linux/Documentation/lguest/lguest.c
<<
>>
Prefs
   1/*P:100 This is the Launcher code, a simple program which lays out the
   2 * "physical" memory for the new Guest by mapping the kernel image and the
   3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
   4:*/
   5#define _LARGEFILE64_SOURCE
   6#define _GNU_SOURCE
   7#include <stdio.h>
   8#include <string.h>
   9#include <unistd.h>
  10#include <err.h>
  11#include <stdint.h>
  12#include <stdlib.h>
  13#include <elf.h>
  14#include <sys/mman.h>
  15#include <sys/param.h>
  16#include <sys/types.h>
  17#include <sys/stat.h>
  18#include <sys/wait.h>
  19#include <fcntl.h>
  20#include <stdbool.h>
  21#include <errno.h>
  22#include <ctype.h>
  23#include <sys/socket.h>
  24#include <sys/ioctl.h>
  25#include <sys/time.h>
  26#include <time.h>
  27#include <netinet/in.h>
  28#include <net/if.h>
  29#include <linux/sockios.h>
  30#include <linux/if_tun.h>
  31#include <sys/uio.h>
  32#include <termios.h>
  33#include <getopt.h>
  34#include <zlib.h>
  35#include <assert.h>
  36#include <sched.h>
  37#include "linux/lguest_launcher.h"
  38#include "linux/virtio_config.h"
  39#include "linux/virtio_net.h"
  40#include "linux/virtio_blk.h"
  41#include "linux/virtio_console.h"
  42#include "linux/virtio_ring.h"
  43#include "asm-x86/bootparam.h"
  44/*L:110 We can ignore the 38 include files we need for this program, but I do
  45 * want to draw attention to the use of kernel-style types.
  46 *
  47 * As Linus said, "C is a Spartan language, and so should your naming be."  I
  48 * like these abbreviations, so we define them here.  Note that u64 is always
  49 * unsigned long long, which works on all Linux systems: this means that we can
  50 * use %llu in printf for any u64. */
  51typedef unsigned long long u64;
  52typedef uint32_t u32;
  53typedef uint16_t u16;
  54typedef uint8_t u8;
  55/*:*/
  56
  57#define PAGE_PRESENT 0x7        /* Present, RW, Execute */
  58#define NET_PEERNUM 1
  59#define BRIDGE_PFX "bridge:"
  60#ifndef SIOCBRADDIF
  61#define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
  62#endif
  63/* We can have up to 256 pages for devices. */
  64#define DEVICE_PAGES 256
  65/* This will occupy 2 pages: it must be a power of 2. */
  66#define VIRTQUEUE_NUM 128
  67
  68/*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
  69 * this, and although I wouldn't recommend it, it works quite nicely here. */
  70static bool verbose;
  71#define verbose(args...) \
  72        do { if (verbose) printf(args); } while(0)
  73/*:*/
  74
  75/* The pipe to send commands to the waker process */
  76static int waker_fd;
  77/* The pointer to the start of guest memory. */
  78static void *guest_base;
  79/* The maximum guest physical address allowed, and maximum possible. */
  80static unsigned long guest_limit, guest_max;
  81
  82/* This is our list of devices. */
  83struct device_list
  84{
  85        /* Summary information about the devices in our list: ready to pass to
  86         * select() to ask which need servicing.*/
  87        fd_set infds;
  88        int max_infd;
  89
  90        /* Counter to assign interrupt numbers. */
  91        unsigned int next_irq;
  92
  93        /* Counter to print out convenient device numbers. */
  94        unsigned int device_num;
  95
  96        /* The descriptor page for the devices. */
  97        u8 *descpage;
  98
  99        /* The tail of the last descriptor. */
 100        unsigned int desc_used;
 101
 102        /* A single linked list of devices. */
 103        struct device *dev;
 104        /* ... And an end pointer so we can easily append new devices */
 105        struct device **lastdev;
 106};
 107
 108/* The list of Guest devices, based on command line arguments. */
 109static struct device_list devices;
 110
 111/* The device structure describes a single device. */
 112struct device
 113{
 114        /* The linked-list pointer. */
 115        struct device *next;
 116
 117        /* The this device's descriptor, as mapped into the Guest. */
 118        struct lguest_device_desc *desc;
 119
 120        /* The name of this device, for --verbose. */
 121        const char *name;
 122
 123        /* If handle_input is set, it wants to be called when this file
 124         * descriptor is ready. */
 125        int fd;
 126        bool (*handle_input)(int fd, struct device *me);
 127
 128        /* Any queues attached to this device */
 129        struct virtqueue *vq;
 130
 131        /* Device-specific data. */
 132        void *priv;
 133};
 134
 135/* The virtqueue structure describes a queue attached to a device. */
 136struct virtqueue
 137{
 138        struct virtqueue *next;
 139
 140        /* Which device owns me. */
 141        struct device *dev;
 142
 143        /* The configuration for this queue. */
 144        struct lguest_vqconfig config;
 145
 146        /* The actual ring of buffers. */
 147        struct vring vring;
 148
 149        /* Last available index we saw. */
 150        u16 last_avail_idx;
 151
 152        /* The routine to call when the Guest pings us. */
 153        void (*handle_output)(int fd, struct virtqueue *me);
 154};
 155
 156/* Since guest is UP and we don't run at the same time, we don't need barriers.
 157 * But I include them in the code in case others copy it. */
 158#define wmb()
 159
 160/* Convert an iovec element to the given type.
 161 *
 162 * This is a fairly ugly trick: we need to know the size of the type and
 163 * alignment requirement to check the pointer is kosher.  It's also nice to
 164 * have the name of the type in case we report failure.
 165 *
 166 * Typing those three things all the time is cumbersome and error prone, so we
 167 * have a macro which sets them all up and passes to the real function. */
 168#define convert(iov, type) \
 169        ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
 170
 171static void *_convert(struct iovec *iov, size_t size, size_t align,
 172                      const char *name)
 173{
 174        if (iov->iov_len != size)
 175                errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
 176        if ((unsigned long)iov->iov_base % align != 0)
 177                errx(1, "Bad alignment %p for %s", iov->iov_base, name);
 178        return iov->iov_base;
 179}
 180
 181/* The virtio configuration space is defined to be little-endian.  x86 is
 182 * little-endian too, but it's nice to be explicit so we have these helpers. */
 183#define cpu_to_le16(v16) (v16)
 184#define cpu_to_le32(v32) (v32)
 185#define cpu_to_le64(v64) (v64)
 186#define le16_to_cpu(v16) (v16)
 187#define le32_to_cpu(v32) (v32)
 188#define le64_to_cpu(v32) (v64)
 189
 190/*L:100 The Launcher code itself takes us out into userspace, that scary place
 191 * where pointers run wild and free!  Unfortunately, like most userspace
 192 * programs, it's quite boring (which is why everyone likes to hack on the
 193 * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
 194 * will get you through this section.  Or, maybe not.
 195 *
 196 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 197 * memory and stores it in "guest_base".  In other words, Guest physical ==
 198 * Launcher virtual with an offset.
 199 *
 200 * This can be tough to get your head around, but usually it just means that we
 201 * use these trivial conversion functions when the Guest gives us it's
 202 * "physical" addresses: */
 203static void *from_guest_phys(unsigned long addr)
 204{
 205        return guest_base + addr;
 206}
 207
 208static unsigned long to_guest_phys(const void *addr)
 209{
 210        return (addr - guest_base);
 211}
 212
 213/*L:130
 214 * Loading the Kernel.
 215 *
 216 * We start with couple of simple helper routines.  open_or_die() avoids
 217 * error-checking code cluttering the callers: */
 218static int open_or_die(const char *name, int flags)
 219{
 220        int fd = open(name, flags);
 221        if (fd < 0)
 222                err(1, "Failed to open %s", name);
 223        return fd;
 224}
 225
 226/* map_zeroed_pages() takes a number of pages. */
 227static void *map_zeroed_pages(unsigned int num)
 228{
 229        int fd = open_or_die("/dev/zero", O_RDONLY);
 230        void *addr;
 231
 232        /* We use a private mapping (ie. if we write to the page, it will be
 233         * copied). */
 234        addr = mmap(NULL, getpagesize() * num,
 235                    PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
 236        if (addr == MAP_FAILED)
 237                err(1, "Mmaping %u pages of /dev/zero", num);
 238
 239        return addr;
 240}
 241
 242/* Get some more pages for a device. */
 243static void *get_pages(unsigned int num)
 244{
 245        void *addr = from_guest_phys(guest_limit);
 246
 247        guest_limit += num * getpagesize();
 248        if (guest_limit > guest_max)
 249                errx(1, "Not enough memory for devices");
 250        return addr;
 251}
 252
 253/* This routine is used to load the kernel or initrd.  It tries mmap, but if
 254 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 255 * it falls back to reading the memory in. */
 256static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 257{
 258        ssize_t r;
 259
 260        /* We map writable even though for some segments are marked read-only.
 261         * The kernel really wants to be writable: it patches its own
 262         * instructions.
 263         *
 264         * MAP_PRIVATE means that the page won't be copied until a write is
 265         * done to it.  This allows us to share untouched memory between
 266         * Guests. */
 267        if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
 268                 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
 269                return;
 270
 271        /* pread does a seek and a read in one shot: saves a few lines. */
 272        r = pread(fd, addr, len, offset);
 273        if (r != len)
 274                err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 275}
 276
 277/* This routine takes an open vmlinux image, which is in ELF, and maps it into
 278 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 279 * by all modern binaries on Linux including the kernel.
 280 *
 281 * The ELF headers give *two* addresses: a physical address, and a virtual
 282 * address.  We use the physical address; the Guest will map itself to the
 283 * virtual address.
 284 *
 285 * We return the starting address. */
 286static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 287{
 288        Elf32_Phdr phdr[ehdr->e_phnum];
 289        unsigned int i;
 290
 291        /* Sanity checks on the main ELF header: an x86 executable with a
 292         * reasonable number of correctly-sized program headers. */
 293        if (ehdr->e_type != ET_EXEC
 294            || ehdr->e_machine != EM_386
 295            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
 296            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
 297                errx(1, "Malformed elf header");
 298
 299        /* An ELF executable contains an ELF header and a number of "program"
 300         * headers which indicate which parts ("segments") of the program to
 301         * load where. */
 302
 303        /* We read in all the program headers at once: */
 304        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
 305                err(1, "Seeking to program headers");
 306        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
 307                err(1, "Reading program headers");
 308
 309        /* Try all the headers: there are usually only three.  A read-only one,
 310         * a read-write one, and a "note" section which isn't loadable. */
 311        for (i = 0; i < ehdr->e_phnum; i++) {
 312                /* If this isn't a loadable segment, we ignore it */
 313                if (phdr[i].p_type != PT_LOAD)
 314                        continue;
 315
 316                verbose("Section %i: size %i addr %p\n",
 317                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 318
 319                /* We map this section of the file at its physical address. */
 320                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
 321                       phdr[i].p_offset, phdr[i].p_filesz);
 322        }
 323
 324        /* The entry point is given in the ELF header. */
 325        return ehdr->e_entry;
 326}
 327
 328/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
 329 * supposed to jump into it and it will unpack itself.  We used to have to
 330 * perform some hairy magic because the unpacking code scared me.
 331 *
 332 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
 333 * a small patch to jump over the tricky bits in the Guest, so now we just read
 334 * the funky header so we know where in the file to load, and away we go! */
 335static unsigned long load_bzimage(int fd)
 336{
 337        struct boot_params boot;
 338        int r;
 339        /* Modern bzImages get loaded at 1M. */
 340        void *p = from_guest_phys(0x100000);
 341
 342        /* Go back to the start of the file and read the header.  It should be
 343         * a Linux boot header (see Documentation/i386/boot.txt) */
 344        lseek(fd, 0, SEEK_SET);
 345        read(fd, &boot, sizeof(boot));
 346
 347        /* Inside the setup_hdr, we expect the magic "HdrS" */
 348        if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
 349                errx(1, "This doesn't look like a bzImage to me");
 350
 351        /* Skip over the extra sectors of the header. */
 352        lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
 353
 354        /* Now read everything into memory. in nice big chunks. */
 355        while ((r = read(fd, p, 65536)) > 0)
 356                p += r;
 357
 358        /* Finally, code32_start tells us where to enter the kernel. */
 359        return boot.hdr.code32_start;
 360}
 361
 362/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
 363 * come wrapped up in the self-decompressing "bzImage" format.  With a little
 364 * work, we can load those, too. */
 365static unsigned long load_kernel(int fd)
 366{
 367        Elf32_Ehdr hdr;
 368
 369        /* Read in the first few bytes. */
 370        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
 371                err(1, "Reading kernel");
 372
 373        /* If it's an ELF file, it starts with "\177ELF" */
 374        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
 375                return map_elf(fd, &hdr);
 376
 377        /* Otherwise we assume it's a bzImage, and try to unpack it */
 378        return load_bzimage(fd);
 379}
 380
 381/* This is a trivial little helper to align pages.  Andi Kleen hated it because
 382 * it calls getpagesize() twice: "it's dumb code."
 383 *
 384 * Kernel guys get really het up about optimization, even when it's not
 385 * necessary.  I leave this code as a reaction against that. */
 386static inline unsigned long page_align(unsigned long addr)
 387{
 388        /* Add upwards and truncate downwards. */
 389        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 390}
 391
 392/*L:180 An "initial ram disk" is a disk image loaded into memory along with
 393 * the kernel which the kernel can use to boot from without needing any
 394 * drivers.  Most distributions now use this as standard: the initrd contains
 395 * the code to load the appropriate driver modules for the current machine.
 396 *
 397 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 398 * kernels.  He sent me this (and tells me when I break it). */
 399static unsigned long load_initrd(const char *name, unsigned long mem)
 400{
 401        int ifd;
 402        struct stat st;
 403        unsigned long len;
 404
 405        ifd = open_or_die(name, O_RDONLY);
 406        /* fstat() is needed to get the file size. */
 407        if (fstat(ifd, &st) < 0)
 408                err(1, "fstat() on initrd '%s'", name);
 409
 410        /* We map the initrd at the top of memory, but mmap wants it to be
 411         * page-aligned, so we round the size up for that. */
 412        len = page_align(st.st_size);
 413        map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
 414        /* Once a file is mapped, you can close the file descriptor.  It's a
 415         * little odd, but quite useful. */
 416        close(ifd);
 417        verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 418
 419        /* We return the initrd size. */
 420        return len;
 421}
 422
 423/* Once we know how much memory we have, we can construct simple linear page
 424 * tables which set virtual == physical which will get the Guest far enough
 425 * into the boot to create its own.
 426 *
 427 * We lay them out of the way, just below the initrd (which is why we need to
 428 * know its size). */
 429static unsigned long setup_pagetables(unsigned long mem,
 430                                      unsigned long initrd_size)
 431{
 432        unsigned long *pgdir, *linear;
 433        unsigned int mapped_pages, i, linear_pages;
 434        unsigned int ptes_per_page = getpagesize()/sizeof(void *);
 435
 436        mapped_pages = mem/getpagesize();
 437
 438        /* Each PTE page can map ptes_per_page pages: how many do we need? */
 439        linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
 440
 441        /* We put the toplevel page directory page at the top of memory. */
 442        pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
 443
 444        /* Now we use the next linear_pages pages as pte pages */
 445        linear = (void *)pgdir - linear_pages*getpagesize();
 446
 447        /* Linear mapping is easy: put every page's address into the mapping in
 448         * order.  PAGE_PRESENT contains the flags Present, Writable and
 449         * Executable. */
 450        for (i = 0; i < mapped_pages; i++)
 451                linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
 452
 453        /* The top level points to the linear page table pages above. */
 454        for (i = 0; i < mapped_pages; i += ptes_per_page) {
 455                pgdir[i/ptes_per_page]
 456                        = ((to_guest_phys(linear) + i*sizeof(void *))
 457                           | PAGE_PRESENT);
 458        }
 459
 460        verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
 461                mapped_pages, linear_pages, to_guest_phys(linear));
 462
 463        /* We return the top level (guest-physical) address: the kernel needs
 464         * to know where it is. */
 465        return to_guest_phys(pgdir);
 466}
 467/*:*/
 468
 469/* Simple routine to roll all the commandline arguments together with spaces
 470 * between them. */
 471static void concat(char *dst, char *args[])
 472{
 473        unsigned int i, len = 0;
 474
 475        for (i = 0; args[i]; i++) {
 476                strcpy(dst+len, args[i]);
 477                strcat(dst+len, " ");
 478                len += strlen(args[i]) + 1;
 479        }
 480        /* In case it's empty. */
 481        dst[len] = '\0';
 482}
 483
 484/*L:185 This is where we actually tell the kernel to initialize the Guest.  We
 485 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
 486 * the base of Guest "physical" memory, the top physical page to allow, the
 487 * top level pagetable and the entry point for the Guest. */
 488static int tell_kernel(unsigned long pgdir, unsigned long start)
 489{
 490        unsigned long args[] = { LHREQ_INITIALIZE,
 491                                 (unsigned long)guest_base,
 492                                 guest_limit / getpagesize(), pgdir, start };
 493        int fd;
 494
 495        verbose("Guest: %p - %p (%#lx)\n",
 496                guest_base, guest_base + guest_limit, guest_limit);
 497        fd = open_or_die("/dev/lguest", O_RDWR);
 498        if (write(fd, args, sizeof(args)) < 0)
 499                err(1, "Writing to /dev/lguest");
 500
 501        /* We return the /dev/lguest file descriptor to control this Guest */
 502        return fd;
 503}
 504/*:*/
 505
 506static void add_device_fd(int fd)
 507{
 508        FD_SET(fd, &devices.infds);
 509        if (fd > devices.max_infd)
 510                devices.max_infd = fd;
 511}
 512
 513/*L:200
 514 * The Waker.
 515 *
 516 * With console, block and network devices, we can have lots of input which we
 517 * need to process.  We could try to tell the kernel what file descriptors to
 518 * watch, but handing a file descriptor mask through to the kernel is fairly
 519 * icky.
 520 *
 521 * Instead, we fork off a process which watches the file descriptors and writes
 522 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
 523 * stop running the Guest.  This causes the Launcher to return from the
 524 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
 525 * the LHREQ_BREAK and wake us up again.
 526 *
 527 * This, of course, is merely a different *kind* of icky.
 528 */
 529static void wake_parent(int pipefd, int lguest_fd)
 530{
 531        /* Add the pipe from the Launcher to the fdset in the device_list, so
 532         * we watch it, too. */
 533        add_device_fd(pipefd);
 534
 535        for (;;) {
 536                fd_set rfds = devices.infds;
 537                unsigned long args[] = { LHREQ_BREAK, 1 };
 538
 539                /* Wait until input is ready from one of the devices. */
 540                select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
 541                /* Is it a message from the Launcher? */
 542                if (FD_ISSET(pipefd, &rfds)) {
 543                        int fd;
 544                        /* If read() returns 0, it means the Launcher has
 545                         * exited.  We silently follow. */
 546                        if (read(pipefd, &fd, sizeof(fd)) == 0)
 547                                exit(0);
 548                        /* Otherwise it's telling us to change what file
 549                         * descriptors we're to listen to.  Positive means
 550                         * listen to a new one, negative means stop
 551                         * listening. */
 552                        if (fd >= 0)
 553                                FD_SET(fd, &devices.infds);
 554                        else
 555                                FD_CLR(-fd - 1, &devices.infds);
 556                } else /* Send LHREQ_BREAK command. */
 557                        write(lguest_fd, args, sizeof(args));
 558        }
 559}
 560
 561/* This routine just sets up a pipe to the Waker process. */
 562static int setup_waker(int lguest_fd)
 563{
 564        int pipefd[2], child;
 565
 566        /* We create a pipe to talk to the Waker, and also so it knows when the
 567         * Launcher dies (and closes pipe). */
 568        pipe(pipefd);
 569        child = fork();
 570        if (child == -1)
 571                err(1, "forking");
 572
 573        if (child == 0) {
 574                /* We are the Waker: close the "writing" end of our copy of the
 575                 * pipe and start waiting for input. */
 576                close(pipefd[1]);
 577                wake_parent(pipefd[0], lguest_fd);
 578        }
 579        /* Close the reading end of our copy of the pipe. */
 580        close(pipefd[0]);
 581
 582        /* Here is the fd used to talk to the waker. */
 583        return pipefd[1];
 584}
 585
 586/*
 587 * Device Handling.
 588 *
 589 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
 590 * We need to make sure it's not trying to reach into the Launcher itself, so
 591 * we have a convenient routine which checks it and exits with an error message
 592 * if something funny is going on:
 593 */
 594static void *_check_pointer(unsigned long addr, unsigned int size,
 595                            unsigned int line)
 596{
 597        /* We have to separately check addr and addr+size, because size could
 598         * be huge and addr + size might wrap around. */
 599        if (addr >= guest_limit || addr + size >= guest_limit)
 600                errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
 601        /* We return a pointer for the caller's convenience, now we know it's
 602         * safe to use. */
 603        return from_guest_phys(addr);
 604}
 605/* A macro which transparently hands the line number to the real function. */
 606#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 607
 608/* Each buffer in the virtqueues is actually a chain of descriptors.  This
 609 * function returns the next descriptor in the chain, or vq->vring.num if we're
 610 * at the end. */
 611static unsigned next_desc(struct virtqueue *vq, unsigned int i)
 612{
 613        unsigned int next;
 614
 615        /* If this descriptor says it doesn't chain, we're done. */
 616        if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
 617                return vq->vring.num;
 618
 619        /* Check they're not leading us off end of descriptors. */
 620        next = vq->vring.desc[i].next;
 621        /* Make sure compiler knows to grab that: we don't want it changing! */
 622        wmb();
 623
 624        if (next >= vq->vring.num)
 625                errx(1, "Desc next is %u", next);
 626
 627        return next;
 628}
 629
 630/* This looks in the virtqueue and for the first available buffer, and converts
 631 * it to an iovec for convenient access.  Since descriptors consist of some
 632 * number of output then some number of input descriptors, it's actually two
 633 * iovecs, but we pack them into one and note how many of each there were.
 634 *
 635 * This function returns the descriptor number found, or vq->vring.num (which
 636 * is never a valid descriptor number) if none was found. */
 637static unsigned get_vq_desc(struct virtqueue *vq,
 638                            struct iovec iov[],
 639                            unsigned int *out_num, unsigned int *in_num)
 640{
 641        unsigned int i, head;
 642
 643        /* Check it isn't doing very strange things with descriptor numbers. */
 644        if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
 645                errx(1, "Guest moved used index from %u to %u",
 646                     vq->last_avail_idx, vq->vring.avail->idx);
 647
 648        /* If there's nothing new since last we looked, return invalid. */
 649        if (vq->vring.avail->idx == vq->last_avail_idx)
 650                return vq->vring.num;
 651
 652        /* Grab the next descriptor number they're advertising, and increment
 653         * the index we've seen. */
 654        head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
 655
 656        /* If their number is silly, that's a fatal mistake. */
 657        if (head >= vq->vring.num)
 658                errx(1, "Guest says index %u is available", head);
 659
 660        /* When we start there are none of either input nor output. */
 661        *out_num = *in_num = 0;
 662
 663        i = head;
 664        do {
 665                /* Grab the first descriptor, and check it's OK. */
 666                iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
 667                iov[*out_num + *in_num].iov_base
 668                        = check_pointer(vq->vring.desc[i].addr,
 669                                        vq->vring.desc[i].len);
 670                /* If this is an input descriptor, increment that count. */
 671                if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
 672                        (*in_num)++;
 673                else {
 674                        /* If it's an output descriptor, they're all supposed
 675                         * to come before any input descriptors. */
 676                        if (*in_num)
 677                                errx(1, "Descriptor has out after in");
 678                        (*out_num)++;
 679                }
 680
 681                /* If we've got too many, that implies a descriptor loop. */
 682                if (*out_num + *in_num > vq->vring.num)
 683                        errx(1, "Looped descriptor");
 684        } while ((i = next_desc(vq, i)) != vq->vring.num);
 685
 686        return head;
 687}
 688
 689/* After we've used one of their buffers, we tell them about it.  We'll then
 690 * want to send them an interrupt, using trigger_irq(). */
 691static void add_used(struct virtqueue *vq, unsigned int head, int len)
 692{
 693        struct vring_used_elem *used;
 694
 695        /* The virtqueue contains a ring of used buffers.  Get a pointer to the
 696         * next entry in that used ring. */
 697        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
 698        used->id = head;
 699        used->len = len;
 700        /* Make sure buffer is written before we update index. */
 701        wmb();
 702        vq->vring.used->idx++;
 703}
 704
 705/* This actually sends the interrupt for this virtqueue */
 706static void trigger_irq(int fd, struct virtqueue *vq)
 707{
 708        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
 709
 710        /* If they don't want an interrupt, don't send one. */
 711        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
 712                return;
 713
 714        /* Send the Guest an interrupt tell them we used something up. */
 715        if (write(fd, buf, sizeof(buf)) != 0)
 716                err(1, "Triggering irq %i", vq->config.irq);
 717}
 718
 719/* And here's the combo meal deal.  Supersize me! */
 720static void add_used_and_trigger(int fd, struct virtqueue *vq,
 721                                 unsigned int head, int len)
 722{
 723        add_used(vq, head, len);
 724        trigger_irq(fd, vq);
 725}
 726
 727/*
 728 * The Console
 729 *
 730 * Here is the input terminal setting we save, and the routine to restore them
 731 * on exit so the user gets their terminal back. */
 732static struct termios orig_term;
 733static void restore_term(void)
 734{
 735        tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
 736}
 737
 738/* We associate some data with the console for our exit hack. */
 739struct console_abort
 740{
 741        /* How many times have they hit ^C? */
 742        int count;
 743        /* When did they start? */
 744        struct timeval start;
 745};
 746
 747/* This is the routine which handles console input (ie. stdin). */
 748static bool handle_console_input(int fd, struct device *dev)
 749{
 750        int len;
 751        unsigned int head, in_num, out_num;
 752        struct iovec iov[dev->vq->vring.num];
 753        struct console_abort *abort = dev->priv;
 754
 755        /* First we need a console buffer from the Guests's input virtqueue. */
 756        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
 757
 758        /* If they're not ready for input, stop listening to this file
 759         * descriptor.  We'll start again once they add an input buffer. */
 760        if (head == dev->vq->vring.num)
 761                return false;
 762
 763        if (out_num)
 764                errx(1, "Output buffers in console in queue?");
 765
 766        /* This is why we convert to iovecs: the readv() call uses them, and so
 767         * it reads straight into the Guest's buffer. */
 768        len = readv(dev->fd, iov, in_num);
 769        if (len <= 0) {
 770                /* This implies that the console is closed, is /dev/null, or
 771                 * something went terribly wrong. */
 772                warnx("Failed to get console input, ignoring console.");
 773                /* Put the input terminal back. */
 774                restore_term();
 775                /* Remove callback from input vq, so it doesn't restart us. */
 776                dev->vq->handle_output = NULL;
 777                /* Stop listening to this fd: don't call us again. */
 778                return false;
 779        }
 780
 781        /* Tell the Guest about the new input. */
 782        add_used_and_trigger(fd, dev->vq, head, len);
 783
 784        /* Three ^C within one second?  Exit.
 785         *
 786         * This is such a hack, but works surprisingly well.  Each ^C has to be
 787         * in a buffer by itself, so they can't be too fast.  But we check that
 788         * we get three within about a second, so they can't be too slow. */
 789        if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
 790                if (!abort->count++)
 791                        gettimeofday(&abort->start, NULL);
 792                else if (abort->count == 3) {
 793                        struct timeval now;
 794                        gettimeofday(&now, NULL);
 795                        if (now.tv_sec <= abort->start.tv_sec+1) {
 796                                unsigned long args[] = { LHREQ_BREAK, 0 };
 797                                /* Close the fd so Waker will know it has to
 798                                 * exit. */
 799                                close(waker_fd);
 800                                /* Just in case waker is blocked in BREAK, send
 801                                 * unbreak now. */
 802                                write(fd, args, sizeof(args));
 803                                exit(2);
 804                        }
 805                        abort->count = 0;
 806                }
 807        } else
 808                /* Any other key resets the abort counter. */
 809                abort->count = 0;
 810
 811        /* Everything went OK! */
 812        return true;
 813}
 814
 815/* Handling output for console is simple: we just get all the output buffers
 816 * and write them to stdout. */
 817static void handle_console_output(int fd, struct virtqueue *vq)
 818{
 819        unsigned int head, out, in;
 820        int len;
 821        struct iovec iov[vq->vring.num];
 822
 823        /* Keep getting output buffers from the Guest until we run out. */
 824        while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
 825                if (in)
 826                        errx(1, "Input buffers in output queue?");
 827                len = writev(STDOUT_FILENO, iov, out);
 828                add_used_and_trigger(fd, vq, head, len);
 829        }
 830}
 831
 832/*
 833 * The Network
 834 *
 835 * Handling output for network is also simple: we get all the output buffers
 836 * and write them (ignoring the first element) to this device's file descriptor
 837 * (stdout). */
 838static void handle_net_output(int fd, struct virtqueue *vq)
 839{
 840        unsigned int head, out, in;
 841        int len;
 842        struct iovec iov[vq->vring.num];
 843
 844        /* Keep getting output buffers from the Guest until we run out. */
 845        while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
 846                if (in)
 847                        errx(1, "Input buffers in output queue?");
 848                /* Check header, but otherwise ignore it (we told the Guest we
 849                 * supported no features, so it shouldn't have anything
 850                 * interesting). */
 851                (void)convert(&iov[0], struct virtio_net_hdr);
 852                len = writev(vq->dev->fd, iov+1, out-1);
 853                add_used_and_trigger(fd, vq, head, len);
 854        }
 855}
 856
 857/* This is where we handle a packet coming in from the tun device to our
 858 * Guest. */
 859static bool handle_tun_input(int fd, struct device *dev)
 860{
 861        unsigned int head, in_num, out_num;
 862        int len;
 863        struct iovec iov[dev->vq->vring.num];
 864        struct virtio_net_hdr *hdr;
 865
 866        /* First we need a network buffer from the Guests's recv virtqueue. */
 867        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
 868        if (head == dev->vq->vring.num) {
 869                /* Now, it's expected that if we try to send a packet too
 870                 * early, the Guest won't be ready yet.  Wait until the device
 871                 * status says it's ready. */
 872                /* FIXME: Actually want DRIVER_ACTIVE here. */
 873                if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
 874                        warn("network: no dma buffer!");
 875                /* We'll turn this back on if input buffers are registered. */
 876                return false;
 877        } else if (out_num)
 878                errx(1, "Output buffers in network recv queue?");
 879
 880        /* First element is the header: we set it to 0 (no features). */
 881        hdr = convert(&iov[0], struct virtio_net_hdr);
 882        hdr->flags = 0;
 883        hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
 884
 885        /* Read the packet from the device directly into the Guest's buffer. */
 886        len = readv(dev->fd, iov+1, in_num-1);
 887        if (len <= 0)
 888                err(1, "reading network");
 889
 890        /* Tell the Guest about the new packet. */
 891        add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
 892
 893        verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
 894                ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
 895                head != dev->vq->vring.num ? "sent" : "discarded");
 896
 897        /* All good. */
 898        return true;
 899}
 900
 901/*L:215 This is the callback attached to the network and console input
 902 * virtqueues: it ensures we try again, in case we stopped console or net
 903 * delivery because Guest didn't have any buffers. */
 904static void enable_fd(int fd, struct virtqueue *vq)
 905{
 906        add_device_fd(vq->dev->fd);
 907        /* Tell waker to listen to it again */
 908        write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
 909}
 910
 911/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
 912static void handle_output(int fd, unsigned long addr)
 913{
 914        struct device *i;
 915        struct virtqueue *vq;
 916
 917        /* Check each virtqueue. */
 918        for (i = devices.dev; i; i = i->next) {
 919                for (vq = i->vq; vq; vq = vq->next) {
 920                        if (vq->config.pfn == addr/getpagesize()
 921                            && vq->handle_output) {
 922                                verbose("Output to %s\n", vq->dev->name);
 923                                vq->handle_output(fd, vq);
 924                                return;
 925                        }
 926                }
 927        }
 928
 929        /* Early console write is done using notify on a nul-terminated string
 930         * in Guest memory. */
 931        if (addr >= guest_limit)
 932                errx(1, "Bad NOTIFY %#lx", addr);
 933
 934        write(STDOUT_FILENO, from_guest_phys(addr),
 935              strnlen(from_guest_phys(addr), guest_limit - addr));
 936}
 937
 938/* This is called when the Waker wakes us up: check for incoming file
 939 * descriptors. */
 940static void handle_input(int fd)
 941{
 942        /* select() wants a zeroed timeval to mean "don't wait". */
 943        struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
 944
 945        for (;;) {
 946                struct device *i;
 947                fd_set fds = devices.infds;
 948
 949                /* If nothing is ready, we're done. */
 950                if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
 951                        break;
 952
 953                /* Otherwise, call the device(s) which have readable
 954                 * file descriptors and a method of handling them.  */
 955                for (i = devices.dev; i; i = i->next) {
 956                        if (i->handle_input && FD_ISSET(i->fd, &fds)) {
 957                                int dev_fd;
 958                                if (i->handle_input(fd, i))
 959                                        continue;
 960
 961                                /* If handle_input() returns false, it means we
 962                                 * should no longer service it.  Networking and
 963                                 * console do this when there's no input
 964                                 * buffers to deliver into.  Console also uses
 965                                 * it when it discovers that stdin is
 966                                 * closed. */
 967                                FD_CLR(i->fd, &devices.infds);
 968                                /* Tell waker to ignore it too, by sending a
 969                                 * negative fd number (-1, since 0 is a valid
 970                                 * FD number). */
 971                                dev_fd = -i->fd - 1;
 972                                write(waker_fd, &dev_fd, sizeof(dev_fd));
 973                        }
 974                }
 975        }
 976}
 977
 978/*L:190
 979 * Device Setup
 980 *
 981 * All devices need a descriptor so the Guest knows it exists, and a "struct
 982 * device" so the Launcher can keep track of it.  We have common helper
 983 * routines to allocate them.
 984 *
 985 * This routine allocates a new "struct lguest_device_desc" from descriptor
 986 * table just above the Guest's normal memory.  It returns a pointer to that
 987 * descriptor. */
 988static struct lguest_device_desc *new_dev_desc(u16 type)
 989{
 990        struct lguest_device_desc *d;
 991
 992        /* We only have one page for all the descriptors. */
 993        if (devices.desc_used + sizeof(*d) > getpagesize())
 994                errx(1, "Too many devices");
 995
 996        /* We don't need to set config_len or status: page is 0 already. */
 997        d = (void *)devices.descpage + devices.desc_used;
 998        d->type = type;
 999        devices.desc_used += sizeof(*d);
1000
1001        return d;
1002}
1003
1004/* Each device descriptor is followed by some configuration information.
1005 * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
1006 *
1007 * This routine adds a new field to an existing device's descriptor.  It only
1008 * works for the last device, but that's OK because that's how we use it. */
1009static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
1010{
1011        /* This is the last descriptor, right? */
1012        assert(devices.descpage + devices.desc_used
1013               == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1014
1015        /* We only have one page of device descriptions. */
1016        if (devices.desc_used + 2 + len > getpagesize())
1017                errx(1, "Too many devices");
1018
1019        /* Copy in the new config header: type then length. */
1020        devices.descpage[devices.desc_used++] = type;
1021        devices.descpage[devices.desc_used++] = len;
1022        memcpy(devices.descpage + devices.desc_used, c, len);
1023        devices.desc_used += len;
1024
1025        /* Update the device descriptor length: two byte head then data. */
1026        dev->desc->config_len += 2 + len;
1027}
1028
1029/* This routine adds a virtqueue to a device.  We specify how many descriptors
1030 * the virtqueue is to have. */
1031static void add_virtqueue(struct device *dev, unsigned int num_descs,
1032                          void (*handle_output)(int fd, struct virtqueue *me))
1033{
1034        unsigned int pages;
1035        struct virtqueue **i, *vq = malloc(sizeof(*vq));
1036        void *p;
1037
1038        /* First we need some pages for this virtqueue. */
1039        pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1040                / getpagesize();
1041        p = get_pages(pages);
1042
1043        /* Initialize the virtqueue */
1044        vq->next = NULL;
1045        vq->last_avail_idx = 0;
1046        vq->dev = dev;
1047
1048        /* Initialize the configuration. */
1049        vq->config.num = num_descs;
1050        vq->config.irq = devices.next_irq++;
1051        vq->config.pfn = to_guest_phys(p) / getpagesize();
1052
1053        /* Initialize the vring. */
1054        vring_init(&vq->vring, num_descs, p, getpagesize());
1055
1056        /* Add the configuration information to this device's descriptor. */
1057        add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1058                       sizeof(vq->config), &vq->config);
1059
1060        /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1061         * second.  */
1062        for (i = &dev->vq; *i; i = &(*i)->next);
1063        *i = vq;
1064
1065        /* Set the routine to call when the Guest does something to this
1066         * virtqueue. */
1067        vq->handle_output = handle_output;
1068
1069        /* Set the "Don't Notify Me" flag if we don't have a handler */
1070        if (!handle_output)
1071                vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1072}
1073
1074/* This routine does all the creation and setup of a new device, including
1075 * calling new_dev_desc() to allocate the descriptor and device memory. */
1076static struct device *new_device(const char *name, u16 type, int fd,
1077                                 bool (*handle_input)(int, struct device *))
1078{
1079        struct device *dev = malloc(sizeof(*dev));
1080
1081        /* Append to device list.  Prepending to a single-linked list is
1082         * easier, but the user expects the devices to be arranged on the bus
1083         * in command-line order.  The first network device on the command line
1084         * is eth0, the first block device /dev/vda, etc. */
1085        *devices.lastdev = dev;
1086        dev->next = NULL;
1087        devices.lastdev = &dev->next;
1088
1089        /* Now we populate the fields one at a time. */
1090        dev->fd = fd;
1091        /* If we have an input handler for this file descriptor, then we add it
1092         * to the device_list's fdset and maxfd. */
1093        if (handle_input)
1094                add_device_fd(dev->fd);
1095        dev->desc = new_dev_desc(type);
1096        dev->handle_input = handle_input;
1097        dev->name = name;
1098        dev->vq = NULL;
1099        return dev;
1100}
1101
1102/* Our first setup routine is the console.  It's a fairly simple device, but
1103 * UNIX tty handling makes it uglier than it could be. */
1104static void setup_console(void)
1105{
1106        struct device *dev;
1107
1108        /* If we can save the initial standard input settings... */
1109        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1110                struct termios term = orig_term;
1111                /* Then we turn off echo, line buffering and ^C etc.  We want a
1112                 * raw input stream to the Guest. */
1113                term.c_lflag &= ~(ISIG|ICANON|ECHO);
1114                tcsetattr(STDIN_FILENO, TCSANOW, &term);
1115                /* If we exit gracefully, the original settings will be
1116                 * restored so the user can see what they're typing. */
1117                atexit(restore_term);
1118        }
1119
1120        dev = new_device("console", VIRTIO_ID_CONSOLE,
1121                         STDIN_FILENO, handle_console_input);
1122        /* We store the console state in dev->priv, and initialize it. */
1123        dev->priv = malloc(sizeof(struct console_abort));
1124        ((struct console_abort *)dev->priv)->count = 0;
1125
1126        /* The console needs two virtqueues: the input then the output.  When
1127         * they put something the input queue, we make sure we're listening to
1128         * stdin.  When they put something in the output queue, we write it to
1129         * stdout. */
1130        add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1131        add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1132
1133        verbose("device %u: console\n", devices.device_num++);
1134}
1135/*:*/
1136
1137/*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
1138 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1139 * used to send packets to another guest in a 1:1 manner.
1140 *
1141 * More sopisticated is to use one of the tools developed for project like UML
1142 * to do networking.
1143 *
1144 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1145 * completely generic ("here's my vring, attach to your vring") and would work
1146 * for any traffic.  Of course, namespace and permissions issues need to be
1147 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1148 * multiple inter-guest channels behind one interface, although it would
1149 * require some manner of hotplugging new virtio channels.
1150 *
1151 * Finally, we could implement a virtio network switch in the kernel. :*/
1152
1153static u32 str2ip(const char *ipaddr)
1154{
1155        unsigned int byte[4];
1156
1157        sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1158        return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1159}
1160
1161/* This code is "adapted" from libbridge: it attaches the Host end of the
1162 * network device to the bridge device specified by the command line.
1163 *
1164 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1165 * dislike bridging), and I just try not to break it. */
1166static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1167{
1168        int ifidx;
1169        struct ifreq ifr;
1170
1171        if (!*br_name)
1172                errx(1, "must specify bridge name");
1173
1174        ifidx = if_nametoindex(if_name);
1175        if (!ifidx)
1176                errx(1, "interface %s does not exist!", if_name);
1177
1178        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1179        ifr.ifr_ifindex = ifidx;
1180        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1181                err(1, "can't add %s to bridge %s", if_name, br_name);
1182}
1183
1184/* This sets up the Host end of the network device with an IP address, brings
1185 * it up so packets will flow, the copies the MAC address into the hwaddr
1186 * pointer. */
1187static void configure_device(int fd, const char *devname, u32 ipaddr,
1188                             unsigned char hwaddr[6])
1189{
1190        struct ifreq ifr;
1191        struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1192
1193        /* Don't read these incantations.  Just cut & paste them like I did! */
1194        memset(&ifr, 0, sizeof(ifr));
1195        strcpy(ifr.ifr_name, devname);
1196        sin->sin_family = AF_INET;
1197        sin->sin_addr.s_addr = htonl(ipaddr);
1198        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1199                err(1, "Setting %s interface address", devname);
1200        ifr.ifr_flags = IFF_UP;
1201        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1202                err(1, "Bringing interface %s up", devname);
1203
1204        /* SIOC stands for Socket I/O Control.  G means Get (vs S for Set
1205         * above).  IF means Interface, and HWADDR is hardware address.
1206         * Simple! */
1207        if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1208                err(1, "getting hw address for %s", devname);
1209        memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1210}
1211
1212/*L:195 Our network is a Host<->Guest network.  This can either use bridging or
1213 * routing, but the principle is the same: it uses the "tun" device to inject
1214 * packets into the Host as if they came in from a normal network card.  We
1215 * just shunt packets between the Guest and the tun device. */
1216static void setup_tun_net(const char *arg)
1217{
1218        struct device *dev;
1219        struct ifreq ifr;
1220        int netfd, ipfd;
1221        u32 ip;
1222        const char *br_name = NULL;
1223        u8 hwaddr[6];
1224
1225        /* We open the /dev/net/tun device and tell it we want a tap device.  A
1226         * tap device is like a tun device, only somehow different.  To tell
1227         * the truth, I completely blundered my way through this code, but it
1228         * works now! */
1229        netfd = open_or_die("/dev/net/tun", O_RDWR);
1230        memset(&ifr, 0, sizeof(ifr));
1231        ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1232        strcpy(ifr.ifr_name, "tap%d");
1233        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1234                err(1, "configuring /dev/net/tun");
1235        /* We don't need checksums calculated for packets coming in this
1236         * device: trust us! */
1237        ioctl(netfd, TUNSETNOCSUM, 1);
1238
1239        /* First we create a new network device. */
1240        dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1241
1242        /* Network devices need a receive and a send queue, just like
1243         * console. */
1244        add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1245        add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1246
1247        /* We need a socket to perform the magic network ioctls to bring up the
1248         * tap interface, connect to the bridge etc.  Any socket will do! */
1249        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1250        if (ipfd < 0)
1251                err(1, "opening IP socket");
1252
1253        /* If the command line was --tunnet=bridge:<name> do bridging. */
1254        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1255                ip = INADDR_ANY;
1256                br_name = arg + strlen(BRIDGE_PFX);
1257                add_to_bridge(ipfd, ifr.ifr_name, br_name);
1258        } else /* It is an IP address to set up the device with */
1259                ip = str2ip(arg);
1260
1261        /* Set up the tun device, and get the mac address for the interface. */
1262        configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1263
1264        /* Tell Guest what MAC address to use. */
1265        add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1266
1267        /* We don't seed the socket any more; setup is done. */
1268        close(ipfd);
1269
1270        verbose("device %u: tun net %u.%u.%u.%u\n",
1271                devices.device_num++,
1272                (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1273        if (br_name)
1274                verbose("attached to bridge: %s\n", br_name);
1275}
1276
1277/* Our block (disk) device should be really simple: the Guest asks for a block
1278 * number and we read or write that position in the file.  Unfortunately, that
1279 * was amazingly slow: the Guest waits until the read is finished before
1280 * running anything else, even if it could have been doing useful work.
1281 *
1282 * We could use async I/O, except it's reputed to suck so hard that characters
1283 * actually go missing from your code when you try to use it.
1284 *
1285 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1286
1287/* This hangs off device->priv. */
1288struct vblk_info
1289{
1290        /* The size of the file. */
1291        off64_t len;
1292
1293        /* The file descriptor for the file. */
1294        int fd;
1295
1296        /* IO thread listens on this file descriptor [0]. */
1297        int workpipe[2];
1298
1299        /* IO thread writes to this file descriptor to mark it done, then
1300         * Launcher triggers interrupt to Guest. */
1301        int done_fd;
1302};
1303/*:*/
1304
1305/*L:210
1306 * The Disk
1307 *
1308 * Remember that the block device is handled by a separate I/O thread.  We head
1309 * straight into the core of that thread here:
1310 */
1311static bool service_io(struct device *dev)
1312{
1313        struct vblk_info *vblk = dev->priv;
1314        unsigned int head, out_num, in_num, wlen;
1315        int ret;
1316        struct virtio_blk_inhdr *in;
1317        struct virtio_blk_outhdr *out;
1318        struct iovec iov[dev->vq->vring.num];
1319        off64_t off;
1320
1321        /* See if there's a request waiting.  If not, nothing to do. */
1322        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1323        if (head == dev->vq->vring.num)
1324                return false;
1325
1326        /* Every block request should contain at least one output buffer
1327         * (detailing the location on disk and the type of request) and one
1328         * input buffer (to hold the result). */
1329        if (out_num == 0 || in_num == 0)
1330                errx(1, "Bad virtblk cmd %u out=%u in=%u",
1331                     head, out_num, in_num);
1332
1333        out = convert(&iov[0], struct virtio_blk_outhdr);
1334        in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1335        off = out->sector * 512;
1336
1337        /* The block device implements "barriers", where the Guest indicates
1338         * that it wants all previous writes to occur before this write.  We
1339         * don't have a way of asking our kernel to do a barrier, so we just
1340         * synchronize all the data in the file.  Pretty poor, no? */
1341        if (out->type & VIRTIO_BLK_T_BARRIER)
1342                fdatasync(vblk->fd);
1343
1344        /* In general the virtio block driver is allowed to try SCSI commands.
1345         * It'd be nice if we supported eject, for example, but we don't. */
1346        if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1347                fprintf(stderr, "Scsi commands unsupported\n");
1348                in->status = VIRTIO_BLK_S_UNSUPP;
1349                wlen = sizeof(*in);
1350        } else if (out->type & VIRTIO_BLK_T_OUT) {
1351                /* Write */
1352
1353                /* Move to the right location in the block file.  This can fail
1354                 * if they try to write past end. */
1355                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1356                        err(1, "Bad seek to sector %llu", out->sector);
1357
1358                ret = writev(vblk->fd, iov+1, out_num-1);
1359                verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1360
1361                /* Grr... Now we know how long the descriptor they sent was, we
1362                 * make sure they didn't try to write over the end of the block
1363                 * file (possibly extending it). */
1364                if (ret > 0 && off + ret > vblk->len) {
1365                        /* Trim it back to the correct length */
1366                        ftruncate64(vblk->fd, vblk->len);
1367                        /* Die, bad Guest, die. */
1368                        errx(1, "Write past end %llu+%u", off, ret);
1369                }
1370                wlen = sizeof(*in);
1371                in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1372        } else {
1373                /* Read */
1374
1375                /* Move to the right location in the block file.  This can fail
1376                 * if they try to read past end. */
1377                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1378                        err(1, "Bad seek to sector %llu", out->sector);
1379
1380                ret = readv(vblk->fd, iov+1, in_num-1);
1381                verbose("READ from sector %llu: %i\n", out->sector, ret);
1382                if (ret >= 0) {
1383                        wlen = sizeof(*in) + ret;
1384                        in->status = VIRTIO_BLK_S_OK;
1385                } else {
1386                        wlen = sizeof(*in);
1387                        in->status = VIRTIO_BLK_S_IOERR;
1388                }
1389        }
1390
1391        /* We can't trigger an IRQ, because we're not the Launcher.  It does
1392         * that when we tell it we're done. */
1393        add_used(dev->vq, head, wlen);
1394        return true;
1395}
1396
1397/* This is the thread which actually services the I/O. */
1398static int io_thread(void *_dev)
1399{
1400        struct device *dev = _dev;
1401        struct vblk_info *vblk = dev->priv;
1402        char c;
1403
1404        /* Close other side of workpipe so we get 0 read when main dies. */
1405        close(vblk->workpipe[1]);
1406        /* Close the other side of the done_fd pipe. */
1407        close(dev->fd);
1408
1409        /* When this read fails, it means Launcher died, so we follow. */
1410        while (read(vblk->workpipe[0], &c, 1) == 1) {
1411                /* We acknowledge each request immediately to reduce latency,
1412                 * rather than waiting until we've done them all.  I haven't
1413                 * measured to see if it makes any difference. */
1414                while (service_io(dev))
1415                        write(vblk->done_fd, &c, 1);
1416        }
1417        return 0;
1418}
1419
1420/* Now we've seen the I/O thread, we return to the Launcher to see what happens
1421 * when the thread tells us it's completed some I/O. */
1422static bool handle_io_finish(int fd, struct device *dev)
1423{
1424        char c;
1425
1426        /* If the I/O thread died, presumably it printed the error, so we
1427         * simply exit. */
1428        if (read(dev->fd, &c, 1) != 1)
1429                exit(1);
1430
1431        /* It did some work, so trigger the irq. */
1432        trigger_irq(fd, dev->vq);
1433        return true;
1434}
1435
1436/* When the Guest submits some I/O, we just need to wake the I/O thread. */
1437static void handle_virtblk_output(int fd, struct virtqueue *vq)
1438{
1439        struct vblk_info *vblk = vq->dev->priv;
1440        char c = 0;
1441
1442        /* Wake up I/O thread and tell it to go to work! */
1443        if (write(vblk->workpipe[1], &c, 1) != 1)
1444                /* Presumably it indicated why it died. */
1445                exit(1);
1446}
1447
1448/*L:198 This actually sets up a virtual block device. */
1449static void setup_block_file(const char *filename)
1450{
1451        int p[2];
1452        struct device *dev;
1453        struct vblk_info *vblk;
1454        void *stack;
1455        u64 cap;
1456        unsigned int val;
1457
1458        /* This is the pipe the I/O thread will use to tell us I/O is done. */
1459        pipe(p);
1460
1461        /* The device responds to return from I/O thread. */
1462        dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1463
1464        /* The device has one virtqueue, where the Guest places requests. */
1465        add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1466
1467        /* Allocate the room for our own bookkeeping */
1468        vblk = dev->priv = malloc(sizeof(*vblk));
1469
1470        /* First we open the file and store the length. */
1471        vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1472        vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1473
1474        /* Tell Guest how many sectors this device has. */
1475        cap = cpu_to_le64(vblk->len / 512);
1476        add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1477
1478        /* Tell Guest not to put in too many descriptors at once: two are used
1479         * for the in and out elements. */
1480        val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1481        add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1482
1483        /* The I/O thread writes to this end of the pipe when done. */
1484        vblk->done_fd = p[1];
1485
1486        /* This is the second pipe, which is how we tell the I/O thread about
1487         * more work. */
1488        pipe(vblk->workpipe);
1489
1490        /* Create stack for thread and run it */
1491        stack = malloc(32768);
1492        if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1493                err(1, "Creating clone");
1494
1495        /* We don't need to keep the I/O thread's end of the pipes open. */
1496        close(vblk->done_fd);
1497        close(vblk->workpipe[0]);
1498
1499        verbose("device %u: virtblock %llu sectors\n",
1500                devices.device_num, cap);
1501}
1502/* That's the end of device setup. */
1503
1504/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1505 * its input and output, and finally, lays it to rest. */
1506static void __attribute__((noreturn)) run_guest(int lguest_fd)
1507{
1508        for (;;) {
1509                unsigned long args[] = { LHREQ_BREAK, 0 };
1510                unsigned long notify_addr;
1511                int readval;
1512
1513                /* We read from the /dev/lguest device to run the Guest. */
1514                readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1515
1516                /* One unsigned long means the Guest did HCALL_NOTIFY */
1517                if (readval == sizeof(notify_addr)) {
1518                        verbose("Notify on address %#lx\n", notify_addr);
1519                        handle_output(lguest_fd, notify_addr);
1520                        continue;
1521                /* ENOENT means the Guest died.  Reading tells us why. */
1522                } else if (errno == ENOENT) {
1523                        char reason[1024] = { 0 };
1524                        read(lguest_fd, reason, sizeof(reason)-1);
1525                        errx(1, "%s", reason);
1526                /* EAGAIN means the Waker wanted us to look at some input.
1527                 * Anything else means a bug or incompatible change. */
1528                } else if (errno != EAGAIN)
1529                        err(1, "Running guest failed");
1530
1531                /* Service input, then unset the BREAK to release the Waker. */
1532                handle_input(lguest_fd);
1533                if (write(lguest_fd, args, sizeof(args)) < 0)
1534                        err(1, "Resetting break");
1535        }
1536}
1537/*
1538 * This is the end of the Launcher.  The good news: we are over halfway
1539 * through!  The bad news: the most fiendish part of the code still lies ahead
1540 * of us.
1541 *
1542 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1543 * "make Host".
1544 :*/
1545
1546static struct option opts[] = {
1547        { "verbose", 0, NULL, 'v' },
1548        { "tunnet", 1, NULL, 't' },
1549        { "block", 1, NULL, 'b' },
1550        { "initrd", 1, NULL, 'i' },
1551        { NULL },
1552};
1553static void usage(void)
1554{
1555        errx(1, "Usage: lguest [--verbose] "
1556             "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1557             "|--block=<filename>|--initrd=<filename>]...\n"
1558             "<mem-in-mb> vmlinux [args...]");
1559}
1560
1561/*L:105 The main routine is where the real work begins: */
1562int main(int argc, char *argv[])
1563{
1564        /* Memory, top-level pagetable, code startpoint and size of the
1565         * (optional) initrd. */
1566        unsigned long mem = 0, pgdir, start, initrd_size = 0;
1567        /* Two temporaries and the /dev/lguest file descriptor. */
1568        int i, c, lguest_fd;
1569        /* The boot information for the Guest. */
1570        struct boot_params *boot;
1571        /* If they specify an initrd file to load. */
1572        const char *initrd_name = NULL;
1573
1574        /* First we initialize the device list.  Since console and network
1575         * device receive input from a file descriptor, we keep an fdset
1576         * (infds) and the maximum fd number (max_infd) with the head of the
1577         * list.  We also keep a pointer to the last device, for easy appending
1578         * to the list.  Finally, we keep the next interrupt number to hand out
1579         * (1: remember that 0 is used by the timer). */
1580        FD_ZERO(&devices.infds);
1581        devices.max_infd = -1;
1582        devices.lastdev = &devices.dev;
1583        devices.next_irq = 1;
1584
1585        /* We need to know how much memory so we can set up the device
1586         * descriptor and memory pages for the devices as we parse the command
1587         * line.  So we quickly look through the arguments to find the amount
1588         * of memory now. */
1589        for (i = 1; i < argc; i++) {
1590                if (argv[i][0] != '-') {
1591                        mem = atoi(argv[i]) * 1024 * 1024;
1592                        /* We start by mapping anonymous pages over all of
1593                         * guest-physical memory range.  This fills it with 0,
1594                         * and ensures that the Guest won't be killed when it
1595                         * tries to access it. */
1596                        guest_base = map_zeroed_pages(mem / getpagesize()
1597                                                      + DEVICE_PAGES);
1598                        guest_limit = mem;
1599                        guest_max = mem + DEVICE_PAGES*getpagesize();
1600                        devices.descpage = get_pages(1);
1601                        break;
1602                }
1603        }
1604
1605        /* The options are fairly straight-forward */
1606        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1607                switch (c) {
1608                case 'v':
1609                        verbose = true;
1610                        break;
1611                case 't':
1612                        setup_tun_net(optarg);
1613                        break;
1614                case 'b':
1615                        setup_block_file(optarg);
1616                        break;
1617                case 'i':
1618                        initrd_name = optarg;
1619                        break;
1620                default:
1621                        warnx("Unknown argument %s", argv[optind]);
1622                        usage();
1623                }
1624        }
1625        /* After the other arguments we expect memory and kernel image name,
1626         * followed by command line arguments for the kernel. */
1627        if (optind + 2 > argc)
1628                usage();
1629
1630        verbose("Guest base is at %p\n", guest_base);
1631
1632        /* We always have a console device */
1633        setup_console();
1634
1635        /* Now we load the kernel */
1636        start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1637
1638        /* Boot information is stashed at physical address 0 */
1639        boot = from_guest_phys(0);
1640
1641        /* Map the initrd image if requested (at top of physical memory) */
1642        if (initrd_name) {
1643                initrd_size = load_initrd(initrd_name, mem);
1644                /* These are the location in the Linux boot header where the
1645                 * start and size of the initrd are expected to be found. */
1646                boot->hdr.ramdisk_image = mem - initrd_size;
1647                boot->hdr.ramdisk_size = initrd_size;
1648                /* The bootloader type 0xFF means "unknown"; that's OK. */
1649                boot->hdr.type_of_loader = 0xFF;
1650        }
1651
1652        /* Set up the initial linear pagetables, starting below the initrd. */
1653        pgdir = setup_pagetables(mem, initrd_size);
1654
1655        /* The Linux boot header contains an "E820" memory map: ours is a
1656         * simple, single region. */
1657        boot->e820_entries = 1;
1658        boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1659        /* The boot header contains a command line pointer: we put the command
1660         * line after the boot header. */
1661        boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1662        /* We use a simple helper to copy the arguments separated by spaces. */
1663        concat((char *)(boot + 1), argv+optind+2);
1664
1665        /* Boot protocol version: 2.07 supports the fields for lguest. */
1666        boot->hdr.version = 0x207;
1667
1668        /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1669        boot->hdr.hardware_subarch = 1;
1670
1671        /* Tell the entry path not to try to reload segment registers. */
1672        boot->hdr.loadflags |= KEEP_SEGMENTS;
1673
1674        /* We tell the kernel to initialize the Guest: this returns the open
1675         * /dev/lguest file descriptor. */
1676        lguest_fd = tell_kernel(pgdir, start);
1677
1678        /* We fork off a child process, which wakes the Launcher whenever one
1679         * of the input file descriptors needs attention.  Otherwise we would
1680         * run the Guest until it tries to output something. */
1681        waker_fd = setup_waker(lguest_fd);
1682
1683        /* Finally, run the Guest.  This doesn't return. */
1684        run_guest(lguest_fd);
1685}
1686/*:*/
1687
1688/*M:999
1689 * Mastery is done: you now know everything I do.
1690 *
1691 * But surely you have seen code, features and bugs in your wanderings which
1692 * you now yearn to attack?  That is the real game, and I look forward to you
1693 * patching and forking lguest into the Your-Name-Here-visor.
1694 *
1695 * Farewell, and good coding!
1696 * Rusty Russell.
1697 */
1698