linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43
  44#include <asm/errno.h>
  45#include <asm/intrinsics.h>
  46#include <asm/page.h>
  47#include <asm/perfmon.h>
  48#include <asm/processor.h>
  49#include <asm/signal.h>
  50#include <asm/system.h>
  51#include <asm/uaccess.h>
  52#include <asm/delay.h>
  53
  54#ifdef CONFIG_PERFMON
  55/*
  56 * perfmon context state
  57 */
  58#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  59#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  60#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  61#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  62
  63#define PFM_INVALID_ACTIVATION  (~0UL)
  64
  65#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  66#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  67
  68/*
  69 * depth of message queue
  70 */
  71#define PFM_MAX_MSGS            32
  72#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  73
  74/*
  75 * type of a PMU register (bitmask).
  76 * bitmask structure:
  77 *      bit0   : register implemented
  78 *      bit1   : end marker
  79 *      bit2-3 : reserved
  80 *      bit4   : pmc has pmc.pm
  81 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  82 *      bit6-7 : register type
  83 *      bit8-31: reserved
  84 */
  85#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  86#define PFM_REG_IMPL            0x1 /* register implemented */
  87#define PFM_REG_END             0x2 /* end marker */
  88#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  89#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  90#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  91#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  92#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  93
  94#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  95#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  96
  97#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
  98
  99/* i assumed unsigned */
 100#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 101#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 102
 103/* XXX: these assume that register i is implemented */
 104#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 105#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 106#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 107#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 108
 109#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 110#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 111#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 112#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 113
 114#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 115#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 116
 117#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 118#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 119#define PFM_CTX_TASK(h)         (h)->ctx_task
 120
 121#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 122
 123/* XXX: does not support more than 64 PMDs */
 124#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 125#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 126
 127#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 128
 129#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 130#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 131#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 132#define PFM_CODE_RR     0       /* requesting code range restriction */
 133#define PFM_DATA_RR     1       /* requestion data range restriction */
 134
 135#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 136#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 137#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 138
 139#define RDEP(x) (1UL<<(x))
 140
 141/*
 142 * context protection macros
 143 * in SMP:
 144 *      - we need to protect against CPU concurrency (spin_lock)
 145 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 146 * in UP:
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 *
 149 * spin_lock_irqsave()/spin_unlock_irqrestore():
 150 *      in SMP: local_irq_disable + spin_lock
 151 *      in UP : local_irq_disable
 152 *
 153 * spin_lock()/spin_lock():
 154 *      in UP : removed automatically
 155 *      in SMP: protect against context accesses from other CPU. interrupts
 156 *              are not masked. This is useful for the PMU interrupt handler
 157 *              because we know we will not get PMU concurrency in that code.
 158 */
 159#define PROTECT_CTX(c, f) \
 160        do {  \
 161                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 162                spin_lock_irqsave(&(c)->ctx_lock, f); \
 163                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 164        } while(0)
 165
 166#define UNPROTECT_CTX(c, f) \
 167        do { \
 168                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 169                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 170        } while(0)
 171
 172#define PROTECT_CTX_NOPRINT(c, f) \
 173        do {  \
 174                spin_lock_irqsave(&(c)->ctx_lock, f); \
 175        } while(0)
 176
 177
 178#define UNPROTECT_CTX_NOPRINT(c, f) \
 179        do { \
 180                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 181        } while(0)
 182
 183
 184#define PROTECT_CTX_NOIRQ(c) \
 185        do {  \
 186                spin_lock(&(c)->ctx_lock); \
 187        } while(0)
 188
 189#define UNPROTECT_CTX_NOIRQ(c) \
 190        do { \
 191                spin_unlock(&(c)->ctx_lock); \
 192        } while(0)
 193
 194
 195#ifdef CONFIG_SMP
 196
 197#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 198#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 199#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 200
 201#else /* !CONFIG_SMP */
 202#define SET_ACTIVATION(t)       do {} while(0)
 203#define GET_ACTIVATION(t)       do {} while(0)
 204#define INC_ACTIVATION(t)       do {} while(0)
 205#endif /* CONFIG_SMP */
 206
 207#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 208#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 209#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 210
 211#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 212#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 213
 214#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 215
 216/*
 217 * cmp0 must be the value of pmc0
 218 */
 219#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 220
 221#define PFMFS_MAGIC 0xa0b4d889
 222
 223/*
 224 * debugging
 225 */
 226#define PFM_DEBUGGING 1
 227#ifdef PFM_DEBUGGING
 228#define DPRINT(a) \
 229        do { \
 230                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 231        } while (0)
 232
 233#define DPRINT_ovfl(a) \
 234        do { \
 235                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 236        } while (0)
 237#endif
 238
 239/*
 240 * 64-bit software counter structure
 241 *
 242 * the next_reset_type is applied to the next call to pfm_reset_regs()
 243 */
 244typedef struct {
 245        unsigned long   val;            /* virtual 64bit counter value */
 246        unsigned long   lval;           /* last reset value */
 247        unsigned long   long_reset;     /* reset value on sampling overflow */
 248        unsigned long   short_reset;    /* reset value on overflow */
 249        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 250        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 251        unsigned long   seed;           /* seed for random-number generator */
 252        unsigned long   mask;           /* mask for random-number generator */
 253        unsigned int    flags;          /* notify/do not notify */
 254        unsigned long   eventid;        /* overflow event identifier */
 255} pfm_counter_t;
 256
 257/*
 258 * context flags
 259 */
 260typedef struct {
 261        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 262        unsigned int system:1;          /* do system wide monitoring */
 263        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 264        unsigned int is_sampling:1;     /* true if using a custom format */
 265        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 266        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 267        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 268        unsigned int no_msg:1;          /* no message sent on overflow */
 269        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 270        unsigned int reserved:22;
 271} pfm_context_flags_t;
 272
 273#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 274#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 275#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 276
 277
 278/*
 279 * perfmon context: encapsulates all the state of a monitoring session
 280 */
 281
 282typedef struct pfm_context {
 283        spinlock_t              ctx_lock;               /* context protection */
 284
 285        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 286        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 287
 288        struct task_struct      *ctx_task;              /* task to which context is attached */
 289
 290        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 291
 292        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 293
 294        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 295        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 296        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 297
 298        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 299        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 300        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 301
 302        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 303
 304        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 305        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 306        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 307        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 308
 309        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 310
 311        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 312        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 313
 314        u64                     ctx_saved_psr_up;       /* only contains psr.up value */
 315
 316        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 317        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 318        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 319
 320        int                     ctx_fd;                 /* file descriptor used my this context */
 321        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 322
 323        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 324        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 325        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 326        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 327
 328        wait_queue_head_t       ctx_msgq_wait;
 329        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 330        int                     ctx_msgq_head;
 331        int                     ctx_msgq_tail;
 332        struct fasync_struct    *ctx_async_queue;
 333
 334        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 335} pfm_context_t;
 336
 337/*
 338 * magic number used to verify that structure is really
 339 * a perfmon context
 340 */
 341#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 342
 343#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 344
 345#ifdef CONFIG_SMP
 346#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 347#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 348#else
 349#define SET_LAST_CPU(ctx, v)    do {} while(0)
 350#define GET_LAST_CPU(ctx)       do {} while(0)
 351#endif
 352
 353
 354#define ctx_fl_block            ctx_flags.block
 355#define ctx_fl_system           ctx_flags.system
 356#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 357#define ctx_fl_is_sampling      ctx_flags.is_sampling
 358#define ctx_fl_excl_idle        ctx_flags.excl_idle
 359#define ctx_fl_going_zombie     ctx_flags.going_zombie
 360#define ctx_fl_trap_reason      ctx_flags.trap_reason
 361#define ctx_fl_no_msg           ctx_flags.no_msg
 362#define ctx_fl_can_restart      ctx_flags.can_restart
 363
 364#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 365#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 366
 367/*
 368 * global information about all sessions
 369 * mostly used to synchronize between system wide and per-process
 370 */
 371typedef struct {
 372        spinlock_t              pfs_lock;                  /* lock the structure */
 373
 374        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 375        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 376        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 377        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 378        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 379} pfm_session_t;
 380
 381/*
 382 * information about a PMC or PMD.
 383 * dep_pmd[]: a bitmask of dependent PMD registers
 384 * dep_pmc[]: a bitmask of dependent PMC registers
 385 */
 386typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 387typedef struct {
 388        unsigned int            type;
 389        int                     pm_pos;
 390        unsigned long           default_value;  /* power-on default value */
 391        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 392        pfm_reg_check_t         read_check;
 393        pfm_reg_check_t         write_check;
 394        unsigned long           dep_pmd[4];
 395        unsigned long           dep_pmc[4];
 396} pfm_reg_desc_t;
 397
 398/* assume cnum is a valid monitor */
 399#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 400
 401/*
 402 * This structure is initialized at boot time and contains
 403 * a description of the PMU main characteristics.
 404 *
 405 * If the probe function is defined, detection is based
 406 * on its return value: 
 407 *      - 0 means recognized PMU
 408 *      - anything else means not supported
 409 * When the probe function is not defined, then the pmu_family field
 410 * is used and it must match the host CPU family such that:
 411 *      - cpu->family & config->pmu_family != 0
 412 */
 413typedef struct {
 414        unsigned long  ovfl_val;        /* overflow value for counters */
 415
 416        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 417        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 418
 419        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 420        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 421        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 422        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 423
 424        char          *pmu_name;        /* PMU family name */
 425        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 426        unsigned int  flags;            /* pmu specific flags */
 427        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 428        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 429        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 430        int           (*probe)(void);   /* customized probe routine */
 431        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 432} pmu_config_t;
 433/*
 434 * PMU specific flags
 435 */
 436#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 437
 438/*
 439 * debug register related type definitions
 440 */
 441typedef struct {
 442        unsigned long ibr_mask:56;
 443        unsigned long ibr_plm:4;
 444        unsigned long ibr_ig:3;
 445        unsigned long ibr_x:1;
 446} ibr_mask_reg_t;
 447
 448typedef struct {
 449        unsigned long dbr_mask:56;
 450        unsigned long dbr_plm:4;
 451        unsigned long dbr_ig:2;
 452        unsigned long dbr_w:1;
 453        unsigned long dbr_r:1;
 454} dbr_mask_reg_t;
 455
 456typedef union {
 457        unsigned long  val;
 458        ibr_mask_reg_t ibr;
 459        dbr_mask_reg_t dbr;
 460} dbreg_t;
 461
 462
 463/*
 464 * perfmon command descriptions
 465 */
 466typedef struct {
 467        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 468        char            *cmd_name;
 469        int             cmd_flags;
 470        unsigned int    cmd_narg;
 471        size_t          cmd_argsize;
 472        int             (*cmd_getsize)(void *arg, size_t *sz);
 473} pfm_cmd_desc_t;
 474
 475#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 476#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 477#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 478#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 479
 480
 481#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 482#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 483#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 484#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 485#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 486
 487#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 488
 489typedef struct {
 490        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 491        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 492        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 493        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 496        unsigned long pfm_smpl_handler_calls;
 497        unsigned long pfm_smpl_handler_cycles;
 498        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 499} pfm_stats_t;
 500
 501/*
 502 * perfmon internal variables
 503 */
 504static pfm_stats_t              pfm_stats[NR_CPUS];
 505static pfm_session_t            pfm_sessions;   /* global sessions information */
 506
 507static DEFINE_SPINLOCK(pfm_alt_install_check);
 508static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 509
 510static struct proc_dir_entry    *perfmon_dir;
 511static pfm_uuid_t               pfm_null_uuid = {0,};
 512
 513static spinlock_t               pfm_buffer_fmt_lock;
 514static LIST_HEAD(pfm_buffer_fmt_list);
 515
 516static pmu_config_t             *pmu_conf;
 517
 518/* sysctl() controls */
 519pfm_sysctl_t pfm_sysctl;
 520EXPORT_SYMBOL(pfm_sysctl);
 521
 522static ctl_table pfm_ctl_table[]={
 523        {
 524                .ctl_name       = CTL_UNNUMBERED,
 525                .procname       = "debug",
 526                .data           = &pfm_sysctl.debug,
 527                .maxlen         = sizeof(int),
 528                .mode           = 0666,
 529                .proc_handler   = &proc_dointvec,
 530        },
 531        {
 532                .ctl_name       = CTL_UNNUMBERED,
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = &proc_dointvec,
 538        },
 539        {
 540                .ctl_name       = CTL_UNNUMBERED,
 541                .procname       = "fastctxsw",
 542                .data           = &pfm_sysctl.fastctxsw,
 543                .maxlen         = sizeof(int),
 544                .mode           = 0600,
 545                .proc_handler   =  &proc_dointvec,
 546        },
 547        {
 548                .ctl_name       = CTL_UNNUMBERED,
 549                .procname       = "expert_mode",
 550                .data           = &pfm_sysctl.expert_mode,
 551                .maxlen         = sizeof(int),
 552                .mode           = 0600,
 553                .proc_handler   = &proc_dointvec,
 554        },
 555        {}
 556};
 557static ctl_table pfm_sysctl_dir[] = {
 558        {
 559                .ctl_name       = CTL_UNNUMBERED,
 560                .procname       = "perfmon",
 561                .mode           = 0555,
 562                .child          = pfm_ctl_table,
 563        },
 564        {}
 565};
 566static ctl_table pfm_sysctl_root[] = {
 567        {
 568                .ctl_name       = CTL_KERN,
 569                .procname       = "kernel",
 570                .mode           = 0555,
 571                .child          = pfm_sysctl_dir,
 572        },
 573        {}
 574};
 575static struct ctl_table_header *pfm_sysctl_header;
 576
 577static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 578
 579#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 580#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 581
 582static inline void
 583pfm_put_task(struct task_struct *task)
 584{
 585        if (task != current) put_task_struct(task);
 586}
 587
 588static inline void
 589pfm_set_task_notify(struct task_struct *task)
 590{
 591        struct thread_info *info;
 592
 593        info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
 594        set_bit(TIF_PERFMON_WORK, &info->flags);
 595}
 596
 597static inline void
 598pfm_clear_task_notify(void)
 599{
 600        clear_thread_flag(TIF_PERFMON_WORK);
 601}
 602
 603static inline void
 604pfm_reserve_page(unsigned long a)
 605{
 606        SetPageReserved(vmalloc_to_page((void *)a));
 607}
 608static inline void
 609pfm_unreserve_page(unsigned long a)
 610{
 611        ClearPageReserved(vmalloc_to_page((void*)a));
 612}
 613
 614static inline unsigned long
 615pfm_protect_ctx_ctxsw(pfm_context_t *x)
 616{
 617        spin_lock(&(x)->ctx_lock);
 618        return 0UL;
 619}
 620
 621static inline void
 622pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 623{
 624        spin_unlock(&(x)->ctx_lock);
 625}
 626
 627static inline unsigned int
 628pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
 629{
 630        return do_munmap(mm, addr, len);
 631}
 632
 633static inline unsigned long 
 634pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
 635{
 636        return get_unmapped_area(file, addr, len, pgoff, flags);
 637}
 638
 639
 640static int
 641pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
 642             struct vfsmount *mnt)
 643{
 644        return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
 645}
 646
 647static struct file_system_type pfm_fs_type = {
 648        .name     = "pfmfs",
 649        .get_sb   = pfmfs_get_sb,
 650        .kill_sb  = kill_anon_super,
 651};
 652
 653DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 654DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 655DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 656DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 657EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 658
 659
 660/* forward declaration */
 661static const struct file_operations pfm_file_ops;
 662
 663/*
 664 * forward declarations
 665 */
 666#ifndef CONFIG_SMP
 667static void pfm_lazy_save_regs (struct task_struct *ta);
 668#endif
 669
 670void dump_pmu_state(const char *);
 671static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 672
 673#include "perfmon_itanium.h"
 674#include "perfmon_mckinley.h"
 675#include "perfmon_montecito.h"
 676#include "perfmon_generic.h"
 677
 678static pmu_config_t *pmu_confs[]={
 679        &pmu_conf_mont,
 680        &pmu_conf_mck,
 681        &pmu_conf_ita,
 682        &pmu_conf_gen, /* must be last */
 683        NULL
 684};
 685
 686
 687static int pfm_end_notify_user(pfm_context_t *ctx);
 688
 689static inline void
 690pfm_clear_psr_pp(void)
 691{
 692        ia64_rsm(IA64_PSR_PP);
 693        ia64_srlz_i();
 694}
 695
 696static inline void
 697pfm_set_psr_pp(void)
 698{
 699        ia64_ssm(IA64_PSR_PP);
 700        ia64_srlz_i();
 701}
 702
 703static inline void
 704pfm_clear_psr_up(void)
 705{
 706        ia64_rsm(IA64_PSR_UP);
 707        ia64_srlz_i();
 708}
 709
 710static inline void
 711pfm_set_psr_up(void)
 712{
 713        ia64_ssm(IA64_PSR_UP);
 714        ia64_srlz_i();
 715}
 716
 717static inline unsigned long
 718pfm_get_psr(void)
 719{
 720        unsigned long tmp;
 721        tmp = ia64_getreg(_IA64_REG_PSR);
 722        ia64_srlz_i();
 723        return tmp;
 724}
 725
 726static inline void
 727pfm_set_psr_l(unsigned long val)
 728{
 729        ia64_setreg(_IA64_REG_PSR_L, val);
 730        ia64_srlz_i();
 731}
 732
 733static inline void
 734pfm_freeze_pmu(void)
 735{
 736        ia64_set_pmc(0,1UL);
 737        ia64_srlz_d();
 738}
 739
 740static inline void
 741pfm_unfreeze_pmu(void)
 742{
 743        ia64_set_pmc(0,0UL);
 744        ia64_srlz_d();
 745}
 746
 747static inline void
 748pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 749{
 750        int i;
 751
 752        for (i=0; i < nibrs; i++) {
 753                ia64_set_ibr(i, ibrs[i]);
 754                ia64_dv_serialize_instruction();
 755        }
 756        ia64_srlz_i();
 757}
 758
 759static inline void
 760pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 761{
 762        int i;
 763
 764        for (i=0; i < ndbrs; i++) {
 765                ia64_set_dbr(i, dbrs[i]);
 766                ia64_dv_serialize_data();
 767        }
 768        ia64_srlz_d();
 769}
 770
 771/*
 772 * PMD[i] must be a counter. no check is made
 773 */
 774static inline unsigned long
 775pfm_read_soft_counter(pfm_context_t *ctx, int i)
 776{
 777        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 778}
 779
 780/*
 781 * PMD[i] must be a counter. no check is made
 782 */
 783static inline void
 784pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 785{
 786        unsigned long ovfl_val = pmu_conf->ovfl_val;
 787
 788        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 789        /*
 790         * writing to unimplemented part is ignore, so we do not need to
 791         * mask off top part
 792         */
 793        ia64_set_pmd(i, val & ovfl_val);
 794}
 795
 796static pfm_msg_t *
 797pfm_get_new_msg(pfm_context_t *ctx)
 798{
 799        int idx, next;
 800
 801        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 802
 803        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 804        if (next == ctx->ctx_msgq_head) return NULL;
 805
 806        idx =   ctx->ctx_msgq_tail;
 807        ctx->ctx_msgq_tail = next;
 808
 809        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 810
 811        return ctx->ctx_msgq+idx;
 812}
 813
 814static pfm_msg_t *
 815pfm_get_next_msg(pfm_context_t *ctx)
 816{
 817        pfm_msg_t *msg;
 818
 819        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 820
 821        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 822
 823        /*
 824         * get oldest message
 825         */
 826        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 827
 828        /*
 829         * and move forward
 830         */
 831        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 832
 833        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 834
 835        return msg;
 836}
 837
 838static void
 839pfm_reset_msgq(pfm_context_t *ctx)
 840{
 841        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 842        DPRINT(("ctx=%p msgq reset\n", ctx));
 843}
 844
 845static void *
 846pfm_rvmalloc(unsigned long size)
 847{
 848        void *mem;
 849        unsigned long addr;
 850
 851        size = PAGE_ALIGN(size);
 852        mem  = vmalloc(size);
 853        if (mem) {
 854                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 855                memset(mem, 0, size);
 856                addr = (unsigned long)mem;
 857                while (size > 0) {
 858                        pfm_reserve_page(addr);
 859                        addr+=PAGE_SIZE;
 860                        size-=PAGE_SIZE;
 861                }
 862        }
 863        return mem;
 864}
 865
 866static void
 867pfm_rvfree(void *mem, unsigned long size)
 868{
 869        unsigned long addr;
 870
 871        if (mem) {
 872                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 873                addr = (unsigned long) mem;
 874                while ((long) size > 0) {
 875                        pfm_unreserve_page(addr);
 876                        addr+=PAGE_SIZE;
 877                        size-=PAGE_SIZE;
 878                }
 879                vfree(mem);
 880        }
 881        return;
 882}
 883
 884static pfm_context_t *
 885pfm_context_alloc(void)
 886{
 887        pfm_context_t *ctx;
 888
 889        /* 
 890         * allocate context descriptor 
 891         * must be able to free with interrupts disabled
 892         */
 893        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 894        if (ctx) {
 895                DPRINT(("alloc ctx @%p\n", ctx));
 896        }
 897        return ctx;
 898}
 899
 900static void
 901pfm_context_free(pfm_context_t *ctx)
 902{
 903        if (ctx) {
 904                DPRINT(("free ctx @%p\n", ctx));
 905                kfree(ctx);
 906        }
 907}
 908
 909static void
 910pfm_mask_monitoring(struct task_struct *task)
 911{
 912        pfm_context_t *ctx = PFM_GET_CTX(task);
 913        unsigned long mask, val, ovfl_mask;
 914        int i;
 915
 916        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 917
 918        ovfl_mask = pmu_conf->ovfl_val;
 919        /*
 920         * monitoring can only be masked as a result of a valid
 921         * counter overflow. In UP, it means that the PMU still
 922         * has an owner. Note that the owner can be different
 923         * from the current task. However the PMU state belongs
 924         * to the owner.
 925         * In SMP, a valid overflow only happens when task is
 926         * current. Therefore if we come here, we know that
 927         * the PMU state belongs to the current task, therefore
 928         * we can access the live registers.
 929         *
 930         * So in both cases, the live register contains the owner's
 931         * state. We can ONLY touch the PMU registers and NOT the PSR.
 932         *
 933         * As a consequence to this call, the ctx->th_pmds[] array
 934         * contains stale information which must be ignored
 935         * when context is reloaded AND monitoring is active (see
 936         * pfm_restart).
 937         */
 938        mask = ctx->ctx_used_pmds[0];
 939        for (i = 0; mask; i++, mask>>=1) {
 940                /* skip non used pmds */
 941                if ((mask & 0x1) == 0) continue;
 942                val = ia64_get_pmd(i);
 943
 944                if (PMD_IS_COUNTING(i)) {
 945                        /*
 946                         * we rebuild the full 64 bit value of the counter
 947                         */
 948                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 949                } else {
 950                        ctx->ctx_pmds[i].val = val;
 951                }
 952                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 953                        i,
 954                        ctx->ctx_pmds[i].val,
 955                        val & ovfl_mask));
 956        }
 957        /*
 958         * mask monitoring by setting the privilege level to 0
 959         * we cannot use psr.pp/psr.up for this, it is controlled by
 960         * the user
 961         *
 962         * if task is current, modify actual registers, otherwise modify
 963         * thread save state, i.e., what will be restored in pfm_load_regs()
 964         */
 965        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 966        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 967                if ((mask & 0x1) == 0UL) continue;
 968                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 969                ctx->th_pmcs[i] &= ~0xfUL;
 970                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 971        }
 972        /*
 973         * make all of this visible
 974         */
 975        ia64_srlz_d();
 976}
 977
 978/*
 979 * must always be done with task == current
 980 *
 981 * context must be in MASKED state when calling
 982 */
 983static void
 984pfm_restore_monitoring(struct task_struct *task)
 985{
 986        pfm_context_t *ctx = PFM_GET_CTX(task);
 987        unsigned long mask, ovfl_mask;
 988        unsigned long psr, val;
 989        int i, is_system;
 990
 991        is_system = ctx->ctx_fl_system;
 992        ovfl_mask = pmu_conf->ovfl_val;
 993
 994        if (task != current) {
 995                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
 996                return;
 997        }
 998        if (ctx->ctx_state != PFM_CTX_MASKED) {
 999                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1000                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1001                return;
1002        }
1003        psr = pfm_get_psr();
1004        /*
1005         * monitoring is masked via the PMC.
1006         * As we restore their value, we do not want each counter to
1007         * restart right away. We stop monitoring using the PSR,
1008         * restore the PMC (and PMD) and then re-establish the psr
1009         * as it was. Note that there can be no pending overflow at
1010         * this point, because monitoring was MASKED.
1011         *
1012         * system-wide session are pinned and self-monitoring
1013         */
1014        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1015                /* disable dcr pp */
1016                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1017                pfm_clear_psr_pp();
1018        } else {
1019                pfm_clear_psr_up();
1020        }
1021        /*
1022         * first, we restore the PMD
1023         */
1024        mask = ctx->ctx_used_pmds[0];
1025        for (i = 0; mask; i++, mask>>=1) {
1026                /* skip non used pmds */
1027                if ((mask & 0x1) == 0) continue;
1028
1029                if (PMD_IS_COUNTING(i)) {
1030                        /*
1031                         * we split the 64bit value according to
1032                         * counter width
1033                         */
1034                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1035                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1036                } else {
1037                        val = ctx->ctx_pmds[i].val;
1038                }
1039                ia64_set_pmd(i, val);
1040
1041                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1042                        i,
1043                        ctx->ctx_pmds[i].val,
1044                        val));
1045        }
1046        /*
1047         * restore the PMCs
1048         */
1049        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1050        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1051                if ((mask & 0x1) == 0UL) continue;
1052                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1053                ia64_set_pmc(i, ctx->th_pmcs[i]);
1054                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1055                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1056        }
1057        ia64_srlz_d();
1058
1059        /*
1060         * must restore DBR/IBR because could be modified while masked
1061         * XXX: need to optimize 
1062         */
1063        if (ctx->ctx_fl_using_dbreg) {
1064                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1065                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1066        }
1067
1068        /*
1069         * now restore PSR
1070         */
1071        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1072                /* enable dcr pp */
1073                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1074                ia64_srlz_i();
1075        }
1076        pfm_set_psr_l(psr);
1077}
1078
1079static inline void
1080pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1081{
1082        int i;
1083
1084        ia64_srlz_d();
1085
1086        for (i=0; mask; i++, mask>>=1) {
1087                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1088        }
1089}
1090
1091/*
1092 * reload from thread state (used for ctxw only)
1093 */
1094static inline void
1095pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1096{
1097        int i;
1098        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1099
1100        for (i=0; mask; i++, mask>>=1) {
1101                if ((mask & 0x1) == 0) continue;
1102                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1103                ia64_set_pmd(i, val);
1104        }
1105        ia64_srlz_d();
1106}
1107
1108/*
1109 * propagate PMD from context to thread-state
1110 */
1111static inline void
1112pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1113{
1114        unsigned long ovfl_val = pmu_conf->ovfl_val;
1115        unsigned long mask = ctx->ctx_all_pmds[0];
1116        unsigned long val;
1117        int i;
1118
1119        DPRINT(("mask=0x%lx\n", mask));
1120
1121        for (i=0; mask; i++, mask>>=1) {
1122
1123                val = ctx->ctx_pmds[i].val;
1124
1125                /*
1126                 * We break up the 64 bit value into 2 pieces
1127                 * the lower bits go to the machine state in the
1128                 * thread (will be reloaded on ctxsw in).
1129                 * The upper part stays in the soft-counter.
1130                 */
1131                if (PMD_IS_COUNTING(i)) {
1132                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1133                         val &= ovfl_val;
1134                }
1135                ctx->th_pmds[i] = val;
1136
1137                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1138                        i,
1139                        ctx->th_pmds[i],
1140                        ctx->ctx_pmds[i].val));
1141        }
1142}
1143
1144/*
1145 * propagate PMC from context to thread-state
1146 */
1147static inline void
1148pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1149{
1150        unsigned long mask = ctx->ctx_all_pmcs[0];
1151        int i;
1152
1153        DPRINT(("mask=0x%lx\n", mask));
1154
1155        for (i=0; mask; i++, mask>>=1) {
1156                /* masking 0 with ovfl_val yields 0 */
1157                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1158                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1159        }
1160}
1161
1162
1163
1164static inline void
1165pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1166{
1167        int i;
1168
1169        for (i=0; mask; i++, mask>>=1) {
1170                if ((mask & 0x1) == 0) continue;
1171                ia64_set_pmc(i, pmcs[i]);
1172        }
1173        ia64_srlz_d();
1174}
1175
1176static inline int
1177pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1178{
1179        return memcmp(a, b, sizeof(pfm_uuid_t));
1180}
1181
1182static inline int
1183pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1184{
1185        int ret = 0;
1186        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1187        return ret;
1188}
1189
1190static inline int
1191pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1192{
1193        int ret = 0;
1194        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1195        return ret;
1196}
1197
1198
1199static inline int
1200pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1201                     int cpu, void *arg)
1202{
1203        int ret = 0;
1204        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1205        return ret;
1206}
1207
1208static inline int
1209pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1210                     int cpu, void *arg)
1211{
1212        int ret = 0;
1213        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1214        return ret;
1215}
1216
1217static inline int
1218pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1219{
1220        int ret = 0;
1221        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1222        return ret;
1223}
1224
1225static inline int
1226pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1227{
1228        int ret = 0;
1229        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1230        return ret;
1231}
1232
1233static pfm_buffer_fmt_t *
1234__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1235{
1236        struct list_head * pos;
1237        pfm_buffer_fmt_t * entry;
1238
1239        list_for_each(pos, &pfm_buffer_fmt_list) {
1240                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1241                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1242                        return entry;
1243        }
1244        return NULL;
1245}
1246 
1247/*
1248 * find a buffer format based on its uuid
1249 */
1250static pfm_buffer_fmt_t *
1251pfm_find_buffer_fmt(pfm_uuid_t uuid)
1252{
1253        pfm_buffer_fmt_t * fmt;
1254        spin_lock(&pfm_buffer_fmt_lock);
1255        fmt = __pfm_find_buffer_fmt(uuid);
1256        spin_unlock(&pfm_buffer_fmt_lock);
1257        return fmt;
1258}
1259 
1260int
1261pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1262{
1263        int ret = 0;
1264
1265        /* some sanity checks */
1266        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1267
1268        /* we need at least a handler */
1269        if (fmt->fmt_handler == NULL) return -EINVAL;
1270
1271        /*
1272         * XXX: need check validity of fmt_arg_size
1273         */
1274
1275        spin_lock(&pfm_buffer_fmt_lock);
1276
1277        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1278                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1279                ret = -EBUSY;
1280                goto out;
1281        } 
1282        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1283        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1284
1285out:
1286        spin_unlock(&pfm_buffer_fmt_lock);
1287        return ret;
1288}
1289EXPORT_SYMBOL(pfm_register_buffer_fmt);
1290
1291int
1292pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1293{
1294        pfm_buffer_fmt_t *fmt;
1295        int ret = 0;
1296
1297        spin_lock(&pfm_buffer_fmt_lock);
1298
1299        fmt = __pfm_find_buffer_fmt(uuid);
1300        if (!fmt) {
1301                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1302                ret = -EINVAL;
1303                goto out;
1304        }
1305        list_del_init(&fmt->fmt_list);
1306        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1307
1308out:
1309        spin_unlock(&pfm_buffer_fmt_lock);
1310        return ret;
1311
1312}
1313EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1314
1315extern void update_pal_halt_status(int);
1316
1317static int
1318pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1319{
1320        unsigned long flags;
1321        /*
1322         * validity checks on cpu_mask have been done upstream
1323         */
1324        LOCK_PFS(flags);
1325
1326        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1327                pfm_sessions.pfs_sys_sessions,
1328                pfm_sessions.pfs_task_sessions,
1329                pfm_sessions.pfs_sys_use_dbregs,
1330                is_syswide,
1331                cpu));
1332
1333        if (is_syswide) {
1334                /*
1335                 * cannot mix system wide and per-task sessions
1336                 */
1337                if (pfm_sessions.pfs_task_sessions > 0UL) {
1338                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1339                                pfm_sessions.pfs_task_sessions));
1340                        goto abort;
1341                }
1342
1343                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1344
1345                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1346
1347                pfm_sessions.pfs_sys_session[cpu] = task;
1348
1349                pfm_sessions.pfs_sys_sessions++ ;
1350
1351        } else {
1352                if (pfm_sessions.pfs_sys_sessions) goto abort;
1353                pfm_sessions.pfs_task_sessions++;
1354        }
1355
1356        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1357                pfm_sessions.pfs_sys_sessions,
1358                pfm_sessions.pfs_task_sessions,
1359                pfm_sessions.pfs_sys_use_dbregs,
1360                is_syswide,
1361                cpu));
1362
1363        /*
1364         * disable default_idle() to go to PAL_HALT
1365         */
1366        update_pal_halt_status(0);
1367
1368        UNLOCK_PFS(flags);
1369
1370        return 0;
1371
1372error_conflict:
1373        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1374                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1375                cpu));
1376abort:
1377        UNLOCK_PFS(flags);
1378
1379        return -EBUSY;
1380
1381}
1382
1383static int
1384pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1385{
1386        unsigned long flags;
1387        /*
1388         * validity checks on cpu_mask have been done upstream
1389         */
1390        LOCK_PFS(flags);
1391
1392        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1393                pfm_sessions.pfs_sys_sessions,
1394                pfm_sessions.pfs_task_sessions,
1395                pfm_sessions.pfs_sys_use_dbregs,
1396                is_syswide,
1397                cpu));
1398
1399
1400        if (is_syswide) {
1401                pfm_sessions.pfs_sys_session[cpu] = NULL;
1402                /*
1403                 * would not work with perfmon+more than one bit in cpu_mask
1404                 */
1405                if (ctx && ctx->ctx_fl_using_dbreg) {
1406                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1407                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1408                        } else {
1409                                pfm_sessions.pfs_sys_use_dbregs--;
1410                        }
1411                }
1412                pfm_sessions.pfs_sys_sessions--;
1413        } else {
1414                pfm_sessions.pfs_task_sessions--;
1415        }
1416        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1417                pfm_sessions.pfs_sys_sessions,
1418                pfm_sessions.pfs_task_sessions,
1419                pfm_sessions.pfs_sys_use_dbregs,
1420                is_syswide,
1421                cpu));
1422
1423        /*
1424         * if possible, enable default_idle() to go into PAL_HALT
1425         */
1426        if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1427                update_pal_halt_status(1);
1428
1429        UNLOCK_PFS(flags);
1430
1431        return 0;
1432}
1433
1434/*
1435 * removes virtual mapping of the sampling buffer.
1436 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1437 * a PROTECT_CTX() section.
1438 */
1439static int
1440pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1441{
1442        int r;
1443
1444        /* sanity checks */
1445        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1446                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1447                return -EINVAL;
1448        }
1449
1450        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1451
1452        /*
1453         * does the actual unmapping
1454         */
1455        down_write(&task->mm->mmap_sem);
1456
1457        DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459        r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1460
1461        up_write(&task->mm->mmap_sem);
1462        if (r !=0) {
1463                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1464        }
1465
1466        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1467
1468        return 0;
1469}
1470
1471/*
1472 * free actual physical storage used by sampling buffer
1473 */
1474#if 0
1475static int
1476pfm_free_smpl_buffer(pfm_context_t *ctx)
1477{
1478        pfm_buffer_fmt_t *fmt;
1479
1480        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1481
1482        /*
1483         * we won't use the buffer format anymore
1484         */
1485        fmt = ctx->ctx_buf_fmt;
1486
1487        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1488                ctx->ctx_smpl_hdr,
1489                ctx->ctx_smpl_size,
1490                ctx->ctx_smpl_vaddr));
1491
1492        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1493
1494        /*
1495         * free the buffer
1496         */
1497        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1498
1499        ctx->ctx_smpl_hdr  = NULL;
1500        ctx->ctx_smpl_size = 0UL;
1501
1502        return 0;
1503
1504invalid_free:
1505        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1506        return -EINVAL;
1507}
1508#endif
1509
1510static inline void
1511pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1512{
1513        if (fmt == NULL) return;
1514
1515        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1516
1517}
1518
1519/*
1520 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1521 * no real gain from having the whole whorehouse mounted. So we don't need
1522 * any operations on the root directory. However, we need a non-trivial
1523 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1524 */
1525static struct vfsmount *pfmfs_mnt;
1526
1527static int __init
1528init_pfm_fs(void)
1529{
1530        int err = register_filesystem(&pfm_fs_type);
1531        if (!err) {
1532                pfmfs_mnt = kern_mount(&pfm_fs_type);
1533                err = PTR_ERR(pfmfs_mnt);
1534                if (IS_ERR(pfmfs_mnt))
1535                        unregister_filesystem(&pfm_fs_type);
1536                else
1537                        err = 0;
1538        }
1539        return err;
1540}
1541
1542static ssize_t
1543pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1544{
1545        pfm_context_t *ctx;
1546        pfm_msg_t *msg;
1547        ssize_t ret;
1548        unsigned long flags;
1549        DECLARE_WAITQUEUE(wait, current);
1550        if (PFM_IS_FILE(filp) == 0) {
1551                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1552                return -EINVAL;
1553        }
1554
1555        ctx = (pfm_context_t *)filp->private_data;
1556        if (ctx == NULL) {
1557                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1558                return -EINVAL;
1559        }
1560
1561        /*
1562         * check even when there is no message
1563         */
1564        if (size < sizeof(pfm_msg_t)) {
1565                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1566                return -EINVAL;
1567        }
1568
1569        PROTECT_CTX(ctx, flags);
1570
1571        /*
1572         * put ourselves on the wait queue
1573         */
1574        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1575
1576
1577        for(;;) {
1578                /*
1579                 * check wait queue
1580                 */
1581
1582                set_current_state(TASK_INTERRUPTIBLE);
1583
1584                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1585
1586                ret = 0;
1587                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1588
1589                UNPROTECT_CTX(ctx, flags);
1590
1591                /*
1592                 * check non-blocking read
1593                 */
1594                ret = -EAGAIN;
1595                if(filp->f_flags & O_NONBLOCK) break;
1596
1597                /*
1598                 * check pending signals
1599                 */
1600                if(signal_pending(current)) {
1601                        ret = -EINTR;
1602                        break;
1603                }
1604                /*
1605                 * no message, so wait
1606                 */
1607                schedule();
1608
1609                PROTECT_CTX(ctx, flags);
1610        }
1611        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1612        set_current_state(TASK_RUNNING);
1613        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1614
1615        if (ret < 0) goto abort;
1616
1617        ret = -EINVAL;
1618        msg = pfm_get_next_msg(ctx);
1619        if (msg == NULL) {
1620                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1621                goto abort_locked;
1622        }
1623
1624        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1625
1626        ret = -EFAULT;
1627        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1628
1629abort_locked:
1630        UNPROTECT_CTX(ctx, flags);
1631abort:
1632        return ret;
1633}
1634
1635static ssize_t
1636pfm_write(struct file *file, const char __user *ubuf,
1637                          size_t size, loff_t *ppos)
1638{
1639        DPRINT(("pfm_write called\n"));
1640        return -EINVAL;
1641}
1642
1643static unsigned int
1644pfm_poll(struct file *filp, poll_table * wait)
1645{
1646        pfm_context_t *ctx;
1647        unsigned long flags;
1648        unsigned int mask = 0;
1649
1650        if (PFM_IS_FILE(filp) == 0) {
1651                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1652                return 0;
1653        }
1654
1655        ctx = (pfm_context_t *)filp->private_data;
1656        if (ctx == NULL) {
1657                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1658                return 0;
1659        }
1660
1661
1662        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1663
1664        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1665
1666        PROTECT_CTX(ctx, flags);
1667
1668        if (PFM_CTXQ_EMPTY(ctx) == 0)
1669                mask =  POLLIN | POLLRDNORM;
1670
1671        UNPROTECT_CTX(ctx, flags);
1672
1673        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1674
1675        return mask;
1676}
1677
1678static int
1679pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1680{
1681        DPRINT(("pfm_ioctl called\n"));
1682        return -EINVAL;
1683}
1684
1685/*
1686 * interrupt cannot be masked when coming here
1687 */
1688static inline int
1689pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1690{
1691        int ret;
1692
1693        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1694
1695        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1696                task_pid_nr(current),
1697                fd,
1698                on,
1699                ctx->ctx_async_queue, ret));
1700
1701        return ret;
1702}
1703
1704static int
1705pfm_fasync(int fd, struct file *filp, int on)
1706{
1707        pfm_context_t *ctx;
1708        int ret;
1709
1710        if (PFM_IS_FILE(filp) == 0) {
1711                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1712                return -EBADF;
1713        }
1714
1715        ctx = (pfm_context_t *)filp->private_data;
1716        if (ctx == NULL) {
1717                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1718                return -EBADF;
1719        }
1720        /*
1721         * we cannot mask interrupts during this call because this may
1722         * may go to sleep if memory is not readily avalaible.
1723         *
1724         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1725         * done in caller. Serialization of this function is ensured by caller.
1726         */
1727        ret = pfm_do_fasync(fd, filp, ctx, on);
1728
1729
1730        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1731                fd,
1732                on,
1733                ctx->ctx_async_queue, ret));
1734
1735        return ret;
1736}
1737
1738#ifdef CONFIG_SMP
1739/*
1740 * this function is exclusively called from pfm_close().
1741 * The context is not protected at that time, nor are interrupts
1742 * on the remote CPU. That's necessary to avoid deadlocks.
1743 */
1744static void
1745pfm_syswide_force_stop(void *info)
1746{
1747        pfm_context_t   *ctx = (pfm_context_t *)info;
1748        struct pt_regs *regs = task_pt_regs(current);
1749        struct task_struct *owner;
1750        unsigned long flags;
1751        int ret;
1752
1753        if (ctx->ctx_cpu != smp_processor_id()) {
1754                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1755                        ctx->ctx_cpu,
1756                        smp_processor_id());
1757                return;
1758        }
1759        owner = GET_PMU_OWNER();
1760        if (owner != ctx->ctx_task) {
1761                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1762                        smp_processor_id(),
1763                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1764                return;
1765        }
1766        if (GET_PMU_CTX() != ctx) {
1767                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1768                        smp_processor_id(),
1769                        GET_PMU_CTX(), ctx);
1770                return;
1771        }
1772
1773        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1774        /*
1775         * the context is already protected in pfm_close(), we simply
1776         * need to mask interrupts to avoid a PMU interrupt race on
1777         * this CPU
1778         */
1779        local_irq_save(flags);
1780
1781        ret = pfm_context_unload(ctx, NULL, 0, regs);
1782        if (ret) {
1783                DPRINT(("context_unload returned %d\n", ret));
1784        }
1785
1786        /*
1787         * unmask interrupts, PMU interrupts are now spurious here
1788         */
1789        local_irq_restore(flags);
1790}
1791
1792static void
1793pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1794{
1795        int ret;
1796
1797        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1798        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1799        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1800}
1801#endif /* CONFIG_SMP */
1802
1803/*
1804 * called for each close(). Partially free resources.
1805 * When caller is self-monitoring, the context is unloaded.
1806 */
1807static int
1808pfm_flush(struct file *filp, fl_owner_t id)
1809{
1810        pfm_context_t *ctx;
1811        struct task_struct *task;
1812        struct pt_regs *regs;
1813        unsigned long flags;
1814        unsigned long smpl_buf_size = 0UL;
1815        void *smpl_buf_vaddr = NULL;
1816        int state, is_system;
1817
1818        if (PFM_IS_FILE(filp) == 0) {
1819                DPRINT(("bad magic for\n"));
1820                return -EBADF;
1821        }
1822
1823        ctx = (pfm_context_t *)filp->private_data;
1824        if (ctx == NULL) {
1825                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1826                return -EBADF;
1827        }
1828
1829        /*
1830         * remove our file from the async queue, if we use this mode.
1831         * This can be done without the context being protected. We come
1832         * here when the context has become unreachable by other tasks.
1833         *
1834         * We may still have active monitoring at this point and we may
1835         * end up in pfm_overflow_handler(). However, fasync_helper()
1836         * operates with interrupts disabled and it cleans up the
1837         * queue. If the PMU handler is called prior to entering
1838         * fasync_helper() then it will send a signal. If it is
1839         * invoked after, it will find an empty queue and no
1840         * signal will be sent. In both case, we are safe
1841         */
1842        if (filp->f_flags & FASYNC) {
1843                DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1844                pfm_do_fasync (-1, filp, ctx, 0);
1845        }
1846
1847        PROTECT_CTX(ctx, flags);
1848
1849        state     = ctx->ctx_state;
1850        is_system = ctx->ctx_fl_system;
1851
1852        task = PFM_CTX_TASK(ctx);
1853        regs = task_pt_regs(task);
1854
1855        DPRINT(("ctx_state=%d is_current=%d\n",
1856                state,
1857                task == current ? 1 : 0));
1858
1859        /*
1860         * if state == UNLOADED, then task is NULL
1861         */
1862
1863        /*
1864         * we must stop and unload because we are losing access to the context.
1865         */
1866        if (task == current) {
1867#ifdef CONFIG_SMP
1868                /*
1869                 * the task IS the owner but it migrated to another CPU: that's bad
1870                 * but we must handle this cleanly. Unfortunately, the kernel does
1871                 * not provide a mechanism to block migration (while the context is loaded).
1872                 *
1873                 * We need to release the resource on the ORIGINAL cpu.
1874                 */
1875                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876
1877                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878                        /*
1879                         * keep context protected but unmask interrupt for IPI
1880                         */
1881                        local_irq_restore(flags);
1882
1883                        pfm_syswide_cleanup_other_cpu(ctx);
1884
1885                        /*
1886                         * restore interrupt masking
1887                         */
1888                        local_irq_save(flags);
1889
1890                        /*
1891                         * context is unloaded at this point
1892                         */
1893                } else
1894#endif /* CONFIG_SMP */
1895                {
1896
1897                        DPRINT(("forcing unload\n"));
1898                        /*
1899                        * stop and unload, returning with state UNLOADED
1900                        * and session unreserved.
1901                        */
1902                        pfm_context_unload(ctx, NULL, 0, regs);
1903
1904                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1905                }
1906        }
1907
1908        /*
1909         * remove virtual mapping, if any, for the calling task.
1910         * cannot reset ctx field until last user is calling close().
1911         *
1912         * ctx_smpl_vaddr must never be cleared because it is needed
1913         * by every task with access to the context
1914         *
1915         * When called from do_exit(), the mm context is gone already, therefore
1916         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1917         * do anything here
1918         */
1919        if (ctx->ctx_smpl_vaddr && current->mm) {
1920                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921                smpl_buf_size  = ctx->ctx_smpl_size;
1922        }
1923
1924        UNPROTECT_CTX(ctx, flags);
1925
1926        /*
1927         * if there was a mapping, then we systematically remove it
1928         * at this point. Cannot be done inside critical section
1929         * because some VM function reenables interrupts.
1930         *
1931         */
1932        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1933
1934        return 0;
1935}
1936/*
1937 * called either on explicit close() or from exit_files(). 
1938 * Only the LAST user of the file gets to this point, i.e., it is
1939 * called only ONCE.
1940 *
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1942 * (fput()),i.e, last task to access the file. Nobody else can access the 
1943 * file at this point.
1944 *
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1947 *
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context. 
1950 */
1951static int
1952pfm_close(struct inode *inode, struct file *filp)
1953{
1954        pfm_context_t *ctx;
1955        struct task_struct *task;
1956        struct pt_regs *regs;
1957        DECLARE_WAITQUEUE(wait, current);
1958        unsigned long flags;
1959        unsigned long smpl_buf_size = 0UL;
1960        void *smpl_buf_addr = NULL;
1961        int free_possible = 1;
1962        int state, is_system;
1963
1964        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965
1966        if (PFM_IS_FILE(filp) == 0) {
1967                DPRINT(("bad magic\n"));
1968                return -EBADF;
1969        }
1970        
1971        ctx = (pfm_context_t *)filp->private_data;
1972        if (ctx == NULL) {
1973                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974                return -EBADF;
1975        }
1976
1977        PROTECT_CTX(ctx, flags);
1978
1979        state     = ctx->ctx_state;
1980        is_system = ctx->ctx_fl_system;
1981
1982        task = PFM_CTX_TASK(ctx);
1983        regs = task_pt_regs(task);
1984
1985        DPRINT(("ctx_state=%d is_current=%d\n", 
1986                state,
1987                task == current ? 1 : 0));
1988
1989        /*
1990         * if task == current, then pfm_flush() unloaded the context
1991         */
1992        if (state == PFM_CTX_UNLOADED) goto doit;
1993
1994        /*
1995         * context is loaded/masked and task != current, we need to
1996         * either force an unload or go zombie
1997         */
1998
1999        /*
2000         * The task is currently blocked or will block after an overflow.
2001         * we must force it to wakeup to get out of the
2002         * MASKED state and transition to the unloaded state by itself.
2003         *
2004         * This situation is only possible for per-task mode
2005         */
2006        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2007
2008                /*
2009                 * set a "partial" zombie state to be checked
2010                 * upon return from down() in pfm_handle_work().
2011                 *
2012                 * We cannot use the ZOMBIE state, because it is checked
2013                 * by pfm_load_regs() which is called upon wakeup from down().
2014                 * In such case, it would free the context and then we would
2015                 * return to pfm_handle_work() which would access the
2016                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017                 * but visible to pfm_handle_work().
2018                 *
2019                 * For some window of time, we have a zombie context with
2020                 * ctx_state = MASKED  and not ZOMBIE
2021                 */
2022                ctx->ctx_fl_going_zombie = 1;
2023
2024                /*
2025                 * force task to wake up from MASKED state
2026                 */
2027                complete(&ctx->ctx_restart_done);
2028
2029                DPRINT(("waking up ctx_state=%d\n", state));
2030
2031                /*
2032                 * put ourself to sleep waiting for the other
2033                 * task to report completion
2034                 *
2035                 * the context is protected by mutex, therefore there
2036                 * is no risk of being notified of completion before
2037                 * begin actually on the waitq.
2038                 */
2039                set_current_state(TASK_INTERRUPTIBLE);
2040                add_wait_queue(&ctx->ctx_zombieq, &wait);
2041
2042                UNPROTECT_CTX(ctx, flags);
2043
2044                /*
2045                 * XXX: check for signals :
2046                 *      - ok for explicit close
2047                 *      - not ok when coming from exit_files()
2048                 */
2049                schedule();
2050
2051
2052                PROTECT_CTX(ctx, flags);
2053
2054
2055                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2056                set_current_state(TASK_RUNNING);
2057
2058                /*
2059                 * context is unloaded at this point
2060                 */
2061                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062        }
2063        else if (task != current) {
2064#ifdef CONFIG_SMP
2065                /*
2066                 * switch context to zombie state
2067                 */
2068                ctx->ctx_state = PFM_CTX_ZOMBIE;
2069
2070                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2071                /*
2072                 * cannot free the context on the spot. deferred until
2073                 * the task notices the ZOMBIE state
2074                 */
2075                free_possible = 0;
2076#else
2077                pfm_context_unload(ctx, NULL, 0, regs);
2078#endif
2079        }
2080
2081doit:
2082        /* reload state, may have changed during  opening of critical section */
2083        state = ctx->ctx_state;
2084
2085        /*
2086         * the context is still attached to a task (possibly current)
2087         * we cannot destroy it right now
2088         */
2089
2090        /*
2091         * we must free the sampling buffer right here because
2092         * we cannot rely on it being cleaned up later by the
2093         * monitored task. It is not possible to free vmalloc'ed
2094         * memory in pfm_load_regs(). Instead, we remove the buffer
2095         * now. should there be subsequent PMU overflow originally
2096         * meant for sampling, the will be converted to spurious
2097         * and that's fine because the monitoring tools is gone anyway.
2098         */
2099        if (ctx->ctx_smpl_hdr) {
2100                smpl_buf_addr = ctx->ctx_smpl_hdr;
2101                smpl_buf_size = ctx->ctx_smpl_size;
2102                /* no more sampling */
2103                ctx->ctx_smpl_hdr = NULL;
2104                ctx->ctx_fl_is_sampling = 0;
2105        }
2106
2107        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108                state,
2109                free_possible,
2110                smpl_buf_addr,
2111                smpl_buf_size));
2112
2113        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2114
2115        /*
2116         * UNLOADED that the session has already been unreserved.
2117         */
2118        if (state == PFM_CTX_ZOMBIE) {
2119                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120        }
2121
2122        /*
2123         * disconnect file descriptor from context must be done
2124         * before we unlock.
2125         */
2126        filp->private_data = NULL;
2127
2128        /*
2129         * if we free on the spot, the context is now completely unreachable
2130         * from the callers side. The monitored task side is also cut, so we
2131         * can freely cut.
2132         *
2133         * If we have a deferred free, only the caller side is disconnected.
2134         */
2135        UNPROTECT_CTX(ctx, flags);
2136
2137        /*
2138         * All memory free operations (especially for vmalloc'ed memory)
2139         * MUST be done with interrupts ENABLED.
2140         */
2141        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2142
2143        /*
2144         * return the memory used by the context
2145         */
2146        if (free_possible) pfm_context_free(ctx);
2147
2148        return 0;
2149}
2150
2151static int
2152pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153{
2154        DPRINT(("pfm_no_open called\n"));
2155        return -ENXIO;
2156}
2157
2158
2159
2160static const struct file_operations pfm_file_ops = {
2161        .llseek   = no_llseek,
2162        .read     = pfm_read,
2163        .write    = pfm_write,
2164        .poll     = pfm_poll,
2165        .ioctl    = pfm_ioctl,
2166        .open     = pfm_no_open,        /* special open code to disallow open via /proc */
2167        .fasync   = pfm_fasync,
2168        .release  = pfm_close,
2169        .flush    = pfm_flush
2170};
2171
2172static int
2173pfmfs_delete_dentry(struct dentry *dentry)
2174{
2175        return 1;
2176}
2177
2178static struct dentry_operations pfmfs_dentry_operations = {
2179        .d_delete = pfmfs_delete_dentry,
2180};
2181
2182
2183static int
2184pfm_alloc_fd(struct file **cfile)
2185{
2186        int fd, ret = 0;
2187        struct file *file = NULL;
2188        struct inode * inode;
2189        char name[32];
2190        struct qstr this;
2191
2192        fd = get_unused_fd();
2193        if (fd < 0) return -ENFILE;
2194
2195        ret = -ENFILE;
2196
2197        file = get_empty_filp();
2198        if (!file) goto out;
2199
2200        /*
2201         * allocate a new inode
2202         */
2203        inode = new_inode(pfmfs_mnt->mnt_sb);
2204        if (!inode) goto out;
2205
2206        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2207
2208        inode->i_mode = S_IFCHR|S_IRUGO;
2209        inode->i_uid  = current->fsuid;
2210        inode->i_gid  = current->fsgid;
2211
2212        sprintf(name, "[%lu]", inode->i_ino);
2213        this.name = name;
2214        this.len  = strlen(name);
2215        this.hash = inode->i_ino;
2216
2217        ret = -ENOMEM;
2218
2219        /*
2220         * allocate a new dcache entry
2221         */
2222        file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2223        if (!file->f_path.dentry) goto out;
2224
2225        file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2226
2227        d_add(file->f_path.dentry, inode);
2228        file->f_path.mnt = mntget(pfmfs_mnt);
2229        file->f_mapping = inode->i_mapping;
2230
2231        file->f_op    = &pfm_file_ops;
2232        file->f_mode  = FMODE_READ;
2233        file->f_flags = O_RDONLY;
2234        file->f_pos   = 0;
2235
2236        /*
2237         * may have to delay until context is attached?
2238         */
2239        fd_install(fd, file);
2240
2241        /*
2242         * the file structure we will use
2243         */
2244        *cfile = file;
2245
2246        return fd;
2247out:
2248        if (file) put_filp(file);
2249        put_unused_fd(fd);
2250        return ret;
2251}
2252
2253static void
2254pfm_free_fd(int fd, struct file *file)
2255{
2256        struct files_struct *files = current->files;
2257        struct fdtable *fdt;
2258
2259        /* 
2260         * there ie no fd_uninstall(), so we do it here
2261         */
2262        spin_lock(&files->file_lock);
2263        fdt = files_fdtable(files);
2264        rcu_assign_pointer(fdt->fd[fd], NULL);
2265        spin_unlock(&files->file_lock);
2266
2267        if (file)
2268                put_filp(file);
2269        put_unused_fd(fd);
2270}
2271
2272static int
2273pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2274{
2275        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2276
2277        while (size > 0) {
2278                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2279
2280
2281                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2282                        return -ENOMEM;
2283
2284                addr  += PAGE_SIZE;
2285                buf   += PAGE_SIZE;
2286                size  -= PAGE_SIZE;
2287        }
2288        return 0;
2289}
2290
2291/*
2292 * allocate a sampling buffer and remaps it into the user address space of the task
2293 */
2294static int
2295pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2296{
2297        struct mm_struct *mm = task->mm;
2298        struct vm_area_struct *vma = NULL;
2299        unsigned long size;
2300        void *smpl_buf;
2301
2302
2303        /*
2304         * the fixed header + requested size and align to page boundary
2305         */
2306        size = PAGE_ALIGN(rsize);
2307
2308        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2309
2310        /*
2311         * check requested size to avoid Denial-of-service attacks
2312         * XXX: may have to refine this test
2313         * Check against address space limit.
2314         *
2315         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2316         *      return -ENOMEM;
2317         */
2318        if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2319                return -ENOMEM;
2320
2321        /*
2322         * We do the easy to undo allocations first.
2323         *
2324         * pfm_rvmalloc(), clears the buffer, so there is no leak
2325         */
2326        smpl_buf = pfm_rvmalloc(size);
2327        if (smpl_buf == NULL) {
2328                DPRINT(("Can't allocate sampling buffer\n"));
2329                return -ENOMEM;
2330        }
2331
2332        DPRINT(("smpl_buf @%p\n", smpl_buf));
2333
2334        /* allocate vma */
2335        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2336        if (!vma) {
2337                DPRINT(("Cannot allocate vma\n"));
2338                goto error_kmem;
2339        }
2340
2341        /*
2342         * partially initialize the vma for the sampling buffer
2343         */
2344        vma->vm_mm           = mm;
2345        vma->vm_file         = filp;
2346        vma->vm_flags        = VM_READ| VM_MAYREAD |VM_RESERVED;
2347        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2348
2349        /*
2350         * Now we have everything we need and we can initialize
2351         * and connect all the data structures
2352         */
2353
2354        ctx->ctx_smpl_hdr   = smpl_buf;
2355        ctx->ctx_smpl_size  = size; /* aligned size */
2356
2357        /*
2358         * Let's do the difficult operations next.
2359         *
2360         * now we atomically find some area in the address space and
2361         * remap the buffer in it.
2362         */
2363        down_write(&task->mm->mmap_sem);
2364
2365        /* find some free area in address space, must have mmap sem held */
2366        vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2367        if (vma->vm_start == 0UL) {
2368                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2369                up_write(&task->mm->mmap_sem);
2370                goto error;
2371        }
2372        vma->vm_end = vma->vm_start + size;
2373        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2374
2375        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2376
2377        /* can only be applied to current task, need to have the mm semaphore held when called */
2378        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2379                DPRINT(("Can't remap buffer\n"));
2380                up_write(&task->mm->mmap_sem);
2381                goto error;
2382        }
2383
2384        get_file(filp);
2385
2386        /*
2387         * now insert the vma in the vm list for the process, must be
2388         * done with mmap lock held
2389         */
2390        insert_vm_struct(mm, vma);
2391
2392        mm->total_vm  += size >> PAGE_SHIFT;
2393        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2394                                                        vma_pages(vma));
2395        up_write(&task->mm->mmap_sem);
2396
2397        /*
2398         * keep track of user level virtual address
2399         */
2400        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2401        *(unsigned long *)user_vaddr = vma->vm_start;
2402
2403        return 0;
2404
2405error:
2406        kmem_cache_free(vm_area_cachep, vma);
2407error_kmem:
2408        pfm_rvfree(smpl_buf, size);
2409
2410        return -ENOMEM;
2411}
2412
2413/*
2414 * XXX: do something better here
2415 */
2416static int
2417pfm_bad_permissions(struct task_struct *task)
2418{
2419        /* inspired by ptrace_attach() */
2420        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2421                current->uid,
2422                current->gid,
2423                task->euid,
2424                task->suid,
2425                task->uid,
2426                task->egid,
2427                task->sgid));
2428
2429        return ((current->uid != task->euid)
2430            || (current->uid != task->suid)
2431            || (current->uid != task->uid)
2432            || (current->gid != task->egid)
2433            || (current->gid != task->sgid)
2434            || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2435}
2436
2437static int
2438pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2439{
2440        int ctx_flags;
2441
2442        /* valid signal */
2443
2444        ctx_flags = pfx->ctx_flags;
2445
2446        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2447
2448                /*
2449                 * cannot block in this mode
2450                 */
2451                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2452                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2453                        return -EINVAL;
2454                }
2455        } else {
2456        }
2457        /* probably more to add here */
2458
2459        return 0;
2460}
2461
2462static int
2463pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2464                     unsigned int cpu, pfarg_context_t *arg)
2465{
2466        pfm_buffer_fmt_t *fmt = NULL;
2467        unsigned long size = 0UL;
2468        void *uaddr = NULL;
2469        void *fmt_arg = NULL;
2470        int ret = 0;
2471#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2472
2473        /* invoke and lock buffer format, if found */
2474        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2475        if (fmt == NULL) {
2476                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2477                return -EINVAL;
2478        }
2479
2480        /*
2481         * buffer argument MUST be contiguous to pfarg_context_t
2482         */
2483        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2484
2485        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2486
2487        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2488
2489        if (ret) goto error;
2490
2491        /* link buffer format and context */
2492        ctx->ctx_buf_fmt = fmt;
2493
2494        /*
2495         * check if buffer format wants to use perfmon buffer allocation/mapping service
2496         */
2497        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2498        if (ret) goto error;
2499
2500        if (size) {
2501                /*
2502                 * buffer is always remapped into the caller's address space
2503                 */
2504                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2505                if (ret) goto error;
2506
2507                /* keep track of user address of buffer */
2508                arg->ctx_smpl_vaddr = uaddr;
2509        }
2510        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2511
2512error:
2513        return ret;
2514}
2515
2516static void
2517pfm_reset_pmu_state(pfm_context_t *ctx)
2518{
2519        int i;
2520
2521        /*
2522         * install reset values for PMC.
2523         */
2524        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2525                if (PMC_IS_IMPL(i) == 0) continue;
2526                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2527                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2528        }
2529        /*
2530         * PMD registers are set to 0UL when the context in memset()
2531         */
2532
2533        /*
2534         * On context switched restore, we must restore ALL pmc and ALL pmd even
2535         * when they are not actively used by the task. In UP, the incoming process
2536         * may otherwise pick up left over PMC, PMD state from the previous process.
2537         * As opposed to PMD, stale PMC can cause harm to the incoming
2538         * process because they may change what is being measured.
2539         * Therefore, we must systematically reinstall the entire
2540         * PMC state. In SMP, the same thing is possible on the
2541         * same CPU but also on between 2 CPUs.
2542         *
2543         * The problem with PMD is information leaking especially
2544         * to user level when psr.sp=0
2545         *
2546         * There is unfortunately no easy way to avoid this problem
2547         * on either UP or SMP. This definitively slows down the
2548         * pfm_load_regs() function.
2549         */
2550
2551         /*
2552          * bitmask of all PMCs accessible to this context
2553          *
2554          * PMC0 is treated differently.
2555          */
2556        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2557
2558        /*
2559         * bitmask of all PMDs that are accessible to this context
2560         */
2561        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2562
2563        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2564
2565        /*
2566         * useful in case of re-enable after disable
2567         */
2568        ctx->ctx_used_ibrs[0] = 0UL;
2569        ctx->ctx_used_dbrs[0] = 0UL;
2570}
2571
2572static int
2573pfm_ctx_getsize(void *arg, size_t *sz)
2574{
2575        pfarg_context_t *req = (pfarg_context_t *)arg;
2576        pfm_buffer_fmt_t *fmt;
2577
2578        *sz = 0;
2579
2580        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2581
2582        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2583        if (fmt == NULL) {
2584                DPRINT(("cannot find buffer format\n"));
2585                return -EINVAL;
2586        }
2587        /* get just enough to copy in user parameters */
2588        *sz = fmt->fmt_arg_size;
2589        DPRINT(("arg_size=%lu\n", *sz));
2590
2591        return 0;
2592}
2593
2594
2595
2596/*
2597 * cannot attach if :
2598 *      - kernel task
2599 *      - task not owned by caller
2600 *      - task incompatible with context mode
2601 */
2602static int
2603pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2604{
2605        /*
2606         * no kernel task or task not owner by caller
2607         */
2608        if (task->mm == NULL) {
2609                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2610                return -EPERM;
2611        }
2612        if (pfm_bad_permissions(task)) {
2613                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2614                return -EPERM;
2615        }
2616        /*
2617         * cannot block in self-monitoring mode
2618         */
2619        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2620                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2621                return -EINVAL;
2622        }
2623
2624        if (task->exit_state == EXIT_ZOMBIE) {
2625                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2626                return -EBUSY;
2627        }
2628
2629        /*
2630         * always ok for self
2631         */
2632        if (task == current) return 0;
2633
2634        if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2635                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2636                return -EBUSY;
2637        }
2638        /*
2639         * make sure the task is off any CPU
2640         */
2641        wait_task_inactive(task);
2642
2643        /* more to come... */
2644
2645        return 0;
2646}
2647
2648static int
2649pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2650{
2651        struct task_struct *p = current;
2652        int ret;
2653
2654        /* XXX: need to add more checks here */
2655        if (pid < 2) return -EPERM;
2656
2657        if (pid != current->pid) {
2658
2659                read_lock(&tasklist_lock);
2660
2661                p = find_task_by_pid(pid);
2662
2663                /* make sure task cannot go away while we operate on it */
2664                if (p) get_task_struct(p);
2665
2666                read_unlock(&tasklist_lock);
2667
2668                if (p == NULL) return -ESRCH;
2669        }
2670
2671        ret = pfm_task_incompatible(ctx, p);
2672        if (ret == 0) {
2673                *task = p;
2674        } else if (p != current) {
2675                pfm_put_task(p);
2676        }
2677        return ret;
2678}
2679
2680
2681
2682static int
2683pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2684{
2685        pfarg_context_t *req = (pfarg_context_t *)arg;
2686        struct file *filp;
2687        int ctx_flags;
2688        int ret;
2689
2690        /* let's check the arguments first */
2691        ret = pfarg_is_sane(current, req);
2692        if (ret < 0) return ret;
2693
2694        ctx_flags = req->ctx_flags;
2695
2696        ret = -ENOMEM;
2697
2698        ctx = pfm_context_alloc();
2699        if (!ctx) goto error;
2700
2701        ret = pfm_alloc_fd(&filp);
2702        if (ret < 0) goto error_file;
2703
2704        req->ctx_fd = ctx->ctx_fd = ret;
2705
2706        /*
2707         * attach context to file
2708         */
2709        filp->private_data = ctx;
2710
2711        /*
2712         * does the user want to sample?
2713         */
2714        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2715                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2716                if (ret) goto buffer_error;
2717        }
2718
2719        /*
2720         * init context protection lock
2721         */
2722        spin_lock_init(&ctx->ctx_lock);
2723
2724        /*
2725         * context is unloaded
2726         */
2727        ctx->ctx_state = PFM_CTX_UNLOADED;
2728
2729        /*
2730         * initialization of context's flags
2731         */
2732        ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2733        ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2734        ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2735        ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2736        /*
2737         * will move to set properties
2738         * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2739         */
2740
2741        /*
2742         * init restart semaphore to locked
2743         */
2744        init_completion(&ctx->ctx_restart_done);
2745
2746        /*
2747         * activation is used in SMP only
2748         */
2749        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2750        SET_LAST_CPU(ctx, -1);
2751
2752        /*
2753         * initialize notification message queue
2754         */
2755        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2756        init_waitqueue_head(&ctx->ctx_msgq_wait);
2757        init_waitqueue_head(&ctx->ctx_zombieq);
2758
2759        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2760                ctx,
2761                ctx_flags,
2762                ctx->ctx_fl_system,
2763                ctx->ctx_fl_block,
2764                ctx->ctx_fl_excl_idle,
2765                ctx->ctx_fl_no_msg,
2766                ctx->ctx_fd));
2767
2768        /*
2769         * initialize soft PMU state
2770         */
2771        pfm_reset_pmu_state(ctx);
2772
2773        return 0;
2774
2775buffer_error:
2776        pfm_free_fd(ctx->ctx_fd, filp);
2777
2778        if (ctx->ctx_buf_fmt) {
2779                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2780        }
2781error_file:
2782        pfm_context_free(ctx);
2783
2784error:
2785        return ret;
2786}
2787
2788static inline unsigned long
2789pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2790{
2791        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2792        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2793        extern unsigned long carta_random32 (unsigned long seed);
2794
2795        if (reg->flags & PFM_REGFL_RANDOM) {
2796                new_seed = carta_random32(old_seed);
2797                val -= (old_seed & mask);       /* counter values are negative numbers! */
2798                if ((mask >> 32) != 0)
2799                        /* construct a full 64-bit random value: */
2800                        new_seed |= carta_random32(old_seed >> 32) << 32;
2801                reg->seed = new_seed;
2802        }
2803        reg->lval = val;
2804        return val;
2805}
2806
2807static void
2808pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2809{
2810        unsigned long mask = ovfl_regs[0];
2811        unsigned long reset_others = 0UL;
2812        unsigned long val;
2813        int i;
2814
2815        /*
2816         * now restore reset value on sampling overflowed counters
2817         */
2818        mask >>= PMU_FIRST_COUNTER;
2819        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2820
2821                if ((mask & 0x1UL) == 0UL) continue;
2822
2823                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2824                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2825
2826                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2827        }
2828
2829        /*
2830         * Now take care of resetting the other registers
2831         */
2832        for(i = 0; reset_others; i++, reset_others >>= 1) {
2833
2834                if ((reset_others & 0x1) == 0) continue;
2835
2836                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2837
2838                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2839                          is_long_reset ? "long" : "short", i, val));
2840        }
2841}
2842
2843static void
2844pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2845{
2846        unsigned long mask = ovfl_regs[0];
2847        unsigned long reset_others = 0UL;
2848        unsigned long val;
2849        int i;
2850
2851        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2852
2853        if (ctx->ctx_state == PFM_CTX_MASKED) {
2854                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2855                return;
2856        }
2857
2858        /*
2859         * now restore reset value on sampling overflowed counters
2860         */
2861        mask >>= PMU_FIRST_COUNTER;
2862        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2863
2864                if ((mask & 0x1UL) == 0UL) continue;
2865
2866                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2867                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2868
2869                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2870
2871                pfm_write_soft_counter(ctx, i, val);
2872        }
2873
2874        /*
2875         * Now take care of resetting the other registers
2876         */
2877        for(i = 0; reset_others; i++, reset_others >>= 1) {
2878
2879                if ((reset_others & 0x1) == 0) continue;
2880
2881                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2882
2883                if (PMD_IS_COUNTING(i)) {
2884                        pfm_write_soft_counter(ctx, i, val);
2885                } else {
2886                        ia64_set_pmd(i, val);
2887                }
2888                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2889                          is_long_reset ? "long" : "short", i, val));
2890        }
2891        ia64_srlz_d();
2892}
2893
2894static int
2895pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2896{
2897        struct task_struct *task;
2898        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2899        unsigned long value, pmc_pm;
2900        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2901        unsigned int cnum, reg_flags, flags, pmc_type;
2902        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2903        int is_monitor, is_counting, state;
2904        int ret = -EINVAL;
2905        pfm_reg_check_t wr_func;
2906#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2907
2908        state     = ctx->ctx_state;
2909        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2910        is_system = ctx->ctx_fl_system;
2911        task      = ctx->ctx_task;
2912        impl_pmds = pmu_conf->impl_pmds[0];
2913
2914        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2915
2916        if (is_loaded) {
2917                /*
2918                 * In system wide and when the context is loaded, access can only happen
2919                 * when the caller is running on the CPU being monitored by the session.
2920                 * It does not have to be the owner (ctx_task) of the context per se.
2921                 */
2922                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2923                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2924                        return -EBUSY;
2925                }
2926                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2927        }
2928        expert_mode = pfm_sysctl.expert_mode; 
2929
2930        for (i = 0; i < count; i++, req++) {
2931
2932                cnum       = req->reg_num;
2933                reg_flags  = req->reg_flags;
2934                value      = req->reg_value;
2935                smpl_pmds  = req->reg_smpl_pmds[0];
2936                reset_pmds = req->reg_reset_pmds[0];
2937                flags      = 0;
2938
2939
2940                if (cnum >= PMU_MAX_PMCS) {
2941                        DPRINT(("pmc%u is invalid\n", cnum));
2942                        goto error;
2943                }
2944
2945                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2946                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2947                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2948                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2949
2950                /*
2951                 * we reject all non implemented PMC as well
2952                 * as attempts to modify PMC[0-3] which are used
2953                 * as status registers by the PMU
2954                 */
2955                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2956                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2957                        goto error;
2958                }
2959                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2960                /*
2961                 * If the PMC is a monitor, then if the value is not the default:
2962                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2963                 *      - per-task           : PMCx.pm=0 (user monitor)
2964                 */
2965                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2966                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2967                                cnum,
2968                                pmc_pm,
2969                                is_system));
2970                        goto error;
2971                }
2972
2973                if (is_counting) {
2974                        /*
2975                         * enforce generation of overflow interrupt. Necessary on all
2976                         * CPUs.
2977                         */
2978                        value |= 1 << PMU_PMC_OI;
2979
2980                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2981                                flags |= PFM_REGFL_OVFL_NOTIFY;
2982                        }
2983
2984                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2985
2986                        /* verify validity of smpl_pmds */
2987                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2988                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2989                                goto error;
2990                        }
2991
2992                        /* verify validity of reset_pmds */
2993                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2994                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2995                                goto error;
2996                        }
2997                } else {
2998                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2999                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3000                                goto error;
3001                        }
3002                        /* eventid on non-counting monitors are ignored */
3003                }
3004
3005                /*
3006                 * execute write checker, if any
3007                 */
3008                if (likely(expert_mode == 0 && wr_func)) {
3009                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
3010                        if (ret) goto error;
3011                        ret = -EINVAL;
3012                }
3013
3014                /*
3015                 * no error on this register
3016                 */
3017                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3018
3019                /*
3020                 * Now we commit the changes to the software state
3021                 */
3022
3023                /*
3024                 * update overflow information
3025                 */
3026                if (is_counting) {
3027                        /*
3028                         * full flag update each time a register is programmed
3029                         */
3030                        ctx->ctx_pmds[cnum].flags = flags;
3031
3032                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3033                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
3034                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
3035
3036                        /*
3037                         * Mark all PMDS to be accessed as used.
3038                         *
3039                         * We do not keep track of PMC because we have to
3040                         * systematically restore ALL of them.
3041                         *
3042                         * We do not update the used_monitors mask, because
3043                         * if we have not programmed them, then will be in
3044                         * a quiescent state, therefore we will not need to
3045                         * mask/restore then when context is MASKED.
3046                         */
3047                        CTX_USED_PMD(ctx, reset_pmds);
3048                        CTX_USED_PMD(ctx, smpl_pmds);
3049                        /*
3050                         * make sure we do not try to reset on
3051                         * restart because we have established new values
3052                         */
3053                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3054                }
3055                /*
3056                 * Needed in case the user does not initialize the equivalent
3057                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3058                 * possible leak here.
3059                 */
3060                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3061
3062                /*
3063                 * keep track of the monitor PMC that we are using.
3064                 * we save the value of the pmc in ctx_pmcs[] and if
3065                 * the monitoring is not stopped for the context we also
3066                 * place it in the saved state area so that it will be
3067                 * picked up later by the context switch code.
3068                 *
3069                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3070                 *
3071                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3072                 * monitoring needs to be stopped.
3073                 */
3074                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3075
3076                /*
3077                 * update context state
3078                 */
3079                ctx->ctx_pmcs[cnum] = value;
3080
3081                if (is_loaded) {
3082                        /*
3083                         * write thread state
3084                         */
3085                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3086
3087                        /*
3088                         * write hardware register if we can
3089                         */
3090                        if (can_access_pmu) {
3091                                ia64_set_pmc(cnum, value);
3092                        }
3093#ifdef CONFIG_SMP
3094                        else {
3095                                /*
3096                                 * per-task SMP only here
3097                                 *
3098                                 * we are guaranteed that the task is not running on the other CPU,
3099                                 * we indicate that this PMD will need to be reloaded if the task
3100                                 * is rescheduled on the CPU it ran last on.
3101                                 */
3102                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3103                        }
3104#endif
3105                }
3106
3107                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3108                          cnum,
3109                          value,
3110                          is_loaded,
3111                          can_access_pmu,
3112                          flags,
3113                          ctx->ctx_all_pmcs[0],
3114                          ctx->ctx_used_pmds[0],
3115                          ctx->ctx_pmds[cnum].eventid,
3116                          smpl_pmds,
3117                          reset_pmds,
3118                          ctx->ctx_reload_pmcs[0],
3119                          ctx->ctx_used_monitors[0],
3120                          ctx->ctx_ovfl_regs[0]));
3121        }
3122
3123        /*
3124         * make sure the changes are visible
3125         */
3126        if (can_access_pmu) ia64_srlz_d();
3127
3128        return 0;
3129error:
3130        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3131        return ret;
3132}
3133
3134static int
3135pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3136{
3137        struct task_struct *task;
3138        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3139        unsigned long value, hw_value, ovfl_mask;
3140        unsigned int cnum;
3141        int i, can_access_pmu = 0, state;
3142        int is_counting, is_loaded, is_system, expert_mode;
3143        int ret = -EINVAL;
3144        pfm_reg_check_t wr_func;
3145
3146
3147        state     = ctx->ctx_state;
3148        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3149        is_system = ctx->ctx_fl_system;
3150        ovfl_mask = pmu_conf->ovfl_val;
3151        task      = ctx->ctx_task;
3152
3153        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3154
3155        /*
3156         * on both UP and SMP, we can only write to the PMC when the task is
3157         * the owner of the local PMU.
3158         */
3159        if (likely(is_loaded)) {
3160                /*
3161                 * In system wide and when the context is loaded, access can only happen
3162                 * when the caller is running on the CPU being monitored by the session.
3163                 * It does not have to be the owner (ctx_task) of the context per se.
3164                 */
3165                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3166                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3167                        return -EBUSY;
3168                }
3169                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3170        }
3171        expert_mode = pfm_sysctl.expert_mode; 
3172
3173        for (i = 0; i < count; i++, req++) {
3174
3175                cnum  = req->reg_num;
3176                value = req->reg_value;
3177
3178                if (!PMD_IS_IMPL(cnum)) {
3179                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3180                        goto abort_mission;
3181                }
3182                is_counting = PMD_IS_COUNTING(cnum);
3183                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3184
3185                /*
3186                 * execute write checker, if any
3187                 */
3188                if (unlikely(expert_mode == 0 && wr_func)) {
3189                        unsigned long v = value;
3190
3191                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3192                        if (ret) goto abort_mission;
3193
3194                        value = v;
3195                        ret   = -EINVAL;
3196                }
3197
3198                /*
3199                 * no error on this register
3200                 */
3201                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3202
3203                /*
3204                 * now commit changes to software state
3205                 */
3206                hw_value = value;
3207
3208                /*
3209                 * update virtualized (64bits) counter
3210                 */
3211                if (is_counting) {
3212                        /*
3213                         * write context state
3214                         */
3215                        ctx->ctx_pmds[cnum].lval = value;
3216
3217                        /*
3218                         * when context is load we use the split value
3219                         */
3220                        if (is_loaded) {
3221                                hw_value = value &  ovfl_mask;
3222                                value    = value & ~ovfl_mask;
3223                        }
3224                }
3225                /*
3226                 * update reset values (not just for counters)
3227                 */
3228                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3229                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3230
3231                /*
3232                 * update randomization parameters (not just for counters)
3233                 */
3234                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3235                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3236
3237                /*
3238                 * update context value
3239                 */
3240                ctx->ctx_pmds[cnum].val  = value;
3241
3242                /*
3243                 * Keep track of what we use
3244                 *
3245                 * We do not keep track of PMC because we have to
3246                 * systematically restore ALL of them.
3247                 */
3248                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3249
3250                /*
3251                 * mark this PMD register used as well
3252                 */
3253                CTX_USED_PMD(ctx, RDEP(cnum));
3254
3255                /*
3256                 * make sure we do not try to reset on
3257                 * restart because we have established new values
3258                 */
3259                if (is_counting && state == PFM_CTX_MASKED) {
3260                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3261                }
3262
3263                if (is_loaded) {
3264                        /*
3265                         * write thread state
3266                         */
3267                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3268
3269                        /*
3270                         * write hardware register if we can
3271                         */
3272                        if (can_access_pmu) {
3273                                ia64_set_pmd(cnum, hw_value);
3274                        } else {
3275#ifdef CONFIG_SMP
3276                                /*
3277                                 * we are guaranteed that the task is not running on the other CPU,
3278                                 * we indicate that this PMD will need to be reloaded if the task
3279                                 * is rescheduled on the CPU it ran last on.
3280                                 */
3281                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3282#endif
3283                        }
3284                }
3285
3286                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3287                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3288                        cnum,
3289                        value,
3290                        is_loaded,
3291                        can_access_pmu,
3292                        hw_value,
3293                        ctx->ctx_pmds[cnum].val,
3294                        ctx->ctx_pmds[cnum].short_reset,
3295                        ctx->ctx_pmds[cnum].long_reset,
3296                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3297                        ctx->ctx_pmds[cnum].seed,
3298                        ctx->ctx_pmds[cnum].mask,
3299                        ctx->ctx_used_pmds[0],
3300                        ctx->ctx_pmds[cnum].reset_pmds[0],
3301                        ctx->ctx_reload_pmds[0],
3302                        ctx->ctx_all_pmds[0],
3303                        ctx->ctx_ovfl_regs[0]));
3304        }
3305
3306        /*
3307         * make changes visible
3308         */
3309        if (can_access_pmu) ia64_srlz_d();
3310
3311        return 0;
3312
3313abort_mission:
3314        /*
3315         * for now, we have only one possibility for error
3316         */
3317        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3318        return ret;
3319}
3320
3321/*
3322 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3323 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3324 * interrupt is delivered during the call, it will be kept pending until we leave, making
3325 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3326 * guaranteed to return consistent data to the user, it may simply be old. It is not
3327 * trivial to treat the overflow while inside the call because you may end up in
3328 * some module sampling buffer code causing deadlocks.
3329 */
3330static int
3331pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3332{
3333        struct task_struct *task;
3334        unsigned long val = 0UL, lval, ovfl_mask, sval;
3335        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3336        unsigned int cnum, reg_flags = 0;
3337        int i, can_access_pmu = 0, state;
3338        int is_loaded, is_system, is_counting, expert_mode;
3339        int ret = -EINVAL;
3340        pfm_reg_check_t rd_func;
3341
3342        /*
3343         * access is possible when loaded only for
3344         * self-monitoring tasks or in UP mode
3345         */
3346
3347        state     = ctx->ctx_state;
3348        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3349        is_system = ctx->ctx_fl_system;
3350        ovfl_mask = pmu_conf->ovfl_val;
3351        task      = ctx->ctx_task;
3352
3353        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3354
3355        if (likely(is_loaded)) {
3356                /*
3357                 * In system wide and when the context is loaded, access can only happen
3358                 * when the caller is running on the CPU being monitored by the session.
3359                 * It does not have to be the owner (ctx_task) of the context per se.
3360                 */
3361                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3362                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3363                        return -EBUSY;
3364                }
3365                /*
3366                 * this can be true when not self-monitoring only in UP
3367                 */
3368                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3369
3370                if (can_access_pmu) ia64_srlz_d();
3371        }
3372        expert_mode = pfm_sysctl.expert_mode; 
3373
3374        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3375                is_loaded,
3376                can_access_pmu,
3377                state));
3378
3379        /*
3380         * on both UP and SMP, we can only read the PMD from the hardware register when
3381         * the task is the owner of the local PMU.
3382         */
3383
3384        for (i = 0; i < count; i++, req++) {
3385
3386                cnum        = req->reg_num;
3387                reg_flags   = req->reg_flags;
3388
3389                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3390                /*
3391                 * we can only read the register that we use. That includes
3392                 * the one we explicitly initialize AND the one we want included
3393                 * in the sampling buffer (smpl_regs).
3394                 *
3395                 * Having this restriction allows optimization in the ctxsw routine
3396                 * without compromising security (leaks)
3397                 */
3398                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3399
3400                sval        = ctx->ctx_pmds[cnum].val;
3401                lval        = ctx->ctx_pmds[cnum].lval;
3402                is_counting = PMD_IS_COUNTING(cnum);
3403
3404                /*
3405                 * If the task is not the current one, then we check if the
3406                 * PMU state is still in the local live register due to lazy ctxsw.
3407                 * If true, then we read directly from the registers.
3408                 */
3409                if (can_access_pmu){
3410                        val = ia64_get_pmd(cnum);
3411                } else {
3412                        /*
3413                         * context has been saved
3414                         * if context is zombie, then task does not exist anymore.
3415                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3416                         */
3417                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3418                }
3419                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3420
3421                if (is_counting) {
3422                        /*
3423                         * XXX: need to check for overflow when loaded
3424                         */
3425                        val &= ovfl_mask;
3426                        val += sval;
3427                }
3428
3429                /*
3430                 * execute read checker, if any
3431                 */
3432                if (unlikely(expert_mode == 0 && rd_func)) {
3433                        unsigned long v = val;
3434                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3435                        if (ret) goto error;
3436                        val = v;
3437                        ret = -EINVAL;
3438                }
3439
3440                PFM_REG_RETFLAG_SET(reg_flags, 0);
3441
3442                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3443
3444                /*
3445                 * update register return value, abort all if problem during copy.
3446                 * we only modify the reg_flags field. no check mode is fine because
3447                 * access has been verified upfront in sys_perfmonctl().
3448                 */
3449                req->reg_value            = val;
3450                req->reg_flags            = reg_flags;
3451                req->reg_last_reset_val   = lval;
3452        }
3453
3454        return 0;
3455
3456error:
3457        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3458        return ret;
3459}
3460
3461int
3462pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3463{
3464        pfm_context_t *ctx;
3465
3466        if (req == NULL) return -EINVAL;
3467
3468        ctx = GET_PMU_CTX();
3469
3470        if (ctx == NULL) return -EINVAL;
3471
3472        /*
3473         * for now limit to current task, which is enough when calling
3474         * from overflow handler
3475         */
3476        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3477
3478        return pfm_write_pmcs(ctx, req, nreq, regs);
3479}
3480EXPORT_SYMBOL(pfm_mod_write_pmcs);
3481
3482int
3483pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3484{
3485        pfm_context_t *ctx;
3486
3487        if (req == NULL) return -EINVAL;
3488
3489        ctx = GET_PMU_CTX();
3490
3491        if (ctx == NULL) return -EINVAL;
3492
3493        /*
3494         * for now limit to current task, which is enough when calling
3495         * from overflow handler
3496         */
3497        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3498
3499        return pfm_read_pmds(ctx, req, nreq, regs);
3500}
3501EXPORT_SYMBOL(pfm_mod_read_pmds);
3502
3503/*
3504 * Only call this function when a process it trying to
3505 * write the debug registers (reading is always allowed)
3506 */
3507int
3508pfm_use_debug_registers(struct task_struct *task)
3509{
3510        pfm_context_t *ctx = task->thread.pfm_context;
3511        unsigned long flags;
3512        int ret = 0;
3513
3514        if (pmu_conf->use_rr_dbregs == 0) return 0;
3515
3516        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3517
3518        /*
3519         * do it only once
3520         */
3521        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3522
3523        /*
3524         * Even on SMP, we do not need to use an atomic here because
3525         * the only way in is via ptrace() and this is possible only when the
3526         * process is stopped. Even in the case where the ctxsw out is not totally
3527         * completed by the time we come here, there is no way the 'stopped' process
3528         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3529         * So this is always safe.
3530         */
3531        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3532
3533        LOCK_PFS(flags);
3534
3535        /*
3536         * We cannot allow setting breakpoints when system wide monitoring
3537         * sessions are using the debug registers.
3538         */
3539        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3540                ret = -1;
3541        else
3542                pfm_sessions.pfs_ptrace_use_dbregs++;
3543
3544        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3545                  pfm_sessions.pfs_ptrace_use_dbregs,
3546                  pfm_sessions.pfs_sys_use_dbregs,
3547                  task_pid_nr(task), ret));
3548
3549        UNLOCK_PFS(flags);
3550
3551        return ret;
3552}
3553
3554/*
3555 * This function is called for every task that exits with the
3556 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3557 * able to use the debug registers for debugging purposes via
3558 * ptrace(). Therefore we know it was not using them for
3559 * perfmormance monitoring, so we only decrement the number
3560 * of "ptraced" debug register users to keep the count up to date
3561 */
3562int
3563pfm_release_debug_registers(struct task_struct *task)
3564{
3565        unsigned long flags;
3566        int ret;
3567
3568        if (pmu_conf->use_rr_dbregs == 0) return 0;
3569
3570        LOCK_PFS(flags);
3571        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3572                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3573                ret = -1;
3574        }  else {
3575                pfm_sessions.pfs_ptrace_use_dbregs--;
3576                ret = 0;
3577        }
3578        UNLOCK_PFS(flags);
3579
3580        return ret;
3581}
3582
3583static int
3584pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3585{
3586        struct task_struct *task;
3587        pfm_buffer_fmt_t *fmt;
3588        pfm_ovfl_ctrl_t rst_ctrl;
3589        int state, is_system;
3590        int ret = 0;
3591
3592        state     = ctx->ctx_state;
3593        fmt       = ctx->ctx_buf_fmt;
3594        is_system = ctx->ctx_fl_system;
3595        task      = PFM_CTX_TASK(ctx);
3596
3597        switch(state) {
3598                case PFM_CTX_MASKED:
3599                        break;
3600                case PFM_CTX_LOADED: 
3601                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3602                        /* fall through */
3603                case PFM_CTX_UNLOADED:
3604                case PFM_CTX_ZOMBIE:
3605                        DPRINT(("invalid state=%d\n", state));
3606                        return -EBUSY;
3607                default:
3608                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3609                        return -EINVAL;
3610        }
3611
3612        /*
3613         * In system wide and when the context is loaded, access can only happen
3614         * when the caller is running on the CPU being monitored by the session.
3615         * It does not have to be the owner (ctx_task) of the context per se.
3616         */
3617        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3618                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3619                return -EBUSY;
3620        }
3621
3622        /* sanity check */
3623        if (unlikely(task == NULL)) {
3624                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3625                return -EINVAL;
3626        }
3627
3628        if (task == current || is_system) {
3629
3630                fmt = ctx->ctx_buf_fmt;
3631
3632                DPRINT(("restarting self %d ovfl=0x%lx\n",
3633                        task_pid_nr(task),
3634                        ctx->ctx_ovfl_regs[0]));
3635
3636                if (CTX_HAS_SMPL(ctx)) {
3637
3638                        prefetch(ctx->ctx_smpl_hdr);
3639
3640                        rst_ctrl.bits.mask_monitoring = 0;
3641                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3642
3643                        if (state == PFM_CTX_LOADED)
3644                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3645                        else
3646                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3647                } else {
3648                        rst_ctrl.bits.mask_monitoring = 0;
3649                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3650                }
3651
3652                if (ret == 0) {
3653                        if (rst_ctrl.bits.reset_ovfl_pmds)
3654                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3655
3656                        if (rst_ctrl.bits.mask_monitoring == 0) {
3657                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3658
3659                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3660                        } else {
3661                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3662
3663                                // cannot use pfm_stop_monitoring(task, regs);
3664                        }
3665                }
3666                /*
3667                 * clear overflowed PMD mask to remove any stale information
3668                 */
3669                ctx->ctx_ovfl_regs[0] = 0UL;
3670
3671                /*
3672                 * back to LOADED state
3673                 */
3674                ctx->ctx_state = PFM_CTX_LOADED;
3675
3676                /*
3677                 * XXX: not really useful for self monitoring
3678                 */
3679                ctx->ctx_fl_can_restart = 0;
3680
3681                return 0;
3682        }
3683
3684        /* 
3685         * restart another task
3686         */
3687
3688        /*
3689         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3690         * one is seen by the task.
3691         */
3692        if (state == PFM_CTX_MASKED) {
3693                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3694                /*
3695                 * will prevent subsequent restart before this one is
3696                 * seen by other task
3697                 */
3698                ctx->ctx_fl_can_restart = 0;
3699        }
3700
3701        /*
3702         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3703         * the task is blocked or on its way to block. That's the normal
3704         * restart path. If the monitoring is not masked, then the task
3705         * can be actively monitoring and we cannot directly intervene.
3706         * Therefore we use the trap mechanism to catch the task and
3707         * force it to reset the buffer/reset PMDs.
3708         *
3709         * if non-blocking, then we ensure that the task will go into
3710         * pfm_handle_work() before returning to user mode.
3711         *
3712         * We cannot explicitly reset another task, it MUST always
3713         * be done by the task itself. This works for system wide because
3714         * the tool that is controlling the session is logically doing 
3715         * "self-monitoring".
3716         */
3717        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3718                DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
3719                complete(&ctx->ctx_restart_done);
3720        } else {
3721                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3722
3723                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3724
3725                PFM_SET_WORK_PENDING(task, 1);
3726
3727                pfm_set_task_notify(task);
3728
3729                /*
3730                 * XXX: send reschedule if task runs on another CPU
3731                 */
3732        }
3733        return 0;
3734}
3735
3736static int
3737pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3738{
3739        unsigned int m = *(unsigned int *)arg;
3740
3741        pfm_sysctl.debug = m == 0 ? 0 : 1;
3742
3743        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3744
3745        if (m == 0) {
3746                memset(pfm_stats, 0, sizeof(pfm_stats));
3747                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3748        }
3749        return 0;
3750}
3751
3752/*
3753 * arg can be NULL and count can be zero for this function
3754 */
3755static int
3756pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3757{
3758        struct thread_struct *thread = NULL;
3759        struct task_struct *task;
3760        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3761        unsigned long flags;
3762        dbreg_t dbreg;
3763        unsigned int rnum;
3764        int first_time;
3765        int ret = 0, state;
3766        int i, can_access_pmu = 0;
3767        int is_system, is_loaded;
3768
3769        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3770
3771        state     = ctx->ctx_state;
3772        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3773        is_system = ctx->ctx_fl_system;
3774        task      = ctx->ctx_task;
3775
3776        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3777
3778        /*
3779         * on both UP and SMP, we can only write to the PMC when the task is
3780         * the owner of the local PMU.
3781         */
3782        if (is_loaded) {
3783                thread = &task->thread;
3784                /*
3785                 * In system wide and when the context is loaded, access can only happen
3786                 * when the caller is running on the CPU being monitored by the session.
3787                 * It does not have to be the owner (ctx_task) of the context per se.
3788                 */
3789                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3790                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3791                        return -EBUSY;
3792                }
3793                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3794        }
3795
3796        /*
3797         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3798         * ensuring that no real breakpoint can be installed via this call.
3799         *
3800         * IMPORTANT: regs can be NULL in this function
3801         */
3802
3803        first_time = ctx->ctx_fl_using_dbreg == 0;
3804
3805        /*
3806         * don't bother if we are loaded and task is being debugged
3807         */
3808        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3809                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3810                return -EBUSY;
3811        }
3812
3813        /*
3814         * check for debug registers in system wide mode
3815         *
3816         * If though a check is done in pfm_context_load(),
3817         * we must repeat it here, in case the registers are
3818         * written after the context is loaded
3819         */
3820        if (is_loaded) {
3821                LOCK_PFS(flags);
3822
3823                if (first_time && is_system) {
3824                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3825                                ret = -EBUSY;
3826                        else
3827                                pfm_sessions.pfs_sys_use_dbregs++;
3828                }
3829                UNLOCK_PFS(flags);
3830        }
3831
3832        if (ret != 0) return ret;
3833
3834        /*
3835         * mark ourself as user of the debug registers for
3836         * perfmon purposes.
3837         */
3838        ctx->ctx_fl_using_dbreg = 1;
3839
3840        /*
3841         * clear hardware registers to make sure we don't
3842         * pick up stale state.
3843         *
3844         * for a system wide session, we do not use
3845         * thread.dbr, thread.ibr because this process
3846         * never leaves the current CPU and the state
3847         * is shared by all processes running on it
3848         */
3849        if (first_time && can_access_pmu) {
3850                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3851                for (i=0; i < pmu_conf->num_ibrs; i++) {
3852                        ia64_set_ibr(i, 0UL);
3853                        ia64_dv_serialize_instruction();
3854                }
3855                ia64_srlz_i();
3856                for (i=0; i < pmu_conf->num_dbrs; i++) {
3857                        ia64_set_dbr(i, 0UL);
3858                        ia64_dv_serialize_data();
3859                }
3860                ia64_srlz_d();
3861        }
3862
3863        /*
3864         * Now install the values into the registers
3865         */
3866        for (i = 0; i < count; i++, req++) {
3867
3868                rnum      = req->dbreg_num;
3869                dbreg.val = req->dbreg_value;
3870
3871                ret = -EINVAL;
3872
3873                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3874                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3875                                  rnum, dbreg.val, mode, i, count));
3876
3877                        goto abort_mission;
3878                }
3879
3880                /*
3881                 * make sure we do not install enabled breakpoint
3882                 */
3883                if (rnum & 0x1) {
3884                        if (mode == PFM_CODE_RR)
3885                                dbreg.ibr.ibr_x = 0;
3886                        else
3887                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3888                }
3889
3890                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3891
3892                /*
3893                 * Debug registers, just like PMC, can only be modified
3894                 * by a kernel call. Moreover, perfmon() access to those
3895                 * registers are centralized in this routine. The hardware
3896                 * does not modify the value of these registers, therefore,
3897                 * if we save them as they are written, we can avoid having
3898                 * to save them on context switch out. This is made possible
3899                 * by the fact that when perfmon uses debug registers, ptrace()
3900                 * won't be able to modify them concurrently.
3901                 */
3902                if (mode == PFM_CODE_RR) {
3903                        CTX_USED_IBR(ctx, rnum);
3904
3905                        if (can_access_pmu) {
3906                                ia64_set_ibr(rnum, dbreg.val);
3907                                ia64_dv_serialize_instruction();
3908                        }
3909
3910                        ctx->ctx_ibrs[rnum] = dbreg.val;
3911
3912                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3913                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3914                } else {
3915                        CTX_USED_DBR(ctx, rnum);
3916
3917                        if (can_access_pmu) {
3918                                ia64_set_dbr(rnum, dbreg.val);
3919                                ia64_dv_serialize_data();
3920                        }
3921                        ctx->ctx_dbrs[rnum] = dbreg.val;
3922
3923                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3924                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3925                }
3926        }
3927
3928        return 0;
3929
3930abort_mission:
3931        /*
3932         * in case it was our first attempt, we undo the global modifications
3933         */
3934        if (first_time) {
3935                LOCK_PFS(flags);
3936                if (ctx->ctx_fl_system) {
3937                        pfm_sessions.pfs_sys_use_dbregs--;
3938                }
3939                UNLOCK_PFS(flags);
3940                ctx->ctx_fl_using_dbreg = 0;
3941        }
3942        /*
3943         * install error return flag
3944         */
3945        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3946
3947        return ret;
3948}
3949
3950static int
3951pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952{
3953        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3954}
3955
3956static int
3957pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3958{
3959        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3960}
3961
3962int
3963pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3964{
3965        pfm_context_t *ctx;
3966
3967        if (req == NULL) return -EINVAL;
3968
3969        ctx = GET_PMU_CTX();
3970
3971        if (ctx == NULL) return -EINVAL;
3972
3973        /*
3974         * for now limit to current task, which is enough when calling
3975         * from overflow handler
3976         */
3977        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3978
3979        return pfm_write_ibrs(ctx, req, nreq, regs);
3980}
3981EXPORT_SYMBOL(pfm_mod_write_ibrs);
3982
3983int
3984pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3985{
3986        pfm_context_t *ctx;
3987
3988        if (req == NULL) return -EINVAL;
3989
3990        ctx = GET_PMU_CTX();
3991
3992        if (ctx == NULL) return -EINVAL;
3993
3994        /*
3995         * for now limit to current task, which is enough when calling
3996         * from overflow handler
3997         */
3998        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3999
4000        return pfm_write_dbrs(ctx, req, nreq, regs);
4001}
4002EXPORT_SYMBOL(pfm_mod_write_dbrs);
4003
4004
4005static int
4006pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4007{
4008        pfarg_features_t *req = (pfarg_features_t *)arg;
4009
4010        req->ft_version = PFM_VERSION;
4011        return 0;
4012}
4013
4014static int
4015pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4016{
4017        struct pt_regs *tregs;
4018        struct task_struct *task = PFM_CTX_TASK(ctx);
4019        int state, is_system;
4020
4021        state     = ctx->ctx_state;
4022        is_system = ctx->ctx_fl_system;
4023
4024        /*
4025         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4026         */
4027        if (state == PFM_CTX_UNLOADED) return -EINVAL;
4028
4029        /*
4030         * In system wide and when the context is loaded, access can only happen
4031         * when the caller is running on the CPU being monitored by the session.
4032         * It does not have to be the owner (ctx_task) of the context per se.
4033         */
4034        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4035                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4036                return -EBUSY;
4037        }
4038        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4039                task_pid_nr(PFM_CTX_TASK(ctx)),
4040                state,
4041                is_system));
4042        /*
4043         * in system mode, we need to update the PMU directly
4044         * and the user level state of the caller, which may not
4045         * necessarily be the creator of the context.
4046         */
4047        if (is_system) {
4048                /*
4049                 * Update local PMU first
4050                 *
4051                 * disable dcr pp
4052                 */
4053                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4054                ia64_srlz_i();
4055
4056                /*
4057                 * update local cpuinfo
4058                 */
4059                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4060
4061                /*
4062                 * stop monitoring, does srlz.i
4063                 */
4064                pfm_clear_psr_pp();
4065
4066                /*
4067                 * stop monitoring in the caller
4068                 */
4069                ia64_psr(regs)->pp = 0;
4070
4071                return 0;
4072        }
4073        /*
4074         * per-task mode
4075         */
4076
4077        if (task == current) {
4078                /* stop monitoring  at kernel level */
4079                pfm_clear_psr_up();
4080
4081                /*
4082                 * stop monitoring at the user level
4083                 */
4084                ia64_psr(regs)->up = 0;
4085        } else {
4086                tregs = task_pt_regs(task);
4087
4088                /*
4089                 * stop monitoring at the user level
4090                 */
4091                ia64_psr(tregs)->up = 0;
4092
4093                /*
4094                 * monitoring disabled in kernel at next reschedule
4095                 */
4096                ctx->ctx_saved_psr_up = 0;
4097                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4098        }
4099        return 0;
4100}
4101
4102
4103static int
4104pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4105{
4106        struct pt_regs *tregs;
4107        int state, is_system;
4108
4109        state     = ctx->ctx_state;
4110        is_system = ctx->ctx_fl_system;
4111
4112        if (state != PFM_CTX_LOADED) return -EINVAL;
4113
4114        /*
4115         * In system wide and when the context is loaded, access can only happen
4116         * when the caller is running on the CPU being monitored by the session.
4117         * It does not have to be the owner (ctx_task) of the context per se.
4118         */
4119        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4120                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4121                return -EBUSY;
4122        }
4123
4124        /*
4125         * in system mode, we need to update the PMU directly
4126         * and the user level state of the caller, which may not
4127         * necessarily be the creator of the context.
4128         */
4129        if (is_system) {
4130
4131                /*
4132                 * set user level psr.pp for the caller
4133                 */
4134                ia64_psr(regs)->pp = 1;
4135
4136                /*
4137                 * now update the local PMU and cpuinfo
4138                 */
4139                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4140
4141                /*
4142                 * start monitoring at kernel level
4143                 */
4144                pfm_set_psr_pp();
4145
4146                /* enable dcr pp */
4147                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4148                ia64_srlz_i();
4149
4150                return 0;
4151        }
4152
4153        /*
4154         * per-process mode
4155         */
4156
4157        if (ctx->ctx_task == current) {
4158
4159                /* start monitoring at kernel level */
4160                pfm_set_psr_up();
4161
4162                /*
4163                 * activate monitoring at user level
4164                 */
4165                ia64_psr(regs)->up = 1;
4166
4167        } else {
4168                tregs = task_pt_regs(ctx->ctx_task);
4169
4170                /*
4171                 * start monitoring at the kernel level the next
4172                 * time the task is scheduled
4173                 */
4174                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4175
4176                /*
4177                 * activate monitoring at user level
4178                 */
4179                ia64_psr(tregs)->up = 1;
4180        }
4181        return 0;
4182}
4183
4184static int
4185pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4186{
4187        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4188        unsigned int cnum;
4189        int i;
4190        int ret = -EINVAL;
4191
4192        for (i = 0; i < count; i++, req++) {
4193
4194                cnum = req->reg_num;
4195
4196                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4197
4198                req->reg_value = PMC_DFL_VAL(cnum);
4199
4200                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4201
4202                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4203        }
4204        return 0;
4205
4206abort_mission:
4207        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4208        return ret;
4209}
4210
4211static int
4212pfm_check_task_exist(pfm_context_t *ctx)
4213{
4214        struct task_struct *g, *t;
4215        int ret = -ESRCH;
4216
4217        read_lock(&tasklist_lock);
4218
4219        do_each_thread (g, t) {
4220                if (t->thread.pfm_context == ctx) {
4221                        ret = 0;
4222                        break;
4223                }
4224        } while_each_thread (g, t);
4225
4226        read_unlock(&tasklist_lock);
4227
4228        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4229
4230        return ret;
4231}
4232
4233static int
4234pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4235{
4236        struct task_struct *task;
4237        struct thread_struct *thread;
4238        struct pfm_context_t *old;
4239        unsigned long flags;
4240#ifndef CONFIG_SMP
4241        struct task_struct *owner_task = NULL;
4242#endif
4243        pfarg_load_t *req = (pfarg_load_t *)arg;
4244        unsigned long *pmcs_source, *pmds_source;
4245        int the_cpu;
4246        int ret = 0;
4247        int state, is_system, set_dbregs = 0;
4248
4249        state     = ctx->ctx_state;
4250        is_system = ctx->ctx_fl_system;
4251        /*
4252         * can only load from unloaded or terminated state
4253         */
4254        if (state != PFM_CTX_UNLOADED) {
4255                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4256                        req->load_pid,
4257                        ctx->ctx_state));
4258                return -EBUSY;
4259        }
4260
4261        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4262
4263        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4264                DPRINT(("cannot use blocking mode on self\n"));
4265                return -EINVAL;
4266        }
4267
4268        ret = pfm_get_task(ctx, req->load_pid, &task);
4269        if (ret) {
4270                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4271                return ret;
4272        }
4273
4274        ret = -EINVAL;
4275
4276        /*
4277         * system wide is self monitoring only
4278         */
4279        if (is_system && task != current) {
4280                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4281                        req->load_pid));
4282                goto error;
4283        }
4284
4285        thread = &task->thread;
4286
4287        ret = 0;
4288        /*
4289         * cannot load a context which is using range restrictions,
4290         * into a task that is being debugged.
4291         */
4292        if (ctx->ctx_fl_using_dbreg) {
4293                if (thread->flags & IA64_THREAD_DBG_VALID) {
4294                        ret = -EBUSY;
4295                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4296                        goto error;
4297                }
4298                LOCK_PFS(flags);
4299
4300                if (is_system) {
4301                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4302                                DPRINT(("cannot load [%d] dbregs in use\n",
4303                                                        task_pid_nr(task)));
4304                                ret = -EBUSY;
4305                        } else {
4306                                pfm_sessions.pfs_sys_use_dbregs++;
4307                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4308                                set_dbregs = 1;
4309                        }
4310                }
4311
4312                UNLOCK_PFS(flags);
4313
4314                if (ret) goto error;
4315        }
4316
4317        /*
4318         * SMP system-wide monitoring implies self-monitoring.
4319         *
4320         * The programming model expects the task to
4321         * be pinned on a CPU throughout the session.
4322         * Here we take note of the current CPU at the
4323         * time the context is loaded. No call from
4324         * another CPU will be allowed.
4325         *
4326         * The pinning via shed_setaffinity()
4327         * must be done by the calling task prior
4328         * to this call.
4329         *
4330         * systemwide: keep track of CPU this session is supposed to run on
4331         */
4332        the_cpu = ctx->ctx_cpu = smp_processor_id();
4333
4334        ret = -EBUSY;
4335        /*
4336         * now reserve the session
4337         */
4338        ret = pfm_reserve_session(current, is_system, the_cpu);
4339        if (ret) goto error;
4340
4341        /*
4342         * task is necessarily stopped at this point.
4343         *
4344         * If the previous context was zombie, then it got removed in
4345         * pfm_save_regs(). Therefore we should not see it here.
4346         * If we see a context, then this is an active context
4347         *
4348         * XXX: needs to be atomic
4349         */
4350        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4351                thread->pfm_context, ctx));
4352
4353        ret = -EBUSY;
4354        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4355        if (old != NULL) {
4356                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4357                goto error_unres;
4358        }
4359
4360        pfm_reset_msgq(ctx);
4361
4362        ctx->ctx_state = PFM_CTX_LOADED;
4363
4364        /*
4365         * link context to task
4366         */
4367        ctx->ctx_task = task;
4368
4369        if (is_system) {
4370                /*
4371                 * we load as stopped
4372                 */
4373                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4374                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4375
4376                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4377        } else {
4378                thread->flags |= IA64_THREAD_PM_VALID;
4379        }
4380
4381        /*
4382         * propagate into thread-state
4383         */
4384        pfm_copy_pmds(task, ctx);
4385        pfm_copy_pmcs(task, ctx);
4386
4387        pmcs_source = ctx->th_pmcs;
4388        pmds_source = ctx->th_pmds;
4389
4390        /*
4391         * always the case for system-wide
4392         */
4393        if (task == current) {
4394
4395                if (is_system == 0) {
4396
4397                        /* allow user level control */
4398                        ia64_psr(regs)->sp = 0;
4399                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4400
4401                        SET_LAST_CPU(ctx, smp_processor_id());
4402                        INC_ACTIVATION();
4403                        SET_ACTIVATION(ctx);
4404#ifndef CONFIG_SMP
4405                        /*
4406                         * push the other task out, if any
4407                         */
4408                        owner_task = GET_PMU_OWNER();
4409                        if (owner_task) pfm_lazy_save_regs(owner_task);
4410#endif
4411                }
4412                /*
4413                 * load all PMD from ctx to PMU (as opposed to thread state)
4414                 * restore all PMC from ctx to PMU
4415                 */
4416                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4417                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4418
4419                ctx->ctx_reload_pmcs[0] = 0UL;
4420                ctx->ctx_reload_pmds[0] = 0UL;
4421
4422                /*
4423                 * guaranteed safe by earlier check against DBG_VALID
4424                 */
4425                if (ctx->ctx_fl_using_dbreg) {
4426                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4427                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4428                }
4429                /*
4430                 * set new ownership
4431                 */
4432                SET_PMU_OWNER(task, ctx);
4433
4434                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4435        } else {
4436                /*
4437                 * when not current, task MUST be stopped, so this is safe
4438                 */
4439                regs = task_pt_regs(task);
4440
4441                /* force a full reload */
4442                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4443                SET_LAST_CPU(ctx, -1);
4444
4445                /* initial saved psr (stopped) */
4446                ctx->ctx_saved_psr_up = 0UL;
4447                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4448        }
4449
4450        ret = 0;
4451
4452error_unres:
4453        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4454error:
4455        /*
4456         * we must undo the dbregs setting (for system-wide)
4457         */
4458        if (ret && set_dbregs) {
4459                LOCK_PFS(flags);
4460                pfm_sessions.pfs_sys_use_dbregs--;
4461                UNLOCK_PFS(flags);
4462        }
4463        /*
4464         * release task, there is now a link with the context
4465         */
4466        if (is_system == 0 && task != current) {
4467                pfm_put_task(task);
4468
4469                if (ret == 0) {
4470                        ret = pfm_check_task_exist(ctx);
4471                        if (ret) {
4472                                ctx->ctx_state = PFM_CTX_UNLOADED;
4473                                ctx->ctx_task  = NULL;
4474                        }
4475                }
4476        }
4477        return ret;
4478}
4479
4480/*
4481 * in this function, we do not need to increase the use count
4482 * for the task via get_task_struct(), because we hold the
4483 * context lock. If the task were to disappear while having
4484 * a context attached, it would go through pfm_exit_thread()
4485 * which also grabs the context lock  and would therefore be blocked
4486 * until we are here.
4487 */
4488static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4489
4490static int
4491pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4492{
4493        struct task_struct *task = PFM_CTX_TASK(ctx);
4494        struct pt_regs *tregs;
4495        int prev_state, is_system;
4496        int ret;
4497
4498        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4499
4500        prev_state = ctx->ctx_state;
4501        is_system  = ctx->ctx_fl_system;
4502
4503        /*
4504         * unload only when necessary
4505         */
4506        if (prev_state == PFM_CTX_UNLOADED) {
4507                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4508                return 0;
4509        }
4510
4511        /*
4512         * clear psr and dcr bits
4513         */
4514        ret = pfm_stop(ctx, NULL, 0, regs);
4515        if (ret) return ret;
4516
4517        ctx->ctx_state = PFM_CTX_UNLOADED;
4518
4519        /*
4520         * in system mode, we need to update the PMU directly
4521         * and the user level state of the caller, which may not
4522         * necessarily be the creator of the context.
4523         */
4524        if (is_system) {
4525
4526                /*
4527                 * Update cpuinfo
4528                 *
4529                 * local PMU is taken care of in pfm_stop()
4530                 */
4531                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4532                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4533
4534                /*
4535                 * save PMDs in context
4536                 * release ownership
4537                 */
4538                pfm_flush_pmds(current, ctx);
4539
4540                /*
4541                 * at this point we are done with the PMU
4542                 * so we can unreserve the resource.
4543                 */
4544                if (prev_state != PFM_CTX_ZOMBIE) 
4545                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4546
4547                /*
4548                 * disconnect context from task
4549                 */
4550                task->thread.pfm_context = NULL;
4551                /*
4552                 * disconnect task from context
4553                 */
4554                ctx->ctx_task = NULL;
4555
4556                /*
4557                 * There is nothing more to cleanup here.
4558                 */
4559                return 0;
4560        }
4561
4562        /*
4563         * per-task mode
4564         */
4565        tregs = task == current ? regs : task_pt_regs(task);
4566
4567        if (task == current) {
4568                /*
4569                 * cancel user level control
4570                 */
4571                ia64_psr(regs)->sp = 1;
4572
4573                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4574        }
4575        /*
4576         * save PMDs to context
4577         * release ownership
4578         */
4579        pfm_flush_pmds(task, ctx);
4580
4581        /*
4582         * at this point we are done with the PMU
4583         * so we can unreserve the resource.
4584         *
4585         * when state was ZOMBIE, we have already unreserved.
4586         */
4587        if (prev_state != PFM_CTX_ZOMBIE) 
4588                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4589
4590        /*
4591         * reset activation counter and psr
4592         */
4593        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4594        SET_LAST_CPU(ctx, -1);
4595
4596        /*
4597         * PMU state will not be restored
4598         */
4599        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4600
4601        /*
4602         * break links between context and task
4603         */
4604        task->thread.pfm_context  = NULL;
4605        ctx->ctx_task             = NULL;
4606
4607        PFM_SET_WORK_PENDING(task, 0);
4608
4609        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4610        ctx->ctx_fl_can_restart  = 0;
4611        ctx->ctx_fl_going_zombie = 0;
4612
4613        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4614
4615        return 0;
4616}
4617
4618
4619/*
4620 * called only from exit_thread(): task == current
4621 * we come here only if current has a context attached (loaded or masked)
4622 */
4623void
4624pfm_exit_thread(struct task_struct *task)
4625{
4626        pfm_context_t *ctx;
4627        unsigned long flags;
4628        struct pt_regs *regs = task_pt_regs(task);
4629        int ret, state;
4630        int free_ok = 0;
4631
4632        ctx = PFM_GET_CTX(task);
4633
4634        PROTECT_CTX(ctx, flags);
4635
4636        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4637
4638        state = ctx->ctx_state;
4639        switch(state) {
4640                case PFM_CTX_UNLOADED:
4641                        /*
4642                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4643                         * be in unloaded state
4644                         */
4645                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4646                        break;
4647                case PFM_CTX_LOADED:
4648                case PFM_CTX_MASKED:
4649                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4650                        if (ret) {
4651                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4652                        }
4653                        DPRINT(("ctx unloaded for current state was %d\n", state));
4654
4655                        pfm_end_notify_user(ctx);
4656                        break;
4657                case PFM_CTX_ZOMBIE:
4658                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4659                        if (ret) {
4660                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4661                        }
4662                        free_ok = 1;
4663                        break;
4664                default:
4665                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4666                        break;
4667        }
4668        UNPROTECT_CTX(ctx, flags);
4669
4670        { u64 psr = pfm_get_psr();
4671          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4672          BUG_ON(GET_PMU_OWNER());
4673          BUG_ON(ia64_psr(regs)->up);
4674          BUG_ON(ia64_psr(regs)->pp);
4675        }
4676
4677        /*
4678         * All memory free operations (especially for vmalloc'ed memory)
4679         * MUST be done with interrupts ENABLED.
4680         */
4681        if (free_ok) pfm_context_free(ctx);
4682}
4683
4684/*
4685 * functions MUST be listed in the increasing order of their index (see permfon.h)
4686 */
4687#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4688#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4689#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4690#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4691#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4692
4693static pfm_cmd_desc_t pfm_cmd_tab[]={
4694/* 0  */PFM_CMD_NONE,
4695/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4696/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4697/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4698/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4699/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4700/* 6  */PFM_CMD_NONE,
4701/* 7  */PFM_CMD_NONE,
4702/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4703/* 9  */PFM_CMD_NONE,
4704/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4705/* 11 */PFM_CMD_NONE,
4706/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4707/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4708/* 14 */PFM_CMD_NONE,
4709/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4710/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4711/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4712/* 18 */PFM_CMD_NONE,
4713/* 19 */PFM_CMD_NONE,
4714/* 20 */PFM_CMD_NONE,
4715/* 21 */PFM_CMD_NONE,
4716/* 22 */PFM_CMD_NONE,
4717/* 23 */PFM_CMD_NONE,
4718/* 24 */PFM_CMD_NONE,
4719/* 25 */PFM_CMD_NONE,
4720/* 26 */PFM_CMD_NONE,
4721/* 27 */PFM_CMD_NONE,
4722/* 28 */PFM_CMD_NONE,
4723/* 29 */PFM_CMD_NONE,
4724/* 30 */PFM_CMD_NONE,
4725/* 31 */PFM_CMD_NONE,
4726/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4727/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4728};
4729#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4730
4731static int
4732pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4733{
4734        struct task_struct *task;
4735        int state, old_state;
4736
4737recheck:
4738        state = ctx->ctx_state;
4739        task  = ctx->ctx_task;
4740
4741        if (task == NULL) {
4742                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4743                return 0;
4744        }
4745
4746        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4747                ctx->ctx_fd,
4748                state,
4749                task_pid_nr(task),
4750                task->state, PFM_CMD_STOPPED(cmd)));
4751
4752        /*
4753         * self-monitoring always ok.
4754         *
4755         * for system-wide the caller can either be the creator of the
4756         * context (to one to which the context is attached to) OR
4757         * a task running on the same CPU as the session.
4758         */
4759        if (task == current || ctx->ctx_fl_system) return 0;
4760
4761        /*
4762         * we are monitoring another thread
4763         */
4764        switch(state) {
4765                case PFM_CTX_UNLOADED:
4766                        /*
4767                         * if context is UNLOADED we are safe to go
4768                         */
4769                        return 0;
4770                case PFM_CTX_ZOMBIE:
4771                        /*
4772                         * no command can operate on a zombie context
4773                         */
4774                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4775                        return -EINVAL;
4776                case PFM_CTX_MASKED:
4777                        /*
4778                         * PMU state has been saved to software even though
4779                         * the thread may still be running.
4780                         */
4781                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4782        }
4783
4784        /*
4785         * context is LOADED or MASKED. Some commands may need to have 
4786         * the task stopped.
4787         *
4788         * We could lift this restriction for UP but it would mean that
4789         * the user has no guarantee the task would not run between
4790         * two successive calls to perfmonctl(). That's probably OK.
4791         * If this user wants to ensure the task does not run, then
4792         * the task must be stopped.
4793         */
4794        if (PFM_CMD_STOPPED(cmd)) {
4795                if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4796                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4797                        return -EBUSY;
4798                }
4799                /*
4800                 * task is now stopped, wait for ctxsw out
4801                 *
4802                 * This is an interesting point in the code.
4803                 * We need to unprotect the context because
4804                 * the pfm_save_regs() routines needs to grab
4805                 * the same lock. There are danger in doing
4806                 * this because it leaves a window open for
4807                 * another task to get access to the context
4808                 * and possibly change its state. The one thing
4809                 * that is not possible is for the context to disappear
4810                 * because we are protected by the VFS layer, i.e.,
4811                 * get_fd()/put_fd().
4812                 */
4813                old_state = state;
4814
4815                UNPROTECT_CTX(ctx, flags);
4816
4817                wait_task_inactive(task);
4818
4819                PROTECT_CTX(ctx, flags);
4820
4821                /*
4822                 * we must recheck to verify if state has changed
4823                 */
4824                if (ctx->ctx_state != old_state) {
4825                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4826                        goto recheck;
4827                }
4828        }
4829        return 0;
4830}
4831
4832/*
4833 * system-call entry point (must return long)
4834 */
4835asmlinkage long
4836sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4837{
4838        struct file *file = NULL;
4839        pfm_context_t *ctx = NULL;
4840        unsigned long flags = 0UL;
4841        void *args_k = NULL;
4842        long ret; /* will expand int return types */
4843        size_t base_sz, sz, xtra_sz = 0;
4844        int narg, completed_args = 0, call_made = 0, cmd_flags;
4845        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4846        int (*getsize)(void *arg, size_t *sz);
4847#define PFM_MAX_ARGSIZE 4096
4848
4849        /*
4850         * reject any call if perfmon was disabled at initialization
4851         */
4852        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4853
4854        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4855                DPRINT(("invalid cmd=%d\n", cmd));
4856                return -EINVAL;
4857        }
4858
4859        func      = pfm_cmd_tab[cmd].cmd_func;
4860        narg      = pfm_cmd_tab[cmd].cmd_narg;
4861        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4862        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4863        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4864
4865        if (unlikely(func == NULL)) {
4866                DPRINT(("invalid cmd=%d\n", cmd));
4867                return -EINVAL;
4868        }
4869
4870        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4871                PFM_CMD_NAME(cmd),
4872                cmd,
4873                narg,
4874                base_sz,
4875                count));
4876
4877        /*
4878         * check if number of arguments matches what the command expects
4879         */
4880        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4881                return -EINVAL;
4882
4883restart_args:
4884        sz = xtra_sz + base_sz*count;
4885        /*
4886         * limit abuse to min page size
4887         */
4888        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4889                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4890                return -E2BIG;
4891        }
4892
4893        /*
4894         * allocate default-sized argument buffer
4895         */
4896        if (likely(count && args_k == NULL)) {
4897                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4898                if (args_k == NULL) return -ENOMEM;
4899        }
4900
4901        ret = -EFAULT;
4902
4903        /*
4904         * copy arguments
4905         *
4906         * assume sz = 0 for command without parameters
4907         */
4908        if (sz && copy_from_user(args_k, arg, sz)) {
4909                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4910                goto error_args;
4911        }
4912
4913        /*
4914         * check if command supports extra parameters
4915         */
4916        if (completed_args == 0 && getsize) {
4917                /*
4918                 * get extra parameters size (based on main argument)
4919                 */
4920                ret = (*getsize)(args_k, &xtra_sz);
4921                if (ret) goto error_args;
4922
4923                completed_args = 1;
4924
4925                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4926
4927                /* retry if necessary */
4928                if (likely(xtra_sz)) goto restart_args;
4929        }
4930
4931        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4932
4933        ret = -EBADF;
4934
4935        file = fget(fd);
4936        if (unlikely(file == NULL)) {
4937                DPRINT(("invalid fd %d\n", fd));
4938                goto error_args;
4939        }
4940        if (unlikely(PFM_IS_FILE(file) == 0)) {
4941                DPRINT(("fd %d not related to perfmon\n", fd));
4942                goto error_args;
4943        }
4944
4945        ctx = (pfm_context_t *)file->private_data;
4946        if (unlikely(ctx == NULL)) {
4947                DPRINT(("no context for fd %d\n", fd));
4948                goto error_args;
4949        }
4950        prefetch(&ctx->ctx_state);
4951
4952        PROTECT_CTX(ctx, flags);
4953
4954        /*
4955         * check task is stopped
4956         */
4957        ret = pfm_check_task_state(ctx, cmd, flags);
4958        if (unlikely(ret)) goto abort_locked;
4959
4960skip_fd:
4961        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4962
4963        call_made = 1;
4964
4965abort_locked:
4966        if (likely(ctx)) {
4967                DPRINT(("context unlocked\n"));
4968                UNPROTECT_CTX(ctx, flags);
4969        }
4970
4971        /* copy argument back to user, if needed */
4972        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4973
4974error_args:
4975        if (file)
4976                fput(file);
4977
4978        kfree(args_k);
4979
4980        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4981
4982        return ret;
4983}
4984
4985static void
4986pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4987{
4988        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4989        pfm_ovfl_ctrl_t rst_ctrl;
4990        int state;
4991        int ret = 0;
4992
4993        state = ctx->ctx_state;
4994        /*
4995         * Unlock sampling buffer and reset index atomically
4996         * XXX: not really needed when blocking
4997         */
4998        if (CTX_HAS_SMPL(ctx)) {
4999
5000                rst_ctrl.bits.mask_monitoring = 0;
5001                rst_ctrl.bits.reset_ovfl_pmds = 0;
5002
5003                if (state == PFM_CTX_LOADED)
5004                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5005                else
5006                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5007        } else {
5008                rst_ctrl.bits.mask_monitoring = 0;
5009                rst_ctrl.bits.reset_ovfl_pmds = 1;
5010        }
5011
5012        if (ret == 0) {
5013                if (rst_ctrl.bits.reset_ovfl_pmds) {
5014                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5015                }
5016                if (rst_ctrl.bits.mask_monitoring == 0) {
5017                        DPRINT(("resuming monitoring\n"));
5018                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5019                } else {
5020                        DPRINT(("stopping monitoring\n"));
5021                        //pfm_stop_monitoring(current, regs);
5022                }
5023                ctx->ctx_state = PFM_CTX_LOADED;
5024        }
5025}
5026
5027/*
5028 * context MUST BE LOCKED when calling
5029 * can only be called for current
5030 */
5031static void
5032pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5033{
5034        int ret;
5035
5036        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
5037
5038        ret = pfm_context_unload(ctx, NULL, 0, regs);
5039        if (ret) {
5040                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
5041        }
5042
5043        /*
5044         * and wakeup controlling task, indicating we are now disconnected
5045         */
5046        wake_up_interruptible(&ctx->ctx_zombieq);
5047
5048        /*
5049         * given that context is still locked, the controlling
5050         * task will only get access when we return from
5051         * pfm_handle_work().
5052         */
5053}
5054
5055static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5056 /*
5057  * pfm_handle_work() can be called with interrupts enabled
5058  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5059  * call may sleep, therefore we must re-enable interrupts
5060  * to avoid deadlocks. It is safe to do so because this function
5061  * is called ONLY when returning to user level (PUStk=1), in which case
5062  * there is no risk of kernel stack overflow due to deep
5063  * interrupt nesting.
5064  */
5065void
5066pfm_handle_work(void)
5067{
5068        pfm_context_t *ctx;
5069        struct pt_regs *regs;
5070        unsigned long flags, dummy_flags;
5071        unsigned long ovfl_regs;
5072        unsigned int reason;
5073        int ret;
5074
5075        ctx = PFM_GET_CTX(current);
5076        if (ctx == NULL) {
5077                printk(KERN_ERR "perfmon: [%d] has no PFM context\n", task_pid_nr(current));
5078                return;
5079        }
5080
5081        PROTECT_CTX(ctx, flags);
5082
5083        PFM_SET_WORK_PENDING(current, 0);
5084
5085        pfm_clear_task_notify();
5086
5087        regs = task_pt_regs(current);
5088
5089        /*
5090         * extract reason for being here and clear
5091         */
5092        reason = ctx->ctx_fl_trap_reason;
5093        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5094        ovfl_regs = ctx->ctx_ovfl_regs[0];
5095
5096        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5097
5098        /*
5099         * must be done before we check for simple-reset mode
5100         */
5101        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5102
5103
5104        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5105        if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5106
5107        /*
5108         * restore interrupt mask to what it was on entry.
5109         * Could be enabled/diasbled.
5110         */
5111        UNPROTECT_CTX(ctx, flags);
5112
5113        /*
5114         * force interrupt enable because of down_interruptible()
5115         */
5116        local_irq_enable();
5117
5118        DPRINT(("before block sleeping\n"));
5119
5120        /*
5121         * may go through without blocking on SMP systems
5122         * if restart has been received already by the time we call down()
5123         */
5124        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5125
5126        DPRINT(("after block sleeping ret=%d\n", ret));
5127
5128        /*
5129         * lock context and mask interrupts again
5130         * We save flags into a dummy because we may have
5131         * altered interrupts mask compared to entry in this
5132         * function.
5133         */
5134        PROTECT_CTX(ctx, dummy_flags);
5135
5136        /*
5137         * we need to read the ovfl_regs only after wake-up
5138         * because we may have had pfm_write_pmds() in between
5139         * and that can changed PMD values and therefore 
5140         * ovfl_regs is reset for these new PMD values.
5141         */
5142        ovfl_regs = ctx->ctx_ovfl_regs[0];
5143
5144        if (ctx->ctx_fl_going_zombie) {
5145do_zombie:
5146                DPRINT(("context is zombie, bailing out\n"));
5147                pfm_context_force_terminate(ctx, regs);
5148                goto nothing_to_do;
5149        }
5150        /*
5151         * in case of interruption of down() we don't restart anything
5152         */
5153        if (ret < 0) goto nothing_to_do;
5154
5155skip_blocking:
5156        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5157        ctx->ctx_ovfl_regs[0] = 0UL;
5158
5159nothing_to_do:
5160        /*
5161         * restore flags as they were upon entry
5162         */
5163        UNPROTECT_CTX(ctx, flags);
5164}
5165
5166static int
5167pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5168{
5169        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5170                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5171                return 0;
5172        }
5173
5174        DPRINT(("waking up somebody\n"));
5175
5176        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5177
5178        /*
5179         * safe, we are not in intr handler, nor in ctxsw when
5180         * we come here
5181         */
5182        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5183
5184        return 0;
5185}
5186
5187static int
5188pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5189{
5190        pfm_msg_t *msg = NULL;
5191
5192        if (ctx->ctx_fl_no_msg == 0) {
5193                msg = pfm_get_new_msg(ctx);
5194                if (msg == NULL) {
5195                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5196                        return -1;
5197                }
5198
5199                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5200                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5201                msg->pfm_ovfl_msg.msg_active_set   = 0;
5202                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5203                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5204                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5205                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5206                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5207        }
5208
5209        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5210                msg,
5211                ctx->ctx_fl_no_msg,
5212                ctx->ctx_fd,
5213                ovfl_pmds));
5214
5215        return pfm_notify_user(ctx, msg);
5216}
5217
5218static int
5219pfm_end_notify_user(pfm_context_t *ctx)
5220{
5221        pfm_msg_t *msg;
5222
5223        msg = pfm_get_new_msg(ctx);
5224        if (msg == NULL) {
5225                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5226                return -1;
5227        }
5228        /* no leak */
5229        memset(msg, 0, sizeof(*msg));
5230
5231        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5232        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5233        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5234
5235        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5236                msg,
5237                ctx->ctx_fl_no_msg,
5238                ctx->ctx_fd));
5239
5240        return pfm_notify_user(ctx, msg);
5241}
5242
5243/*
5244 * main overflow processing routine.
5245 * it can be called from the interrupt path or explicitly during the context switch code
5246 */
5247static void
5248pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5249{
5250        pfm_ovfl_arg_t *ovfl_arg;
5251        unsigned long mask;
5252        unsigned long old_val, ovfl_val, new_val;
5253        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5254        unsigned long tstamp;
5255        pfm_ovfl_ctrl_t ovfl_ctrl;
5256        unsigned int i, has_smpl;
5257        int must_notify = 0;
5258
5259        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5260
5261        /*
5262         * sanity test. Should never happen
5263         */
5264        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5265
5266        tstamp   = ia64_get_itc();
5267        mask     = pmc0 >> PMU_FIRST_COUNTER;
5268        ovfl_val = pmu_conf->ovfl_val;
5269        has_smpl = CTX_HAS_SMPL(ctx);
5270
5271        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5272                     "used_pmds=0x%lx\n",
5273                        pmc0,
5274                        task ? task_pid_nr(task): -1,
5275                        (regs ? regs->cr_iip : 0),
5276                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5277                        ctx->ctx_used_pmds[0]));
5278
5279
5280        /*
5281         * first we update the virtual counters
5282         * assume there was a prior ia64_srlz_d() issued
5283         */
5284        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5285
5286                /* skip pmd which did not overflow */
5287                if ((mask & 0x1) == 0) continue;
5288
5289                /*
5290                 * Note that the pmd is not necessarily 0 at this point as qualified events
5291                 * may have happened before the PMU was frozen. The residual count is not
5292                 * taken into consideration here but will be with any read of the pmd via
5293                 * pfm_read_pmds().
5294                 */
5295                old_val              = new_val = ctx->ctx_pmds[i].val;
5296                new_val             += 1 + ovfl_val;
5297                ctx->ctx_pmds[i].val = new_val;
5298
5299                /*
5300                 * check for overflow condition
5301                 */
5302                if (likely(old_val > new_val)) {
5303                        ovfl_pmds |= 1UL << i;
5304                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5305                }
5306
5307                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5308                        i,
5309                        new_val,
5310                        old_val,
5311                        ia64_get_pmd(i) & ovfl_val,
5312                        ovfl_pmds,
5313                        ovfl_notify));
5314        }
5315
5316        /*
5317         * there was no 64-bit overflow, nothing else to do
5318         */
5319        if (ovfl_pmds == 0UL) return;
5320
5321        /* 
5322         * reset all control bits
5323         */
5324        ovfl_ctrl.val = 0;
5325        reset_pmds    = 0UL;
5326
5327        /*
5328         * if a sampling format module exists, then we "cache" the overflow by 
5329         * calling the module's handler() routine.
5330         */
5331        if (has_smpl) {
5332                unsigned long start_cycles, end_cycles;
5333                unsigned long pmd_mask;
5334                int j, k, ret = 0;
5335                int this_cpu = smp_processor_id();
5336
5337                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5338                ovfl_arg = &ctx->ctx_ovfl_arg;
5339
5340                prefetch(ctx->ctx_smpl_hdr);
5341
5342                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5343
5344                        mask = 1UL << i;
5345
5346                        if ((pmd_mask & 0x1) == 0) continue;
5347
5348                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5349                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5350                        ovfl_arg->active_set    = 0;
5351                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5352                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5353
5354                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5355                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5356                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5357
5358                        /*
5359                         * copy values of pmds of interest. Sampling format may copy them
5360                         * into sampling buffer.
5361                         */
5362                        if (smpl_pmds) {
5363                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5364                                        if ((smpl_pmds & 0x1) == 0) continue;
5365                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5366                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5367                                }
5368                        }
5369
5370                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5371
5372                        start_cycles = ia64_get_itc();
5373
5374                        /*
5375                         * call custom buffer format record (handler) routine
5376                         */
5377                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5378
5379                        end_cycles = ia64_get_itc();
5380
5381                        /*
5382                         * For those controls, we take the union because they have
5383                         * an all or nothing behavior.
5384                         */
5385                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5386                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5387                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5388                        /*
5389                         * build the bitmask of pmds to reset now
5390                         */
5391                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5392
5393                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5394                }
5395                /*
5396                 * when the module cannot handle the rest of the overflows, we abort right here
5397                 */
5398                if (ret && pmd_mask) {
5399                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5400                                pmd_mask<<PMU_FIRST_COUNTER));
5401                }
5402                /*
5403                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5404                 */
5405                ovfl_pmds &= ~reset_pmds;
5406        } else {
5407                /*
5408                 * when no sampling module is used, then the default
5409                 * is to notify on overflow if requested by user
5410                 */
5411                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5412                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5413                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5414                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5415                /*
5416                 * if needed, we reset all overflowed pmds
5417                 */
5418                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5419        }
5420
5421        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5422
5423        /*
5424         * reset the requested PMD registers using the short reset values
5425         */
5426        if (reset_pmds) {
5427                unsigned long bm = reset_pmds;
5428                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5429        }
5430
5431        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5432                /*
5433                 * keep track of what to reset when unblocking
5434                 */
5435                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5436
5437                /*
5438                 * check for blocking context 
5439                 */
5440                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5441
5442                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5443
5444                        /*
5445                         * set the perfmon specific checking pending work for the task
5446                         */
5447                        PFM_SET_WORK_PENDING(task, 1);
5448
5449                        /*
5450                         * when coming from ctxsw, current still points to the
5451                         * previous task, therefore we must work with task and not current.
5452                         */
5453                        pfm_set_task_notify(task);
5454                }
5455                /*
5456                 * defer until state is changed (shorten spin window). the context is locked
5457                 * anyway, so the signal receiver would come spin for nothing.
5458                 */
5459                must_notify = 1;
5460        }
5461
5462        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5463                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5464                        PFM_GET_WORK_PENDING(task),
5465                        ctx->ctx_fl_trap_reason,
5466                        ovfl_pmds,
5467                        ovfl_notify,
5468                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5469        /*
5470         * in case monitoring must be stopped, we toggle the psr bits
5471         */
5472        if (ovfl_ctrl.bits.mask_monitoring) {
5473                pfm_mask_monitoring(task);
5474                ctx->ctx_state = PFM_CTX_MASKED;
5475                ctx->ctx_fl_can_restart = 1;
5476        }
5477
5478        /*
5479         * send notification now
5480         */
5481        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5482
5483        return;
5484
5485sanity_check:
5486        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5487                        smp_processor_id(),
5488                        task ? task_pid_nr(task) : -1,
5489                        pmc0);
5490        return;
5491
5492stop_monitoring:
5493        /*
5494         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5495         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5496         * come here as zombie only if the task is the current task. In which case, we
5497         * can access the PMU  hardware directly.
5498         *
5499         * Note that zombies do have PM_VALID set. So here we do the minimal.
5500         *
5501         * In case the context was zombified it could not be reclaimed at the time
5502         * the monitoring program exited. At this point, the PMU reservation has been
5503         * returned, the sampiing buffer has been freed. We must convert this call
5504         * into a spurious interrupt. However, we must also avoid infinite overflows
5505         * by stopping monitoring for this task. We can only come here for a per-task
5506         * context. All we need to do is to stop monitoring using the psr bits which
5507         * are always task private. By re-enabling secure montioring, we ensure that
5508         * the monitored task will not be able to re-activate monitoring.
5509         * The task will eventually be context switched out, at which point the context
5510         * will be reclaimed (that includes releasing ownership of the PMU).
5511         *
5512         * So there might be a window of time where the number of per-task session is zero
5513         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5514         * context. This is safe because if a per-task session comes in, it will push this one
5515         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5516         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5517         * also push our zombie context out.
5518         *
5519         * Overall pretty hairy stuff....
5520         */
5521        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5522        pfm_clear_psr_up();
5523        ia64_psr(regs)->up = 0;
5524        ia64_psr(regs)->sp = 1;
5525        return;
5526}
5527
5528static int
5529pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5530{
5531        struct task_struct *task;
5532        pfm_context_t *ctx;
5533        unsigned long flags;
5534        u64 pmc0;
5535        int this_cpu = smp_processor_id();
5536        int retval = 0;
5537
5538        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5539
5540        /*
5541         * srlz.d done before arriving here
5542         */
5543        pmc0 = ia64_get_pmc(0);
5544
5545        task = GET_PMU_OWNER();
5546        ctx  = GET_PMU_CTX();
5547
5548        /*
5549         * if we have some pending bits set
5550         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5551         */
5552        if (PMC0_HAS_OVFL(pmc0) && task) {
5553                /*
5554                 * we assume that pmc0.fr is always set here
5555                 */
5556
5557                /* sanity check */
5558                if (!ctx) goto report_spurious1;
5559
5560                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5561                        goto report_spurious2;
5562
5563                PROTECT_CTX_NOPRINT(ctx, flags);
5564
5565                pfm_overflow_handler(task, ctx, pmc0, regs);
5566
5567                UNPROTECT_CTX_NOPRINT(ctx, flags);
5568
5569        } else {
5570                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5571                retval = -1;
5572        }
5573        /*
5574         * keep it unfrozen at all times
5575         */
5576        pfm_unfreeze_pmu();
5577
5578        return retval;
5579
5580report_spurious1:
5581        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5582                this_cpu, task_pid_nr(task));
5583        pfm_unfreeze_pmu();
5584        return -1;
5585report_spurious2:
5586        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5587                this_cpu, 
5588                task_pid_nr(task));
5589        pfm_unfreeze_pmu();
5590        return -1;
5591}
5592
5593static irqreturn_t
5594pfm_interrupt_handler(int irq, void *arg)
5595{
5596        unsigned long start_cycles, total_cycles;
5597        unsigned long min, max;
5598        int this_cpu;
5599        int ret;
5600        struct pt_regs *regs = get_irq_regs();
5601
5602        this_cpu = get_cpu();
5603        if (likely(!pfm_alt_intr_handler)) {
5604                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5605                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5606
5607                start_cycles = ia64_get_itc();
5608
5609                ret = pfm_do_interrupt_handler(irq, arg, regs);
5610
5611                total_cycles = ia64_get_itc();
5612
5613                /*
5614                 * don't measure spurious interrupts
5615                 */
5616                if (likely(ret == 0)) {
5617                        total_cycles -= start_cycles;
5618
5619                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5620                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5621
5622                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5623                }
5624        }
5625        else {
5626                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5627        }
5628
5629        put_cpu_no_resched();
5630        return IRQ_HANDLED;
5631}
5632
5633/*
5634 * /proc/perfmon interface, for debug only
5635 */
5636
5637#define PFM_PROC_SHOW_HEADER    ((void *)NR_CPUS+1)
5638
5639static void *
5640pfm_proc_start(struct seq_file *m, loff_t *pos)
5641{
5642        if (*pos == 0) {
5643                return PFM_PROC_SHOW_HEADER;
5644        }
5645
5646        while (*pos <= NR_CPUS) {
5647                if (cpu_online(*pos - 1)) {
5648                        return (void *)*pos;
5649                }
5650                ++*pos;
5651        }
5652        return NULL;
5653}
5654
5655static void *
5656pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5657{
5658        ++*pos;
5659        return pfm_proc_start(m, pos);
5660}
5661
5662static void
5663pfm_proc_stop(struct seq_file *m, void *v)
5664{
5665}
5666
5667static void
5668pfm_proc_show_header(struct seq_file *m)
5669{
5670        struct list_head * pos;
5671        pfm_buffer_fmt_t * entry;
5672        unsigned long flags;
5673
5674        seq_printf(m,
5675                "perfmon version           : %u.%u\n"
5676                "model                     : %s\n"
5677                "fastctxsw                 : %s\n"
5678                "expert mode               : %s\n"
5679                "ovfl_mask                 : 0x%lx\n"
5680                "PMU flags                 : 0x%x\n",
5681                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5682                pmu_conf->pmu_name,
5683                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5684                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5685                pmu_conf->ovfl_val,
5686                pmu_conf->flags);
5687
5688        LOCK_PFS(flags);
5689
5690        seq_printf(m,
5691                "proc_sessions             : %u\n"
5692                "sys_sessions              : %u\n"
5693                "sys_use_dbregs            : %u\n"
5694                "ptrace_use_dbregs         : %u\n",
5695                pfm_sessions.pfs_task_sessions,
5696                pfm_sessions.pfs_sys_sessions,
5697                pfm_sessions.pfs_sys_use_dbregs,
5698                pfm_sessions.pfs_ptrace_use_dbregs);
5699
5700        UNLOCK_PFS(flags);
5701
5702        spin_lock(&pfm_buffer_fmt_lock);
5703
5704        list_for_each(pos, &pfm_buffer_fmt_list) {
5705                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5706                seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5707                        entry->fmt_uuid[0],
5708                        entry->fmt_uuid[1],
5709                        entry->fmt_uuid[2],
5710                        entry->fmt_uuid[3],
5711                        entry->fmt_uuid[4],
5712                        entry->fmt_uuid[5],
5713                        entry->fmt_uuid[6],
5714                        entry->fmt_uuid[7],
5715                        entry->fmt_uuid[8],
5716                        entry->fmt_uuid[9],
5717                        entry->fmt_uuid[10],
5718                        entry->fmt_uuid[11],
5719                        entry->fmt_uuid[12],
5720                        entry->fmt_uuid[13],
5721                        entry->fmt_uuid[14],
5722                        entry->fmt_uuid[15],
5723                        entry->fmt_name);
5724        }
5725        spin_unlock(&pfm_buffer_fmt_lock);
5726
5727}
5728
5729static int
5730pfm_proc_show(struct seq_file *m, void *v)
5731{
5732        unsigned long psr;
5733        unsigned int i;
5734        int cpu;
5735
5736        if (v == PFM_PROC_SHOW_HEADER) {
5737                pfm_proc_show_header(m);
5738                return 0;
5739        }
5740
5741        /* show info for CPU (v - 1) */
5742
5743        cpu = (long)v - 1;
5744        seq_printf(m,
5745                "CPU%-2d overflow intrs      : %lu\n"
5746                "CPU%-2d overflow cycles     : %lu\n"
5747                "CPU%-2d overflow min        : %lu\n"
5748                "CPU%-2d overflow max        : %lu\n"
5749                "CPU%-2d smpl handler calls  : %lu\n"
5750                "CPU%-2d smpl handler cycles : %lu\n"
5751                "CPU%-2d spurious intrs      : %lu\n"
5752                "CPU%-2d replay   intrs      : %lu\n"
5753                "CPU%-2d syst_wide           : %d\n"
5754                "CPU%-2d dcr_pp              : %d\n"
5755                "CPU%-2d exclude idle        : %d\n"
5756                "CPU%-2d owner               : %d\n"
5757                "CPU%-2d context             : %p\n"
5758                "CPU%-2d activations         : %lu\n",
5759                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5760                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5761                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5762                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5763                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5764                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5765                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5766                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5767                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5768                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5769                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5770                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5771                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5772                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5773
5774        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5775
5776                psr = pfm_get_psr();
5777
5778                ia64_srlz_d();
5779
5780                seq_printf(m, 
5781                        "CPU%-2d psr                 : 0x%lx\n"
5782                        "CPU%-2d pmc0                : 0x%lx\n", 
5783                        cpu, psr,
5784                        cpu, ia64_get_pmc(0));
5785
5786                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5787                        if (PMC_IS_COUNTING(i) == 0) continue;
5788                        seq_printf(m, 
5789                                "CPU%-2d pmc%u                : 0x%lx\n"
5790                                "CPU%-2d pmd%u                : 0x%lx\n", 
5791                                cpu, i, ia64_get_pmc(i),
5792                                cpu, i, ia64_get_pmd(i));
5793                }
5794        }
5795        return 0;
5796}
5797
5798struct seq_operations pfm_seq_ops = {
5799        .start =        pfm_proc_start,
5800        .next =         pfm_proc_next,
5801        .stop =         pfm_proc_stop,
5802        .show =         pfm_proc_show
5803};
5804
5805static int
5806pfm_proc_open(struct inode *inode, struct file *file)
5807{
5808        return seq_open(file, &pfm_seq_ops);
5809}
5810
5811
5812/*
5813 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5814 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5815 * is active or inactive based on mode. We must rely on the value in
5816 * local_cpu_data->pfm_syst_info
5817 */
5818void
5819pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5820{
5821        struct pt_regs *regs;
5822        unsigned long dcr;
5823        unsigned long dcr_pp;
5824
5825        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5826
5827        /*
5828         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5829         * on every CPU, so we can rely on the pid to identify the idle task.
5830         */
5831        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5832                regs = task_pt_regs(task);
5833                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5834                return;
5835        }
5836        /*
5837         * if monitoring has started
5838         */
5839        if (dcr_pp) {
5840                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5841                /*
5842                 * context switching in?
5843                 */
5844                if (is_ctxswin) {
5845                        /* mask monitoring for the idle task */
5846                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5847                        pfm_clear_psr_pp();
5848                        ia64_srlz_i();
5849                        return;
5850                }
5851                /*
5852                 * context switching out
5853                 * restore monitoring for next task
5854                 *
5855                 * Due to inlining this odd if-then-else construction generates
5856                 * better code.
5857                 */
5858                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5859                pfm_set_psr_pp();
5860                ia64_srlz_i();
5861        }
5862}
5863
5864#ifdef CONFIG_SMP
5865
5866static void
5867pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5868{
5869        struct task_struct *task = ctx->ctx_task;
5870
5871        ia64_psr(regs)->up = 0;
5872        ia64_psr(regs)->sp = 1;
5873
5874        if (GET_PMU_OWNER() == task) {
5875                DPRINT(("cleared ownership for [%d]\n",
5876                                        task_pid_nr(ctx->ctx_task)));
5877                SET_PMU_OWNER(NULL, NULL);
5878        }
5879
5880        /*
5881         * disconnect the task from the context and vice-versa
5882         */
5883        PFM_SET_WORK_PENDING(task, 0);
5884
5885        task->thread.pfm_context  = NULL;
5886        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5887
5888        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5889}
5890
5891
5892/*
5893 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5894 */
5895void
5896pfm_save_regs(struct task_struct *task)
5897{
5898        pfm_context_t *ctx;
5899        unsigned long flags;
5900        u64 psr;
5901
5902
5903        ctx = PFM_GET_CTX(task);
5904        if (ctx == NULL) return;
5905
5906        /*
5907         * we always come here with interrupts ALREADY disabled by
5908         * the scheduler. So we simply need to protect against concurrent
5909         * access, not CPU concurrency.
5910         */
5911        flags = pfm_protect_ctx_ctxsw(ctx);
5912
5913        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5914                struct pt_regs *regs = task_pt_regs(task);
5915
5916                pfm_clear_psr_up();
5917
5918                pfm_force_cleanup(ctx, regs);
5919
5920                BUG_ON(ctx->ctx_smpl_hdr);
5921
5922                pfm_unprotect_ctx_ctxsw(ctx, flags);
5923
5924                pfm_context_free(ctx);
5925                return;
5926        }
5927
5928        /*
5929         * save current PSR: needed because we modify it
5930         */
5931        ia64_srlz_d();
5932        psr = pfm_get_psr();
5933
5934        BUG_ON(psr & (IA64_PSR_I));
5935
5936        /*
5937         * stop monitoring:
5938         * This is the last instruction which may generate an overflow
5939         *
5940         * We do not need to set psr.sp because, it is irrelevant in kernel.
5941         * It will be restored from ipsr when going back to user level
5942         */
5943        pfm_clear_psr_up();
5944
5945        /*
5946         * keep a copy of psr.up (for reload)
5947         */
5948        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5949
5950        /*
5951         * release ownership of this PMU.
5952         * PM interrupts are masked, so nothing
5953         * can happen.
5954         */
5955        SET_PMU_OWNER(NULL, NULL);
5956
5957        /*
5958         * we systematically save the PMD as we have no
5959         * guarantee we will be schedule at that same
5960         * CPU again.
5961         */
5962        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5963
5964        /*
5965         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966         * we will need it on the restore path to check
5967         * for pending overflow.
5968         */
5969        ctx->th_pmcs[0] = ia64_get_pmc(0);
5970
5971        /*
5972         * unfreeze PMU if had pending overflows
5973         */
5974        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5975
5976        /*
5977         * finally, allow context access.
5978         * interrupts will still be masked after this call.
5979         */
5980        pfm_unprotect_ctx_ctxsw(ctx, flags);
5981}
5982
5983#else /* !CONFIG_SMP */
5984void
5985pfm_save_regs(struct task_struct *task)
5986{
5987        pfm_context_t *ctx;
5988        u64 psr;
5989
5990        ctx = PFM_GET_CTX(task);
5991        if (ctx == NULL) return;
5992
5993        /*
5994         * save current PSR: needed because we modify it
5995         */
5996        psr = pfm_get_psr();
5997
5998        BUG_ON(psr & (IA64_PSR_I));
5999
6000        /*
6001         * stop monitoring:
6002         * This is the last instruction which may generate an overflow
6003         *
6004         * We do not need to set psr.sp because, it is irrelevant in kernel.
6005         * It will be restored from ipsr when going back to user level
6006         */
6007        pfm_clear_psr_up();
6008
6009        /*
6010         * keep a copy of psr.up (for reload)
6011         */
6012        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6013}
6014
6015static void
6016pfm_lazy_save_regs (struct task_struct *task)
6017{
6018        pfm_context_t *ctx;
6019        unsigned long flags;
6020
6021        { u64 psr  = pfm_get_psr();
6022          BUG_ON(psr & IA64_PSR_UP);
6023        }
6024
6025        ctx = PFM_GET_CTX(task);
6026
6027        /*
6028         * we need to mask PMU overflow here to
6029         * make sure that we maintain pmc0 until
6030         * we save it. overflow interrupts are
6031         * treated as spurious if there is no
6032         * owner.
6033         *
6034         * XXX: I don't think this is necessary
6035         */
6036        PROTECT_CTX(ctx,flags);
6037
6038        /*
6039         * release ownership of this PMU.
6040         * must be done before we save the registers.
6041         *
6042         * after this call any PMU interrupt is treated
6043         * as spurious.
6044         */
6045        SET_PMU_OWNER(NULL, NULL);
6046
6047        /*
6048         * save all the pmds we use
6049         */
6050        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6051
6052        /*
6053         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6054         * it is needed to check for pended overflow
6055         * on the restore path
6056         */
6057        ctx->th_pmcs[0] = ia64_get_pmc(0);
6058
6059        /*
6060         * unfreeze PMU if had pending overflows
6061         */
6062        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6063
6064        /*
6065         * now get can unmask PMU interrupts, they will
6066         * be treated as purely spurious and we will not
6067         * lose any information
6068         */
6069        UNPROTECT_CTX(ctx,flags);
6070}
6071#endif /* CONFIG_SMP */
6072
6073#ifdef CONFIG_SMP
6074/*
6075 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6076 */
6077void
6078pfm_load_regs (struct task_struct *task)
6079{
6080        pfm_context_t *ctx;
6081        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6082        unsigned long flags;
6083        u64 psr, psr_up;
6084        int need_irq_resend;
6085
6086        ctx = PFM_GET_CTX(task);
6087        if (unlikely(ctx == NULL)) return;
6088
6089        BUG_ON(GET_PMU_OWNER());
6090
6091        /*
6092         * possible on unload
6093         */
6094        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6095
6096        /*
6097         * we always come here with interrupts ALREADY disabled by
6098         * the scheduler. So we simply need to protect against concurrent
6099         * access, not CPU concurrency.
6100         */
6101        flags = pfm_protect_ctx_ctxsw(ctx);
6102        psr   = pfm_get_psr();
6103
6104        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6105
6106        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6107        BUG_ON(psr & IA64_PSR_I);
6108
6109        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6110                struct pt_regs *regs = task_pt_regs(task);
6111
6112                BUG_ON(ctx->ctx_smpl_hdr);
6113
6114                pfm_force_cleanup(ctx, regs);
6115
6116                pfm_unprotect_ctx_ctxsw(ctx, flags);
6117
6118                /*
6119                 * this one (kmalloc'ed) is fine with interrupts disabled
6120                 */
6121                pfm_context_free(ctx);
6122
6123                return;
6124        }
6125
6126        /*
6127         * we restore ALL the debug registers to avoid picking up
6128         * stale state.
6129         */
6130        if (ctx->ctx_fl_using_dbreg) {
6131                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6132                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6133        }
6134        /*
6135         * retrieve saved psr.up
6136         */
6137        psr_up = ctx->ctx_saved_psr_up;
6138
6139        /*
6140         * if we were the last user of the PMU on that CPU,
6141         * then nothing to do except restore psr
6142         */
6143        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6144
6145                /*
6146                 * retrieve partial reload masks (due to user modifications)
6147                 */
6148                pmc_mask = ctx->ctx_reload_pmcs[0];
6149                pmd_mask = ctx->ctx_reload_pmds[0];
6150
6151        } else {
6152                /*
6153                 * To avoid leaking information to the user level when psr.sp=0,
6154                 * we must reload ALL implemented pmds (even the ones we don't use).
6155                 * In the kernel we only allow PFM_READ_PMDS on registers which
6156                 * we initialized or requested (sampling) so there is no risk there.
6157                 */
6158                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6159
6160                /*
6161                 * ALL accessible PMCs are systematically reloaded, unused registers
6162                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6163                 * up stale configuration.
6164                 *
6165                 * PMC0 is never in the mask. It is always restored separately.
6166                 */
6167                pmc_mask = ctx->ctx_all_pmcs[0];
6168        }
6169        /*
6170         * when context is MASKED, we will restore PMC with plm=0
6171         * and PMD with stale information, but that's ok, nothing
6172         * will be captured.
6173         *
6174         * XXX: optimize here
6175         */
6176        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6177        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6178
6179        /*
6180         * check for pending overflow at the time the state
6181         * was saved.
6182         */
6183        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6184                /*
6185                 * reload pmc0 with the overflow information
6186                 * On McKinley PMU, this will trigger a PMU interrupt
6187                 */
6188                ia64_set_pmc(0, ctx->th_pmcs[0]);
6189                ia64_srlz_d();
6190                ctx->th_pmcs[0] = 0UL;
6191
6192                /*
6193                 * will replay the PMU interrupt
6194                 */
6195                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6196
6197                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6198        }
6199
6200        /*
6201         * we just did a reload, so we reset the partial reload fields
6202         */
6203        ctx->ctx_reload_pmcs[0] = 0UL;
6204        ctx->ctx_reload_pmds[0] = 0UL;
6205
6206        SET_LAST_CPU(ctx, smp_processor_id());
6207
6208        /*
6209         * dump activation value for this PMU
6210         */
6211        INC_ACTIVATION();
6212        /*
6213         * record current activation for this context
6214         */
6215        SET_ACTIVATION(ctx);
6216
6217        /*
6218         * establish new ownership. 
6219         */
6220        SET_PMU_OWNER(task, ctx);
6221
6222        /*
6223         * restore the psr.up bit. measurement
6224         * is active again.
6225         * no PMU interrupt can happen at this point
6226         * because we still have interrupts disabled.
6227         */
6228        if (likely(psr_up)) pfm_set_psr_up();
6229
6230        /*
6231         * allow concurrent access to context
6232         */
6233        pfm_unprotect_ctx_ctxsw(ctx, flags);
6234}
6235#else /*  !CONFIG_SMP */
6236/*
6237 * reload PMU state for UP kernels
6238 * in 2.5 we come here with interrupts disabled
6239 */
6240void
6241pfm_load_regs (struct task_struct *task)
6242{
6243        pfm_context_t *ctx;
6244        struct task_struct *owner;
6245        unsigned long pmd_mask, pmc_mask;
6246        u64 psr, psr_up;
6247        int need_irq_resend;
6248
6249        owner = GET_PMU_OWNER();
6250        ctx   = PFM_GET_CTX(task);
6251        psr   = pfm_get_psr();
6252
6253        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6254        BUG_ON(psr & IA64_PSR_I);
6255
6256        /*
6257         * we restore ALL the debug registers to avoid picking up
6258         * stale state.
6259         *
6260         * This must be done even when the task is still the owner
6261         * as the registers may have been modified via ptrace()
6262         * (not perfmon) by the previous task.
6263         */
6264        if (ctx->ctx_fl_using_dbreg) {
6265                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6266                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6267        }
6268
6269        /*
6270         * retrieved saved psr.up
6271         */
6272        psr_up = ctx->ctx_saved_psr_up;
6273        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6274
6275        /*
6276         * short path, our state is still there, just
6277         * need to restore psr and we go
6278         *
6279         * we do not touch either PMC nor PMD. the psr is not touched
6280         * by the overflow_handler. So we are safe w.r.t. to interrupt
6281         * concurrency even without interrupt masking.
6282         */
6283        if (likely(owner == task)) {
6284                if (likely(psr_up)) pfm_set_psr_up();
6285                return;
6286        }
6287
6288        /*
6289         * someone else is still using the PMU, first push it out and
6290         * then we'll be able to install our stuff !
6291         *
6292         * Upon return, there will be no owner for the current PMU
6293         */
6294        if (owner) pfm_lazy_save_regs(owner);
6295
6296        /*
6297         * To avoid leaking information to the user level when psr.sp=0,
6298         * we must reload ALL implemented pmds (even the ones we don't use).
6299         * In the kernel we only allow PFM_READ_PMDS on registers which
6300         * we initialized or requested (sampling) so there is no risk there.
6301         */
6302        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6303
6304        /*
6305         * ALL accessible PMCs are systematically reloaded, unused registers
6306         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6307         * up stale configuration.
6308         *
6309         * PMC0 is never in the mask. It is always restored separately
6310         */
6311        pmc_mask = ctx->ctx_all_pmcs[0];
6312
6313        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6314        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6315
6316        /*
6317         * check for pending overflow at the time the state
6318         * was saved.
6319         */
6320        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6321                /*
6322                 * reload pmc0 with the overflow information
6323                 * On McKinley PMU, this will trigger a PMU interrupt
6324                 */
6325                ia64_set_pmc(0, ctx->th_pmcs[0]);
6326                ia64_srlz_d();
6327
6328                ctx->th_pmcs[0] = 0UL;
6329
6330                /*
6331                 * will replay the PMU interrupt
6332                 */
6333                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6334
6335                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6336        }
6337
6338        /*
6339         * establish new ownership. 
6340         */
6341        SET_PMU_OWNER(task, ctx);
6342
6343        /*
6344         * restore the psr.up bit. measurement
6345         * is active again.
6346         * no PMU interrupt can happen at this point
6347         * because we still have interrupts disabled.
6348         */
6349        if (likely(psr_up)) pfm_set_psr_up();
6350}
6351#endif /* CONFIG_SMP */
6352
6353/*
6354 * this function assumes monitoring is stopped
6355 */
6356static void
6357pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6358{
6359        u64 pmc0;
6360        unsigned long mask2, val, pmd_val, ovfl_val;
6361        int i, can_access_pmu = 0;
6362        int is_self;
6363
6364        /*
6365         * is the caller the task being monitored (or which initiated the
6366         * session for system wide measurements)
6367         */
6368        is_self = ctx->ctx_task == task ? 1 : 0;
6369
6370        /*
6371         * can access PMU is task is the owner of the PMU state on the current CPU
6372         * or if we are running on the CPU bound to the context in system-wide mode
6373         * (that is not necessarily the task the context is attached to in this mode).
6374         * In system-wide we always have can_access_pmu true because a task running on an
6375         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6376         */
6377        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6378        if (can_access_pmu) {
6379                /*
6380                 * Mark the PMU as not owned
6381                 * This will cause the interrupt handler to do nothing in case an overflow
6382                 * interrupt was in-flight
6383                 * This also guarantees that pmc0 will contain the final state
6384                 * It virtually gives us full control on overflow processing from that point
6385                 * on.
6386                 */
6387                SET_PMU_OWNER(NULL, NULL);
6388                DPRINT(("releasing ownership\n"));
6389
6390                /*
6391                 * read current overflow status:
6392                 *
6393                 * we are guaranteed to read the final stable state
6394                 */
6395                ia64_srlz_d();
6396                pmc0 = ia64_get_pmc(0); /* slow */
6397
6398                /*
6399                 * reset freeze bit, overflow status information destroyed
6400                 */
6401                pfm_unfreeze_pmu();
6402        } else {
6403                pmc0 = ctx->th_pmcs[0];
6404                /*
6405                 * clear whatever overflow status bits there were
6406                 */
6407                ctx->th_pmcs[0] = 0;
6408        }
6409        ovfl_val = pmu_conf->ovfl_val;
6410        /*
6411         * we save all the used pmds
6412         * we take care of overflows for counting PMDs
6413         *
6414         * XXX: sampling situation is not taken into account here
6415         */
6416        mask2 = ctx->ctx_used_pmds[0];
6417
6418        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6419
6420        for (i = 0; mask2; i++, mask2>>=1) {
6421
6422                /* skip non used pmds */
6423                if ((mask2 & 0x1) == 0) continue;
6424
6425                /*
6426                 * can access PMU always true in system wide mode
6427                 */
6428                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6429
6430                if (PMD_IS_COUNTING(i)) {
6431                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6432                                task_pid_nr(task),
6433                                i,
6434                                ctx->ctx_pmds[i].val,
6435                                val & ovfl_val));
6436
6437                        /*
6438                         * we rebuild the full 64 bit value of the counter
6439                         */
6440                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6441
6442                        /*
6443                         * now everything is in ctx_pmds[] and we need
6444                         * to clear the saved context from save_regs() such that
6445                         * pfm_read_pmds() gets the correct value
6446                         */
6447                        pmd_val = 0UL;
6448
6449                        /*
6450                         * take care of overflow inline
6451                         */
6452                        if (pmc0 & (1UL << i)) {
6453                                val += 1 + ovfl_val;
6454                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6455                        }
6456                }
6457
6458                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6459
6460                if (is_self) ctx->th_pmds[i] = pmd_val;
6461
6462                ctx->ctx_pmds[i].val = val;
6463        }
6464}
6465
6466static struct irqaction perfmon_irqaction = {
6467        .handler = pfm_interrupt_handler,
6468        .flags   = IRQF_DISABLED,
6469        .name    = "perfmon"
6470};
6471
6472static void
6473pfm_alt_save_pmu_state(void *data)
6474{
6475        struct pt_regs *regs;
6476
6477        regs = task_pt_regs(current);
6478
6479        DPRINT(("called\n"));
6480
6481        /*
6482         * should not be necessary but
6483         * let's take not risk
6484         */
6485        pfm_clear_psr_up();
6486        pfm_clear_psr_pp();
6487        ia64_psr(regs)->pp = 0;
6488
6489        /*
6490         * This call is required
6491         * May cause a spurious interrupt on some processors
6492         */
6493        pfm_freeze_pmu();
6494
6495        ia64_srlz_d();
6496}
6497
6498void
6499pfm_alt_restore_pmu_state(void *data)
6500{
6501        struct pt_regs *regs;
6502
6503        regs = task_pt_regs(current);
6504
6505        DPRINT(("called\n"));
6506
6507        /*
6508         * put PMU back in state expected
6509         * by perfmon
6510         */
6511        pfm_clear_psr_up();
6512        pfm_clear_psr_pp();
6513        ia64_psr(regs)->pp = 0;
6514
6515        /*
6516         * perfmon runs with PMU unfrozen at all times
6517         */
6518        pfm_unfreeze_pmu();
6519
6520        ia64_srlz_d();
6521}
6522
6523int
6524pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6525{
6526        int ret, i;
6527        int reserve_cpu;
6528
6529        /* some sanity checks */
6530        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6531
6532        /* do the easy test first */
6533        if (pfm_alt_intr_handler) return -EBUSY;
6534
6535        /* one at a time in the install or remove, just fail the others */
6536        if (!spin_trylock(&pfm_alt_install_check)) {
6537                return -EBUSY;
6538        }
6539
6540        /* reserve our session */
6541        for_each_online_cpu(reserve_cpu) {
6542                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6543                if (ret) goto cleanup_reserve;
6544        }
6545
6546        /* save the current system wide pmu states */
6547        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6548        if (ret) {
6549                DPRINT(("on_each_cpu() failed: %d\n", ret));
6550                goto cleanup_reserve;
6551        }
6552
6553        /* officially change to the alternate interrupt handler */
6554        pfm_alt_intr_handler = hdl;
6555
6556        spin_unlock(&pfm_alt_install_check);
6557
6558        return 0;
6559
6560cleanup_reserve:
6561        for_each_online_cpu(i) {
6562                /* don't unreserve more than we reserved */
6563                if (i >= reserve_cpu) break;
6564
6565                pfm_unreserve_session(NULL, 1, i);
6566        }
6567
6568        spin_unlock(&pfm_alt_install_check);
6569
6570        return ret;
6571}
6572EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6573
6574int
6575pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6576{
6577        int i;
6578        int ret;
6579
6580        if (hdl == NULL) return -EINVAL;
6581
6582        /* cannot remove someone else's handler! */
6583        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6584
6585        /* one at a time in the install or remove, just fail the others */
6586        if (!spin_trylock(&pfm_alt_install_check)) {
6587                return -EBUSY;
6588        }
6589
6590        pfm_alt_intr_handler = NULL;
6591
6592        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6593        if (ret) {
6594                DPRINT(("on_each_cpu() failed: %d\n", ret));
6595        }
6596
6597        for_each_online_cpu(i) {
6598                pfm_unreserve_session(NULL, 1, i);
6599        }
6600
6601        spin_unlock(&pfm_alt_install_check);
6602
6603        return 0;
6604}
6605EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6606
6607/*
6608 * perfmon initialization routine, called from the initcall() table
6609 */
6610static int init_pfm_fs(void);
6611
6612static int __init
6613pfm_probe_pmu(void)
6614{
6615        pmu_config_t **p;
6616        int family;
6617
6618        family = local_cpu_data->family;
6619        p      = pmu_confs;
6620
6621        while(*p) {
6622                if ((*p)->probe) {
6623                        if ((*p)->probe() == 0) goto found;
6624                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6625                        goto found;
6626                }
6627                p++;
6628        }
6629        return -1;
6630found:
6631        pmu_conf = *p;
6632        return 0;
6633}
6634
6635static const struct file_operations pfm_proc_fops = {
6636        .open           = pfm_proc_open,
6637        .read           = seq_read,
6638        .llseek         = seq_lseek,
6639        .release        = seq_release,
6640};
6641
6642int __init
6643pfm_init(void)
6644{
6645        unsigned int n, n_counters, i;
6646
6647        printk("perfmon: version %u.%u IRQ %u\n",
6648                PFM_VERSION_MAJ,
6649                PFM_VERSION_MIN,
6650                IA64_PERFMON_VECTOR);
6651
6652        if (pfm_probe_pmu()) {
6653                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6654                                local_cpu_data->family);
6655                return -ENODEV;
6656        }
6657
6658        /*
6659         * compute the number of implemented PMD/PMC from the
6660         * description tables
6661         */
6662        n = 0;
6663        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6664                if (PMC_IS_IMPL(i) == 0) continue;
6665                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6666                n++;
6667        }
6668        pmu_conf->num_pmcs = n;
6669
6670        n = 0; n_counters = 0;
6671        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6672                if (PMD_IS_IMPL(i) == 0) continue;
6673                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6674                n++;
6675                if (PMD_IS_COUNTING(i)) n_counters++;
6676        }
6677        pmu_conf->num_pmds      = n;
6678        pmu_conf->num_counters  = n_counters;
6679
6680        /*
6681         * sanity checks on the number of debug registers
6682         */
6683        if (pmu_conf->use_rr_dbregs) {
6684                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6685                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6686                        pmu_conf = NULL;
6687                        return -1;
6688                }
6689                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6690                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6691                        pmu_conf = NULL;
6692                        return -1;
6693                }
6694        }
6695
6696        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6697               pmu_conf->pmu_name,
6698               pmu_conf->num_pmcs,
6699               pmu_conf->num_pmds,
6700               pmu_conf->num_counters,
6701               ffz(pmu_conf->ovfl_val));
6702
6703        /* sanity check */
6704        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6705                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6706                pmu_conf = NULL;
6707                return -1;
6708        }
6709
6710        /*
6711         * create /proc/perfmon (mostly for debugging purposes)
6712         */
6713        perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6714        if (perfmon_dir == NULL) {
6715                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6716                pmu_conf = NULL;
6717                return -1;
6718        }
6719        /*
6720         * install customized file operations for /proc/perfmon entry
6721         */
6722        perfmon_dir->proc_fops = &pfm_proc_fops;
6723
6724        /*
6725         * create /proc/sys/kernel/perfmon (for debugging purposes)
6726         */
6727        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6728
6729        /*
6730         * initialize all our spinlocks
6731         */
6732        spin_lock_init(&pfm_sessions.pfs_lock);
6733        spin_lock_init(&pfm_buffer_fmt_lock);
6734
6735        init_pfm_fs();
6736
6737        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6738
6739        return 0;
6740}
6741
6742__initcall(pfm_init);
6743
6744/*
6745 * this function is called before pfm_init()
6746 */
6747void
6748pfm_init_percpu (void)
6749{
6750        static int first_time=1;
6751        /*
6752         * make sure no measurement is active
6753         * (may inherit programmed PMCs from EFI).
6754         */
6755        pfm_clear_psr_pp();
6756        pfm_clear_psr_up();
6757
6758        /*
6759         * we run with the PMU not frozen at all times
6760         */
6761        pfm_unfreeze_pmu();
6762
6763        if (first_time) {
6764                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6765                first_time=0;
6766        }
6767
6768        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6769        ia64_srlz_d();
6770}
6771
6772/*
6773 * used for debug purposes only
6774 */
6775void
6776dump_pmu_state(const char *from)
6777{
6778        struct task_struct *task;
6779        struct pt_regs *regs;
6780        pfm_context_t *ctx;
6781        unsigned long psr, dcr, info, flags;
6782        int i, this_cpu;
6783
6784        local_irq_save(flags);
6785
6786        this_cpu = smp_processor_id();
6787        regs     = task_pt_regs(current);
6788        info     = PFM_CPUINFO_GET();
6789        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6790
6791        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6792                local_irq_restore(flags);
6793                return;
6794        }
6795
6796        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6797                this_cpu, 
6798                from, 
6799                task_pid_nr(current),
6800                regs->cr_iip,
6801                current->comm);
6802
6803        task = GET_PMU_OWNER();
6804        ctx  = GET_PMU_CTX();
6805
6806        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6807
6808        psr = pfm_get_psr();
6809
6810        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6811                this_cpu,
6812                ia64_get_pmc(0),
6813                psr & IA64_PSR_PP ? 1 : 0,
6814                psr & IA64_PSR_UP ? 1 : 0,
6815                dcr & IA64_DCR_PP ? 1 : 0,
6816                info,
6817                ia64_psr(regs)->up,
6818                ia64_psr(regs)->pp);
6819
6820        ia64_psr(regs)->up = 0;
6821        ia64_psr(regs)->pp = 0;
6822
6823        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6824                if (PMC_IS_IMPL(i) == 0) continue;
6825                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6826        }
6827
6828        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6829                if (PMD_IS_IMPL(i) == 0) continue;
6830                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6831        }
6832
6833        if (ctx) {
6834                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6835                                this_cpu,
6836                                ctx->ctx_state,
6837                                ctx->ctx_smpl_vaddr,
6838                                ctx->ctx_smpl_hdr,
6839                                ctx->ctx_msgq_head,
6840                                ctx->ctx_msgq_tail,
6841                                ctx->ctx_saved_psr_up);
6842        }
6843        local_irq_restore(flags);
6844}
6845
6846/*
6847 * called from process.c:copy_thread(). task is new child.
6848 */
6849void
6850pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6851{
6852        struct thread_struct *thread;
6853
6854        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6855
6856        thread = &task->thread;
6857
6858        /*
6859         * cut links inherited from parent (current)
6860         */
6861        thread->pfm_context = NULL;
6862
6863        PFM_SET_WORK_PENDING(task, 0);
6864
6865        /*
6866         * the psr bits are already set properly in copy_threads()
6867         */
6868}
6869#else  /* !CONFIG_PERFMON */
6870asmlinkage long
6871sys_perfmonctl (int fd, int cmd, void *arg, int count)
6872{
6873        return -ENOSYS;
6874}
6875#endif /* CONFIG_PERFMON */
6876