linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int ret = 0;
 141        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 142
 143        down_read(&oi->ip_alloc_sem);
 144        ret = ocfs2_get_block(inode, iblock, bh_result, create);
 145        up_read(&oi->ip_alloc_sem);
 146
 147        return ret;
 148}
 149
 150int ocfs2_get_block(struct inode *inode, sector_t iblock,
 151                    struct buffer_head *bh_result, int create)
 152{
 153        int err = 0;
 154        unsigned int ext_flags;
 155        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 156        u64 p_blkno, count, past_eof;
 157        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 158
 159        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 160                              (unsigned long long)iblock, bh_result, create);
 161
 162        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 163                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 164                     inode, inode->i_ino);
 165
 166        if (S_ISLNK(inode->i_mode)) {
 167                /* this always does I/O for some reason. */
 168                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 169                goto bail;
 170        }
 171
 172        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 173                                          &ext_flags);
 174        if (err) {
 175                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 176                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 177                     (unsigned long long)p_blkno);
 178                goto bail;
 179        }
 180
 181        if (max_blocks < count)
 182                count = max_blocks;
 183
 184        /*
 185         * ocfs2 never allocates in this function - the only time we
 186         * need to use BH_New is when we're extending i_size on a file
 187         * system which doesn't support holes, in which case BH_New
 188         * allows __block_write_begin() to zero.
 189         *
 190         * If we see this on a sparse file system, then a truncate has
 191         * raced us and removed the cluster. In this case, we clear
 192         * the buffers dirty and uptodate bits and let the buffer code
 193         * ignore it as a hole.
 194         */
 195        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 196                clear_buffer_dirty(bh_result);
 197                clear_buffer_uptodate(bh_result);
 198                goto bail;
 199        }
 200
 201        /* Treat the unwritten extent as a hole for zeroing purposes. */
 202        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 203                map_bh(bh_result, inode->i_sb, p_blkno);
 204
 205        bh_result->b_size = count << inode->i_blkbits;
 206
 207        if (!ocfs2_sparse_alloc(osb)) {
 208                if (p_blkno == 0) {
 209                        err = -EIO;
 210                        mlog(ML_ERROR,
 211                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 212                             (unsigned long long)iblock,
 213                             (unsigned long long)p_blkno,
 214                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 215                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 216                        dump_stack();
 217                        goto bail;
 218                }
 219        }
 220
 221        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 222
 223        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 224                                  (unsigned long long)past_eof);
 225        if (create && (iblock >= past_eof))
 226                set_buffer_new(bh_result);
 227
 228bail:
 229        if (err < 0)
 230                err = -EIO;
 231
 232        return err;
 233}
 234
 235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 236                           struct buffer_head *di_bh)
 237{
 238        void *kaddr;
 239        loff_t size;
 240        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 241
 242        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 243                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 244                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 245                return -EROFS;
 246        }
 247
 248        size = i_size_read(inode);
 249
 250        if (size > PAGE_SIZE ||
 251            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 252                ocfs2_error(inode->i_sb,
 253                            "Inode %llu has with inline data has bad size: %Lu\n",
 254                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 255                            (unsigned long long)size);
 256                return -EROFS;
 257        }
 258
 259        kaddr = kmap_atomic(page);
 260        if (size)
 261                memcpy(kaddr, di->id2.i_data.id_data, size);
 262        /* Clear the remaining part of the page */
 263        memset(kaddr + size, 0, PAGE_SIZE - size);
 264        flush_dcache_page(page);
 265        kunmap_atomic(kaddr);
 266
 267        SetPageUptodate(page);
 268
 269        return 0;
 270}
 271
 272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 273{
 274        int ret;
 275        struct buffer_head *di_bh = NULL;
 276
 277        BUG_ON(!PageLocked(page));
 278        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 279
 280        ret = ocfs2_read_inode_block(inode, &di_bh);
 281        if (ret) {
 282                mlog_errno(ret);
 283                goto out;
 284        }
 285
 286        ret = ocfs2_read_inline_data(inode, page, di_bh);
 287out:
 288        unlock_page(page);
 289
 290        brelse(di_bh);
 291        return ret;
 292}
 293
 294static int ocfs2_readpage(struct file *file, struct page *page)
 295{
 296        struct inode *inode = page->mapping->host;
 297        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 298        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 299        int ret, unlock = 1;
 300
 301        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 302                             (page ? page->index : 0));
 303
 304        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 305        if (ret != 0) {
 306                if (ret == AOP_TRUNCATED_PAGE)
 307                        unlock = 0;
 308                mlog_errno(ret);
 309                goto out;
 310        }
 311
 312        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 313                /*
 314                 * Unlock the page and cycle ip_alloc_sem so that we don't
 315                 * busyloop waiting for ip_alloc_sem to unlock
 316                 */
 317                ret = AOP_TRUNCATED_PAGE;
 318                unlock_page(page);
 319                unlock = 0;
 320                down_read(&oi->ip_alloc_sem);
 321                up_read(&oi->ip_alloc_sem);
 322                goto out_inode_unlock;
 323        }
 324
 325        /*
 326         * i_size might have just been updated as we grabed the meta lock.  We
 327         * might now be discovering a truncate that hit on another node.
 328         * block_read_full_page->get_block freaks out if it is asked to read
 329         * beyond the end of a file, so we check here.  Callers
 330         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 331         * and notice that the page they just read isn't needed.
 332         *
 333         * XXX sys_readahead() seems to get that wrong?
 334         */
 335        if (start >= i_size_read(inode)) {
 336                zero_user(page, 0, PAGE_SIZE);
 337                SetPageUptodate(page);
 338                ret = 0;
 339                goto out_alloc;
 340        }
 341
 342        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 343                ret = ocfs2_readpage_inline(inode, page);
 344        else
 345                ret = block_read_full_page(page, ocfs2_get_block);
 346        unlock = 0;
 347
 348out_alloc:
 349        up_read(&oi->ip_alloc_sem);
 350out_inode_unlock:
 351        ocfs2_inode_unlock(inode, 0);
 352out:
 353        if (unlock)
 354                unlock_page(page);
 355        return ret;
 356}
 357
 358/*
 359 * This is used only for read-ahead. Failures or difficult to handle
 360 * situations are safe to ignore.
 361 *
 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 363 * are quite large (243 extents on 4k blocks), so most inodes don't
 364 * grow out to a tree. If need be, detecting boundary extents could
 365 * trivially be added in a future version of ocfs2_get_block().
 366 */
 367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 368                           struct list_head *pages, unsigned nr_pages)
 369{
 370        int ret, err = -EIO;
 371        struct inode *inode = mapping->host;
 372        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 373        loff_t start;
 374        struct page *last;
 375
 376        /*
 377         * Use the nonblocking flag for the dlm code to avoid page
 378         * lock inversion, but don't bother with retrying.
 379         */
 380        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 381        if (ret)
 382                return err;
 383
 384        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 385                ocfs2_inode_unlock(inode, 0);
 386                return err;
 387        }
 388
 389        /*
 390         * Don't bother with inline-data. There isn't anything
 391         * to read-ahead in that case anyway...
 392         */
 393        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 394                goto out_unlock;
 395
 396        /*
 397         * Check whether a remote node truncated this file - we just
 398         * drop out in that case as it's not worth handling here.
 399         */
 400        last = list_entry(pages->prev, struct page, lru);
 401        start = (loff_t)last->index << PAGE_SHIFT;
 402        if (start >= i_size_read(inode))
 403                goto out_unlock;
 404
 405        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 406
 407out_unlock:
 408        up_read(&oi->ip_alloc_sem);
 409        ocfs2_inode_unlock(inode, 0);
 410
 411        return err;
 412}
 413
 414/* Note: Because we don't support holes, our allocation has
 415 * already happened (allocation writes zeros to the file data)
 416 * so we don't have to worry about ordered writes in
 417 * ocfs2_writepage.
 418 *
 419 * ->writepage is called during the process of invalidating the page cache
 420 * during blocked lock processing.  It can't block on any cluster locks
 421 * to during block mapping.  It's relying on the fact that the block
 422 * mapping can't have disappeared under the dirty pages that it is
 423 * being asked to write back.
 424 */
 425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 426{
 427        trace_ocfs2_writepage(
 428                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 429                page->index);
 430
 431        return block_write_full_page(page, ocfs2_get_block, wbc);
 432}
 433
 434/* Taken from ext3. We don't necessarily need the full blown
 435 * functionality yet, but IMHO it's better to cut and paste the whole
 436 * thing so we can avoid introducing our own bugs (and easily pick up
 437 * their fixes when they happen) --Mark */
 438int walk_page_buffers(  handle_t *handle,
 439                        struct buffer_head *head,
 440                        unsigned from,
 441                        unsigned to,
 442                        int *partial,
 443                        int (*fn)(      handle_t *handle,
 444                                        struct buffer_head *bh))
 445{
 446        struct buffer_head *bh;
 447        unsigned block_start, block_end;
 448        unsigned blocksize = head->b_size;
 449        int err, ret = 0;
 450        struct buffer_head *next;
 451
 452        for (   bh = head, block_start = 0;
 453                ret == 0 && (bh != head || !block_start);
 454                block_start = block_end, bh = next)
 455        {
 456                next = bh->b_this_page;
 457                block_end = block_start + blocksize;
 458                if (block_end <= from || block_start >= to) {
 459                        if (partial && !buffer_uptodate(bh))
 460                                *partial = 1;
 461                        continue;
 462                }
 463                err = (*fn)(handle, bh);
 464                if (!ret)
 465                        ret = err;
 466        }
 467        return ret;
 468}
 469
 470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 471{
 472        sector_t status;
 473        u64 p_blkno = 0;
 474        int err = 0;
 475        struct inode *inode = mapping->host;
 476
 477        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 478                         (unsigned long long)block);
 479
 480        /*
 481         * The swap code (ab-)uses ->bmap to get a block mapping and then
 482         * bypasseѕ the file system for actual I/O.  We really can't allow
 483         * that on refcounted inodes, so we have to skip out here.  And yes,
 484         * 0 is the magic code for a bmap error..
 485         */
 486        if (ocfs2_is_refcount_inode(inode))
 487                return 0;
 488
 489        /* We don't need to lock journal system files, since they aren't
 490         * accessed concurrently from multiple nodes.
 491         */
 492        if (!INODE_JOURNAL(inode)) {
 493                err = ocfs2_inode_lock(inode, NULL, 0);
 494                if (err) {
 495                        if (err != -ENOENT)
 496                                mlog_errno(err);
 497                        goto bail;
 498                }
 499                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 500        }
 501
 502        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 503                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 504                                                  NULL);
 505
 506        if (!INODE_JOURNAL(inode)) {
 507                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 508                ocfs2_inode_unlock(inode, 0);
 509        }
 510
 511        if (err) {
 512                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 513                     (unsigned long long)block);
 514                mlog_errno(err);
 515                goto bail;
 516        }
 517
 518bail:
 519        status = err ? 0 : p_blkno;
 520
 521        return status;
 522}
 523
 524static int ocfs2_releasepage(struct page *page, gfp_t wait)
 525{
 526        if (!page_has_buffers(page))
 527                return 0;
 528        return try_to_free_buffers(page);
 529}
 530
 531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 532                                            u32 cpos,
 533                                            unsigned int *start,
 534                                            unsigned int *end)
 535{
 536        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 537
 538        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 539                unsigned int cpp;
 540
 541                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 542
 543                cluster_start = cpos % cpp;
 544                cluster_start = cluster_start << osb->s_clustersize_bits;
 545
 546                cluster_end = cluster_start + osb->s_clustersize;
 547        }
 548
 549        BUG_ON(cluster_start > PAGE_SIZE);
 550        BUG_ON(cluster_end > PAGE_SIZE);
 551
 552        if (start)
 553                *start = cluster_start;
 554        if (end)
 555                *end = cluster_end;
 556}
 557
 558/*
 559 * 'from' and 'to' are the region in the page to avoid zeroing.
 560 *
 561 * If pagesize > clustersize, this function will avoid zeroing outside
 562 * of the cluster boundary.
 563 *
 564 * from == to == 0 is code for "zero the entire cluster region"
 565 */
 566static void ocfs2_clear_page_regions(struct page *page,
 567                                     struct ocfs2_super *osb, u32 cpos,
 568                                     unsigned from, unsigned to)
 569{
 570        void *kaddr;
 571        unsigned int cluster_start, cluster_end;
 572
 573        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 574
 575        kaddr = kmap_atomic(page);
 576
 577        if (from || to) {
 578                if (from > cluster_start)
 579                        memset(kaddr + cluster_start, 0, from - cluster_start);
 580                if (to < cluster_end)
 581                        memset(kaddr + to, 0, cluster_end - to);
 582        } else {
 583                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 584        }
 585
 586        kunmap_atomic(kaddr);
 587}
 588
 589/*
 590 * Nonsparse file systems fully allocate before we get to the write
 591 * code. This prevents ocfs2_write() from tagging the write as an
 592 * allocating one, which means ocfs2_map_page_blocks() might try to
 593 * read-in the blocks at the tail of our file. Avoid reading them by
 594 * testing i_size against each block offset.
 595 */
 596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 597                                 unsigned int block_start)
 598{
 599        u64 offset = page_offset(page) + block_start;
 600
 601        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 602                return 1;
 603
 604        if (i_size_read(inode) > offset)
 605                return 1;
 606
 607        return 0;
 608}
 609
 610/*
 611 * Some of this taken from __block_write_begin(). We already have our
 612 * mapping by now though, and the entire write will be allocating or
 613 * it won't, so not much need to use BH_New.
 614 *
 615 * This will also skip zeroing, which is handled externally.
 616 */
 617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 618                          struct inode *inode, unsigned int from,
 619                          unsigned int to, int new)
 620{
 621        int ret = 0;
 622        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 623        unsigned int block_end, block_start;
 624        unsigned int bsize = i_blocksize(inode);
 625
 626        if (!page_has_buffers(page))
 627                create_empty_buffers(page, bsize, 0);
 628
 629        head = page_buffers(page);
 630        for (bh = head, block_start = 0; bh != head || !block_start;
 631             bh = bh->b_this_page, block_start += bsize) {
 632                block_end = block_start + bsize;
 633
 634                clear_buffer_new(bh);
 635
 636                /*
 637                 * Ignore blocks outside of our i/o range -
 638                 * they may belong to unallocated clusters.
 639                 */
 640                if (block_start >= to || block_end <= from) {
 641                        if (PageUptodate(page))
 642                                set_buffer_uptodate(bh);
 643                        continue;
 644                }
 645
 646                /*
 647                 * For an allocating write with cluster size >= page
 648                 * size, we always write the entire page.
 649                 */
 650                if (new)
 651                        set_buffer_new(bh);
 652
 653                if (!buffer_mapped(bh)) {
 654                        map_bh(bh, inode->i_sb, *p_blkno);
 655                        clean_bdev_bh_alias(bh);
 656                }
 657
 658                if (PageUptodate(page)) {
 659                        if (!buffer_uptodate(bh))
 660                                set_buffer_uptodate(bh);
 661                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 662                           !buffer_new(bh) &&
 663                           ocfs2_should_read_blk(inode, page, block_start) &&
 664                           (block_start < from || block_end > to)) {
 665                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 666                        *wait_bh++=bh;
 667                }
 668
 669                *p_blkno = *p_blkno + 1;
 670        }
 671
 672        /*
 673         * If we issued read requests - let them complete.
 674         */
 675        while(wait_bh > wait) {
 676                wait_on_buffer(*--wait_bh);
 677                if (!buffer_uptodate(*wait_bh))
 678                        ret = -EIO;
 679        }
 680
 681        if (ret == 0 || !new)
 682                return ret;
 683
 684        /*
 685         * If we get -EIO above, zero out any newly allocated blocks
 686         * to avoid exposing stale data.
 687         */
 688        bh = head;
 689        block_start = 0;
 690        do {
 691                block_end = block_start + bsize;
 692                if (block_end <= from)
 693                        goto next_bh;
 694                if (block_start >= to)
 695                        break;
 696
 697                zero_user(page, block_start, bh->b_size);
 698                set_buffer_uptodate(bh);
 699                mark_buffer_dirty(bh);
 700
 701next_bh:
 702                block_start = block_end;
 703                bh = bh->b_this_page;
 704        } while (bh != head);
 705
 706        return ret;
 707}
 708
 709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 710#define OCFS2_MAX_CTXT_PAGES    1
 711#else
 712#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 713#endif
 714
 715#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 716
 717struct ocfs2_unwritten_extent {
 718        struct list_head        ue_node;
 719        struct list_head        ue_ip_node;
 720        u32                     ue_cpos;
 721        u32                     ue_phys;
 722};
 723
 724/*
 725 * Describe the state of a single cluster to be written to.
 726 */
 727struct ocfs2_write_cluster_desc {
 728        u32             c_cpos;
 729        u32             c_phys;
 730        /*
 731         * Give this a unique field because c_phys eventually gets
 732         * filled.
 733         */
 734        unsigned        c_new;
 735        unsigned        c_clear_unwritten;
 736        unsigned        c_needs_zero;
 737};
 738
 739struct ocfs2_write_ctxt {
 740        /* Logical cluster position / len of write */
 741        u32                             w_cpos;
 742        u32                             w_clen;
 743
 744        /* First cluster allocated in a nonsparse extend */
 745        u32                             w_first_new_cpos;
 746
 747        /* Type of caller. Must be one of buffer, mmap, direct.  */
 748        ocfs2_write_type_t              w_type;
 749
 750        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 751
 752        /*
 753         * This is true if page_size > cluster_size.
 754         *
 755         * It triggers a set of special cases during write which might
 756         * have to deal with allocating writes to partial pages.
 757         */
 758        unsigned int                    w_large_pages;
 759
 760        /*
 761         * Pages involved in this write.
 762         *
 763         * w_target_page is the page being written to by the user.
 764         *
 765         * w_pages is an array of pages which always contains
 766         * w_target_page, and in the case of an allocating write with
 767         * page_size < cluster size, it will contain zero'd and mapped
 768         * pages adjacent to w_target_page which need to be written
 769         * out in so that future reads from that region will get
 770         * zero's.
 771         */
 772        unsigned int                    w_num_pages;
 773        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 774        struct page                     *w_target_page;
 775
 776        /*
 777         * w_target_locked is used for page_mkwrite path indicating no unlocking
 778         * against w_target_page in ocfs2_write_end_nolock.
 779         */
 780        unsigned int                    w_target_locked:1;
 781
 782        /*
 783         * ocfs2_write_end() uses this to know what the real range to
 784         * write in the target should be.
 785         */
 786        unsigned int                    w_target_from;
 787        unsigned int                    w_target_to;
 788
 789        /*
 790         * We could use journal_current_handle() but this is cleaner,
 791         * IMHO -Mark
 792         */
 793        handle_t                        *w_handle;
 794
 795        struct buffer_head              *w_di_bh;
 796
 797        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 798
 799        struct list_head                w_unwritten_list;
 800        unsigned int                    w_unwritten_count;
 801};
 802
 803void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 804{
 805        int i;
 806
 807        for(i = 0; i < num_pages; i++) {
 808                if (pages[i]) {
 809                        unlock_page(pages[i]);
 810                        mark_page_accessed(pages[i]);
 811                        put_page(pages[i]);
 812                }
 813        }
 814}
 815
 816static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 817{
 818        int i;
 819
 820        /*
 821         * w_target_locked is only set to true in the page_mkwrite() case.
 822         * The intent is to allow us to lock the target page from write_begin()
 823         * to write_end(). The caller must hold a ref on w_target_page.
 824         */
 825        if (wc->w_target_locked) {
 826                BUG_ON(!wc->w_target_page);
 827                for (i = 0; i < wc->w_num_pages; i++) {
 828                        if (wc->w_target_page == wc->w_pages[i]) {
 829                                wc->w_pages[i] = NULL;
 830                                break;
 831                        }
 832                }
 833                mark_page_accessed(wc->w_target_page);
 834                put_page(wc->w_target_page);
 835        }
 836        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 837}
 838
 839static void ocfs2_free_unwritten_list(struct inode *inode,
 840                                 struct list_head *head)
 841{
 842        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 843        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 844
 845        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 846                list_del(&ue->ue_node);
 847                spin_lock(&oi->ip_lock);
 848                list_del(&ue->ue_ip_node);
 849                spin_unlock(&oi->ip_lock);
 850                kfree(ue);
 851        }
 852}
 853
 854static void ocfs2_free_write_ctxt(struct inode *inode,
 855                                  struct ocfs2_write_ctxt *wc)
 856{
 857        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 858        ocfs2_unlock_pages(wc);
 859        brelse(wc->w_di_bh);
 860        kfree(wc);
 861}
 862
 863static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 864                                  struct ocfs2_super *osb, loff_t pos,
 865                                  unsigned len, ocfs2_write_type_t type,
 866                                  struct buffer_head *di_bh)
 867{
 868        u32 cend;
 869        struct ocfs2_write_ctxt *wc;
 870
 871        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 872        if (!wc)
 873                return -ENOMEM;
 874
 875        wc->w_cpos = pos >> osb->s_clustersize_bits;
 876        wc->w_first_new_cpos = UINT_MAX;
 877        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 878        wc->w_clen = cend - wc->w_cpos + 1;
 879        get_bh(di_bh);
 880        wc->w_di_bh = di_bh;
 881        wc->w_type = type;
 882
 883        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 884                wc->w_large_pages = 1;
 885        else
 886                wc->w_large_pages = 0;
 887
 888        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 889        INIT_LIST_HEAD(&wc->w_unwritten_list);
 890
 891        *wcp = wc;
 892
 893        return 0;
 894}
 895
 896/*
 897 * If a page has any new buffers, zero them out here, and mark them uptodate
 898 * and dirty so they'll be written out (in order to prevent uninitialised
 899 * block data from leaking). And clear the new bit.
 900 */
 901static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 902{
 903        unsigned int block_start, block_end;
 904        struct buffer_head *head, *bh;
 905
 906        BUG_ON(!PageLocked(page));
 907        if (!page_has_buffers(page))
 908                return;
 909
 910        bh = head = page_buffers(page);
 911        block_start = 0;
 912        do {
 913                block_end = block_start + bh->b_size;
 914
 915                if (buffer_new(bh)) {
 916                        if (block_end > from && block_start < to) {
 917                                if (!PageUptodate(page)) {
 918                                        unsigned start, end;
 919
 920                                        start = max(from, block_start);
 921                                        end = min(to, block_end);
 922
 923                                        zero_user_segment(page, start, end);
 924                                        set_buffer_uptodate(bh);
 925                                }
 926
 927                                clear_buffer_new(bh);
 928                                mark_buffer_dirty(bh);
 929                        }
 930                }
 931
 932                block_start = block_end;
 933                bh = bh->b_this_page;
 934        } while (bh != head);
 935}
 936
 937/*
 938 * Only called when we have a failure during allocating write to write
 939 * zero's to the newly allocated region.
 940 */
 941static void ocfs2_write_failure(struct inode *inode,
 942                                struct ocfs2_write_ctxt *wc,
 943                                loff_t user_pos, unsigned user_len)
 944{
 945        int i;
 946        unsigned from = user_pos & (PAGE_SIZE - 1),
 947                to = user_pos + user_len;
 948        struct page *tmppage;
 949
 950        if (wc->w_target_page)
 951                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 952
 953        for(i = 0; i < wc->w_num_pages; i++) {
 954                tmppage = wc->w_pages[i];
 955
 956                if (tmppage && page_has_buffers(tmppage)) {
 957                        if (ocfs2_should_order_data(inode))
 958                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
 959
 960                        block_commit_write(tmppage, from, to);
 961                }
 962        }
 963}
 964
 965static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 966                                        struct ocfs2_write_ctxt *wc,
 967                                        struct page *page, u32 cpos,
 968                                        loff_t user_pos, unsigned user_len,
 969                                        int new)
 970{
 971        int ret;
 972        unsigned int map_from = 0, map_to = 0;
 973        unsigned int cluster_start, cluster_end;
 974        unsigned int user_data_from = 0, user_data_to = 0;
 975
 976        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 977                                        &cluster_start, &cluster_end);
 978
 979        /* treat the write as new if the a hole/lseek spanned across
 980         * the page boundary.
 981         */
 982        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 983                        (page_offset(page) <= user_pos));
 984
 985        if (page == wc->w_target_page) {
 986                map_from = user_pos & (PAGE_SIZE - 1);
 987                map_to = map_from + user_len;
 988
 989                if (new)
 990                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 991                                                    cluster_start, cluster_end,
 992                                                    new);
 993                else
 994                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 995                                                    map_from, map_to, new);
 996                if (ret) {
 997                        mlog_errno(ret);
 998                        goto out;
 999                }
1000
1001                user_data_from = map_from;
1002                user_data_to = map_to;
1003                if (new) {
1004                        map_from = cluster_start;
1005                        map_to = cluster_end;
1006                }
1007        } else {
1008                /*
1009                 * If we haven't allocated the new page yet, we
1010                 * shouldn't be writing it out without copying user
1011                 * data. This is likely a math error from the caller.
1012                 */
1013                BUG_ON(!new);
1014
1015                map_from = cluster_start;
1016                map_to = cluster_end;
1017
1018                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1019                                            cluster_start, cluster_end, new);
1020                if (ret) {
1021                        mlog_errno(ret);
1022                        goto out;
1023                }
1024        }
1025
1026        /*
1027         * Parts of newly allocated pages need to be zero'd.
1028         *
1029         * Above, we have also rewritten 'to' and 'from' - as far as
1030         * the rest of the function is concerned, the entire cluster
1031         * range inside of a page needs to be written.
1032         *
1033         * We can skip this if the page is up to date - it's already
1034         * been zero'd from being read in as a hole.
1035         */
1036        if (new && !PageUptodate(page))
1037                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1038                                         cpos, user_data_from, user_data_to);
1039
1040        flush_dcache_page(page);
1041
1042out:
1043        return ret;
1044}
1045
1046/*
1047 * This function will only grab one clusters worth of pages.
1048 */
1049static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1050                                      struct ocfs2_write_ctxt *wc,
1051                                      u32 cpos, loff_t user_pos,
1052                                      unsigned user_len, int new,
1053                                      struct page *mmap_page)
1054{
1055        int ret = 0, i;
1056        unsigned long start, target_index, end_index, index;
1057        struct inode *inode = mapping->host;
1058        loff_t last_byte;
1059
1060        target_index = user_pos >> PAGE_SHIFT;
1061
1062        /*
1063         * Figure out how many pages we'll be manipulating here. For
1064         * non allocating write, we just change the one
1065         * page. Otherwise, we'll need a whole clusters worth.  If we're
1066         * writing past i_size, we only need enough pages to cover the
1067         * last page of the write.
1068         */
1069        if (new) {
1070                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1071                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1072                /*
1073                 * We need the index *past* the last page we could possibly
1074                 * touch.  This is the page past the end of the write or
1075                 * i_size, whichever is greater.
1076                 */
1077                last_byte = max(user_pos + user_len, i_size_read(inode));
1078                BUG_ON(last_byte < 1);
1079                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1080                if ((start + wc->w_num_pages) > end_index)
1081                        wc->w_num_pages = end_index - start;
1082        } else {
1083                wc->w_num_pages = 1;
1084                start = target_index;
1085        }
1086        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1087
1088        for(i = 0; i < wc->w_num_pages; i++) {
1089                index = start + i;
1090
1091                if (index >= target_index && index <= end_index &&
1092                    wc->w_type == OCFS2_WRITE_MMAP) {
1093                        /*
1094                         * ocfs2_pagemkwrite() is a little different
1095                         * and wants us to directly use the page
1096                         * passed in.
1097                         */
1098                        lock_page(mmap_page);
1099
1100                        /* Exit and let the caller retry */
1101                        if (mmap_page->mapping != mapping) {
1102                                WARN_ON(mmap_page->mapping);
1103                                unlock_page(mmap_page);
1104                                ret = -EAGAIN;
1105                                goto out;
1106                        }
1107
1108                        get_page(mmap_page);
1109                        wc->w_pages[i] = mmap_page;
1110                        wc->w_target_locked = true;
1111                } else if (index >= target_index && index <= end_index &&
1112                           wc->w_type == OCFS2_WRITE_DIRECT) {
1113                        /* Direct write has no mapping page. */
1114                        wc->w_pages[i] = NULL;
1115                        continue;
1116                } else {
1117                        wc->w_pages[i] = find_or_create_page(mapping, index,
1118                                                             GFP_NOFS);
1119                        if (!wc->w_pages[i]) {
1120                                ret = -ENOMEM;
1121                                mlog_errno(ret);
1122                                goto out;
1123                        }
1124                }
1125                wait_for_stable_page(wc->w_pages[i]);
1126
1127                if (index == target_index)
1128                        wc->w_target_page = wc->w_pages[i];
1129        }
1130out:
1131        if (ret)
1132                wc->w_target_locked = false;
1133        return ret;
1134}
1135
1136/*
1137 * Prepare a single cluster for write one cluster into the file.
1138 */
1139static int ocfs2_write_cluster(struct address_space *mapping,
1140                               u32 *phys, unsigned int new,
1141                               unsigned int clear_unwritten,
1142                               unsigned int should_zero,
1143                               struct ocfs2_alloc_context *data_ac,
1144                               struct ocfs2_alloc_context *meta_ac,
1145                               struct ocfs2_write_ctxt *wc, u32 cpos,
1146                               loff_t user_pos, unsigned user_len)
1147{
1148        int ret, i;
1149        u64 p_blkno;
1150        struct inode *inode = mapping->host;
1151        struct ocfs2_extent_tree et;
1152        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1153
1154        if (new) {
1155                u32 tmp_pos;
1156
1157                /*
1158                 * This is safe to call with the page locks - it won't take
1159                 * any additional semaphores or cluster locks.
1160                 */
1161                tmp_pos = cpos;
1162                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1163                                           &tmp_pos, 1, !clear_unwritten,
1164                                           wc->w_di_bh, wc->w_handle,
1165                                           data_ac, meta_ac, NULL);
1166                /*
1167                 * This shouldn't happen because we must have already
1168                 * calculated the correct meta data allocation required. The
1169                 * internal tree allocation code should know how to increase
1170                 * transaction credits itself.
1171                 *
1172                 * If need be, we could handle -EAGAIN for a
1173                 * RESTART_TRANS here.
1174                 */
1175                mlog_bug_on_msg(ret == -EAGAIN,
1176                                "Inode %llu: EAGAIN return during allocation.\n",
1177                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1178                if (ret < 0) {
1179                        mlog_errno(ret);
1180                        goto out;
1181                }
1182        } else if (clear_unwritten) {
1183                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1184                                              wc->w_di_bh);
1185                ret = ocfs2_mark_extent_written(inode, &et,
1186                                                wc->w_handle, cpos, 1, *phys,
1187                                                meta_ac, &wc->w_dealloc);
1188                if (ret < 0) {
1189                        mlog_errno(ret);
1190                        goto out;
1191                }
1192        }
1193
1194        /*
1195         * The only reason this should fail is due to an inability to
1196         * find the extent added.
1197         */
1198        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1199        if (ret < 0) {
1200                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1201                            "at logical cluster %u",
1202                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1203                goto out;
1204        }
1205
1206        BUG_ON(*phys == 0);
1207
1208        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1209        if (!should_zero)
1210                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1211
1212        for(i = 0; i < wc->w_num_pages; i++) {
1213                int tmpret;
1214
1215                /* This is the direct io target page. */
1216                if (wc->w_pages[i] == NULL) {
1217                        p_blkno++;
1218                        continue;
1219                }
1220
1221                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1222                                                      wc->w_pages[i], cpos,
1223                                                      user_pos, user_len,
1224                                                      should_zero);
1225                if (tmpret) {
1226                        mlog_errno(tmpret);
1227                        if (ret == 0)
1228                                ret = tmpret;
1229                }
1230        }
1231
1232        /*
1233         * We only have cleanup to do in case of allocating write.
1234         */
1235        if (ret && new)
1236                ocfs2_write_failure(inode, wc, user_pos, user_len);
1237
1238out:
1239
1240        return ret;
1241}
1242
1243static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1244                                       struct ocfs2_alloc_context *data_ac,
1245                                       struct ocfs2_alloc_context *meta_ac,
1246                                       struct ocfs2_write_ctxt *wc,
1247                                       loff_t pos, unsigned len)
1248{
1249        int ret, i;
1250        loff_t cluster_off;
1251        unsigned int local_len = len;
1252        struct ocfs2_write_cluster_desc *desc;
1253        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1254
1255        for (i = 0; i < wc->w_clen; i++) {
1256                desc = &wc->w_desc[i];
1257
1258                /*
1259                 * We have to make sure that the total write passed in
1260                 * doesn't extend past a single cluster.
1261                 */
1262                local_len = len;
1263                cluster_off = pos & (osb->s_clustersize - 1);
1264                if ((cluster_off + local_len) > osb->s_clustersize)
1265                        local_len = osb->s_clustersize - cluster_off;
1266
1267                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1268                                          desc->c_new,
1269                                          desc->c_clear_unwritten,
1270                                          desc->c_needs_zero,
1271                                          data_ac, meta_ac,
1272                                          wc, desc->c_cpos, pos, local_len);
1273                if (ret) {
1274                        mlog_errno(ret);
1275                        goto out;
1276                }
1277
1278                len -= local_len;
1279                pos += local_len;
1280        }
1281
1282        ret = 0;
1283out:
1284        return ret;
1285}
1286
1287/*
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1291 */
1292static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1293                                        struct ocfs2_write_ctxt *wc,
1294                                        loff_t pos, unsigned len, int alloc)
1295{
1296        struct ocfs2_write_cluster_desc *desc;
1297
1298        wc->w_target_from = pos & (PAGE_SIZE - 1);
1299        wc->w_target_to = wc->w_target_from + len;
1300
1301        if (alloc == 0)
1302                return;
1303
1304        /*
1305         * Allocating write - we may have different boundaries based
1306         * on page size and cluster size.
1307         *
1308         * NOTE: We can no longer compute one value from the other as
1309         * the actual write length and user provided length may be
1310         * different.
1311         */
1312
1313        if (wc->w_large_pages) {
1314                /*
1315                 * We only care about the 1st and last cluster within
1316                 * our range and whether they should be zero'd or not. Either
1317                 * value may be extended out to the start/end of a
1318                 * newly allocated cluster.
1319                 */
1320                desc = &wc->w_desc[0];
1321                if (desc->c_needs_zero)
1322                        ocfs2_figure_cluster_boundaries(osb,
1323                                                        desc->c_cpos,
1324                                                        &wc->w_target_from,
1325                                                        NULL);
1326
1327                desc = &wc->w_desc[wc->w_clen - 1];
1328                if (desc->c_needs_zero)
1329                        ocfs2_figure_cluster_boundaries(osb,
1330                                                        desc->c_cpos,
1331                                                        NULL,
1332                                                        &wc->w_target_to);
1333        } else {
1334                wc->w_target_from = 0;
1335                wc->w_target_to = PAGE_SIZE;
1336        }
1337}
1338
1339/*
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1345 */
1346static int ocfs2_unwritten_check(struct inode *inode,
1347                                 struct ocfs2_write_ctxt *wc,
1348                                 struct ocfs2_write_cluster_desc *desc)
1349{
1350        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1351        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1352        int ret = 0;
1353
1354        if (!desc->c_needs_zero)
1355                return 0;
1356
1357retry:
1358        spin_lock(&oi->ip_lock);
1359        /* Needs not to zero no metter buffer or direct. The one who is zero
1360         * the cluster is doing zero. And he will clear unwritten after all
1361         * cluster io finished. */
1362        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1363                if (desc->c_cpos == ue->ue_cpos) {
1364                        BUG_ON(desc->c_new);
1365                        desc->c_needs_zero = 0;
1366                        desc->c_clear_unwritten = 0;
1367                        goto unlock;
1368                }
1369        }
1370
1371        if (wc->w_type != OCFS2_WRITE_DIRECT)
1372                goto unlock;
1373
1374        if (new == NULL) {
1375                spin_unlock(&oi->ip_lock);
1376                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1377                             GFP_NOFS);
1378                if (new == NULL) {
1379                        ret = -ENOMEM;
1380                        goto out;
1381                }
1382                goto retry;
1383        }
1384        /* This direct write will doing zero. */
1385        new->ue_cpos = desc->c_cpos;
1386        new->ue_phys = desc->c_phys;
1387        desc->c_clear_unwritten = 0;
1388        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1389        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1390        wc->w_unwritten_count++;
1391        new = NULL;
1392unlock:
1393        spin_unlock(&oi->ip_lock);
1394out:
1395        if (new)
1396                kfree(new);
1397        return ret;
1398}
1399
1400/*
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1403 *
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1407 */
1408static int ocfs2_populate_write_desc(struct inode *inode,
1409                                     struct ocfs2_write_ctxt *wc,
1410                                     unsigned int *clusters_to_alloc,
1411                                     unsigned int *extents_to_split)
1412{
1413        int ret;
1414        struct ocfs2_write_cluster_desc *desc;
1415        unsigned int num_clusters = 0;
1416        unsigned int ext_flags = 0;
1417        u32 phys = 0;
1418        int i;
1419
1420        *clusters_to_alloc = 0;
1421        *extents_to_split = 0;
1422
1423        for (i = 0; i < wc->w_clen; i++) {
1424                desc = &wc->w_desc[i];
1425                desc->c_cpos = wc->w_cpos + i;
1426
1427                if (num_clusters == 0) {
1428                        /*
1429                         * Need to look up the next extent record.
1430                         */
1431                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1432                                                 &num_clusters, &ext_flags);
1433                        if (ret) {
1434                                mlog_errno(ret);
1435                                goto out;
1436                        }
1437
1438                        /* We should already CoW the refcountd extent. */
1439                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1440
1441                        /*
1442                         * Assume worst case - that we're writing in
1443                         * the middle of the extent.
1444                         *
1445                         * We can assume that the write proceeds from
1446                         * left to right, in which case the extent
1447                         * insert code is smart enough to coalesce the
1448                         * next splits into the previous records created.
1449                         */
1450                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1451                                *extents_to_split = *extents_to_split + 2;
1452                } else if (phys) {
1453                        /*
1454                         * Only increment phys if it doesn't describe
1455                         * a hole.
1456                         */
1457                        phys++;
1458                }
1459
1460                /*
1461                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462                 * file that got extended.  w_first_new_cpos tells us
1463                 * where the newly allocated clusters are so we can
1464                 * zero them.
1465                 */
1466                if (desc->c_cpos >= wc->w_first_new_cpos) {
1467                        BUG_ON(phys == 0);
1468                        desc->c_needs_zero = 1;
1469                }
1470
1471                desc->c_phys = phys;
1472                if (phys == 0) {
1473                        desc->c_new = 1;
1474                        desc->c_needs_zero = 1;
1475                        desc->c_clear_unwritten = 1;
1476                        *clusters_to_alloc = *clusters_to_alloc + 1;
1477                }
1478
1479                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1480                        desc->c_clear_unwritten = 1;
1481                        desc->c_needs_zero = 1;
1482                }
1483
1484                ret = ocfs2_unwritten_check(inode, wc, desc);
1485                if (ret) {
1486                        mlog_errno(ret);
1487                        goto out;
1488                }
1489
1490                num_clusters--;
1491        }
1492
1493        ret = 0;
1494out:
1495        return ret;
1496}
1497
1498static int ocfs2_write_begin_inline(struct address_space *mapping,
1499                                    struct inode *inode,
1500                                    struct ocfs2_write_ctxt *wc)
1501{
1502        int ret;
1503        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504        struct page *page;
1505        handle_t *handle;
1506        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509        if (IS_ERR(handle)) {
1510                ret = PTR_ERR(handle);
1511                mlog_errno(ret);
1512                goto out;
1513        }
1514
1515        page = find_or_create_page(mapping, 0, GFP_NOFS);
1516        if (!page) {
1517                ocfs2_commit_trans(osb, handle);
1518                ret = -ENOMEM;
1519                mlog_errno(ret);
1520                goto out;
1521        }
1522        /*
1523         * If we don't set w_num_pages then this page won't get unlocked
1524         * and freed on cleanup of the write context.
1525         */
1526        wc->w_pages[0] = wc->w_target_page = page;
1527        wc->w_num_pages = 1;
1528
1529        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1530                                      OCFS2_JOURNAL_ACCESS_WRITE);
1531        if (ret) {
1532                ocfs2_commit_trans(osb, handle);
1533
1534                mlog_errno(ret);
1535                goto out;
1536        }
1537
1538        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539                ocfs2_set_inode_data_inline(inode, di);
1540
1541        if (!PageUptodate(page)) {
1542                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543                if (ret) {
1544                        ocfs2_commit_trans(osb, handle);
1545
1546                        goto out;
1547                }
1548        }
1549
1550        wc->w_handle = handle;
1551out:
1552        return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
1559        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1560                return 1;
1561        return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565                                          struct inode *inode, loff_t pos,
1566                                          unsigned len, struct page *mmap_page,
1567                                          struct ocfs2_write_ctxt *wc)
1568{
1569        int ret, written = 0;
1570        loff_t end = pos + len;
1571        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1572        struct ocfs2_dinode *di = NULL;
1573
1574        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575                                             len, (unsigned long long)pos,
1576                                             oi->ip_dyn_features);
1577
1578        /*
1579         * Handle inodes which already have inline data 1st.
1580         */
1581        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582                if (mmap_page == NULL &&
1583                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584                        goto do_inline_write;
1585
1586                /*
1587                 * The write won't fit - we have to give this inode an
1588                 * inline extent list now.
1589                 */
1590                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591                if (ret)
1592                        mlog_errno(ret);
1593                goto out;
1594        }
1595
1596        /*
1597         * Check whether the inode can accept inline data.
1598         */
1599        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600                return 0;
1601
1602        /*
1603         * Check whether the write can fit.
1604         */
1605        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606        if (mmap_page ||
1607            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1608                return 0;
1609
1610do_inline_write:
1611        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612        if (ret) {
1613                mlog_errno(ret);
1614                goto out;
1615        }
1616
1617        /*
1618         * This signals to the caller that the data can be written
1619         * inline.
1620         */
1621        written = 1;
1622out:
1623        return written ? written : ret;
1624}
1625
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636                                        struct buffer_head *di_bh,
1637                                        loff_t pos, unsigned len,
1638                                        struct ocfs2_write_ctxt *wc)
1639{
1640        int ret;
1641        loff_t newsize = pos + len;
1642
1643        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644
1645        if (newsize <= i_size_read(inode))
1646                return 0;
1647
1648        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1649        if (ret)
1650                mlog_errno(ret);
1651
1652        /* There is no wc if this is call from direct. */
1653        if (wc)
1654                wc->w_first_new_cpos =
1655                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1656
1657        return ret;
1658}
1659
1660static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1661                           loff_t pos)
1662{
1663        int ret = 0;
1664
1665        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1666        if (pos > i_size_read(inode))
1667                ret = ocfs2_zero_extend(inode, di_bh, pos);
1668
1669        return ret;
1670}
1671
1672int ocfs2_write_begin_nolock(struct address_space *mapping,
1673                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1674                             struct page **pagep, void **fsdata,
1675                             struct buffer_head *di_bh, struct page *mmap_page)
1676{
1677        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1678        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1679        struct ocfs2_write_ctxt *wc;
1680        struct inode *inode = mapping->host;
1681        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1682        struct ocfs2_dinode *di;
1683        struct ocfs2_alloc_context *data_ac = NULL;
1684        struct ocfs2_alloc_context *meta_ac = NULL;
1685        handle_t *handle;
1686        struct ocfs2_extent_tree et;
1687        int try_free = 1, ret1;
1688
1689try_again:
1690        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1691        if (ret) {
1692                mlog_errno(ret);
1693                return ret;
1694        }
1695
1696        if (ocfs2_supports_inline_data(osb)) {
1697                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1698                                                     mmap_page, wc);
1699                if (ret == 1) {
1700                        ret = 0;
1701                        goto success;
1702                }
1703                if (ret < 0) {
1704                        mlog_errno(ret);
1705                        goto out;
1706                }
1707        }
1708
1709        /* Direct io change i_size late, should not zero tail here. */
1710        if (type != OCFS2_WRITE_DIRECT) {
1711                if (ocfs2_sparse_alloc(osb))
1712                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1713                else
1714                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1715                                                           len, wc);
1716                if (ret) {
1717                        mlog_errno(ret);
1718                        goto out;
1719                }
1720        }
1721
1722        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1723        if (ret < 0) {
1724                mlog_errno(ret);
1725                goto out;
1726        } else if (ret == 1) {
1727                clusters_need = wc->w_clen;
1728                ret = ocfs2_refcount_cow(inode, di_bh,
1729                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1730                if (ret) {
1731                        mlog_errno(ret);
1732                        goto out;
1733                }
1734        }
1735
1736        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1737                                        &extents_to_split);
1738        if (ret) {
1739                mlog_errno(ret);
1740                goto out;
1741        }
1742        clusters_need += clusters_to_alloc;
1743
1744        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1745
1746        trace_ocfs2_write_begin_nolock(
1747                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1748                        (long long)i_size_read(inode),
1749                        le32_to_cpu(di->i_clusters),
1750                        pos, len, type, mmap_page,
1751                        clusters_to_alloc, extents_to_split);
1752
1753        /*
1754         * We set w_target_from, w_target_to here so that
1755         * ocfs2_write_end() knows which range in the target page to
1756         * write out. An allocation requires that we write the entire
1757         * cluster range.
1758         */
1759        if (clusters_to_alloc || extents_to_split) {
1760                /*
1761                 * XXX: We are stretching the limits of
1762                 * ocfs2_lock_allocators(). It greatly over-estimates
1763                 * the work to be done.
1764                 */
1765                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1766                                              wc->w_di_bh);
1767                ret = ocfs2_lock_allocators(inode, &et,
1768                                            clusters_to_alloc, extents_to_split,
1769                                            &data_ac, &meta_ac);
1770                if (ret) {
1771                        mlog_errno(ret);
1772                        goto out;
1773                }
1774
1775                if (data_ac)
1776                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1777
1778                credits = ocfs2_calc_extend_credits(inode->i_sb,
1779                                                    &di->id2.i_list);
1780        } else if (type == OCFS2_WRITE_DIRECT)
1781                /* direct write needs not to start trans if no extents alloc. */
1782                goto success;
1783
1784        /*
1785         * We have to zero sparse allocated clusters, unwritten extent clusters,
1786         * and non-sparse clusters we just extended.  For non-sparse writes,
1787         * we know zeros will only be needed in the first and/or last cluster.
1788         */
1789        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1790                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1791                cluster_of_pages = 1;
1792        else
1793                cluster_of_pages = 0;
1794
1795        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1796
1797        handle = ocfs2_start_trans(osb, credits);
1798        if (IS_ERR(handle)) {
1799                ret = PTR_ERR(handle);
1800                mlog_errno(ret);
1801                goto out;
1802        }
1803
1804        wc->w_handle = handle;
1805
1806        if (clusters_to_alloc) {
1807                ret = dquot_alloc_space_nodirty(inode,
1808                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1809                if (ret)
1810                        goto out_commit;
1811        }
1812
1813        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1814                                      OCFS2_JOURNAL_ACCESS_WRITE);
1815        if (ret) {
1816                mlog_errno(ret);
1817                goto out_quota;
1818        }
1819
1820        /*
1821         * Fill our page array first. That way we've grabbed enough so
1822         * that we can zero and flush if we error after adding the
1823         * extent.
1824         */
1825        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1826                                         cluster_of_pages, mmap_page);
1827        if (ret && ret != -EAGAIN) {
1828                mlog_errno(ret);
1829                goto out_quota;
1830        }
1831
1832        /*
1833         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834         * the target page. In this case, we exit with no error and no target
1835         * page. This will trigger the caller, page_mkwrite(), to re-try
1836         * the operation.
1837         */
1838        if (ret == -EAGAIN) {
1839                BUG_ON(wc->w_target_page);
1840                ret = 0;
1841                goto out_quota;
1842        }
1843
1844        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1845                                          len);
1846        if (ret) {
1847                mlog_errno(ret);
1848                goto out_quota;
1849        }
1850
1851        if (data_ac)
1852                ocfs2_free_alloc_context(data_ac);
1853        if (meta_ac)
1854                ocfs2_free_alloc_context(meta_ac);
1855
1856success:
1857        if (pagep)
1858                *pagep = wc->w_target_page;
1859        *fsdata = wc;
1860        return 0;
1861out_quota:
1862        if (clusters_to_alloc)
1863                dquot_free_space(inode,
1864                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865out_commit:
1866        ocfs2_commit_trans(osb, handle);
1867
1868out:
1869        /*
1870         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871         * even in case of error here like ENOSPC and ENOMEM. So, we need
1872         * to unlock the target page manually to prevent deadlocks when
1873         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1874         * to VM code.
1875         */
1876        if (wc->w_target_locked)
1877                unlock_page(mmap_page);
1878
1879        ocfs2_free_write_ctxt(inode, wc);
1880
1881        if (data_ac) {
1882                ocfs2_free_alloc_context(data_ac);
1883                data_ac = NULL;
1884        }
1885        if (meta_ac) {
1886                ocfs2_free_alloc_context(meta_ac);
1887                meta_ac = NULL;
1888        }
1889
1890        if (ret == -ENOSPC && try_free) {
1891                /*
1892                 * Try to free some truncate log so that we can have enough
1893                 * clusters to allocate.
1894                 */
1895                try_free = 0;
1896
1897                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898                if (ret1 == 1)
1899                        goto try_again;
1900
1901                if (ret1 < 0)
1902                        mlog_errno(ret1);
1903        }
1904
1905        return ret;
1906}
1907
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909                             loff_t pos, unsigned len, unsigned flags,
1910                             struct page **pagep, void **fsdata)
1911{
1912        int ret;
1913        struct buffer_head *di_bh = NULL;
1914        struct inode *inode = mapping->host;
1915
1916        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917        if (ret) {
1918                mlog_errno(ret);
1919                return ret;
1920        }
1921
1922        /*
1923         * Take alloc sem here to prevent concurrent lookups. That way
1924         * the mapping, zeroing and tree manipulation within
1925         * ocfs2_write() will be safe against ->readpage(). This
1926         * should also serve to lock out allocation from a shared
1927         * writeable region.
1928         */
1929        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1932                                       pagep, fsdata, di_bh, NULL);
1933        if (ret) {
1934                mlog_errno(ret);
1935                goto out_fail;
1936        }
1937
1938        brelse(di_bh);
1939
1940        return 0;
1941
1942out_fail:
1943        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945        brelse(di_bh);
1946        ocfs2_inode_unlock(inode, 1);
1947
1948        return ret;
1949}
1950
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952                                   unsigned len, unsigned *copied,
1953                                   struct ocfs2_dinode *di,
1954                                   struct ocfs2_write_ctxt *wc)
1955{
1956        void *kaddr;
1957
1958        if (unlikely(*copied < len)) {
1959                if (!PageUptodate(wc->w_target_page)) {
1960                        *copied = 0;
1961                        return;
1962                }
1963        }
1964
1965        kaddr = kmap_atomic(wc->w_target_page);
1966        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967        kunmap_atomic(kaddr);
1968
1969        trace_ocfs2_write_end_inline(
1970             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971             (unsigned long long)pos, *copied,
1972             le16_to_cpu(di->id2.i_data.id_count),
1973             le16_to_cpu(di->i_dyn_features));
1974}
1975
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1978{
1979        int i, ret;
1980        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1981        struct inode *inode = mapping->host;
1982        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983        struct ocfs2_write_ctxt *wc = fsdata;
1984        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985        handle_t *handle = wc->w_handle;
1986        struct page *tmppage;
1987
1988        BUG_ON(!list_empty(&wc->w_unwritten_list));
1989
1990        if (handle) {
1991                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1992                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1993                if (ret) {
1994                        copied = ret;
1995                        mlog_errno(ret);
1996                        goto out;
1997                }
1998        }
1999
2000        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2001                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2002                goto out_write_size;
2003        }
2004
2005        if (unlikely(copied < len) && wc->w_target_page) {
2006                if (!PageUptodate(wc->w_target_page))
2007                        copied = 0;
2008
2009                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2010                                       start+len);
2011        }
2012        if (wc->w_target_page)
2013                flush_dcache_page(wc->w_target_page);
2014
2015        for(i = 0; i < wc->w_num_pages; i++) {
2016                tmppage = wc->w_pages[i];
2017
2018                /* This is the direct io target page. */
2019                if (tmppage == NULL)
2020                        continue;
2021
2022                if (tmppage == wc->w_target_page) {
2023                        from = wc->w_target_from;
2024                        to = wc->w_target_to;
2025
2026                        BUG_ON(from > PAGE_SIZE ||
2027                               to > PAGE_SIZE ||
2028                               to < from);
2029                } else {
2030                        /*
2031                         * Pages adjacent to the target (if any) imply
2032                         * a hole-filling write in which case we want
2033                         * to flush their entire range.
2034                         */
2035                        from = 0;
2036                        to = PAGE_SIZE;
2037                }
2038
2039                if (page_has_buffers(tmppage)) {
2040                        if (handle && ocfs2_should_order_data(inode))
2041                                ocfs2_jbd2_file_inode(handle, inode);
2042                        block_commit_write(tmppage, from, to);
2043                }
2044        }
2045
2046out_write_size:
2047        /* Direct io do not update i_size here. */
2048        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2049                pos += copied;
2050                if (pos > i_size_read(inode)) {
2051                        i_size_write(inode, pos);
2052                        mark_inode_dirty(inode);
2053                }
2054                inode->i_blocks = ocfs2_inode_sector_count(inode);
2055                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2056                inode->i_mtime = inode->i_ctime = current_time(inode);
2057                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2058                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2059                ocfs2_update_inode_fsync_trans(handle, inode, 1);
2060        }
2061        if (handle)
2062                ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064out:
2065        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2066         * lock, or it will cause a deadlock since journal commit threads holds
2067         * this lock and will ask for the page lock when flushing the data.
2068         * put it here to preserve the unlock order.
2069         */
2070        ocfs2_unlock_pages(wc);
2071
2072        if (handle)
2073                ocfs2_commit_trans(osb, handle);
2074
2075        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2076
2077        brelse(wc->w_di_bh);
2078        kfree(wc);
2079
2080        return copied;
2081}
2082
2083static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2084                           loff_t pos, unsigned len, unsigned copied,
2085                           struct page *page, void *fsdata)
2086{
2087        int ret;
2088        struct inode *inode = mapping->host;
2089
2090        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2091
2092        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2093        ocfs2_inode_unlock(inode, 1);
2094
2095        return ret;
2096}
2097
2098struct ocfs2_dio_write_ctxt {
2099        struct list_head        dw_zero_list;
2100        unsigned                dw_zero_count;
2101        int                     dw_orphaned;
2102        pid_t                   dw_writer_pid;
2103};
2104
2105static struct ocfs2_dio_write_ctxt *
2106ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2107{
2108        struct ocfs2_dio_write_ctxt *dwc = NULL;
2109
2110        if (bh->b_private)
2111                return bh->b_private;
2112
2113        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2114        if (dwc == NULL)
2115                return NULL;
2116        INIT_LIST_HEAD(&dwc->dw_zero_list);
2117        dwc->dw_zero_count = 0;
2118        dwc->dw_orphaned = 0;
2119        dwc->dw_writer_pid = task_pid_nr(current);
2120        bh->b_private = dwc;
2121        *alloc = 1;
2122
2123        return dwc;
2124}
2125
2126static void ocfs2_dio_free_write_ctx(struct inode *inode,
2127                                     struct ocfs2_dio_write_ctxt *dwc)
2128{
2129        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2130        kfree(dwc);
2131}
2132
2133/*
2134 * TODO: Make this into a generic get_blocks function.
2135 *
2136 * From do_direct_io in direct-io.c:
2137 *  "So what we do is to permit the ->get_blocks function to populate
2138 *   bh.b_size with the size of IO which is permitted at this offset and
2139 *   this i_blkbits."
2140 *
2141 * This function is called directly from get_more_blocks in direct-io.c.
2142 *
2143 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2144 *                                      fs_count, map_bh, dio->rw == WRITE);
2145 */
2146static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2147                               struct buffer_head *bh_result, int create)
2148{
2149        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2150        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2151        struct ocfs2_write_ctxt *wc;
2152        struct ocfs2_write_cluster_desc *desc = NULL;
2153        struct ocfs2_dio_write_ctxt *dwc = NULL;
2154        struct buffer_head *di_bh = NULL;
2155        u64 p_blkno;
2156        loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2157        unsigned len, total_len = bh_result->b_size;
2158        int ret = 0, first_get_block = 0;
2159
2160        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2161        len = min(total_len, len);
2162
2163        mlog(0, "get block of %lu at %llu:%u req %u\n",
2164                        inode->i_ino, pos, len, total_len);
2165
2166        /*
2167         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168         * we may need to add it to orphan dir. So can not fall to fast path
2169         * while file size will be changed.
2170         */
2171        if (pos + total_len <= i_size_read(inode)) {
2172
2173                /* This is the fast path for re-write. */
2174                ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175                if (buffer_mapped(bh_result) &&
2176                    !buffer_new(bh_result) &&
2177                    ret == 0)
2178                        goto out;
2179
2180                /* Clear state set by ocfs2_get_block. */
2181                bh_result->b_state = 0;
2182        }
2183
2184        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185        if (unlikely(dwc == NULL)) {
2186                ret = -ENOMEM;
2187                mlog_errno(ret);
2188                goto out;
2189        }
2190
2191        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193            !dwc->dw_orphaned) {
2194                /*
2195                 * when we are going to alloc extents beyond file size, add the
2196                 * inode to orphan dir, so we can recall those spaces when
2197                 * system crashed during write.
2198                 */
2199                ret = ocfs2_add_inode_to_orphan(osb, inode);
2200                if (ret < 0) {
2201                        mlog_errno(ret);
2202                        goto out;
2203                }
2204                dwc->dw_orphaned = 1;
2205        }
2206
2207        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208        if (ret) {
2209                mlog_errno(ret);
2210                goto out;
2211        }
2212
2213        down_write(&oi->ip_alloc_sem);
2214
2215        if (first_get_block) {
2216                if (ocfs2_sparse_alloc(osb))
2217                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2218                else
2219                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220                                                           total_len, NULL);
2221                if (ret < 0) {
2222                        mlog_errno(ret);
2223                        goto unlock;
2224                }
2225        }
2226
2227        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228                                       OCFS2_WRITE_DIRECT, NULL,
2229                                       (void **)&wc, di_bh, NULL);
2230        if (ret) {
2231                mlog_errno(ret);
2232                goto unlock;
2233        }
2234
2235        desc = &wc->w_desc[0];
2236
2237        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238        BUG_ON(p_blkno == 0);
2239        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241        map_bh(bh_result, inode->i_sb, p_blkno);
2242        bh_result->b_size = len;
2243        if (desc->c_needs_zero)
2244                set_buffer_new(bh_result);
2245
2246        /* May sleep in end_io. It should not happen in a irq context. So defer
2247         * it to dio work queue. */
2248        set_buffer_defer_completion(bh_result);
2249
2250        if (!list_empty(&wc->w_unwritten_list)) {
2251                struct ocfs2_unwritten_extent *ue = NULL;
2252
2253                ue = list_first_entry(&wc->w_unwritten_list,
2254                                      struct ocfs2_unwritten_extent,
2255                                      ue_node);
2256                BUG_ON(ue->ue_cpos != desc->c_cpos);
2257                /* The physical address may be 0, fill it. */
2258                ue->ue_phys = desc->c_phys;
2259
2260                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2261                dwc->dw_zero_count += wc->w_unwritten_count;
2262        }
2263
2264        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2265        BUG_ON(ret != len);
2266        ret = 0;
2267unlock:
2268        up_write(&oi->ip_alloc_sem);
2269        ocfs2_inode_unlock(inode, 1);
2270        brelse(di_bh);
2271out:
2272        if (ret < 0)
2273                ret = -EIO;
2274        return ret;
2275}
2276
2277static int ocfs2_dio_end_io_write(struct inode *inode,
2278                                  struct ocfs2_dio_write_ctxt *dwc,
2279                                  loff_t offset,
2280                                  ssize_t bytes)
2281{
2282        struct ocfs2_cached_dealloc_ctxt dealloc;
2283        struct ocfs2_extent_tree et;
2284        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2286        struct ocfs2_unwritten_extent *ue = NULL;
2287        struct buffer_head *di_bh = NULL;
2288        struct ocfs2_dinode *di;
2289        struct ocfs2_alloc_context *data_ac = NULL;
2290        struct ocfs2_alloc_context *meta_ac = NULL;
2291        handle_t *handle = NULL;
2292        loff_t end = offset + bytes;
2293        int ret = 0, credits = 0, locked = 0;
2294
2295        ocfs2_init_dealloc_ctxt(&dealloc);
2296
2297        /* We do clear unwritten, delete orphan, change i_size here. If neither
2298         * of these happen, we can skip all this. */
2299        if (list_empty(&dwc->dw_zero_list) &&
2300            end <= i_size_read(inode) &&
2301            !dwc->dw_orphaned)
2302                goto out;
2303
2304        /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2305         * are in that context. */
2306        if (dwc->dw_writer_pid != task_pid_nr(current)) {
2307                inode_lock(inode);
2308                locked = 1;
2309        }
2310
2311        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312        if (ret < 0) {
2313                mlog_errno(ret);
2314                goto out;
2315        }
2316
2317        down_write(&oi->ip_alloc_sem);
2318
2319        /* Delete orphan before acquire i_mutex. */
2320        if (dwc->dw_orphaned) {
2321                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2322
2323                end = end > i_size_read(inode) ? end : 0;
2324
2325                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326                                !!end, end);
2327                if (ret < 0)
2328                        mlog_errno(ret);
2329        }
2330
2331        di = (struct ocfs2_dinode *)di_bh->b_data;
2332
2333        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2334
2335        /* Attach dealloc with extent tree in case that we may reuse extents
2336         * which are already unlinked from current extent tree due to extent
2337         * rotation and merging.
2338         */
2339        et.et_dealloc = &dealloc;
2340
2341        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2342                                    &data_ac, &meta_ac);
2343        if (ret) {
2344                mlog_errno(ret);
2345                goto unlock;
2346        }
2347
2348        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2349
2350        handle = ocfs2_start_trans(osb, credits);
2351        if (IS_ERR(handle)) {
2352                ret = PTR_ERR(handle);
2353                mlog_errno(ret);
2354                goto unlock;
2355        }
2356        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2357                                      OCFS2_JOURNAL_ACCESS_WRITE);
2358        if (ret) {
2359                mlog_errno(ret);
2360                goto commit;
2361        }
2362
2363        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2364                ret = ocfs2_mark_extent_written(inode, &et, handle,
2365                                                ue->ue_cpos, 1,
2366                                                ue->ue_phys,
2367                                                meta_ac, &dealloc);
2368                if (ret < 0) {
2369                        mlog_errno(ret);
2370                        break;
2371                }
2372        }
2373
2374        if (end > i_size_read(inode)) {
2375                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2376                if (ret < 0)
2377                        mlog_errno(ret);
2378        }
2379commit:
2380        ocfs2_commit_trans(osb, handle);
2381unlock:
2382        up_write(&oi->ip_alloc_sem);
2383        ocfs2_inode_unlock(inode, 1);
2384        brelse(di_bh);
2385out:
2386        if (data_ac)
2387                ocfs2_free_alloc_context(data_ac);
2388        if (meta_ac)
2389                ocfs2_free_alloc_context(meta_ac);
2390        ocfs2_run_deallocs(osb, &dealloc);
2391        if (locked)
2392                inode_unlock(inode);
2393        ocfs2_dio_free_write_ctx(inode, dwc);
2394
2395        return ret;
2396}
2397
2398/*
2399 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2400 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2401 * to protect io on one node from truncation on another.
2402 */
2403static int ocfs2_dio_end_io(struct kiocb *iocb,
2404                            loff_t offset,
2405                            ssize_t bytes,
2406                            void *private)
2407{
2408        struct inode *inode = file_inode(iocb->ki_filp);
2409        int level;
2410        int ret = 0;
2411
2412        /* this io's submitter should not have unlocked this before we could */
2413        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2414
2415        if (bytes > 0 && private)
2416                ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2417
2418        ocfs2_iocb_clear_rw_locked(iocb);
2419
2420        level = ocfs2_iocb_rw_locked_level(iocb);
2421        ocfs2_rw_unlock(inode, level);
2422        return ret;
2423}
2424
2425static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426{
2427        struct file *file = iocb->ki_filp;
2428        struct inode *inode = file->f_mapping->host;
2429        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430        get_block_t *get_block;
2431
2432        /*
2433         * Fallback to buffered I/O if we see an inode without
2434         * extents.
2435         */
2436        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437                return 0;
2438
2439        /* Fallback to buffered I/O if we do not support append dio. */
2440        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441            !ocfs2_supports_append_dio(osb))
2442                return 0;
2443
2444        if (iov_iter_rw(iter) == READ)
2445                get_block = ocfs2_lock_get_block;
2446        else
2447                get_block = ocfs2_dio_wr_get_block;
2448
2449        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450                                    iter, get_block,
2451                                    ocfs2_dio_end_io, NULL, 0);
2452}
2453
2454const struct address_space_operations ocfs2_aops = {
2455        .readpage               = ocfs2_readpage,
2456        .readpages              = ocfs2_readpages,
2457        .writepage              = ocfs2_writepage,
2458        .write_begin            = ocfs2_write_begin,
2459        .write_end              = ocfs2_write_end,
2460        .bmap                   = ocfs2_bmap,
2461        .direct_IO              = ocfs2_direct_IO,
2462        .invalidatepage         = block_invalidatepage,
2463        .releasepage            = ocfs2_releasepage,
2464        .migratepage            = buffer_migrate_page,
2465        .is_partially_uptodate  = block_is_partially_uptodate,
2466        .error_remove_page      = generic_error_remove_page,
2467};
2468