfree(ios->parity_pages);
 746                /* If IO returned an error pages might need unlocking */
 747                _sp2d_reset(ios->sp2d, ios->r4w, ios->private);
 748                _sp2d_free(ios->sp2d);
 749        } else {
 750                /* Will only be set if raid reading && sglist is big */
 751                if (ios->extra_part_alloc)
 752                        kfree(ios->per_dev[0].sglist);
 753        }
 754        if (ios->ios_read_4_write)
 755                ore_put_io_state(ios->ios_read_4_write);
 756}
 757