linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
   5 *
   6 * Copyright (C) 1999 VA Linux Systems
   7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *      Stephane Eranian <eranian@hpl.hp.com>
  11 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  12 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  13 *
  14 * All EFI Runtime Services are not implemented yet as EFI only
  15 * supports physical mode addressing on SoftSDV. This is to be fixed
  16 * in a future version.  --drummond 1999-07-20
  17 *
  18 * Implemented EFI runtime services and virtual mode calls.  --davidm
  19 *
  20 * Goutham Rao: <goutham.rao@intel.com>
  21 *      Skip non-WB memory and ignore empty memory ranges.
  22 */
  23#include <linux/module.h>
  24#include <linux/bootmem.h>
  25#include <linux/kernel.h>
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/time.h>
  29#include <linux/efi.h>
  30#include <linux/kexec.h>
  31#include <linux/mm.h>
  32
  33#include <asm/io.h>
  34#include <asm/kregs.h>
  35#include <asm/meminit.h>
  36#include <asm/pgtable.h>
  37#include <asm/processor.h>
  38#include <asm/mca.h>
  39
  40#define EFI_DEBUG       0
  41
  42extern efi_status_t efi_call_phys (void *, ...);
  43
  44struct efi efi;
  45EXPORT_SYMBOL(efi);
  46static efi_runtime_services_t *runtime;
  47static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  48
  49#define efi_call_virt(f, args...)       (*(f))(args)
  50
  51#define STUB_GET_TIME(prefix, adjust_arg)                                                         \
  52static efi_status_t                                                                               \
  53prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                                            \
  54{                                                                                                 \
  55        struct ia64_fpreg fr[6];                                                                  \
  56        efi_time_cap_t *atc = NULL;                                                               \
  57        efi_status_t ret;                                                                         \
  58                                                                                                  \
  59        if (tc)                                                                                   \
  60                atc = adjust_arg(tc);                                                             \
  61        ia64_save_scratch_fpregs(fr);                                                             \
  62        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  63        ia64_load_scratch_fpregs(fr);                                                             \
  64        return ret;                                                                               \
  65}
  66
  67#define STUB_SET_TIME(prefix, adjust_arg)                                                       \
  68static efi_status_t                                                                             \
  69prefix##_set_time (efi_time_t *tm)                                                              \
  70{                                                                                               \
  71        struct ia64_fpreg fr[6];                                                                \
  72        efi_status_t ret;                                                                       \
  73                                                                                                \
  74        ia64_save_scratch_fpregs(fr);                                                           \
  75        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));    \
  76        ia64_load_scratch_fpregs(fr);                                                           \
  77        return ret;                                                                             \
  78}
  79
  80#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                                                \
  81static efi_status_t                                                                             \
  82prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)             \
  83{                                                                                               \
  84        struct ia64_fpreg fr[6];                                                                \
  85        efi_status_t ret;                                                                       \
  86                                                                                                \
  87        ia64_save_scratch_fpregs(fr);                                                           \
  88        ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),       \
  89                                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));      \
  90        ia64_load_scratch_fpregs(fr);                                                           \
  91        return ret;                                                                             \
  92}
  93
  94#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                                                \
  95static efi_status_t                                                                             \
  96prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                                   \
  97{                                                                                               \
  98        struct ia64_fpreg fr[6];                                                                \
  99        efi_time_t *atm = NULL;                                                                 \
 100        efi_status_t ret;                                                                       \
 101                                                                                                \
 102        if (tm)                                                                                 \
 103                atm = adjust_arg(tm);                                                           \
 104        ia64_save_scratch_fpregs(fr);                                                           \
 105        ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),       \
 106                                enabled, atm);                                                  \
 107        ia64_load_scratch_fpregs(fr);                                                           \
 108        return ret;                                                                             \
 109}
 110
 111#define STUB_GET_VARIABLE(prefix, adjust_arg)                                           \
 112static efi_status_t                                                                     \
 113prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,               \
 114                       unsigned long *data_size, void *data)                            \
 115{                                                                                       \
 116        struct ia64_fpreg fr[6];                                                        \
 117        u32 *aattr = NULL;                                                                      \
 118        efi_status_t ret;                                                               \
 119                                                                                        \
 120        if (attr)                                                                       \
 121                aattr = adjust_arg(attr);                                               \
 122        ia64_save_scratch_fpregs(fr);                                                   \
 123        ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),     \
 124                                adjust_arg(name), adjust_arg(vendor), aattr,            \
 125                                adjust_arg(data_size), adjust_arg(data));               \
 126        ia64_load_scratch_fpregs(fr);                                                   \
 127        return ret;                                                                     \
 128}
 129
 130#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                                              \
 131static efi_status_t                                                                             \
 132prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)   \
 133{                                                                                               \
 134        struct ia64_fpreg fr[6];                                                                \
 135        efi_status_t ret;                                                                       \
 136                                                                                                \
 137        ia64_save_scratch_fpregs(fr);                                                           \
 138        ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),   \
 139                                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));   \
 140        ia64_load_scratch_fpregs(fr);                                                           \
 141        return ret;                                                                             \
 142}
 143
 144#define STUB_SET_VARIABLE(prefix, adjust_arg)                                           \
 145static efi_status_t                                                                     \
 146prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,      \
 147                       unsigned long data_size, void *data)                             \
 148{                                                                                       \
 149        struct ia64_fpreg fr[6];                                                        \
 150        efi_status_t ret;                                                               \
 151                                                                                        \
 152        ia64_save_scratch_fpregs(fr);                                                   \
 153        ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),     \
 154                                adjust_arg(name), adjust_arg(vendor), attr, data_size,  \
 155                                adjust_arg(data));                                      \
 156        ia64_load_scratch_fpregs(fr);                                                   \
 157        return ret;                                                                     \
 158}
 159
 160#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                                       \
 161static efi_status_t                                                                             \
 162prefix##_get_next_high_mono_count (u32 *count)                                                  \
 163{                                                                                               \
 164        struct ia64_fpreg fr[6];                                                                \
 165        efi_status_t ret;                                                                       \
 166                                                                                                \
 167        ia64_save_scratch_fpregs(fr);                                                           \
 168        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)                              \
 169                                __va(runtime->get_next_high_mono_count), adjust_arg(count));    \
 170        ia64_load_scratch_fpregs(fr);                                                           \
 171        return ret;                                                                             \
 172}
 173
 174#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                   \
 175static void                                                                     \
 176prefix##_reset_system (int reset_type, efi_status_t status,                     \
 177                       unsigned long data_size, efi_char16_t *data)             \
 178{                                                                               \
 179        struct ia64_fpreg fr[6];                                                \
 180        efi_char16_t *adata = NULL;                                             \
 181                                                                                \
 182        if (data)                                                               \
 183                adata = adjust_arg(data);                                       \
 184                                                                                \
 185        ia64_save_scratch_fpregs(fr);                                           \
 186        efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),   \
 187                          reset_type, status, data_size, adata);                \
 188        /* should not return, but just in case... */                            \
 189        ia64_load_scratch_fpregs(fr);                                           \
 190}
 191
 192#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 193
 194STUB_GET_TIME(phys, phys_ptr)
 195STUB_SET_TIME(phys, phys_ptr)
 196STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 197STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 198STUB_GET_VARIABLE(phys, phys_ptr)
 199STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 200STUB_SET_VARIABLE(phys, phys_ptr)
 201STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 202STUB_RESET_SYSTEM(phys, phys_ptr)
 203
 204#define id(arg) arg
 205
 206STUB_GET_TIME(virt, id)
 207STUB_SET_TIME(virt, id)
 208STUB_GET_WAKEUP_TIME(virt, id)
 209STUB_SET_WAKEUP_TIME(virt, id)
 210STUB_GET_VARIABLE(virt, id)
 211STUB_GET_NEXT_VARIABLE(virt, id)
 212STUB_SET_VARIABLE(virt, id)
 213STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 214STUB_RESET_SYSTEM(virt, id)
 215
 216void
 217efi_gettimeofday (struct timespec *ts)
 218{
 219        efi_time_t tm;
 220
 221        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 222                memset(ts, 0, sizeof(*ts));
 223                return;
 224        }
 225
 226        ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
 227        ts->tv_nsec = tm.nanosecond;
 228}
 229
 230static int
 231is_memory_available (efi_memory_desc_t *md)
 232{
 233        if (!(md->attribute & EFI_MEMORY_WB))
 234                return 0;
 235
 236        switch (md->type) {
 237              case EFI_LOADER_CODE:
 238              case EFI_LOADER_DATA:
 239              case EFI_BOOT_SERVICES_CODE:
 240              case EFI_BOOT_SERVICES_DATA:
 241              case EFI_CONVENTIONAL_MEMORY:
 242                return 1;
 243        }
 244        return 0;
 245}
 246
 247typedef struct kern_memdesc {
 248        u64 attribute;
 249        u64 start;
 250        u64 num_pages;
 251} kern_memdesc_t;
 252
 253static kern_memdesc_t *kern_memmap;
 254
 255#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 256
 257static inline u64
 258kmd_end(kern_memdesc_t *kmd)
 259{
 260        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 261}
 262
 263static inline u64
 264efi_md_end(efi_memory_desc_t *md)
 265{
 266        return (md->phys_addr + efi_md_size(md));
 267}
 268
 269static inline int
 270efi_wb(efi_memory_desc_t *md)
 271{
 272        return (md->attribute & EFI_MEMORY_WB);
 273}
 274
 275static inline int
 276efi_uc(efi_memory_desc_t *md)
 277{
 278        return (md->attribute & EFI_MEMORY_UC);
 279}
 280
 281static void
 282walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 283{
 284        kern_memdesc_t *k;
 285        u64 start, end, voff;
 286
 287        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 288        for (k = kern_memmap; k->start != ~0UL; k++) {
 289                if (k->attribute != attr)
 290                        continue;
 291                start = PAGE_ALIGN(k->start);
 292                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 293                if (start < end)
 294                        if ((*callback)(start + voff, end + voff, arg) < 0)
 295                                return;
 296        }
 297}
 298
 299/*
 300 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
 301 * has memory that is available for OS use.
 302 */
 303void
 304efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 305{
 306        walk(callback, arg, EFI_MEMORY_WB);
 307}
 308
 309/*
 310 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
 311 * has memory that is available for uncached allocator.
 312 */
 313void
 314efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 315{
 316        walk(callback, arg, EFI_MEMORY_UC);
 317}
 318
 319/*
 320 * Look for the PAL_CODE region reported by EFI and maps it using an
 321 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 322 * Abstraction Layer chapter 11 in ADAG
 323 */
 324
 325void *
 326efi_get_pal_addr (void)
 327{
 328        void *efi_map_start, *efi_map_end, *p;
 329        efi_memory_desc_t *md;
 330        u64 efi_desc_size;
 331        int pal_code_count = 0;
 332        u64 vaddr, mask;
 333
 334        efi_map_start = __va(ia64_boot_param->efi_memmap);
 335        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 336        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 337
 338        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 339                md = p;
 340                if (md->type != EFI_PAL_CODE)
 341                        continue;
 342
 343                if (++pal_code_count > 1) {
 344                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
 345                               md->phys_addr);
 346                        continue;
 347                }
 348                /*
 349                 * The only ITLB entry in region 7 that is used is the one installed by
 350                 * __start().  That entry covers a 64MB range.
 351                 */
 352                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 353                vaddr = PAGE_OFFSET + md->phys_addr;
 354
 355                /*
 356                 * We must check that the PAL mapping won't overlap with the kernel
 357                 * mapping.
 358                 *
 359                 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
 360                 * 256KB and that only one ITR is needed to map it. This implies that the
 361                 * PAL code is always aligned on its size, i.e., the closest matching page
 362                 * size supported by the TLB. Therefore PAL code is guaranteed never to
 363                 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
 364                 * now the following test is enough to determine whether or not we need a
 365                 * dedicated ITR for the PAL code.
 366                 */
 367                if ((vaddr & mask) == (KERNEL_START & mask)) {
 368                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 369                               __FUNCTION__);
 370                        continue;
 371                }
 372
 373                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 374                        panic("Woah!  PAL code size bigger than a granule!");
 375
 376#if EFI_DEBUG
 377                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 378
 379                printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 380                        smp_processor_id(), md->phys_addr,
 381                        md->phys_addr + efi_md_size(md),
 382                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 383#endif
 384                return __va(md->phys_addr);
 385        }
 386        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 387               __FUNCTION__);
 388        return NULL;
 389}
 390
 391void
 392efi_map_pal_code (void)
 393{
 394        void *pal_vaddr = efi_get_pal_addr ();
 395        u64 psr;
 396
 397        if (!pal_vaddr)
 398                return;
 399
 400        /*
 401         * Cannot write to CRx with PSR.ic=1
 402         */
 403        psr = ia64_clear_ic();
 404        ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 405                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 406                 IA64_GRANULE_SHIFT);
 407        ia64_set_psr(psr);              /* restore psr */
 408        ia64_srlz_i();
 409}
 410
 411void __init
 412efi_init (void)
 413{
 414        void *efi_map_start, *efi_map_end;
 415        efi_config_table_t *config_tables;
 416        efi_char16_t *c16;
 417        u64 efi_desc_size;
 418        char *cp, vendor[100] = "unknown";
 419        int i;
 420
 421        /* it's too early to be able to use the standard kernel command line support... */
 422        for (cp = boot_command_line; *cp; ) {
 423                if (memcmp(cp, "mem=", 4) == 0) {
 424                        mem_limit = memparse(cp + 4, &cp);
 425                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 426                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 427                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 428                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 429                } else {
 430                        while (*cp != ' ' && *cp)
 431                                ++cp;
 432                        while (*cp == ' ')
 433                                ++cp;
 434                }
 435        }
 436        if (min_addr != 0UL)
 437                printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
 438        if (max_addr != ~0UL)
 439                printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
 440
 441        efi.systab = __va(ia64_boot_param->efi_systab);
 442
 443        /*
 444         * Verify the EFI Table
 445         */
 446        if (efi.systab == NULL)
 447                panic("Woah! Can't find EFI system table.\n");
 448        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 449                panic("Woah! EFI system table signature incorrect\n");
 450        if ((efi.systab->hdr.revision >> 16) == 0)
 451                printk(KERN_WARNING "Warning: EFI system table version "
 452                       "%d.%02d, expected 1.00 or greater\n",
 453                       efi.systab->hdr.revision >> 16,
 454                       efi.systab->hdr.revision & 0xffff);
 455
 456        config_tables = __va(efi.systab->tables);
 457
 458        /* Show what we know for posterity */
 459        c16 = __va(efi.systab->fw_vendor);
 460        if (c16) {
 461                for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 462                        vendor[i] = *c16++;
 463                vendor[i] = '\0';
 464        }
 465
 466        printk(KERN_INFO "EFI v%u.%.02u by %s:",
 467               efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
 468
 469        efi.mps        = EFI_INVALID_TABLE_ADDR;
 470        efi.acpi       = EFI_INVALID_TABLE_ADDR;
 471        efi.acpi20     = EFI_INVALID_TABLE_ADDR;
 472        efi.smbios     = EFI_INVALID_TABLE_ADDR;
 473        efi.sal_systab = EFI_INVALID_TABLE_ADDR;
 474        efi.boot_info  = EFI_INVALID_TABLE_ADDR;
 475        efi.hcdp       = EFI_INVALID_TABLE_ADDR;
 476        efi.uga        = EFI_INVALID_TABLE_ADDR;
 477
 478        for (i = 0; i < (int) efi.systab->nr_tables; i++) {
 479                if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
 480                        efi.mps = config_tables[i].table;
 481                        printk(" MPS=0x%lx", config_tables[i].table);
 482                } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
 483                        efi.acpi20 = config_tables[i].table;
 484                        printk(" ACPI 2.0=0x%lx", config_tables[i].table);
 485                } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
 486                        efi.acpi = config_tables[i].table;
 487                        printk(" ACPI=0x%lx", config_tables[i].table);
 488                } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
 489                        efi.smbios = config_tables[i].table;
 490                        printk(" SMBIOS=0x%lx", config_tables[i].table);
 491                } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
 492                        efi.sal_systab = config_tables[i].table;
 493                        printk(" SALsystab=0x%lx", config_tables[i].table);
 494                } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
 495                        efi.hcdp = config_tables[i].table;
 496                        printk(" HCDP=0x%lx", config_tables[i].table);
 497                }
 498        }
 499        printk("\n");
 500
 501        runtime = __va(efi.systab->runtime);
 502        efi.get_time = phys_get_time;
 503        efi.set_time = phys_set_time;
 504        efi.get_wakeup_time = phys_get_wakeup_time;
 505        efi.set_wakeup_time = phys_set_wakeup_time;
 506        efi.get_variable = phys_get_variable;
 507        efi.get_next_variable = phys_get_next_variable;
 508        efi.set_variable = phys_set_variable;
 509        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 510        efi.reset_system = phys_reset_system;
 511
 512        efi_map_start = __va(ia64_boot_param->efi_memmap);
 513        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 514        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 515
 516#if EFI_DEBUG
 517        /* print EFI memory map: */
 518        {
 519                efi_memory_desc_t *md;
 520                void *p;
 521
 522                for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
 523                        md = p;
 524                        printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
 525                               i, md->type, md->attribute, md->phys_addr,
 526                               md->phys_addr + efi_md_size(md),
 527                               md->num_pages >> (20 - EFI_PAGE_SHIFT));
 528                }
 529        }
 530#endif
 531
 532        efi_map_pal_code();
 533        efi_enter_virtual_mode();
 534}
 535
 536void
 537efi_enter_virtual_mode (void)
 538{
 539        void *efi_map_start, *efi_map_end, *p;
 540        efi_memory_desc_t *md;
 541        efi_status_t status;
 542        u64 efi_desc_size;
 543
 544        efi_map_start = __va(ia64_boot_param->efi_memmap);
 545        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 546        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 547
 548        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 549                md = p;
 550                if (md->attribute & EFI_MEMORY_RUNTIME) {
 551                        /*
 552                         * Some descriptors have multiple bits set, so the order of
 553                         * the tests is relevant.
 554                         */
 555                        if (md->attribute & EFI_MEMORY_WB) {
 556                                md->virt_addr = (u64) __va(md->phys_addr);
 557                        } else if (md->attribute & EFI_MEMORY_UC) {
 558                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 559                        } else if (md->attribute & EFI_MEMORY_WC) {
 560#if 0
 561                                md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
 562                                                                           | _PAGE_D
 563                                                                           | _PAGE_MA_WC
 564                                                                           | _PAGE_PL_0
 565                                                                           | _PAGE_AR_RW));
 566#else
 567                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 568                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 569#endif
 570                        } else if (md->attribute & EFI_MEMORY_WT) {
 571#if 0
 572                                md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
 573                                                                           | _PAGE_D | _PAGE_MA_WT
 574                                                                           | _PAGE_PL_0
 575                                                                           | _PAGE_AR_RW));
 576#else
 577                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 578                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 579#endif
 580                        }
 581                }
 582        }
 583
 584        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 585                               ia64_boot_param->efi_memmap_size,
 586                               efi_desc_size, ia64_boot_param->efi_memdesc_version,
 587                               ia64_boot_param->efi_memmap);
 588        if (status != EFI_SUCCESS) {
 589                printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
 590                       "(status=%lu)\n", status);
 591                return;
 592        }
 593
 594        /*
 595         * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
 596         */
 597        efi.get_time = virt_get_time;
 598        efi.set_time = virt_set_time;
 599        efi.get_wakeup_time = virt_get_wakeup_time;
 600        efi.set_wakeup_time = virt_set_wakeup_time;
 601        efi.get_variable = virt_get_variable;
 602        efi.get_next_variable = virt_get_next_variable;
 603        efi.set_variable = virt_set_variable;
 604        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 605        efi.reset_system = virt_reset_system;
 606}
 607
 608/*
 609 * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
 610 * this type, other I/O port ranges should be described via ACPI.
 611 */
 612u64
 613efi_get_iobase (void)
 614{
 615        void *efi_map_start, *efi_map_end, *p;
 616        efi_memory_desc_t *md;
 617        u64 efi_desc_size;
 618
 619        efi_map_start = __va(ia64_boot_param->efi_memmap);
 620        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 621        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 622
 623        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 624                md = p;
 625                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 626                        if (md->attribute & EFI_MEMORY_UC)
 627                                return md->phys_addr;
 628                }
 629        }
 630        return 0;
 631}
 632
 633static struct kern_memdesc *
 634kern_memory_descriptor (unsigned long phys_addr)
 635{
 636        struct kern_memdesc *md;
 637
 638        for (md = kern_memmap; md->start != ~0UL; md++) {
 639                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 640                         return md;
 641        }
 642        return NULL;
 643}
 644
 645static efi_memory_desc_t *
 646efi_memory_descriptor (unsigned long phys_addr)
 647{
 648        void *efi_map_start, *efi_map_end, *p;
 649        efi_memory_desc_t *md;
 650        u64 efi_desc_size;
 651
 652        efi_map_start = __va(ia64_boot_param->efi_memmap);
 653        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 654        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 655
 656        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 657                md = p;
 658
 659                if (phys_addr - md->phys_addr < efi_md_size(md))
 660                         return md;
 661        }
 662        return NULL;
 663}
 664
 665static int
 666efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 667{
 668        void *efi_map_start, *efi_map_end, *p;
 669        efi_memory_desc_t *md;
 670        u64 efi_desc_size;
 671        unsigned long end;
 672
 673        efi_map_start = __va(ia64_boot_param->efi_memmap);
 674        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 675        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 676
 677        end = phys_addr + size;
 678
 679        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 680                md = p;
 681
 682                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 683                        return 1;
 684        }
 685        return 0;
 686}
 687
 688u32
 689efi_mem_type (unsigned long phys_addr)
 690{
 691        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 692
 693        if (md)
 694                return md->type;
 695        return 0;
 696}
 697
 698u64
 699efi_mem_attributes (unsigned long phys_addr)
 700{
 701        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 702
 703        if (md)
 704                return md->attribute;
 705        return 0;
 706}
 707EXPORT_SYMBOL(efi_mem_attributes);
 708
 709u64
 710efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 711{
 712        unsigned long end = phys_addr + size;
 713        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 714        u64 attr;
 715
 716        if (!md)
 717                return 0;
 718
 719        /*
 720         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 721         * the kernel that firmware needs this region mapped.
 722         */
 723        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 724        do {
 725                unsigned long md_end = efi_md_end(md);
 726
 727                if (end <= md_end)
 728                        return attr;
 729
 730                md = efi_memory_descriptor(md_end);
 731                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 732                        return 0;
 733        } while (md);
 734        return 0;
 735}
 736
 737u64
 738kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 739{
 740        unsigned long end = phys_addr + size;
 741        struct kern_memdesc *md;
 742        u64 attr;
 743
 744        /*
 745         * This is a hack for ioremap calls before we set up kern_memmap.
 746         * Maybe we should do efi_memmap_init() earlier instead.
 747         */
 748        if (!kern_memmap) {
 749                attr = efi_mem_attribute(phys_addr, size);
 750                if (attr & EFI_MEMORY_WB)
 751                        return EFI_MEMORY_WB;
 752                return 0;
 753        }
 754
 755        md = kern_memory_descriptor(phys_addr);
 756        if (!md)
 757                return 0;
 758
 759        attr = md->attribute;
 760        do {
 761                unsigned long md_end = kmd_end(md);
 762
 763                if (end <= md_end)
 764                        return attr;
 765
 766                md = kern_memory_descriptor(md_end);
 767                if (!md || md->attribute != attr)
 768                        return 0;
 769        } while (md);
 770        return 0;
 771}
 772EXPORT_SYMBOL(kern_mem_attribute);
 773
 774int
 775valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
 776{
 777        u64 attr;
 778
 779        /*
 780         * /dev/mem reads and writes use copy_to_user(), which implicitly
 781         * uses a granule-sized kernel identity mapping.  It's really
 782         * only safe to do this for regions in kern_memmap.  For more
 783         * details, see Documentation/ia64/aliasing.txt.
 784         */
 785        attr = kern_mem_attribute(phys_addr, size);
 786        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 787                return 1;
 788        return 0;
 789}
 790
 791int
 792valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 793{
 794        unsigned long phys_addr = pfn << PAGE_SHIFT;
 795        u64 attr;
 796
 797        attr = efi_mem_attribute(phys_addr, size);
 798
 799        /*
 800         * /dev/mem mmap uses normal user pages, so we don't need the entire
 801         * granule, but the entire region we're mapping must support the same
 802         * attribute.
 803         */
 804        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 805                return 1;
 806
 807        /*
 808         * Intel firmware doesn't tell us about all the MMIO regions, so
 809         * in general we have to allow mmap requests.  But if EFI *does*
 810         * tell us about anything inside this region, we should deny it.
 811         * The user can always map a smaller region to avoid the overlap.
 812         */
 813        if (efi_memmap_intersects(phys_addr, size))
 814                return 0;
 815
 816        return 1;
 817}
 818
 819pgprot_t
 820phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 821                     pgprot_t vma_prot)
 822{
 823        unsigned long phys_addr = pfn << PAGE_SHIFT;
 824        u64 attr;
 825
 826        /*
 827         * For /dev/mem mmap, we use user mappings, but if the region is
 828         * in kern_memmap (and hence may be covered by a kernel mapping),
 829         * we must use the same attribute as the kernel mapping.
 830         */
 831        attr = kern_mem_attribute(phys_addr, size);
 832        if (attr & EFI_MEMORY_WB)
 833                return pgprot_cacheable(vma_prot);
 834        else if (attr & EFI_MEMORY_UC)
 835                return pgprot_noncached(vma_prot);
 836
 837        /*
 838         * Some chipsets don't support UC access to memory.  If
 839         * WB is supported, we prefer that.
 840         */
 841        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 842                return pgprot_cacheable(vma_prot);
 843
 844        return pgprot_noncached(vma_prot);
 845}
 846
 847int __init
 848efi_uart_console_only(void)
 849{
 850        efi_status_t status;
 851        char *s, name[] = "ConOut";
 852        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 853        efi_char16_t *utf16, name_utf16[32];
 854        unsigned char data[1024];
 855        unsigned long size = sizeof(data);
 856        struct efi_generic_dev_path *hdr, *end_addr;
 857        int uart = 0;
 858
 859        /* Convert to UTF-16 */
 860        utf16 = name_utf16;
 861        s = name;
 862        while (*s)
 863                *utf16++ = *s++ & 0x7f;
 864        *utf16 = 0;
 865
 866        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 867        if (status != EFI_SUCCESS) {
 868                printk(KERN_ERR "No EFI %s variable?\n", name);
 869                return 0;
 870        }
 871
 872        hdr = (struct efi_generic_dev_path *) data;
 873        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 874        while (hdr < end_addr) {
 875                if (hdr->type == EFI_DEV_MSG &&
 876                    hdr->sub_type == EFI_DEV_MSG_UART)
 877                        uart = 1;
 878                else if (hdr->type == EFI_DEV_END_PATH ||
 879                          hdr->type == EFI_DEV_END_PATH2) {
 880                        if (!uart)
 881                                return 0;
 882                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 883                                return 1;
 884                        uart = 0;
 885                }
 886                hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
 887        }
 888        printk(KERN_ERR "Malformed %s value\n", name);
 889        return 0;
 890}
 891
 892/*
 893 * Look for the first granule aligned memory descriptor memory
 894 * that is big enough to hold EFI memory map. Make sure this
 895 * descriptor is atleast granule sized so it does not get trimmed
 896 */
 897struct kern_memdesc *
 898find_memmap_space (void)
 899{
 900        u64     contig_low=0, contig_high=0;
 901        u64     as = 0, ae;
 902        void *efi_map_start, *efi_map_end, *p, *q;
 903        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 904        u64     space_needed, efi_desc_size;
 905        unsigned long total_mem = 0;
 906
 907        efi_map_start = __va(ia64_boot_param->efi_memmap);
 908        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 909        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 910
 911        /*
 912         * Worst case: we need 3 kernel descriptors for each efi descriptor
 913         * (if every entry has a WB part in the middle, and UC head and tail),
 914         * plus one for the end marker.
 915         */
 916        space_needed = sizeof(kern_memdesc_t) *
 917                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 918
 919        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 920                md = p;
 921                if (!efi_wb(md)) {
 922                        continue;
 923                }
 924                if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
 925                        contig_low = GRANULEROUNDUP(md->phys_addr);
 926                        contig_high = efi_md_end(md);
 927                        for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
 928                                check_md = q;
 929                                if (!efi_wb(check_md))
 930                                        break;
 931                                if (contig_high != check_md->phys_addr)
 932                                        break;
 933                                contig_high = efi_md_end(check_md);
 934                        }
 935                        contig_high = GRANULEROUNDDOWN(contig_high);
 936                }
 937                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
 938                        continue;
 939
 940                /* Round ends inward to granule boundaries */
 941                as = max(contig_low, md->phys_addr);
 942                ae = min(contig_high, efi_md_end(md));
 943
 944                /* keep within max_addr= and min_addr= command line arg */
 945                as = max(as, min_addr);
 946                ae = min(ae, max_addr);
 947                if (ae <= as)
 948                        continue;
 949
 950                /* avoid going over mem= command line arg */
 951                if (total_mem + (ae - as) > mem_limit)
 952                        ae -= total_mem + (ae - as) - mem_limit;
 953
 954                if (ae <= as)
 955                        continue;
 956
 957                if (ae - as > space_needed)
 958                        break;
 959        }
 960        if (p >= efi_map_end)
 961                panic("Can't allocate space for kernel memory descriptors");
 962
 963        return __va(as);
 964}
 965
 966/*
 967 * Walk the EFI memory map and gather all memory available for kernel
 968 * to use.  We can allocate partial granules only if the unavailable
 969 * parts exist, and are WB.
 970 */
 971unsigned long
 972efi_memmap_init(unsigned long *s, unsigned long *e)
 973{
 974        struct kern_memdesc *k, *prev = NULL;
 975        u64     contig_low=0, contig_high=0;
 976        u64     as, ae, lim;
 977        void *efi_map_start, *efi_map_end, *p, *q;
 978        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 979        u64     efi_desc_size;
 980        unsigned long total_mem = 0;
 981
 982        k = kern_memmap = find_memmap_space();
 983
 984        efi_map_start = __va(ia64_boot_param->efi_memmap);
 985        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 986        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 987
 988        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 989                md = p;
 990                if (!efi_wb(md)) {
 991                        if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
 992                                           md->type == EFI_BOOT_SERVICES_DATA)) {
 993                                k->attribute = EFI_MEMORY_UC;
 994                                k->start = md->phys_addr;
 995                                k->num_pages = md->num_pages;
 996                                k++;
 997                        }
 998                        continue;
 999                }
1000                if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
1001                        contig_low = GRANULEROUNDUP(md->phys_addr);
1002                        contig_high = efi_md_end(md);
1003                        for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
1004                                check_md = q;
1005                                if (!efi_wb(check_md))
1006                                        break;
1007                                if (contig_high != check_md->phys_addr)
1008                                        break;
1009                                contig_high = efi_md_end(check_md);
1010                        }
1011                        contig_high = GRANULEROUNDDOWN(contig_high);
1012                }
1013                if (!is_memory_available(md))
1014                        continue;
1015
1016#ifdef CONFIG_CRASH_DUMP
1017                /* saved_max_pfn should ignore max_addr= command line arg */
1018                if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1019                        saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1020#endif
1021                /*
1022                 * Round ends inward to granule boundaries
1023                 * Give trimmings to uncached allocator
1024                 */
1025                if (md->phys_addr < contig_low) {
1026                        lim = min(efi_md_end(md), contig_low);
1027                        if (efi_uc(md)) {
1028                                if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1029                                    kmd_end(k-1) == md->phys_addr) {
1030                                        (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1031                                } else {
1032                                        k->attribute = EFI_MEMORY_UC;
1033                                        k->start = md->phys_addr;
1034                                        k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1035                                        k++;
1036                                }
1037                        }
1038                        as = contig_low;
1039                } else
1040                        as = md->phys_addr;
1041
1042                if (efi_md_end(md) > contig_high) {
1043                        lim = max(md->phys_addr, contig_high);
1044                        if (efi_uc(md)) {
1045                                if (lim == md->phys_addr && k > kern_memmap &&
1046                                    (k-1)->attribute == EFI_MEMORY_UC &&
1047                                    kmd_end(k-1) == md->phys_addr) {
1048                                        (k-1)->num_pages += md->num_pages;
1049                                } else {
1050                                        k->attribute = EFI_MEMORY_UC;
1051                                        k->start = lim;
1052                                        k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1053                                        k++;
1054                                }
1055                        }
1056                        ae = contig_high;
1057                } else
1058                        ae = efi_md_end(md);
1059
1060                /* keep within max_addr= and min_addr= command line arg */
1061                as = max(as, min_addr);
1062                ae = min(ae, max_addr);
1063                if (ae <= as)
1064                        continue;
1065
1066                /* avoid going over mem= command line arg */
1067                if (total_mem + (ae - as) > mem_limit)
1068                        ae -= total_mem + (ae - as) - mem_limit;
1069
1070                if (ae <= as)
1071                        continue;
1072                if (prev && kmd_end(prev) == md->phys_addr) {
1073                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1074                        total_mem += ae - as;
1075                        continue;
1076                }
1077                k->attribute = EFI_MEMORY_WB;
1078                k->start = as;
1079                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1080                total_mem += ae - as;
1081                prev = k++;
1082        }
1083        k->start = ~0L; /* end-marker */
1084
1085        /* reserve the memory we are using for kern_memmap */
1086        *s = (u64)kern_memmap;
1087        *e = (u64)++k;
1088
1089        return total_mem;
1090}
1091
1092void
1093efi_initialize_iomem_resources(struct resource *code_resource,
1094                               struct resource *data_resource,
1095                               struct resource *bss_resource)
1096{
1097        struct resource *res;
1098        void *efi_map_start, *efi_map_end, *p;
1099        efi_memory_desc_t *md;
1100        u64 efi_desc_size;
1101        char *name;
1102        unsigned long flags;
1103
1104        efi_map_start = __va(ia64_boot_param->efi_memmap);
1105        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1106        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1107
1108        res = NULL;
1109
1110        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1111                md = p;
1112
1113                if (md->num_pages == 0) /* should not happen */
1114                        continue;
1115
1116                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1117                switch (md->type) {
1118
1119                        case EFI_MEMORY_MAPPED_IO:
1120                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1121                                continue;
1122
1123                        case EFI_LOADER_CODE:
1124                        case EFI_LOADER_DATA:
1125                        case EFI_BOOT_SERVICES_DATA:
1126                        case EFI_BOOT_SERVICES_CODE:
1127                        case EFI_CONVENTIONAL_MEMORY:
1128                                if (md->attribute & EFI_MEMORY_WP) {
1129                                        name = "System ROM";
1130                                        flags |= IORESOURCE_READONLY;
1131                                } else {
1132                                        name = "System RAM";
1133                                }
1134                                break;
1135
1136                        case EFI_ACPI_MEMORY_NVS:
1137                                name = "ACPI Non-volatile Storage";
1138                                break;
1139
1140                        case EFI_UNUSABLE_MEMORY:
1141                                name = "reserved";
1142                                flags |= IORESOURCE_DISABLED;
1143                                break;
1144
1145                        case EFI_RESERVED_TYPE:
1146                        case EFI_RUNTIME_SERVICES_CODE:
1147                        case EFI_RUNTIME_SERVICES_DATA:
1148                        case EFI_ACPI_RECLAIM_MEMORY:
1149                        default:
1150                                name = "reserved";
1151                                break;
1152                }
1153
1154                if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1155                        printk(KERN_ERR "failed to alocate resource for iomem\n");
1156                        return;
1157                }
1158
1159                res->name = name;
1160                res->start = md->phys_addr;
1161                res->end = md->phys_addr + efi_md_size(md) - 1;
1162                res->flags = flags;
1163
1164                if (insert_resource(&iomem_resource, res) < 0)
1165                        kfree(res);
1166                else {
1167                        /*
1168                         * We don't know which region contains
1169                         * kernel data so we try it repeatedly and
1170                         * let the resource manager test it.
1171                         */
1172                        insert_resource(res, code_resource);
1173                        insert_resource(res, data_resource);
1174                        insert_resource(res, bss_resource);
1175#ifdef CONFIG_KEXEC
1176                        insert_resource(res, &efi_memmap_res);
1177                        insert_resource(res, &boot_param_res);
1178                        if (crashk_res.end > crashk_res.start)
1179                                insert_resource(res, &crashk_res);
1180#endif
1181                }
1182        }
1183}
1184
1185#ifdef CONFIG_KEXEC
1186/* find a block of memory aligned to 64M exclude reserved regions
1187   rsvd_regions are sorted
1188 */
1189unsigned long __init
1190kdump_find_rsvd_region (unsigned long size,
1191                struct rsvd_region *r, int n)
1192{
1193  int i;
1194  u64 start, end;
1195  u64 alignment = 1UL << _PAGE_SIZE_64M;
1196  void *efi_map_start, *efi_map_end, *p;
1197  efi_memory_desc_t *md;
1198  u64 efi_desc_size;
1199
1200  efi_map_start = __va(ia64_boot_param->efi_memmap);
1201  efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1202  efi_desc_size = ia64_boot_param->efi_memdesc_size;
1203
1204  for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1205          md = p;
1206          if (!efi_wb(md))
1207                  continue;
1208          start = ALIGN(md->phys_addr, alignment);
1209          end = efi_md_end(md);
1210          for (i = 0; i < n; i++) {
1211                if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1212                        if (__pa(r[i].start) > start + size)
1213                                return start;
1214                        start = ALIGN(__pa(r[i].end), alignment);
1215                        if (i < n-1 && __pa(r[i+1].start) < start + size)
1216                                continue;
1217                        else
1218                                break;
1219                }
1220          }
1221          if (end > start + size)
1222                return start;
1223  }
1224
1225  printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1226        size);
1227  return ~0UL;
1228}
1229#endif
1230
1231#ifdef CONFIG_PROC_VMCORE
1232/* locate the size find a the descriptor at a certain address */
1233unsigned long __init
1234vmcore_find_descriptor_size (unsigned long address)
1235{
1236        void *efi_map_start, *efi_map_end, *p;
1237        efi_memory_desc_t *md;
1238        u64 efi_desc_size;
1239        unsigned long ret = 0;
1240
1241        efi_map_start = __va(ia64_boot_param->efi_memmap);
1242        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1243        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1244
1245        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1246                md = p;
1247                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1248                    && md->phys_addr == address) {
1249                        ret = efi_md_size(md);
1250                        break;
1251                }
1252        }
1253
1254        if (ret == 0)
1255                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1256
1257        return ret;
1258}
1259#endif
1260