linux/mm/slob.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLOB Allocator: Simple List Of Blocks
   4 *
   5 * Matt Mackall <mpm@selenic.com> 12/30/03
   6 *
   7 * NUMA support by Paul Mundt, 2007.
   8 *
   9 * How SLOB works:
  10 *
  11 * The core of SLOB is a traditional K&R style heap allocator, with
  12 * support for returning aligned objects. The granularity of this
  13 * allocator is as little as 2 bytes, however typically most architectures
  14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  15 *
  16 * The slob heap is a set of linked list of pages from alloc_pages(),
  17 * and within each page, there is a singly-linked list of free blocks
  18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
  19 * heap pages are segregated into three lists, with objects less than
  20 * 256 bytes, objects less than 1024 bytes, and all other objects.
  21 *
  22 * Allocation from heap involves first searching for a page with
  23 * sufficient free blocks (using a next-fit-like approach) followed by
  24 * a first-fit scan of the page. Deallocation inserts objects back
  25 * into the free list in address order, so this is effectively an
  26 * address-ordered first fit.
  27 *
  28 * Above this is an implementation of kmalloc/kfree. Blocks returned
  29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  31 * alloc_pages() directly, allocating compound pages so the page order
  32 * does not have to be separately tracked.
  33 * These objects are detected in kfree() because PageSlab()
  34 * is false for them.
  35 *
  36 * SLAB is emulated on top of SLOB by simply calling constructors and
  37 * destructors for every SLAB allocation. Objects are returned with the
  38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39 * case the low-level allocator will fragment blocks to create the proper
  40 * alignment. Again, objects of page-size or greater are allocated by
  41 * calling alloc_pages(). As SLAB objects know their size, no separate
  42 * size bookkeeping is necessary and there is essentially no allocation
  43 * space overhead, and compound pages aren't needed for multi-page
  44 * allocations.
  45 *
  46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47 * logic down to the page allocator, and simply doing the node accounting
  48 * on the upper levels. In the event that a node id is explicitly
  49 * provided, __alloc_pages_node() with the specified node id is used
  50 * instead. The common case (or when the node id isn't explicitly provided)
  51 * will default to the current node, as per numa_node_id().
  52 *
  53 * Node aware pages are still inserted in to the global freelist, and
  54 * these are scanned for by matching against the node id encoded in the
  55 * page flags. As a result, block allocations that can be satisfied from
  56 * the freelist will only be done so on pages residing on the same node,
  57 * in order to prevent random node placement.
  58 */
  59
  60#include <linux/kernel.h>
  61#include <linux/slab.h>
  62
  63#include <linux/mm.h>
  64#include <linux/swap.h> /* struct reclaim_state */
  65#include <linux/cache.h>
  66#include <linux/init.h>
  67#include <linux/export.h>
  68#include <linux/rcupdate.h>
  69#include <linux/list.h>
  70#include <linux/kmemleak.h>
  71
  72#include <trace/events/kmem.h>
  73
  74#include <linux/atomic.h>
  75
  76#include "slab.h"
  77/*
  78 * slob_block has a field 'units', which indicates size of block if +ve,
  79 * or offset of next block if -ve (in SLOB_UNITs).
  80 *
  81 * Free blocks of size 1 unit simply contain the offset of the next block.
  82 * Those with larger size contain their size in the first SLOB_UNIT of
  83 * memory, and the offset of the next free block in the second SLOB_UNIT.
  84 */
  85#if PAGE_SIZE <= (32767 * 2)
  86typedef s16 slobidx_t;
  87#else
  88typedef s32 slobidx_t;
  89#endif
  90
  91struct slob_block {
  92        slobidx_t units;
  93};
  94typedef struct slob_block slob_t;
  95
  96/*
  97 * All partially free slob pages go on these lists.
  98 */
  99#define SLOB_BREAK1 256
 100#define SLOB_BREAK2 1024
 101static LIST_HEAD(free_slob_small);
 102static LIST_HEAD(free_slob_medium);
 103static LIST_HEAD(free_slob_large);
 104
 105/*
 106 * slob_page_free: true for pages on free_slob_pages list.
 107 */
 108static inline int slob_page_free(struct page *sp)
 109{
 110        return PageSlobFree(sp);
 111}
 112
 113static void set_slob_page_free(struct page *sp, struct list_head *list)
 114{
 115        list_add(&sp->lru, list);
 116        __SetPageSlobFree(sp);
 117}
 118
 119static inline void clear_slob_page_free(struct page *sp)
 120{
 121        list_del(&sp->lru);
 122        __ClearPageSlobFree(sp);
 123}
 124
 125#define SLOB_UNIT sizeof(slob_t)
 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
 127
 128/*
 129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 131 * the block using call_rcu.
 132 */
 133struct slob_rcu {
 134        struct rcu_head head;
 135        int size;
 136};
 137
 138/*
 139 * slob_lock protects all slob allocator structures.
 140 */
 141static DEFINE_SPINLOCK(slob_lock);
 142
 143/*
 144 * Encode the given size and next info into a free slob block s.
 145 */
 146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 147{
 148        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 149        slobidx_t offset = next - base;
 150
 151        if (size > 1) {
 152                s[0].units = size;
 153                s[1].units = offset;
 154        } else
 155                s[0].units = -offset;
 156}
 157
 158/*
 159 * Return the size of a slob block.
 160 */
 161static slobidx_t slob_units(slob_t *s)
 162{
 163        if (s->units > 0)
 164                return s->units;
 165        return 1;
 166}
 167
 168/*
 169 * Return the next free slob block pointer after this one.
 170 */
 171static slob_t *slob_next(slob_t *s)
 172{
 173        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 174        slobidx_t next;
 175
 176        if (s[0].units < 0)
 177                next = -s[0].units;
 178        else
 179                next = s[1].units;
 180        return base+next;
 181}
 182
 183/*
 184 * Returns true if s is the last free block in its page.
 185 */
 186static int slob_last(slob_t *s)
 187{
 188        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 189}
 190
 191static void *slob_new_pages(gfp_t gfp, int order, int node)
 192{
 193        void *page;
 194
 195#ifdef CONFIG_NUMA
 196        if (node != NUMA_NO_NODE)
 197                page = __alloc_pages_node(node, gfp, order);
 198        else
 199#endif
 200                page = alloc_pages(gfp, order);
 201
 202        if (!page)
 203                return NULL;
 204
 205        return page_address(page);
 206}
 207
 208static void slob_free_pages(void *b, int order)
 209{
 210        if (current->reclaim_state)
 211                current->reclaim_state->reclaimed_slab += 1 << order;
 212        free_pages((unsigned long)b, order);
 213}
 214
 215/*
 216 * Allocate a slob block within a given slob_page sp.
 217 */
 218static void *slob_page_alloc(struct page *sp, size_t size, int align)
 219{
 220        slob_t *prev, *cur, *aligned = NULL;
 221        int delta = 0, units = SLOB_UNITS(size);
 222
 223        for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 224                slobidx_t avail = slob_units(cur);
 225
 226                if (align) {
 227                        aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 228                        delta = aligned - cur;
 229                }
 230                if (avail >= units + delta) { /* room enough? */
 231                        slob_t *next;
 232
 233                        if (delta) { /* need to fragment head to align? */
 234                                next = slob_next(cur);
 235                                set_slob(aligned, avail - delta, next);
 236                                set_slob(cur, delta, aligned);
 237                                prev = cur;
 238                                cur = aligned;
 239                                avail = slob_units(cur);
 240                        }
 241
 242                        next = slob_next(cur);
 243                        if (avail == units) { /* exact fit? unlink. */
 244                                if (prev)
 245                                        set_slob(prev, slob_units(prev), next);
 246                                else
 247                                        sp->freelist = next;
 248                        } else { /* fragment */
 249                                if (prev)
 250                                        set_slob(prev, slob_units(prev), cur + units);
 251                                else
 252                                        sp->freelist = cur + units;
 253                                set_slob(cur + units, avail - units, next);
 254                        }
 255
 256                        sp->units -= units;
 257                        if (!sp->units)
 258                                clear_slob_page_free(sp);
 259                        return cur;
 260                }
 261                if (slob_last(cur))
 262                        return NULL;
 263        }
 264}
 265
 266/*
 267 * slob_alloc: entry point into the slob allocator.
 268 */
 269static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 270{
 271        struct page *sp;
 272        struct list_head *prev;
 273        struct list_head *slob_list;
 274        slob_t *b = NULL;
 275        unsigned long flags;
 276
 277        if (size < SLOB_BREAK1)
 278                slob_list = &free_slob_small;
 279        else if (size < SLOB_BREAK2)
 280                slob_list = &free_slob_medium;
 281        else
 282                slob_list = &free_slob_large;
 283
 284        spin_lock_irqsave(&slob_lock, flags);
 285        /* Iterate through each partially free page, try to find room */
 286        list_for_each_entry(sp, slob_list, lru) {
 287#ifdef CONFIG_NUMA
 288                /*
 289                 * If there's a node specification, search for a partial
 290                 * page with a matching node id in the freelist.
 291                 */
 292                if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
 293                        continue;
 294#endif
 295                /* Enough room on this page? */
 296                if (sp->units < SLOB_UNITS(size))
 297                        continue;
 298
 299                /* Attempt to alloc */
 300                prev = sp->lru.prev;
 301                b = slob_page_alloc(sp, size, align);
 302                if (!b)
 303                        continue;
 304
 305                /* Improve fragment distribution and reduce our average
 306                 * search time by starting our next search here. (see
 307                 * Knuth vol 1, sec 2.5, pg 449) */
 308                if (prev != slob_list->prev &&
 309                                slob_list->next != prev->next)
 310                        list_move_tail(slob_list, prev->next);
 311                break;
 312        }
 313        spin_unlock_irqrestore(&slob_lock, flags);
 314
 315        /* Not enough space: must allocate a new page */
 316        if (!b) {
 317                b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 318                if (!b)
 319                        return NULL;
 320                sp = virt_to_page(b);
 321                __SetPageSlab(sp);
 322
 323                spin_lock_irqsave(&slob_lock, flags);
 324                sp->units = SLOB_UNITS(PAGE_SIZE);
 325                sp->freelist = b;
 326                INIT_LIST_HEAD(&sp->lru);
 327                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 328                set_slob_page_free(sp, slob_list);
 329                b = slob_page_alloc(sp, size, align);
 330                BUG_ON(!b);
 331                spin_unlock_irqrestore(&slob_lock, flags);
 332        }
 333        if (unlikely(gfp & __GFP_ZERO))
 334                memset(b, 0, size);
 335        return b;
 336}
 337
 338/*
 339 * slob_free: entry point into the slob allocator.
 340 */
 341static void slob_free(void *block, int size)
 342{
 343        struct page *sp;
 344        slob_t *prev, *next, *b = (slob_t *)block;
 345        slobidx_t units;
 346        unsigned long flags;
 347        struct list_head *slob_list;
 348
 349        if (unlikely(ZERO_OR_NULL_PTR(block)))
 350                return;
 351        BUG_ON(!size);
 352
 353        sp = virt_to_page(block);
 354        units = SLOB_UNITS(size);
 355
 356        spin_lock_irqsave(&slob_lock, flags);
 357
 358        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 359                /* Go directly to page allocator. Do not pass slob allocator */
 360                if (slob_page_free(sp))
 361                        clear_slob_page_free(sp);
 362                spin_unlock_irqrestore(&slob_lock, flags);
 363                __ClearPageSlab(sp);
 364                page_mapcount_reset(sp);
 365                slob_free_pages(b, 0);
 366                return;
 367        }
 368
 369        if (!slob_page_free(sp)) {
 370                /* This slob page is about to become partially free. Easy! */
 371                sp->units = units;
 372                sp->freelist = b;
 373                set_slob(b, units,
 374                        (void *)((unsigned long)(b +
 375                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 376                if (size < SLOB_BREAK1)
 377                        slob_list = &free_slob_small;
 378                else if (size < SLOB_BREAK2)
 379                        slob_list = &free_slob_medium;
 380                else
 381                        slob_list = &free_slob_large;
 382                set_slob_page_free(sp, slob_list);
 383                goto out;
 384        }
 385
 386        /*
 387         * Otherwise the page is already partially free, so find reinsertion
 388         * point.
 389         */
 390        sp->units += units;
 391
 392        if (b < (slob_t *)sp->freelist) {
 393                if (b + units == sp->freelist) {
 394                        units += slob_units(sp->freelist);
 395                        sp->freelist = slob_next(sp->freelist);
 396                }
 397                set_slob(b, units, sp->freelist);
 398                sp->freelist = b;
 399        } else {
 400                prev = sp->freelist;
 401                next = slob_next(prev);
 402                while (b > next) {
 403                        prev = next;
 404                        next = slob_next(prev);
 405                }
 406
 407                if (!slob_last(prev) && b + units == next) {
 408                        units += slob_units(next);
 409                        set_slob(b, units, slob_next(next));
 410                } else
 411                        set_slob(b, units, next);
 412
 413                if (prev + slob_units(prev) == b) {
 414                        units = slob_units(b) + slob_units(prev);
 415                        set_slob(prev, units, slob_next(b));
 416                } else
 417                        set_slob(prev, slob_units(prev), b);
 418        }
 419out:
 420        spin_unlock_irqrestore(&slob_lock, flags);
 421}
 422
 423/*
 424 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 425 */
 426
 427static __always_inline void *
 428__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 429{
 430        unsigned int *m;
 431        int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 432        void *ret;
 433
 434        gfp &= gfp_allowed_mask;
 435
 436        fs_reclaim_acquire(gfp);
 437        fs_reclaim_release(gfp);
 438
 439        if (size < PAGE_SIZE - align) {
 440                if (!size)
 441                        return ZERO_SIZE_PTR;
 442
 443                m = slob_alloc(size + align, gfp, align, node);
 444
 445                if (!m)
 446                        return NULL;
 447                *m = size;
 448                ret = (void *)m + align;
 449
 450                trace_kmalloc_node(caller, ret,
 451                                   size, size + align, gfp, node);
 452        } else {
 453                unsigned int order = get_order(size);
 454
 455                if (likely(order))
 456                        gfp |= __GFP_COMP;
 457                ret = slob_new_pages(gfp, order, node);
 458
 459                trace_kmalloc_node(caller, ret,
 460                                   size, PAGE_SIZE << order, gfp, node);
 461        }
 462
 463        kmemleak_alloc(ret, size, 1, gfp);
 464        return ret;
 465}
 466
 467void *__kmalloc(size_t size, gfp_t gfp)
 468{
 469        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
 470}
 471EXPORT_SYMBOL(__kmalloc);
 472
 473void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 474{
 475        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 476}
 477
 478#ifdef CONFIG_NUMA
 479void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 480                                        int node, unsigned long caller)
 481{
 482        return __do_kmalloc_node(size, gfp, node, caller);
 483}
 484#endif
 485
 486void kfree(const void *block)
 487{
 488        struct page *sp;
 489
 490        trace_kfree(_RET_IP_, block);
 491
 492        if (unlikely(ZERO_OR_NULL_PTR(block)))
 493                return;
 494        kmemleak_free(block);
 495
 496        sp = virt_to_page(block);
 497        if (PageSlab(sp)) {
 498                int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 499                unsigned int *m = (unsigned int *)(block - align);
 500                slob_free(m, *m + align);
 501        } else
 502                __free_pages(sp, compound_order(sp));
 503}
 504EXPORT_SYMBOL(kfree);
 505
 506/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 507size_t ksize(const void *block)
 508{
 509        struct page *sp;
 510        int align;
 511        unsigned int *m;
 512
 513        BUG_ON(!block);
 514        if (unlikely(block == ZERO_SIZE_PTR))
 515                return 0;
 516
 517        sp = virt_to_page(block);
 518        if (unlikely(!PageSlab(sp)))
 519                return PAGE_SIZE << compound_order(sp);
 520
 521        align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 522        m = (unsigned int *)(block - align);
 523        return SLOB_UNITS(*m) * SLOB_UNIT;
 524}
 525EXPORT_SYMBOL(ksize);
 526
 527int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
 528{
 529        if (flags & SLAB_TYPESAFE_BY_RCU) {
 530                /* leave room for rcu footer at the end of object */
 531                c->size += sizeof(struct slob_rcu);
 532        }
 533        c->flags = flags;
 534        return 0;
 535}
 536
 537static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 538{
 539        void *b;
 540
 541        flags &= gfp_allowed_mask;
 542
 543        fs_reclaim_acquire(flags);
 544        fs_reclaim_release(flags);
 545
 546        if (c->size < PAGE_SIZE) {
 547                b = slob_alloc(c->size, flags, c->align, node);
 548                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 549                                            SLOB_UNITS(c->size) * SLOB_UNIT,
 550                                            flags, node);
 551        } else {
 552                b = slob_new_pages(flags, get_order(c->size), node);
 553                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 554                                            PAGE_SIZE << get_order(c->size),
 555                                            flags, node);
 556        }
 557
 558        if (b && c->ctor) {
 559                WARN_ON_ONCE(flags & __GFP_ZERO);
 560                c->ctor(b);
 561        }
 562
 563        kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 564        return b;
 565}
 566
 567void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 568{
 569        return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 570}
 571EXPORT_SYMBOL(kmem_cache_alloc);
 572
 573#ifdef CONFIG_NUMA
 574void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 575{
 576        return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 577}
 578EXPORT_SYMBOL(__kmalloc_node);
 579
 580void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
 581{
 582        return slob_alloc_node(cachep, gfp, node);
 583}
 584EXPORT_SYMBOL(kmem_cache_alloc_node);
 585#endif
 586
 587static void __kmem_cache_free(void *b, int size)
 588{
 589        if (size < PAGE_SIZE)
 590                slob_free(b, size);
 591        else
 592                slob_free_pages(b, get_order(size));
 593}
 594
 595static void kmem_rcu_free(struct rcu_head *head)
 596{
 597        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 598        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 599
 600        __kmem_cache_free(b, slob_rcu->size);
 601}
 602
 603void kmem_cache_free(struct kmem_cache *c, void *b)
 604{
 605        kmemleak_free_recursive(b, c->flags);
 606        if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 607                struct slob_rcu *slob_rcu;
 608                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 609                slob_rcu->size = c->size;
 610                call_rcu(&slob_rcu->head, kmem_rcu_free);
 611        } else {
 612                __kmem_cache_free(b, c->size);
 613        }
 614
 615        trace_kmem_cache_free(_RET_IP_, b);
 616}
 617EXPORT_SYMBOL(kmem_cache_free);
 618
 619void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 620{
 621        __kmem_cache_free_bulk(s, size, p);
 622}
 623EXPORT_SYMBOL(kmem_cache_free_bulk);
 624
 625int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 626                                                                void **p)
 627{
 628        return __kmem_cache_alloc_bulk(s, flags, size, p);
 629}
 630EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 631
 632int __kmem_cache_shutdown(struct kmem_cache *c)
 633{
 634        /* No way to check for remaining objects */
 635        return 0;
 636}
 637
 638void __kmem_cache_release(struct kmem_cache *c)
 639{
 640}
 641
 642int __kmem_cache_shrink(struct kmem_cache *d)
 643{
 644        return 0;
 645}
 646
 647struct kmem_cache kmem_cache_boot = {
 648        .name = "kmem_cache",
 649        .size = sizeof(struct kmem_cache),
 650        .flags = SLAB_PANIC,
 651        .align = ARCH_KMALLOC_MINALIGN,
 652};
 653
 654void __init kmem_cache_init(void)
 655{
 656        kmem_cache = &kmem_cache_boot;
 657        slab_state = UP;
 658}
 659
 660void __init kmem_cache_init_late(void)
 661{
 662        slab_state = FULL;
 663}
 664