linux/arch/ia64/kernel/mca.c
<<
>>
Prefs
   1/*
   2 * File:        mca.c
   3 * Purpose:     Generic MCA handling layer
   4 *
   5 * Updated for latest kernel
   6 * Copyright (C) 2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *
   9 * Copyright (C) 2002 Dell Inc.
  10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
  11 *
  12 * Copyright (C) 2002 Intel
  13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
  14 *
  15 * Copyright (C) 2001 Intel
  16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
  17 *
  18 * Copyright (C) 2000 Intel
  19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
  20 *
  21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
  22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
  23 *
  24 * 03/04/15 D. Mosberger Added INIT backtrace support.
  25 * 02/03/25 M. Domsch   GUID cleanups
  26 *
  27 * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
  28 *                      error flag, set SAL default return values, changed
  29 *                      error record structure to linked list, added init call
  30 *                      to sal_get_state_info_size().
  31 *
  32 * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
  33 *                      platform errors, completed code for logging of
  34 *                      corrected & uncorrected machine check errors, and
  35 *                      updated for conformance with Nov. 2000 revision of the
  36 *                      SAL 3.0 spec.
  37 * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  38 *                           added min save state dump, added INIT handler.
  39 *
  40 * 2003-12-08 Keith Owens <kaos@sgi.com>
  41 *            smp_call_function() must not be called from interrupt context (can
  42 *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
  43 *
  44 * 2004-02-01 Keith Owens <kaos@sgi.com>
  45 *            Avoid deadlock when using printk() for MCA and INIT records.
  46 *            Delete all record printing code, moved to salinfo_decode in user space.
  47 *            Mark variables and functions static where possible.
  48 *            Delete dead variables and functions.
  49 *            Reorder to remove the need for forward declarations and to consolidate
  50 *            related code.
  51 *
  52 * 2005-08-12 Keith Owens <kaos@sgi.com>
  53 *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
  54 *
  55 * 2005-10-07 Keith Owens <kaos@sgi.com>
  56 *            Add notify_die() hooks.
  57 *
  58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  59 *            Add printing support for MCA/INIT.
  60 *
  61 * 2007-04-27 Russ Anderson <rja@sgi.com>
  62 *            Support multiple cpus going through OS_MCA in the same event.
  63 */
  64#include <linux/types.h>
  65#include <linux/init.h>
  66#include <linux/sched.h>
  67#include <linux/interrupt.h>
  68#include <linux/irq.h>
  69#include <linux/bootmem.h>
  70#include <linux/acpi.h>
  71#include <linux/timer.h>
  72#include <linux/module.h>
  73#include <linux/kernel.h>
  74#include <linux/smp.h>
  75#include <linux/workqueue.h>
  76#include <linux/cpumask.h>
  77#include <linux/kdebug.h>
  78#include <linux/cpu.h>
  79
  80#include <asm/delay.h>
  81#include <asm/machvec.h>
  82#include <asm/meminit.h>
  83#include <asm/page.h>
  84#include <asm/ptrace.h>
  85#include <asm/system.h>
  86#include <asm/sal.h>
  87#include <asm/mca.h>
  88#include <asm/kexec.h>
  89
  90#include <asm/irq.h>
  91#include <asm/hw_irq.h>
  92
  93#include "mca_drv.h"
  94#include "entry.h"
  95
  96#if defined(IA64_MCA_DEBUG_INFO)
  97# define IA64_MCA_DEBUG(fmt...) printk(fmt)
  98#else
  99# define IA64_MCA_DEBUG(fmt...)
 100#endif
 101
 102/* Used by mca_asm.S */
 103DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 104DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 105DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
 106DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 107
 108unsigned long __per_cpu_mca[NR_CPUS];
 109
 110/* In mca_asm.S */
 111extern void                     ia64_os_init_dispatch_monarch (void);
 112extern void                     ia64_os_init_dispatch_slave (void);
 113
 114static int monarch_cpu = -1;
 115
 116static ia64_mc_info_t           ia64_mc_info;
 117
 118#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 119#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 120#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 121#define CPE_HISTORY_LENGTH    5
 122#define CMC_HISTORY_LENGTH    5
 123
 124#ifdef CONFIG_ACPI
 125static struct timer_list cpe_poll_timer;
 126#endif
 127static struct timer_list cmc_poll_timer;
 128/*
 129 * This variable tells whether we are currently in polling mode.
 130 * Start with this in the wrong state so we won't play w/ timers
 131 * before the system is ready.
 132 */
 133static int cmc_polling_enabled = 1;
 134
 135/*
 136 * Clearing this variable prevents CPE polling from getting activated
 137 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 138 * but encounters problems retrieving CPE logs.  This should only be
 139 * necessary for debugging.
 140 */
 141static int cpe_poll_enabled = 1;
 142
 143extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 144
 145static int mca_init __initdata;
 146
 147/*
 148 * limited & delayed printing support for MCA/INIT handler
 149 */
 150
 151#define mprintk(fmt...) ia64_mca_printk(fmt)
 152
 153#define MLOGBUF_SIZE (512+256*NR_CPUS)
 154#define MLOGBUF_MSGMAX 256
 155static char mlogbuf[MLOGBUF_SIZE];
 156static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
 157static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
 158static unsigned long mlogbuf_start;
 159static unsigned long mlogbuf_end;
 160static unsigned int mlogbuf_finished = 0;
 161static unsigned long mlogbuf_timestamp = 0;
 162
 163static int loglevel_save = -1;
 164#define BREAK_LOGLEVEL(__console_loglevel)              \
 165        oops_in_progress = 1;                           \
 166        if (loglevel_save < 0)                          \
 167                loglevel_save = __console_loglevel;     \
 168        __console_loglevel = 15;
 169
 170#define RESTORE_LOGLEVEL(__console_loglevel)            \
 171        if (loglevel_save >= 0) {                       \
 172                __console_loglevel = loglevel_save;     \
 173                loglevel_save = -1;                     \
 174        }                                               \
 175        mlogbuf_finished = 0;                           \
 176        oops_in_progress = 0;
 177
 178/*
 179 * Push messages into buffer, print them later if not urgent.
 180 */
 181void ia64_mca_printk(const char *fmt, ...)
 182{
 183        va_list args;
 184        int printed_len;
 185        char temp_buf[MLOGBUF_MSGMAX];
 186        char *p;
 187
 188        va_start(args, fmt);
 189        printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 190        va_end(args);
 191
 192        /* Copy the output into mlogbuf */
 193        if (oops_in_progress) {
 194                /* mlogbuf was abandoned, use printk directly instead. */
 195                printk(temp_buf);
 196        } else {
 197                spin_lock(&mlogbuf_wlock);
 198                for (p = temp_buf; *p; p++) {
 199                        unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 200                        if (next != mlogbuf_start) {
 201                                mlogbuf[mlogbuf_end] = *p;
 202                                mlogbuf_end = next;
 203                        } else {
 204                                /* buffer full */
 205                                break;
 206                        }
 207                }
 208                mlogbuf[mlogbuf_end] = '\0';
 209                spin_unlock(&mlogbuf_wlock);
 210        }
 211}
 212EXPORT_SYMBOL(ia64_mca_printk);
 213
 214/*
 215 * Print buffered messages.
 216 *  NOTE: call this after returning normal context. (ex. from salinfod)
 217 */
 218void ia64_mlogbuf_dump(void)
 219{
 220        char temp_buf[MLOGBUF_MSGMAX];
 221        char *p;
 222        unsigned long index;
 223        unsigned long flags;
 224        unsigned int printed_len;
 225
 226        /* Get output from mlogbuf */
 227        while (mlogbuf_start != mlogbuf_end) {
 228                temp_buf[0] = '\0';
 229                p = temp_buf;
 230                printed_len = 0;
 231
 232                spin_lock_irqsave(&mlogbuf_rlock, flags);
 233
 234                index = mlogbuf_start;
 235                while (index != mlogbuf_end) {
 236                        *p = mlogbuf[index];
 237                        index = (index + 1) % MLOGBUF_SIZE;
 238                        if (!*p)
 239                                break;
 240                        p++;
 241                        if (++printed_len >= MLOGBUF_MSGMAX - 1)
 242                                break;
 243                }
 244                *p = '\0';
 245                if (temp_buf[0])
 246                        printk(temp_buf);
 247                mlogbuf_start = index;
 248
 249                mlogbuf_timestamp = 0;
 250                spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 251        }
 252}
 253EXPORT_SYMBOL(ia64_mlogbuf_dump);
 254
 255/*
 256 * Call this if system is going to down or if immediate flushing messages to
 257 * console is required. (ex. recovery was failed, crash dump is going to be
 258 * invoked, long-wait rendezvous etc.)
 259 *  NOTE: this should be called from monarch.
 260 */
 261static void ia64_mlogbuf_finish(int wait)
 262{
 263        BREAK_LOGLEVEL(console_loglevel);
 264
 265        spin_lock_init(&mlogbuf_rlock);
 266        ia64_mlogbuf_dump();
 267        printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 268                "MCA/INIT might be dodgy or fail.\n");
 269
 270        if (!wait)
 271                return;
 272
 273        /* wait for console */
 274        printk("Delaying for 5 seconds...\n");
 275        udelay(5*1000000);
 276
 277        mlogbuf_finished = 1;
 278}
 279
 280/*
 281 * Print buffered messages from INIT context.
 282 */
 283static void ia64_mlogbuf_dump_from_init(void)
 284{
 285        if (mlogbuf_finished)
 286                return;
 287
 288        if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
 289                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 290                        " and the system seems to be messed up.\n");
 291                ia64_mlogbuf_finish(0);
 292                return;
 293        }
 294
 295        if (!spin_trylock(&mlogbuf_rlock)) {
 296                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 297                        "Generated messages other than stack dump will be "
 298                        "buffered to mlogbuf and will be printed later.\n");
 299                printk(KERN_ERR "INIT: If messages would not printed after "
 300                        "this INIT, wait 30sec and assert INIT again.\n");
 301                if (!mlogbuf_timestamp)
 302                        mlogbuf_timestamp = jiffies;
 303                return;
 304        }
 305        spin_unlock(&mlogbuf_rlock);
 306        ia64_mlogbuf_dump();
 307}
 308
 309static void inline
 310ia64_mca_spin(const char *func)
 311{
 312        if (monarch_cpu == smp_processor_id())
 313                ia64_mlogbuf_finish(0);
 314        mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 315        while (1)
 316                cpu_relax();
 317}
 318/*
 319 * IA64_MCA log support
 320 */
 321#define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
 322#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 323
 324typedef struct ia64_state_log_s
 325{
 326        spinlock_t      isl_lock;
 327        int             isl_index;
 328        unsigned long   isl_count;
 329        ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 330} ia64_state_log_t;
 331
 332static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 333
 334#define IA64_LOG_ALLOCATE(it, size) \
 335        {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
 336                (ia64_err_rec_t *)alloc_bootmem(size); \
 337        ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
 338                (ia64_err_rec_t *)alloc_bootmem(size);}
 339#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 340#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 341#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 342#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 343#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 344#define IA64_LOG_INDEX_INC(it) \
 345    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 346    ia64_state_log[it].isl_count++;}
 347#define IA64_LOG_INDEX_DEC(it) \
 348    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 349#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 350#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 351#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 352
 353/*
 354 * ia64_log_init
 355 *      Reset the OS ia64 log buffer
 356 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 357 * Outputs      :       None
 358 */
 359static void __init
 360ia64_log_init(int sal_info_type)
 361{
 362        u64     max_size = 0;
 363
 364        IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 365        IA64_LOG_LOCK_INIT(sal_info_type);
 366
 367        // SAL will tell us the maximum size of any error record of this type
 368        max_size = ia64_sal_get_state_info_size(sal_info_type);
 369        if (!max_size)
 370                /* alloc_bootmem() doesn't like zero-sized allocations! */
 371                return;
 372
 373        // set up OS data structures to hold error info
 374        IA64_LOG_ALLOCATE(sal_info_type, max_size);
 375        memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
 376        memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
 377}
 378
 379/*
 380 * ia64_log_get
 381 *
 382 *      Get the current MCA log from SAL and copy it into the OS log buffer.
 383 *
 384 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 385 *              irq_safe    whether you can use printk at this point
 386 *  Outputs :   size        (total record length)
 387 *              *buffer     (ptr to error record)
 388 *
 389 */
 390static u64
 391ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 392{
 393        sal_log_record_header_t     *log_buffer;
 394        u64                         total_len = 0;
 395        unsigned long               s;
 396
 397        IA64_LOG_LOCK(sal_info_type);
 398
 399        /* Get the process state information */
 400        log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 401
 402        total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 403
 404        if (total_len) {
 405                IA64_LOG_INDEX_INC(sal_info_type);
 406                IA64_LOG_UNLOCK(sal_info_type);
 407                if (irq_safe) {
 408                        IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
 409                                       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
 410                }
 411                *buffer = (u8 *) log_buffer;
 412                return total_len;
 413        } else {
 414                IA64_LOG_UNLOCK(sal_info_type);
 415                return 0;
 416        }
 417}
 418
 419/*
 420 *  ia64_mca_log_sal_error_record
 421 *
 422 *  This function retrieves a specified error record type from SAL
 423 *  and wakes up any processes waiting for error records.
 424 *
 425 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 426 *              FIXME: remove MCA and irq_safe.
 427 */
 428static void
 429ia64_mca_log_sal_error_record(int sal_info_type)
 430{
 431        u8 *buffer;
 432        sal_log_record_header_t *rh;
 433        u64 size;
 434        int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 435#ifdef IA64_MCA_DEBUG_INFO
 436        static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 437#endif
 438
 439        size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 440        if (!size)
 441                return;
 442
 443        salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 444
 445        if (irq_safe)
 446                IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 447                        smp_processor_id(),
 448                        sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 449
 450        /* Clear logs from corrected errors in case there's no user-level logger */
 451        rh = (sal_log_record_header_t *)buffer;
 452        if (rh->severity == sal_log_severity_corrected)
 453                ia64_sal_clear_state_info(sal_info_type);
 454}
 455
 456/*
 457 * search_mca_table
 458 *  See if the MCA surfaced in an instruction range
 459 *  that has been tagged as recoverable.
 460 *
 461 *  Inputs
 462 *      first   First address range to check
 463 *      last    Last address range to check
 464 *      ip      Instruction pointer, address we are looking for
 465 *
 466 * Return value:
 467 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 468 */
 469int
 470search_mca_table (const struct mca_table_entry *first,
 471                const struct mca_table_entry *last,
 472                unsigned long ip)
 473{
 474        const struct mca_table_entry *curr;
 475        u64 curr_start, curr_end;
 476
 477        curr = first;
 478        while (curr <= last) {
 479                curr_start = (u64) &curr->start_addr + curr->start_addr;
 480                curr_end = (u64) &curr->end_addr + curr->end_addr;
 481
 482                if ((ip >= curr_start) && (ip <= curr_end)) {
 483                        return 1;
 484                }
 485                curr++;
 486        }
 487        return 0;
 488}
 489
 490/* Given an address, look for it in the mca tables. */
 491int mca_recover_range(unsigned long addr)
 492{
 493        extern struct mca_table_entry __start___mca_table[];
 494        extern struct mca_table_entry __stop___mca_table[];
 495
 496        return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 497}
 498EXPORT_SYMBOL_GPL(mca_recover_range);
 499
 500#ifdef CONFIG_ACPI
 501
 502int cpe_vector = -1;
 503int ia64_cpe_irq = -1;
 504
 505static irqreturn_t
 506ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 507{
 508        static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
 509        static int              index;
 510        static DEFINE_SPINLOCK(cpe_history_lock);
 511
 512        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 513                       __FUNCTION__, cpe_irq, smp_processor_id());
 514
 515        /* SAL spec states this should run w/ interrupts enabled */
 516        local_irq_enable();
 517
 518        spin_lock(&cpe_history_lock);
 519        if (!cpe_poll_enabled && cpe_vector >= 0) {
 520
 521                int i, count = 1; /* we know 1 happened now */
 522                unsigned long now = jiffies;
 523
 524                for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 525                        if (now - cpe_history[i] <= HZ)
 526                                count++;
 527                }
 528
 529                IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 530                if (count >= CPE_HISTORY_LENGTH) {
 531
 532                        cpe_poll_enabled = 1;
 533                        spin_unlock(&cpe_history_lock);
 534                        disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 535
 536                        /*
 537                         * Corrected errors will still be corrected, but
 538                         * make sure there's a log somewhere that indicates
 539                         * something is generating more than we can handle.
 540                         */
 541                        printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 542
 543                        mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 544
 545                        /* lock already released, get out now */
 546                        goto out;
 547                } else {
 548                        cpe_history[index++] = now;
 549                        if (index == CPE_HISTORY_LENGTH)
 550                                index = 0;
 551                }
 552        }
 553        spin_unlock(&cpe_history_lock);
 554out:
 555        /* Get the CPE error record and log it */
 556        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 557
 558        return IRQ_HANDLED;
 559}
 560
 561#endif /* CONFIG_ACPI */
 562
 563#ifdef CONFIG_ACPI
 564/*
 565 * ia64_mca_register_cpev
 566 *
 567 *  Register the corrected platform error vector with SAL.
 568 *
 569 *  Inputs
 570 *      cpev        Corrected Platform Error Vector number
 571 *
 572 *  Outputs
 573 *      None
 574 */
 575void
 576ia64_mca_register_cpev (int cpev)
 577{
 578        /* Register the CPE interrupt vector with SAL */
 579        struct ia64_sal_retval isrv;
 580
 581        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 582        if (isrv.status) {
 583                printk(KERN_ERR "Failed to register Corrected Platform "
 584                       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 585                return;
 586        }
 587
 588        IA64_MCA_DEBUG("%s: corrected platform error "
 589                       "vector %#x registered\n", __FUNCTION__, cpev);
 590}
 591#endif /* CONFIG_ACPI */
 592
 593/*
 594 * ia64_mca_cmc_vector_setup
 595 *
 596 *  Setup the corrected machine check vector register in the processor.
 597 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 598 *  This function is invoked on a per-processor basis.
 599 *
 600 * Inputs
 601 *      None
 602 *
 603 * Outputs
 604 *      None
 605 */
 606void __cpuinit
 607ia64_mca_cmc_vector_setup (void)
 608{
 609        cmcv_reg_t      cmcv;
 610
 611        cmcv.cmcv_regval        = 0;
 612        cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
 613        cmcv.cmcv_vector        = IA64_CMC_VECTOR;
 614        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 615
 616        IA64_MCA_DEBUG("%s: CPU %d corrected "
 617                       "machine check vector %#x registered.\n",
 618                       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
 619
 620        IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 621                       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 622}
 623
 624/*
 625 * ia64_mca_cmc_vector_disable
 626 *
 627 *  Mask the corrected machine check vector register in the processor.
 628 *  This function is invoked on a per-processor basis.
 629 *
 630 * Inputs
 631 *      dummy(unused)
 632 *
 633 * Outputs
 634 *      None
 635 */
 636static void
 637ia64_mca_cmc_vector_disable (void *dummy)
 638{
 639        cmcv_reg_t      cmcv;
 640
 641        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 642
 643        cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 644        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 645
 646        IA64_MCA_DEBUG("%s: CPU %d corrected "
 647                       "machine check vector %#x disabled.\n",
 648                       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
 649}
 650
 651/*
 652 * ia64_mca_cmc_vector_enable
 653 *
 654 *  Unmask the corrected machine check vector register in the processor.
 655 *  This function is invoked on a per-processor basis.
 656 *
 657 * Inputs
 658 *      dummy(unused)
 659 *
 660 * Outputs
 661 *      None
 662 */
 663static void
 664ia64_mca_cmc_vector_enable (void *dummy)
 665{
 666        cmcv_reg_t      cmcv;
 667
 668        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 669
 670        cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 671        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 672
 673        IA64_MCA_DEBUG("%s: CPU %d corrected "
 674                       "machine check vector %#x enabled.\n",
 675                       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
 676}
 677
 678/*
 679 * ia64_mca_cmc_vector_disable_keventd
 680 *
 681 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 682 * disable the cmc interrupt vector.
 683 */
 684static void
 685ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 686{
 687        on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
 688}
 689
 690/*
 691 * ia64_mca_cmc_vector_enable_keventd
 692 *
 693 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 694 * enable the cmc interrupt vector.
 695 */
 696static void
 697ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 698{
 699        on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
 700}
 701
 702/*
 703 * ia64_mca_wakeup
 704 *
 705 *      Send an inter-cpu interrupt to wake-up a particular cpu.
 706 *
 707 *  Inputs  :   cpuid
 708 *  Outputs :   None
 709 */
 710static void
 711ia64_mca_wakeup(int cpu)
 712{
 713        platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 714}
 715
 716/*
 717 * ia64_mca_wakeup_all
 718 *
 719 *      Wakeup all the slave cpus which have rendez'ed previously.
 720 *
 721 *  Inputs  :   None
 722 *  Outputs :   None
 723 */
 724static void
 725ia64_mca_wakeup_all(void)
 726{
 727        int cpu;
 728
 729        /* Clear the Rendez checkin flag for all cpus */
 730        for_each_online_cpu(cpu) {
 731                if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 732                        ia64_mca_wakeup(cpu);
 733        }
 734
 735}
 736
 737/*
 738 * ia64_mca_rendez_interrupt_handler
 739 *
 740 *      This is handler used to put slave processors into spinloop
 741 *      while the monarch processor does the mca handling and later
 742 *      wake each slave up once the monarch is done.  The state
 743 *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 744 *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 745 *      the cpu has come out of OS rendezvous.
 746 *
 747 *  Inputs  :   None
 748 *  Outputs :   None
 749 */
 750static irqreturn_t
 751ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 752{
 753        unsigned long flags;
 754        int cpu = smp_processor_id();
 755        struct ia64_mca_notify_die nd =
 756                { .sos = NULL, .monarch_cpu = &monarch_cpu };
 757
 758        /* Mask all interrupts */
 759        local_irq_save(flags);
 760        if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
 761                       (long)&nd, 0, 0) == NOTIFY_STOP)
 762                ia64_mca_spin(__FUNCTION__);
 763
 764        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 765        /* Register with the SAL monarch that the slave has
 766         * reached SAL
 767         */
 768        ia64_sal_mc_rendez();
 769
 770        if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
 771                       (long)&nd, 0, 0) == NOTIFY_STOP)
 772                ia64_mca_spin(__FUNCTION__);
 773
 774        /* Wait for the monarch cpu to exit. */
 775        while (monarch_cpu != -1)
 776               cpu_relax();     /* spin until monarch leaves */
 777
 778        if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
 779                       (long)&nd, 0, 0) == NOTIFY_STOP)
 780                ia64_mca_spin(__FUNCTION__);
 781
 782        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 783        /* Enable all interrupts */
 784        local_irq_restore(flags);
 785        return IRQ_HANDLED;
 786}
 787
 788/*
 789 * ia64_mca_wakeup_int_handler
 790 *
 791 *      The interrupt handler for processing the inter-cpu interrupt to the
 792 *      slave cpu which was spinning in the rendez loop.
 793 *      Since this spinning is done by turning off the interrupts and
 794 *      polling on the wakeup-interrupt bit in the IRR, there is
 795 *      nothing useful to be done in the handler.
 796 *
 797 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 798 *      arg             (Interrupt handler specific argument)
 799 *  Outputs :   None
 800 *
 801 */
 802static irqreturn_t
 803ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 804{
 805        return IRQ_HANDLED;
 806}
 807
 808/* Function pointer for extra MCA recovery */
 809int (*ia64_mca_ucmc_extension)
 810        (void*,struct ia64_sal_os_state*)
 811        = NULL;
 812
 813int
 814ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 815{
 816        if (ia64_mca_ucmc_extension)
 817                return 1;
 818
 819        ia64_mca_ucmc_extension = fn;
 820        return 0;
 821}
 822
 823void
 824ia64_unreg_MCA_extension(void)
 825{
 826        if (ia64_mca_ucmc_extension)
 827                ia64_mca_ucmc_extension = NULL;
 828}
 829
 830EXPORT_SYMBOL(ia64_reg_MCA_extension);
 831EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 832
 833
 834static inline void
 835copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
 836{
 837        u64 fslot, tslot, nat;
 838        *tr = *fr;
 839        fslot = ((unsigned long)fr >> 3) & 63;
 840        tslot = ((unsigned long)tr >> 3) & 63;
 841        *tnat &= ~(1UL << tslot);
 842        nat = (fnat >> fslot) & 1;
 843        *tnat |= (nat << tslot);
 844}
 845
 846/* Change the comm field on the MCA/INT task to include the pid that
 847 * was interrupted, it makes for easier debugging.  If that pid was 0
 848 * (swapper or nested MCA/INIT) then use the start of the previous comm
 849 * field suffixed with its cpu.
 850 */
 851
 852static void
 853ia64_mca_modify_comm(const struct task_struct *previous_current)
 854{
 855        char *p, comm[sizeof(current->comm)];
 856        if (previous_current->pid)
 857                snprintf(comm, sizeof(comm), "%s %d",
 858                        current->comm, previous_current->pid);
 859        else {
 860                int l;
 861                if ((p = strchr(previous_current->comm, ' ')))
 862                        l = p - previous_current->comm;
 863                else
 864                        l = strlen(previous_current->comm);
 865                snprintf(comm, sizeof(comm), "%s %*s %d",
 866                        current->comm, l, previous_current->comm,
 867                        task_thread_info(previous_current)->cpu);
 868        }
 869        memcpy(current->comm, comm, sizeof(current->comm));
 870}
 871
 872/* On entry to this routine, we are running on the per cpu stack, see
 873 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 874 * the original stack's registers will be in the RBS on this stack.  This stack
 875 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 876 * PAL minstate.
 877 *
 878 * The first thing to do is modify the original stack to look like a blocked
 879 * task so we can run backtrace on the original task.  Also mark the per cpu
 880 * stack as current to ensure that we use the correct task state, it also means
 881 * that we can do backtrace on the MCA/INIT handler code itself.
 882 */
 883
 884static struct task_struct *
 885ia64_mca_modify_original_stack(struct pt_regs *regs,
 886                const struct switch_stack *sw,
 887                struct ia64_sal_os_state *sos,
 888                const char *type)
 889{
 890        char *p;
 891        ia64_va va;
 892        extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
 893        const pal_min_state_area_t *ms = sos->pal_min_state;
 894        struct task_struct *previous_current;
 895        struct pt_regs *old_regs;
 896        struct switch_stack *old_sw;
 897        unsigned size = sizeof(struct pt_regs) +
 898                        sizeof(struct switch_stack) + 16;
 899        u64 *old_bspstore, *old_bsp;
 900        u64 *new_bspstore, *new_bsp;
 901        u64 old_unat, old_rnat, new_rnat, nat;
 902        u64 slots, loadrs = regs->loadrs;
 903        u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 904        u64 ar_bspstore = regs->ar_bspstore;
 905        u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 906        const u64 *bank;
 907        const char *msg;
 908        int cpu = smp_processor_id();
 909
 910        previous_current = curr_task(cpu);
 911        set_curr_task(cpu, current);
 912        if ((p = strchr(current->comm, ' ')))
 913                *p = '\0';
 914
 915        /* Best effort attempt to cope with MCA/INIT delivered while in
 916         * physical mode.
 917         */
 918        regs->cr_ipsr = ms->pmsa_ipsr;
 919        if (ia64_psr(regs)->dt == 0) {
 920                va.l = r12;
 921                if (va.f.reg == 0) {
 922                        va.f.reg = 7;
 923                        r12 = va.l;
 924                }
 925                va.l = r13;
 926                if (va.f.reg == 0) {
 927                        va.f.reg = 7;
 928                        r13 = va.l;
 929                }
 930        }
 931        if (ia64_psr(regs)->rt == 0) {
 932                va.l = ar_bspstore;
 933                if (va.f.reg == 0) {
 934                        va.f.reg = 7;
 935                        ar_bspstore = va.l;
 936                }
 937                va.l = ar_bsp;
 938                if (va.f.reg == 0) {
 939                        va.f.reg = 7;
 940                        ar_bsp = va.l;
 941                }
 942        }
 943
 944        /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
 945         * have been copied to the old stack, the old stack may fail the
 946         * validation tests below.  So ia64_old_stack() must restore the dirty
 947         * registers from the new stack.  The old and new bspstore probably
 948         * have different alignments, so loadrs calculated on the old bsp
 949         * cannot be used to restore from the new bsp.  Calculate a suitable
 950         * loadrs for the new stack and save it in the new pt_regs, where
 951         * ia64_old_stack() can get it.
 952         */
 953        old_bspstore = (u64 *)ar_bspstore;
 954        old_bsp = (u64 *)ar_bsp;
 955        slots = ia64_rse_num_regs(old_bspstore, old_bsp);
 956        new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
 957        new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
 958        regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
 959
 960        /* Verify the previous stack state before we change it */
 961        if (user_mode(regs)) {
 962                msg = "occurred in user space";
 963                /* previous_current is guaranteed to be valid when the task was
 964                 * in user space, so ...
 965                 */
 966                ia64_mca_modify_comm(previous_current);
 967                goto no_mod;
 968        }
 969
 970        if (r13 != sos->prev_IA64_KR_CURRENT) {
 971                msg = "inconsistent previous current and r13";
 972                goto no_mod;
 973        }
 974
 975        if (!mca_recover_range(ms->pmsa_iip)) {
 976                if ((r12 - r13) >= KERNEL_STACK_SIZE) {
 977                        msg = "inconsistent r12 and r13";
 978                        goto no_mod;
 979                }
 980                if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
 981                        msg = "inconsistent ar.bspstore and r13";
 982                        goto no_mod;
 983                }
 984                va.p = old_bspstore;
 985                if (va.f.reg < 5) {
 986                        msg = "old_bspstore is in the wrong region";
 987                        goto no_mod;
 988                }
 989                if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
 990                        msg = "inconsistent ar.bsp and r13";
 991                        goto no_mod;
 992                }
 993                size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
 994                if (ar_bspstore + size > r12) {
 995                        msg = "no room for blocked state";
 996                        goto no_mod;
 997                }
 998        }
 999
1000        ia64_mca_modify_comm(previous_current);
1001
1002        /* Make the original task look blocked.  First stack a struct pt_regs,
1003         * describing the state at the time of interrupt.  mca_asm.S built a
1004         * partial pt_regs, copy it and fill in the blanks using minstate.
1005         */
1006        p = (char *)r12 - sizeof(*regs);
1007        old_regs = (struct pt_regs *)p;
1008        memcpy(old_regs, regs, sizeof(*regs));
1009        /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1010         * pmsa_{xip,xpsr,xfs}
1011         */
1012        if (ia64_psr(regs)->ic) {
1013                old_regs->cr_iip = ms->pmsa_iip;
1014                old_regs->cr_ipsr = ms->pmsa_ipsr;
1015                old_regs->cr_ifs = ms->pmsa_ifs;
1016        } else {
1017                old_regs->cr_iip = ms->pmsa_xip;
1018                old_regs->cr_ipsr = ms->pmsa_xpsr;
1019                old_regs->cr_ifs = ms->pmsa_xfs;
1020        }
1021        old_regs->pr = ms->pmsa_pr;
1022        old_regs->b0 = ms->pmsa_br0;
1023        old_regs->loadrs = loadrs;
1024        old_regs->ar_rsc = ms->pmsa_rsc;
1025        old_unat = old_regs->ar_unat;
1026        copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1027        copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1028        copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1029        copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1030        copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1031        copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1032        copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1033        copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1034        copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1035        copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1036        copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1037        if (ia64_psr(old_regs)->bn)
1038                bank = ms->pmsa_bank1_gr;
1039        else
1040                bank = ms->pmsa_bank0_gr;
1041        copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1042        copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1043        copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1044        copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1045        copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1046        copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1047        copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1048        copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1049        copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1050        copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1051        copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1052        copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1053        copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1054        copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1055        copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1056        copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1057
1058        /* Next stack a struct switch_stack.  mca_asm.S built a partial
1059         * switch_stack, copy it and fill in the blanks using pt_regs and
1060         * minstate.
1061         *
1062         * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1063         * ar.pfs is set to 0.
1064         *
1065         * unwind.c::unw_unwind() does special processing for interrupt frames.
1066         * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1067         * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1068         * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1069         * switch_stack on the original stack so it will unwind correctly when
1070         * unwind.c reads pt_regs.
1071         *
1072         * thread.ksp is updated to point to the synthesized switch_stack.
1073         */
1074        p -= sizeof(struct switch_stack);
1075        old_sw = (struct switch_stack *)p;
1076        memcpy(old_sw, sw, sizeof(*sw));
1077        old_sw->caller_unat = old_unat;
1078        old_sw->ar_fpsr = old_regs->ar_fpsr;
1079        copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1080        copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1081        copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1082        copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1083        old_sw->b0 = (u64)ia64_leave_kernel;
1084        old_sw->b1 = ms->pmsa_br1;
1085        old_sw->ar_pfs = 0;
1086        old_sw->ar_unat = old_unat;
1087        old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1088        previous_current->thread.ksp = (u64)p - 16;
1089
1090        /* Finally copy the original stack's registers back to its RBS.
1091         * Registers from ar.bspstore through ar.bsp at the time of the event
1092         * are in the current RBS, copy them back to the original stack.  The
1093         * copy must be done register by register because the original bspstore
1094         * and the current one have different alignments, so the saved RNAT
1095         * data occurs at different places.
1096         *
1097         * mca_asm does cover, so the old_bsp already includes all registers at
1098         * the time of MCA/INIT.  It also does flushrs, so all registers before
1099         * this function have been written to backing store on the MCA/INIT
1100         * stack.
1101         */
1102        new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1103        old_rnat = regs->ar_rnat;
1104        while (slots--) {
1105                if (ia64_rse_is_rnat_slot(new_bspstore)) {
1106                        new_rnat = ia64_get_rnat(new_bspstore++);
1107                }
1108                if (ia64_rse_is_rnat_slot(old_bspstore)) {
1109                        *old_bspstore++ = old_rnat;
1110                        old_rnat = 0;
1111                }
1112                nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1113                old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1114                old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1115                *old_bspstore++ = *new_bspstore++;
1116        }
1117        old_sw->ar_bspstore = (unsigned long)old_bspstore;
1118        old_sw->ar_rnat = old_rnat;
1119
1120        sos->prev_task = previous_current;
1121        return previous_current;
1122
1123no_mod:
1124        printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1125                        smp_processor_id(), type, msg);
1126        return previous_current;
1127}
1128
1129/* The monarch/slave interaction is based on monarch_cpu and requires that all
1130 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1131 * not entered rendezvous yet then wait a bit.  The assumption is that any
1132 * slave that has not rendezvoused after a reasonable time is never going to do
1133 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1134 * interrupt, as well as cpus that receive the INIT slave event.
1135 */
1136
1137static void
1138ia64_wait_for_slaves(int monarch, const char *type)
1139{
1140        int c, i , wait;
1141
1142        /*
1143         * wait 5 seconds total for slaves (arbitrary)
1144         */
1145        for (i = 0; i < 5000; i++) {
1146                wait = 0;
1147                for_each_online_cpu(c) {
1148                        if (c == monarch)
1149                                continue;
1150                        if (ia64_mc_info.imi_rendez_checkin[c]
1151                                        == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1152                                udelay(1000);           /* short wait */
1153                                wait = 1;
1154                                break;
1155                        }
1156                }
1157                if (!wait)
1158                        goto all_in;
1159        }
1160
1161        /*
1162         * Maybe slave(s) dead. Print buffered messages immediately.
1163         */
1164        ia64_mlogbuf_finish(0);
1165        mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1166        for_each_online_cpu(c) {
1167                if (c == monarch)
1168                        continue;
1169                if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1170                        mprintk(" %d", c);
1171        }
1172        mprintk("\n");
1173        return;
1174
1175all_in:
1176        mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1177        return;
1178}
1179
1180/*
1181 * ia64_mca_handler
1182 *
1183 *      This is uncorrectable machine check handler called from OS_MCA
1184 *      dispatch code which is in turn called from SAL_CHECK().
1185 *      This is the place where the core of OS MCA handling is done.
1186 *      Right now the logs are extracted and displayed in a well-defined
1187 *      format. This handler code is supposed to be run only on the
1188 *      monarch processor. Once the monarch is done with MCA handling
1189 *      further MCA logging is enabled by clearing logs.
1190 *      Monarch also has the duty of sending wakeup-IPIs to pull the
1191 *      slave processors out of rendezvous spinloop.
1192 *
1193 *      If multiple processors call into OS_MCA, the first will become
1194 *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1195 *      bitmask.  After the first monarch has processed its MCA, it
1196 *      will wake up the next cpu in the mca_cpu bitmask and then go
1197 *      into the rendezvous loop.  When all processors have serviced
1198 *      their MCA, the last monarch frees up the rest of the processors.
1199 */
1200void
1201ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1202                 struct ia64_sal_os_state *sos)
1203{
1204        int recover, cpu = smp_processor_id();
1205        struct task_struct *previous_current;
1206        struct ia64_mca_notify_die nd =
1207                { .sos = sos, .monarch_cpu = &monarch_cpu };
1208        static atomic_t mca_count;
1209        static cpumask_t mca_cpu;
1210
1211        if (atomic_add_return(1, &mca_count) == 1) {
1212                monarch_cpu = cpu;
1213                sos->monarch = 1;
1214        } else {
1215                cpu_set(cpu, mca_cpu);
1216                sos->monarch = 0;
1217        }
1218        mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1219                "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1220
1221        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1222
1223        if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1224                        == NOTIFY_STOP)
1225                ia64_mca_spin(__FUNCTION__);
1226
1227        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1228        if (sos->monarch) {
1229                ia64_wait_for_slaves(cpu, "MCA");
1230
1231                /* Wakeup all the processors which are spinning in the
1232                 * rendezvous loop.  They will leave SAL, then spin in the OS
1233                 * with interrupts disabled until this monarch cpu leaves the
1234                 * MCA handler.  That gets control back to the OS so we can
1235                 * backtrace the other cpus, backtrace when spinning in SAL
1236                 * does not work.
1237                 */
1238                ia64_mca_wakeup_all();
1239                if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1240                                == NOTIFY_STOP)
1241                        ia64_mca_spin(__FUNCTION__);
1242        } else {
1243                while (cpu_isset(cpu, mca_cpu))
1244                        cpu_relax();    /* spin until monarch wakes us */
1245        }
1246
1247        /* Get the MCA error record and log it */
1248        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1249
1250        /* MCA error recovery */
1251        recover = (ia64_mca_ucmc_extension
1252                && ia64_mca_ucmc_extension(
1253                        IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1254                        sos));
1255
1256        if (recover) {
1257                sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1258                rh->severity = sal_log_severity_corrected;
1259                ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1260                sos->os_status = IA64_MCA_CORRECTED;
1261        } else {
1262                /* Dump buffered message to console */
1263                ia64_mlogbuf_finish(1);
1264#ifdef CONFIG_KEXEC
1265                atomic_set(&kdump_in_progress, 1);
1266                monarch_cpu = -1;
1267#endif
1268        }
1269        if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1270                        == NOTIFY_STOP)
1271                ia64_mca_spin(__FUNCTION__);
1272
1273
1274        if (atomic_dec_return(&mca_count) > 0) {
1275                int i;
1276
1277                /* wake up the next monarch cpu,
1278                 * and put this cpu in the rendez loop.
1279                 */
1280                for_each_online_cpu(i) {
1281                        if (cpu_isset(i, mca_cpu)) {
1282                                monarch_cpu = i;
1283                                cpu_clear(i, mca_cpu);  /* wake next cpu */
1284                                while (monarch_cpu != -1)
1285                                        cpu_relax();    /* spin until last cpu leaves */
1286                                set_curr_task(cpu, previous_current);
1287                                ia64_mc_info.imi_rendez_checkin[cpu]
1288                                                = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1289                                return;
1290                        }
1291                }
1292        }
1293        set_curr_task(cpu, previous_current);
1294        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1295        monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1296}
1297
1298static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1299static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1300
1301/*
1302 * ia64_mca_cmc_int_handler
1303 *
1304 *  This is corrected machine check interrupt handler.
1305 *      Right now the logs are extracted and displayed in a well-defined
1306 *      format.
1307 *
1308 * Inputs
1309 *      interrupt number
1310 *      client data arg ptr
1311 *
1312 * Outputs
1313 *      None
1314 */
1315static irqreturn_t
1316ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1317{
1318        static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1319        static int              index;
1320        static DEFINE_SPINLOCK(cmc_history_lock);
1321
1322        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1323                       __FUNCTION__, cmc_irq, smp_processor_id());
1324
1325        /* SAL spec states this should run w/ interrupts enabled */
1326        local_irq_enable();
1327
1328        spin_lock(&cmc_history_lock);
1329        if (!cmc_polling_enabled) {
1330                int i, count = 1; /* we know 1 happened now */
1331                unsigned long now = jiffies;
1332
1333                for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1334                        if (now - cmc_history[i] <= HZ)
1335                                count++;
1336                }
1337
1338                IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1339                if (count >= CMC_HISTORY_LENGTH) {
1340
1341                        cmc_polling_enabled = 1;
1342                        spin_unlock(&cmc_history_lock);
1343                        /* If we're being hit with CMC interrupts, we won't
1344                         * ever execute the schedule_work() below.  Need to
1345                         * disable CMC interrupts on this processor now.
1346                         */
1347                        ia64_mca_cmc_vector_disable(NULL);
1348                        schedule_work(&cmc_disable_work);
1349
1350                        /*
1351                         * Corrected errors will still be corrected, but
1352                         * make sure there's a log somewhere that indicates
1353                         * something is generating more than we can handle.
1354                         */
1355                        printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1356
1357                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1358
1359                        /* lock already released, get out now */
1360                        goto out;
1361                } else {
1362                        cmc_history[index++] = now;
1363                        if (index == CMC_HISTORY_LENGTH)
1364                                index = 0;
1365                }
1366        }
1367        spin_unlock(&cmc_history_lock);
1368out:
1369        /* Get the CMC error record and log it */
1370        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1371
1372        return IRQ_HANDLED;
1373}
1374
1375/*
1376 *  ia64_mca_cmc_int_caller
1377 *
1378 *      Triggered by sw interrupt from CMC polling routine.  Calls
1379 *      real interrupt handler and either triggers a sw interrupt
1380 *      on the next cpu or does cleanup at the end.
1381 *
1382 * Inputs
1383 *      interrupt number
1384 *      client data arg ptr
1385 * Outputs
1386 *      handled
1387 */
1388static irqreturn_t
1389ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1390{
1391        static int start_count = -1;
1392        unsigned int cpuid;
1393
1394        cpuid = smp_processor_id();
1395
1396        /* If first cpu, update count */
1397        if (start_count == -1)
1398                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1399
1400        ia64_mca_cmc_int_handler(cmc_irq, arg);
1401
1402        for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1403
1404        if (cpuid < NR_CPUS) {
1405                platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1406        } else {
1407                /* If no log record, switch out of polling mode */
1408                if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1409
1410                        printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1411                        schedule_work(&cmc_enable_work);
1412                        cmc_polling_enabled = 0;
1413
1414                } else {
1415
1416                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1417                }
1418
1419                start_count = -1;
1420        }
1421
1422        return IRQ_HANDLED;
1423}
1424
1425/*
1426 *  ia64_mca_cmc_poll
1427 *
1428 *      Poll for Corrected Machine Checks (CMCs)
1429 *
1430 * Inputs   :   dummy(unused)
1431 * Outputs  :   None
1432 *
1433 */
1434static void
1435ia64_mca_cmc_poll (unsigned long dummy)
1436{
1437        /* Trigger a CMC interrupt cascade  */
1438        platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1439}
1440
1441/*
1442 *  ia64_mca_cpe_int_caller
1443 *
1444 *      Triggered by sw interrupt from CPE polling routine.  Calls
1445 *      real interrupt handler and either triggers a sw interrupt
1446 *      on the next cpu or does cleanup at the end.
1447 *
1448 * Inputs
1449 *      interrupt number
1450 *      client data arg ptr
1451 * Outputs
1452 *      handled
1453 */
1454#ifdef CONFIG_ACPI
1455
1456static irqreturn_t
1457ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1458{
1459        static int start_count = -1;
1460        static int poll_time = MIN_CPE_POLL_INTERVAL;
1461        unsigned int cpuid;
1462
1463        cpuid = smp_processor_id();
1464
1465        /* If first cpu, update count */
1466        if (start_count == -1)
1467                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1468
1469        ia64_mca_cpe_int_handler(cpe_irq, arg);
1470
1471        for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1472
1473        if (cpuid < NR_CPUS) {
1474                platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1475        } else {
1476                /*
1477                 * If a log was recorded, increase our polling frequency,
1478                 * otherwise, backoff or return to interrupt mode.
1479                 */
1480                if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1481                        poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1482                } else if (cpe_vector < 0) {
1483                        poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1484                } else {
1485                        poll_time = MIN_CPE_POLL_INTERVAL;
1486
1487                        printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1488                        enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1489                        cpe_poll_enabled = 0;
1490                }
1491
1492                if (cpe_poll_enabled)
1493                        mod_timer(&cpe_poll_timer, jiffies + poll_time);
1494                start_count = -1;
1495        }
1496
1497        return IRQ_HANDLED;
1498}
1499
1500/*
1501 *  ia64_mca_cpe_poll
1502 *
1503 *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1504 *      on first cpu, from there it will trickle through all the cpus.
1505 *
1506 * Inputs   :   dummy(unused)
1507 * Outputs  :   None
1508 *
1509 */
1510static void
1511ia64_mca_cpe_poll (unsigned long dummy)
1512{
1513        /* Trigger a CPE interrupt cascade  */
1514        platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1515}
1516
1517#endif /* CONFIG_ACPI */
1518
1519static int
1520default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1521{
1522        int c;
1523        struct task_struct *g, *t;
1524        if (val != DIE_INIT_MONARCH_PROCESS)
1525                return NOTIFY_DONE;
1526#ifdef CONFIG_KEXEC
1527        if (atomic_read(&kdump_in_progress))
1528                return NOTIFY_DONE;
1529#endif
1530
1531        /*
1532         * FIXME: mlogbuf will brim over with INIT stack dumps.
1533         * To enable show_stack from INIT, we use oops_in_progress which should
1534         * be used in real oops. This would cause something wrong after INIT.
1535         */
1536        BREAK_LOGLEVEL(console_loglevel);
1537        ia64_mlogbuf_dump_from_init();
1538
1539        printk(KERN_ERR "Processes interrupted by INIT -");
1540        for_each_online_cpu(c) {
1541                struct ia64_sal_os_state *s;
1542                t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1543                s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1544                g = s->prev_task;
1545                if (g) {
1546                        if (g->pid)
1547                                printk(" %d", g->pid);
1548                        else
1549                                printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1550                }
1551        }
1552        printk("\n\n");
1553        if (read_trylock(&tasklist_lock)) {
1554                do_each_thread (g, t) {
1555                        printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1556                        show_stack(t, NULL);
1557                } while_each_thread (g, t);
1558                read_unlock(&tasklist_lock);
1559        }
1560        /* FIXME: This will not restore zapped printk locks. */
1561        RESTORE_LOGLEVEL(console_loglevel);
1562        return NOTIFY_DONE;
1563}
1564
1565/*
1566 * C portion of the OS INIT handler
1567 *
1568 * Called from ia64_os_init_dispatch
1569 *
1570 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1571 * this event.  This code is used for both monarch and slave INIT events, see
1572 * sos->monarch.
1573 *
1574 * All INIT events switch to the INIT stack and change the previous process to
1575 * blocked status.  If one of the INIT events is the monarch then we are
1576 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1577 * the processes.  The slave INIT events all spin until the monarch cpu
1578 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1579 * process is the monarch.
1580 */
1581
1582void
1583ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1584                  struct ia64_sal_os_state *sos)
1585{
1586        static atomic_t slaves;
1587        static atomic_t monarchs;
1588        struct task_struct *previous_current;
1589        int cpu = smp_processor_id();
1590        struct ia64_mca_notify_die nd =
1591                { .sos = sos, .monarch_cpu = &monarch_cpu };
1592
1593        (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1594
1595        mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1596                sos->proc_state_param, cpu, sos->monarch);
1597        salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1598
1599        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1600        sos->os_status = IA64_INIT_RESUME;
1601
1602        /* FIXME: Workaround for broken proms that drive all INIT events as
1603         * slaves.  The last slave that enters is promoted to be a monarch.
1604         * Remove this code in September 2006, that gives platforms a year to
1605         * fix their proms and get their customers updated.
1606         */
1607        if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1608                mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1609                       __FUNCTION__, cpu);
1610                atomic_dec(&slaves);
1611                sos->monarch = 1;
1612        }
1613
1614        /* FIXME: Workaround for broken proms that drive all INIT events as
1615         * monarchs.  Second and subsequent monarchs are demoted to slaves.
1616         * Remove this code in September 2006, that gives platforms a year to
1617         * fix their proms and get their customers updated.
1618         */
1619        if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1620                mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1621                               __FUNCTION__, cpu);
1622                atomic_dec(&monarchs);
1623                sos->monarch = 0;
1624        }
1625
1626        if (!sos->monarch) {
1627                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1628                while (monarch_cpu == -1)
1629                       cpu_relax();     /* spin until monarch enters */
1630                if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1631                                == NOTIFY_STOP)
1632                        ia64_mca_spin(__FUNCTION__);
1633                if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1634                                == NOTIFY_STOP)
1635                        ia64_mca_spin(__FUNCTION__);
1636                while (monarch_cpu != -1)
1637                       cpu_relax();     /* spin until monarch leaves */
1638                if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1639                                == NOTIFY_STOP)
1640                        ia64_mca_spin(__FUNCTION__);
1641                mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1642                set_curr_task(cpu, previous_current);
1643                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1644                atomic_dec(&slaves);
1645                return;
1646        }
1647
1648        monarch_cpu = cpu;
1649        if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1650                        == NOTIFY_STOP)
1651                ia64_mca_spin(__FUNCTION__);
1652
1653        /*
1654         * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1655         * generated via the BMC's command-line interface, but since the console is on the
1656         * same serial line, the user will need some time to switch out of the BMC before
1657         * the dump begins.
1658         */
1659        mprintk("Delaying for 5 seconds...\n");
1660        udelay(5*1000000);
1661        ia64_wait_for_slaves(cpu, "INIT");
1662        /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1663         * to default_monarch_init_process() above and just print all the
1664         * tasks.
1665         */
1666        if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1667                        == NOTIFY_STOP)
1668                ia64_mca_spin(__FUNCTION__);
1669        if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1670                        == NOTIFY_STOP)
1671                ia64_mca_spin(__FUNCTION__);
1672        mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1673        atomic_dec(&monarchs);
1674        set_curr_task(cpu, previous_current);
1675        monarch_cpu = -1;
1676        return;
1677}
1678
1679static int __init
1680ia64_mca_disable_cpe_polling(char *str)
1681{
1682        cpe_poll_enabled = 0;
1683        return 1;
1684}
1685
1686__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1687
1688static struct irqaction cmci_irqaction = {
1689        .handler =      ia64_mca_cmc_int_handler,
1690        .flags =        IRQF_DISABLED,
1691        .name =         "cmc_hndlr"
1692};
1693
1694static struct irqaction cmcp_irqaction = {
1695        .handler =      ia64_mca_cmc_int_caller,
1696        .flags =        IRQF_DISABLED,
1697        .name =         "cmc_poll"
1698};
1699
1700static struct irqaction mca_rdzv_irqaction = {
1701        .handler =      ia64_mca_rendez_int_handler,
1702        .flags =        IRQF_DISABLED,
1703        .name =         "mca_rdzv"
1704};
1705
1706static struct irqaction mca_wkup_irqaction = {
1707        .handler =      ia64_mca_wakeup_int_handler,
1708        .flags =        IRQF_DISABLED,
1709        .name =         "mca_wkup"
1710};
1711
1712#ifdef CONFIG_ACPI
1713static struct irqaction mca_cpe_irqaction = {
1714        .handler =      ia64_mca_cpe_int_handler,
1715        .flags =        IRQF_DISABLED,
1716        .name =         "cpe_hndlr"
1717};
1718
1719static struct irqaction mca_cpep_irqaction = {
1720        .handler =      ia64_mca_cpe_int_caller,
1721        .flags =        IRQF_DISABLED,
1722        .name =         "cpe_poll"
1723};
1724#endif /* CONFIG_ACPI */
1725
1726/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1727 * these stacks can never sleep, they cannot return from the kernel to user
1728 * space, they do not appear in a normal ps listing.  So there is no need to
1729 * format most of the fields.
1730 */
1731
1732static void __cpuinit
1733format_mca_init_stack(void *mca_data, unsigned long offset,
1734                const char *type, int cpu)
1735{
1736        struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1737        struct thread_info *ti;
1738        memset(p, 0, KERNEL_STACK_SIZE);
1739        ti = task_thread_info(p);
1740        ti->flags = _TIF_MCA_INIT;
1741        ti->preempt_count = 1;
1742        ti->task = p;
1743        ti->cpu = cpu;
1744        p->stack = ti;
1745        p->state = TASK_UNINTERRUPTIBLE;
1746        cpu_set(cpu, p->cpus_allowed);
1747        INIT_LIST_HEAD(&p->tasks);
1748        p->parent = p->real_parent = p->group_leader = p;
1749        INIT_LIST_HEAD(&p->children);
1750        INIT_LIST_HEAD(&p->sibling);
1751        strncpy(p->comm, type, sizeof(p->comm)-1);
1752}
1753
1754/* Caller prevents this from being called after init */
1755static void * __init_refok mca_bootmem(void)
1756{
1757        void *p;
1758
1759        p = alloc_bootmem(sizeof(struct ia64_mca_cpu) * NR_CPUS +
1760                          KERNEL_STACK_SIZE);
1761        return (void *)ALIGN((unsigned long)p, KERNEL_STACK_SIZE);
1762}
1763
1764/* Do per-CPU MCA-related initialization.  */
1765void __cpuinit
1766ia64_mca_cpu_init(void *cpu_data)
1767{
1768        void *pal_vaddr;
1769        static int first_time = 1;
1770
1771        if (first_time) {
1772                void *mca_data;
1773                int cpu;
1774
1775                first_time = 0;
1776                mca_data = mca_bootmem();
1777                for (cpu = 0; cpu < NR_CPUS; cpu++) {
1778                        format_mca_init_stack(mca_data,
1779                                        offsetof(struct ia64_mca_cpu, mca_stack),
1780                                        "MCA", cpu);
1781                        format_mca_init_stack(mca_data,
1782                                        offsetof(struct ia64_mca_cpu, init_stack),
1783                                        "INIT", cpu);
1784                        __per_cpu_mca[cpu] = __pa(mca_data);
1785                        mca_data += sizeof(struct ia64_mca_cpu);
1786                }
1787        }
1788
1789        /*
1790         * The MCA info structure was allocated earlier and its
1791         * physical address saved in __per_cpu_mca[cpu].  Copy that
1792         * address * to ia64_mca_data so we can access it as a per-CPU
1793         * variable.
1794         */
1795        __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1796
1797        /*
1798         * Stash away a copy of the PTE needed to map the per-CPU page.
1799         * We may need it during MCA recovery.
1800         */
1801        __get_cpu_var(ia64_mca_per_cpu_pte) =
1802                pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1803
1804        /*
1805         * Also, stash away a copy of the PAL address and the PTE
1806         * needed to map it.
1807         */
1808        pal_vaddr = efi_get_pal_addr();
1809        if (!pal_vaddr)
1810                return;
1811        __get_cpu_var(ia64_mca_pal_base) =
1812                GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1813        __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1814                                                              PAGE_KERNEL));
1815}
1816
1817static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1818{
1819        unsigned long flags;
1820
1821        local_irq_save(flags);
1822        if (!cmc_polling_enabled)
1823                ia64_mca_cmc_vector_enable(NULL);
1824        local_irq_restore(flags);
1825}
1826
1827static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1828                                      unsigned long action,
1829                                      void *hcpu)
1830{
1831        int hotcpu = (unsigned long) hcpu;
1832
1833        switch (action) {
1834        case CPU_ONLINE:
1835        case CPU_ONLINE_FROZEN:
1836                smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1837                                         NULL, 1, 0);
1838                break;
1839        }
1840        return NOTIFY_OK;
1841}
1842
1843static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1844        .notifier_call = mca_cpu_callback
1845};
1846
1847/*
1848 * ia64_mca_init
1849 *
1850 *  Do all the system level mca specific initialization.
1851 *
1852 *      1. Register spinloop and wakeup request interrupt vectors
1853 *
1854 *      2. Register OS_MCA handler entry point
1855 *
1856 *      3. Register OS_INIT handler entry point
1857 *
1858 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1859 *
1860 *  Note that this initialization is done very early before some kernel
1861 *  services are available.
1862 *
1863 *  Inputs  :   None
1864 *
1865 *  Outputs :   None
1866 */
1867void __init
1868ia64_mca_init(void)
1869{
1870        ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1871        ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1872        ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1873        int i;
1874        s64 rc;
1875        struct ia64_sal_retval isrv;
1876        u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1877        static struct notifier_block default_init_monarch_nb = {
1878                .notifier_call = default_monarch_init_process,
1879                .priority = 0/* we need to notified last */
1880        };
1881
1882        IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1883
1884        /* Clear the Rendez checkin flag for all cpus */
1885        for(i = 0 ; i < NR_CPUS; i++)
1886                ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1887
1888        /*
1889         * Register the rendezvous spinloop and wakeup mechanism with SAL
1890         */
1891
1892        /* Register the rendezvous interrupt vector with SAL */
1893        while (1) {
1894                isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1895                                              SAL_MC_PARAM_MECHANISM_INT,
1896                                              IA64_MCA_RENDEZ_VECTOR,
1897                                              timeout,
1898                                              SAL_MC_PARAM_RZ_ALWAYS);
1899                rc = isrv.status;
1900                if (rc == 0)
1901                        break;
1902                if (rc == -2) {
1903                        printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1904                                "%ld to %ld milliseconds\n", timeout, isrv.v0);
1905                        timeout = isrv.v0;
1906                        (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1907                        continue;
1908                }
1909                printk(KERN_ERR "Failed to register rendezvous interrupt "
1910                       "with SAL (status %ld)\n", rc);
1911                return;
1912        }
1913
1914        /* Register the wakeup interrupt vector with SAL */
1915        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1916                                      SAL_MC_PARAM_MECHANISM_INT,
1917                                      IA64_MCA_WAKEUP_VECTOR,
1918                                      0, 0);
1919        rc = isrv.status;
1920        if (rc) {
1921                printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1922                       "(status %ld)\n", rc);
1923                return;
1924        }
1925
1926        IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1927
1928        ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1929        /*
1930         * XXX - disable SAL checksum by setting size to 0; should be
1931         *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1932         */
1933        ia64_mc_info.imi_mca_handler_size       = 0;
1934
1935        /* Register the os mca handler with SAL */
1936        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1937                                       ia64_mc_info.imi_mca_handler,
1938                                       ia64_tpa(mca_hldlr_ptr->gp),
1939                                       ia64_mc_info.imi_mca_handler_size,
1940                                       0, 0, 0)))
1941        {
1942                printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1943                       "(status %ld)\n", rc);
1944                return;
1945        }
1946
1947        IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1948                       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1949
1950        /*
1951         * XXX - disable SAL checksum by setting size to 0, should be
1952         * size of the actual init handler in mca_asm.S.
1953         */
1954        ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1955        ia64_mc_info.imi_monarch_init_handler_size      = 0;
1956        ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1957        ia64_mc_info.imi_slave_init_handler_size        = 0;
1958
1959        IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1960                       ia64_mc_info.imi_monarch_init_handler);
1961
1962        /* Register the os init handler with SAL */
1963        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1964                                       ia64_mc_info.imi_monarch_init_handler,
1965                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1966                                       ia64_mc_info.imi_monarch_init_handler_size,
1967                                       ia64_mc_info.imi_slave_init_handler,
1968                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1969                                       ia64_mc_info.imi_slave_init_handler_size)))
1970        {
1971                printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1972                       "(status %ld)\n", rc);
1973                return;
1974        }
1975        if (register_die_notifier(&default_init_monarch_nb)) {
1976                printk(KERN_ERR "Failed to register default monarch INIT process\n");
1977                return;
1978        }
1979
1980        IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1981
1982        /*
1983         *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1984         *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1985         */
1986        register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1987        register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1988        ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1989
1990        /* Setup the MCA rendezvous interrupt vector */
1991        register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1992
1993        /* Setup the MCA wakeup interrupt vector */
1994        register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1995
1996#ifdef CONFIG_ACPI
1997        /* Setup the CPEI/P handler */
1998        register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1999#endif
2000
2001        /* Initialize the areas set aside by the OS to buffer the
2002         * platform/processor error states for MCA/INIT/CMC
2003         * handling.
2004         */
2005        ia64_log_init(SAL_INFO_TYPE_MCA);
2006        ia64_log_init(SAL_INFO_TYPE_INIT);
2007        ia64_log_init(SAL_INFO_TYPE_CMC);
2008        ia64_log_init(SAL_INFO_TYPE_CPE);
2009
2010        mca_init = 1;
2011        printk(KERN_INFO "MCA related initialization done\n");
2012}
2013
2014/*
2015 * ia64_mca_late_init
2016 *
2017 *      Opportunity to setup things that require initialization later
2018 *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2019 *      platform doesn't support an interrupt driven mechanism.
2020 *
2021 *  Inputs  :   None
2022 *  Outputs :   Status
2023 */
2024static int __init
2025ia64_mca_late_init(void)
2026{
2027        if (!mca_init)
2028                return 0;
2029
2030        register_hotcpu_notifier(&mca_cpu_notifier);
2031
2032        /* Setup the CMCI/P vector and handler */
2033        init_timer(&cmc_poll_timer);
2034        cmc_poll_timer.function = ia64_mca_cmc_poll;
2035
2036        /* Unmask/enable the vector */
2037        cmc_polling_enabled = 0;
2038        schedule_work(&cmc_enable_work);
2039
2040        IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2041
2042#ifdef CONFIG_ACPI
2043        /* Setup the CPEI/P vector and handler */
2044        cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2045        init_timer(&cpe_poll_timer);
2046        cpe_poll_timer.function = ia64_mca_cpe_poll;
2047
2048        {
2049                irq_desc_t *desc;
2050                unsigned int irq;
2051
2052                if (cpe_vector >= 0) {
2053                        /* If platform supports CPEI, enable the irq. */
2054                        irq = local_vector_to_irq(cpe_vector);
2055                        if (irq > 0) {
2056                                cpe_poll_enabled = 0;
2057                                desc = irq_desc + irq;
2058                                desc->status |= IRQ_PER_CPU;
2059                                setup_irq(irq, &mca_cpe_irqaction);
2060                                ia64_cpe_irq = irq;
2061                                ia64_mca_register_cpev(cpe_vector);
2062                                IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2063                                        __FUNCTION__);
2064                                return 0;
2065                        }
2066                        printk(KERN_ERR "%s: Failed to find irq for CPE "
2067                                        "interrupt handler, vector %d\n",
2068                                        __FUNCTION__, cpe_vector);
2069                }
2070                /* If platform doesn't support CPEI, get the timer going. */
2071                if (cpe_poll_enabled) {
2072                        ia64_mca_cpe_poll(0UL);
2073                        IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2074                }
2075        }
2076#endif
2077
2078        return 0;
2079}
2080
2081device_initcall(ia64_mca_late_init);
2082