linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1/* bpf/cpumap.c
   2 *
   3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   4 * Released under terms in GPL version 2.  See COPYING.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bpf.h>
  20#include <linux/filter.h>
  21#include <linux/ptr_ring.h>
  22#include <net/xdp.h>
  23
  24#include <linux/sched.h>
  25#include <linux/workqueue.h>
  26#include <linux/kthread.h>
  27#include <linux/capability.h>
  28#include <trace/events/xdp.h>
  29
  30#include <linux/netdevice.h>   /* netif_receive_skb_core */
  31#include <linux/etherdevice.h> /* eth_type_trans */
  32
  33/* General idea: XDP packets getting XDP redirected to another CPU,
  34 * will maximum be stored/queued for one driver ->poll() call.  It is
  35 * guaranteed that setting flush bit and flush operation happen on
  36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  37 * which queue in bpf_cpu_map_entry contains packets.
  38 */
  39
  40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  41struct xdp_bulk_queue {
  42        void *q[CPU_MAP_BULK_SIZE];
  43        unsigned int count;
  44};
  45
  46/* Struct for every remote "destination" CPU in map */
  47struct bpf_cpu_map_entry {
  48        u32 cpu;    /* kthread CPU and map index */
  49        int map_id; /* Back reference to map */
  50        u32 qsize;  /* Queue size placeholder for map lookup */
  51
  52        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  53        struct xdp_bulk_queue __percpu *bulkq;
  54
  55        /* Queue with potential multi-producers, and single-consumer kthread */
  56        struct ptr_ring *queue;
  57        struct task_struct *kthread;
  58        struct work_struct kthread_stop_wq;
  59
  60        atomic_t refcnt; /* Control when this struct can be free'ed */
  61        struct rcu_head rcu;
  62};
  63
  64struct bpf_cpu_map {
  65        struct bpf_map map;
  66        /* Below members specific for map type */
  67        struct bpf_cpu_map_entry **cpu_map;
  68        unsigned long __percpu *flush_needed;
  69};
  70
  71static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
  72                             struct xdp_bulk_queue *bq, bool in_napi_ctx);
  73
  74static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
  75{
  76        return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
  77}
  78
  79static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  80{
  81        struct bpf_cpu_map *cmap;
  82        int err = -ENOMEM;
  83        u64 cost;
  84        int ret;
  85
  86        if (!capable(CAP_SYS_ADMIN))
  87                return ERR_PTR(-EPERM);
  88
  89        /* check sanity of attributes */
  90        if (attr->max_entries == 0 || attr->key_size != 4 ||
  91            attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  92                return ERR_PTR(-EINVAL);
  93
  94        cmap = kzalloc(sizeof(*cmap), GFP_USER);
  95        if (!cmap)
  96                return ERR_PTR(-ENOMEM);
  97
  98        bpf_map_init_from_attr(&cmap->map, attr);
  99
 100        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 101        if (cmap->map.max_entries > NR_CPUS) {
 102                err = -E2BIG;
 103                goto free_cmap;
 104        }
 105
 106        /* make sure page count doesn't overflow */
 107        cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
 108        cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
 109        if (cost >= U32_MAX - PAGE_SIZE)
 110                goto free_cmap;
 111        cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 112
 113        /* Notice returns -EPERM on if map size is larger than memlock limit */
 114        ret = bpf_map_precharge_memlock(cmap->map.pages);
 115        if (ret) {
 116                err = ret;
 117                goto free_cmap;
 118        }
 119
 120        /* A per cpu bitfield with a bit per possible CPU in map  */
 121        cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
 122                                            __alignof__(unsigned long));
 123        if (!cmap->flush_needed)
 124                goto free_cmap;
 125
 126        /* Alloc array for possible remote "destination" CPUs */
 127        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 128                                           sizeof(struct bpf_cpu_map_entry *),
 129                                           cmap->map.numa_node);
 130        if (!cmap->cpu_map)
 131                goto free_percpu;
 132
 133        return &cmap->map;
 134free_percpu:
 135        free_percpu(cmap->flush_needed);
 136free_cmap:
 137        kfree(cmap);
 138        return ERR_PTR(err);
 139}
 140
 141static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 142{
 143        atomic_inc(&rcpu->refcnt);
 144}
 145
 146/* called from workqueue, to workaround syscall using preempt_disable */
 147static void cpu_map_kthread_stop(struct work_struct *work)
 148{
 149        struct bpf_cpu_map_entry *rcpu;
 150
 151        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 152
 153        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 154         * as it waits until all in-flight call_rcu() callbacks complete.
 155         */
 156        rcu_barrier();
 157
 158        /* kthread_stop will wake_up_process and wait for it to complete */
 159        kthread_stop(rcpu->kthread);
 160}
 161
 162static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
 163                                         struct xdp_frame *xdpf)
 164{
 165        unsigned int frame_size;
 166        void *pkt_data_start;
 167        struct sk_buff *skb;
 168
 169        /* build_skb need to place skb_shared_info after SKB end, and
 170         * also want to know the memory "truesize".  Thus, need to
 171         * know the memory frame size backing xdp_buff.
 172         *
 173         * XDP was designed to have PAGE_SIZE frames, but this
 174         * assumption is not longer true with ixgbe and i40e.  It
 175         * would be preferred to set frame_size to 2048 or 4096
 176         * depending on the driver.
 177         *   frame_size = 2048;
 178         *   frame_len  = frame_size - sizeof(*xdp_frame);
 179         *
 180         * Instead, with info avail, skb_shared_info in placed after
 181         * packet len.  This, unfortunately fakes the truesize.
 182         * Another disadvantage of this approach, the skb_shared_info
 183         * is not at a fixed memory location, with mixed length
 184         * packets, which is bad for cache-line hotness.
 185         */
 186        frame_size = SKB_DATA_ALIGN(xdpf->len) + xdpf->headroom +
 187                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 188
 189        pkt_data_start = xdpf->data - xdpf->headroom;
 190        skb = build_skb(pkt_data_start, frame_size);
 191        if (!skb)
 192                return NULL;
 193
 194        skb_reserve(skb, xdpf->headroom);
 195        __skb_put(skb, xdpf->len);
 196        if (xdpf->metasize)
 197                skb_metadata_set(skb, xdpf->metasize);
 198
 199        /* Essential SKB info: protocol and skb->dev */
 200        skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
 201
 202        /* Optional SKB info, currently missing:
 203         * - HW checksum info           (skb->ip_summed)
 204         * - HW RX hash                 (skb_set_hash)
 205         * - RX ring dev queue index    (skb_record_rx_queue)
 206         */
 207
 208        return skb;
 209}
 210
 211static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 212{
 213        /* The tear-down procedure should have made sure that queue is
 214         * empty.  See __cpu_map_entry_replace() and work-queue
 215         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 216         * gracefully and warn once.
 217         */
 218        struct xdp_frame *xdpf;
 219
 220        while ((xdpf = ptr_ring_consume(ring)))
 221                if (WARN_ON_ONCE(xdpf))
 222                        xdp_return_frame(xdpf);
 223}
 224
 225static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 226{
 227        if (atomic_dec_and_test(&rcpu->refcnt)) {
 228                /* The queue should be empty at this point */
 229                __cpu_map_ring_cleanup(rcpu->queue);
 230                ptr_ring_cleanup(rcpu->queue, NULL);
 231                kfree(rcpu->queue);
 232                kfree(rcpu);
 233        }
 234}
 235
 236static int cpu_map_kthread_run(void *data)
 237{
 238        struct bpf_cpu_map_entry *rcpu = data;
 239
 240        set_current_state(TASK_INTERRUPTIBLE);
 241
 242        /* When kthread gives stop order, then rcpu have been disconnected
 243         * from map, thus no new packets can enter. Remaining in-flight
 244         * per CPU stored packets are flushed to this queue.  Wait honoring
 245         * kthread_stop signal until queue is empty.
 246         */
 247        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 248                unsigned int processed = 0, drops = 0, sched = 0;
 249                struct xdp_frame *xdpf;
 250
 251                /* Release CPU reschedule checks */
 252                if (__ptr_ring_empty(rcpu->queue)) {
 253                        set_current_state(TASK_INTERRUPTIBLE);
 254                        /* Recheck to avoid lost wake-up */
 255                        if (__ptr_ring_empty(rcpu->queue)) {
 256                                schedule();
 257                                sched = 1;
 258                        } else {
 259                                __set_current_state(TASK_RUNNING);
 260                        }
 261                } else {
 262                        sched = cond_resched();
 263                }
 264
 265                /* Process packets in rcpu->queue */
 266                local_bh_disable();
 267                /*
 268                 * The bpf_cpu_map_entry is single consumer, with this
 269                 * kthread CPU pinned. Lockless access to ptr_ring
 270                 * consume side valid as no-resize allowed of queue.
 271                 */
 272                while ((xdpf = __ptr_ring_consume(rcpu->queue))) {
 273                        struct sk_buff *skb;
 274                        int ret;
 275
 276                        skb = cpu_map_build_skb(rcpu, xdpf);
 277                        if (!skb) {
 278                                xdp_return_frame(xdpf);
 279                                continue;
 280                        }
 281
 282                        /* Inject into network stack */
 283                        ret = netif_receive_skb_core(skb);
 284                        if (ret == NET_RX_DROP)
 285                                drops++;
 286
 287                        /* Limit BH-disable period */
 288                        if (++processed == 8)
 289                                break;
 290                }
 291                /* Feedback loop via tracepoint */
 292                trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
 293
 294                local_bh_enable(); /* resched point, may call do_softirq() */
 295        }
 296        __set_current_state(TASK_RUNNING);
 297
 298        put_cpu_map_entry(rcpu);
 299        return 0;
 300}
 301
 302static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
 303                                                       int map_id)
 304{
 305        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 306        struct bpf_cpu_map_entry *rcpu;
 307        int numa, err;
 308
 309        /* Have map->numa_node, but choose node of redirect target CPU */
 310        numa = cpu_to_node(cpu);
 311
 312        rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
 313        if (!rcpu)
 314                return NULL;
 315
 316        /* Alloc percpu bulkq */
 317        rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
 318                                         sizeof(void *), gfp);
 319        if (!rcpu->bulkq)
 320                goto free_rcu;
 321
 322        /* Alloc queue */
 323        rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 324        if (!rcpu->queue)
 325                goto free_bulkq;
 326
 327        err = ptr_ring_init(rcpu->queue, qsize, gfp);
 328        if (err)
 329                goto free_queue;
 330
 331        rcpu->cpu    = cpu;
 332        rcpu->map_id = map_id;
 333        rcpu->qsize  = qsize;
 334
 335        /* Setup kthread */
 336        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 337                                               "cpumap/%d/map:%d", cpu, map_id);
 338        if (IS_ERR(rcpu->kthread))
 339                goto free_ptr_ring;
 340
 341        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 342        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 343
 344        /* Make sure kthread runs on a single CPU */
 345        kthread_bind(rcpu->kthread, cpu);
 346        wake_up_process(rcpu->kthread);
 347
 348        return rcpu;
 349
 350free_ptr_ring:
 351        ptr_ring_cleanup(rcpu->queue, NULL);
 352free_queue:
 353        kfree(rcpu->queue);
 354free_bulkq:
 355        free_percpu(rcpu->bulkq);
 356free_rcu:
 357        kfree(rcpu);
 358        return NULL;
 359}
 360
 361static void __cpu_map_entry_free(struct rcu_head *rcu)
 362{
 363        struct bpf_cpu_map_entry *rcpu;
 364        int cpu;
 365
 366        /* This cpu_map_entry have been disconnected from map and one
 367         * RCU graze-period have elapsed.  Thus, XDP cannot queue any
 368         * new packets and cannot change/set flush_needed that can
 369         * find this entry.
 370         */
 371        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 372
 373        /* Flush remaining packets in percpu bulkq */
 374        for_each_online_cpu(cpu) {
 375                struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
 376
 377                /* No concurrent bq_enqueue can run at this point */
 378                bq_flush_to_queue(rcpu, bq, false);
 379        }
 380        free_percpu(rcpu->bulkq);
 381        /* Cannot kthread_stop() here, last put free rcpu resources */
 382        put_cpu_map_entry(rcpu);
 383}
 384
 385/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 386 * ensure any driver rcu critical sections have completed, but this
 387 * does not guarantee a flush has happened yet. Because driver side
 388 * rcu_read_lock/unlock only protects the running XDP program.  The
 389 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 390 * pending flush op doesn't fail.
 391 *
 392 * The bpf_cpu_map_entry is still used by the kthread, and there can
 393 * still be pending packets (in queue and percpu bulkq).  A refcnt
 394 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 395 * resources.
 396 *
 397 * The rcu callback __cpu_map_entry_free flush remaining packets in
 398 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 399 * preemption, cannot call kthread_stop() to make sure queue is empty.
 400 * Instead a work_queue is started for stopping kthread,
 401 * cpu_map_kthread_stop, which waits for an RCU graze period before
 402 * stopping kthread, emptying the queue.
 403 */
 404static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 405                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 406{
 407        struct bpf_cpu_map_entry *old_rcpu;
 408
 409        old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
 410        if (old_rcpu) {
 411                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 412                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 413                schedule_work(&old_rcpu->kthread_stop_wq);
 414        }
 415}
 416
 417static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 418{
 419        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 420        u32 key_cpu = *(u32 *)key;
 421
 422        if (key_cpu >= map->max_entries)
 423                return -EINVAL;
 424
 425        /* notice caller map_delete_elem() use preempt_disable() */
 426        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 427        return 0;
 428}
 429
 430static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 431                               u64 map_flags)
 432{
 433        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 434        struct bpf_cpu_map_entry *rcpu;
 435
 436        /* Array index key correspond to CPU number */
 437        u32 key_cpu = *(u32 *)key;
 438        /* Value is the queue size */
 439        u32 qsize = *(u32 *)value;
 440
 441        if (unlikely(map_flags > BPF_EXIST))
 442                return -EINVAL;
 443        if (unlikely(key_cpu >= cmap->map.max_entries))
 444                return -E2BIG;
 445        if (unlikely(map_flags == BPF_NOEXIST))
 446                return -EEXIST;
 447        if (unlikely(qsize > 16384)) /* sanity limit on qsize */
 448                return -EOVERFLOW;
 449
 450        /* Make sure CPU is a valid possible cpu */
 451        if (!cpu_possible(key_cpu))
 452                return -ENODEV;
 453
 454        if (qsize == 0) {
 455                rcpu = NULL; /* Same as deleting */
 456        } else {
 457                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 458                rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
 459                if (!rcpu)
 460                        return -ENOMEM;
 461        }
 462        rcu_read_lock();
 463        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 464        rcu_read_unlock();
 465        return 0;
 466}
 467
 468static void cpu_map_free(struct bpf_map *map)
 469{
 470        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 471        int cpu;
 472        u32 i;
 473
 474        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 475         * so the bpf programs (can be more than one that used this map) were
 476         * disconnected from events. Wait for outstanding critical sections in
 477         * these programs to complete. The rcu critical section only guarantees
 478         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 479         * It does __not__ ensure pending flush operations (if any) are
 480         * complete.
 481         */
 482        synchronize_rcu();
 483
 484        /* To ensure all pending flush operations have completed wait for flush
 485         * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
 486         * Because the above synchronize_rcu() ensures the map is disconnected
 487         * from the program we can assume no new bits will be set.
 488         */
 489        for_each_online_cpu(cpu) {
 490                unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
 491
 492                while (!bitmap_empty(bitmap, cmap->map.max_entries))
 493                        cond_resched();
 494        }
 495
 496        /* For cpu_map the remote CPUs can still be using the entries
 497         * (struct bpf_cpu_map_entry).
 498         */
 499        for (i = 0; i < cmap->map.max_entries; i++) {
 500                struct bpf_cpu_map_entry *rcpu;
 501
 502                rcpu = READ_ONCE(cmap->cpu_map[i]);
 503                if (!rcpu)
 504                        continue;
 505
 506                /* bq flush and cleanup happens after RCU graze-period */
 507                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 508        }
 509        free_percpu(cmap->flush_needed);
 510        bpf_map_area_free(cmap->cpu_map);
 511        kfree(cmap);
 512}
 513
 514struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 515{
 516        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 517        struct bpf_cpu_map_entry *rcpu;
 518
 519        if (key >= map->max_entries)
 520                return NULL;
 521
 522        rcpu = READ_ONCE(cmap->cpu_map[key]);
 523        return rcpu;
 524}
 525
 526static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 527{
 528        struct bpf_cpu_map_entry *rcpu =
 529                __cpu_map_lookup_elem(map, *(u32 *)key);
 530
 531        return rcpu ? &rcpu->qsize : NULL;
 532}
 533
 534static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 535{
 536        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 537        u32 index = key ? *(u32 *)key : U32_MAX;
 538        u32 *next = next_key;
 539
 540        if (index >= cmap->map.max_entries) {
 541                *next = 0;
 542                return 0;
 543        }
 544
 545        if (index == cmap->map.max_entries - 1)
 546                return -ENOENT;
 547        *next = index + 1;
 548        return 0;
 549}
 550
 551const struct bpf_map_ops cpu_map_ops = {
 552        .map_alloc              = cpu_map_alloc,
 553        .map_free               = cpu_map_free,
 554        .map_delete_elem        = cpu_map_delete_elem,
 555        .map_update_elem        = cpu_map_update_elem,
 556        .map_lookup_elem        = cpu_map_lookup_elem,
 557        .map_get_next_key       = cpu_map_get_next_key,
 558};
 559
 560static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
 561                             struct xdp_bulk_queue *bq, bool in_napi_ctx)
 562{
 563        unsigned int processed = 0, drops = 0;
 564        const int to_cpu = rcpu->cpu;
 565        struct ptr_ring *q;
 566        int i;
 567
 568        if (unlikely(!bq->count))
 569                return 0;
 570
 571        q = rcpu->queue;
 572        spin_lock(&q->producer_lock);
 573
 574        for (i = 0; i < bq->count; i++) {
 575                struct xdp_frame *xdpf = bq->q[i];
 576                int err;
 577
 578                err = __ptr_ring_produce(q, xdpf);
 579                if (err) {
 580                        drops++;
 581                        if (likely(in_napi_ctx))
 582                                xdp_return_frame_rx_napi(xdpf);
 583                        else
 584                                xdp_return_frame(xdpf);
 585                }
 586                processed++;
 587        }
 588        bq->count = 0;
 589        spin_unlock(&q->producer_lock);
 590
 591        /* Feedback loop via tracepoints */
 592        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 593        return 0;
 594}
 595
 596/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 597 * Thus, safe percpu variable access.
 598 */
 599static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 600{
 601        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 602
 603        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 604                bq_flush_to_queue(rcpu, bq, true);
 605
 606        /* Notice, xdp_buff/page MUST be queued here, long enough for
 607         * driver to code invoking us to finished, due to driver
 608         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 609         *
 610         * Thus, incoming xdp_frame is always queued here (else we race
 611         * with another CPU on page-refcnt and remaining driver code).
 612         * Queue time is very short, as driver will invoke flush
 613         * operation, when completing napi->poll call.
 614         */
 615        bq->q[bq->count++] = xdpf;
 616        return 0;
 617}
 618
 619int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
 620                    struct net_device *dev_rx)
 621{
 622        struct xdp_frame *xdpf;
 623
 624        xdpf = convert_to_xdp_frame(xdp);
 625        if (unlikely(!xdpf))
 626                return -EOVERFLOW;
 627
 628        /* Info needed when constructing SKB on remote CPU */
 629        xdpf->dev_rx = dev_rx;
 630
 631        bq_enqueue(rcpu, xdpf);
 632        return 0;
 633}
 634
 635void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
 636{
 637        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 638        unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
 639
 640        __set_bit(bit, bitmap);
 641}
 642
 643void __cpu_map_flush(struct bpf_map *map)
 644{
 645        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 646        unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
 647        u32 bit;
 648
 649        /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
 650         * and __cpu_map_flush() happen on same CPU. Thus, the percpu
 651         * bitmap indicate which percpu bulkq have packets.
 652         */
 653        for_each_set_bit(bit, bitmap, map->max_entries) {
 654                struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
 655                struct xdp_bulk_queue *bq;
 656
 657                /* This is possible if entry is removed by user space
 658                 * between xdp redirect and flush op.
 659                 */
 660                if (unlikely(!rcpu))
 661                        continue;
 662
 663                __clear_bit(bit, bitmap);
 664
 665                /* Flush all frames in bulkq to real queue */
 666                bq = this_cpu_ptr(rcpu->bulkq);
 667                bq_flush_to_queue(rcpu, bq, true);
 668
 669                /* If already running, costs spin_lock_irqsave + smb_mb */
 670                wake_up_process(rcpu->kthread);
 671        }
 672}
 673