linux/arch/ia64/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 *      Stephane Eranian <eranian@hpl.hp.com>
   7 * Copyright (C) 2000, 2004 Intel Corp
   8 *      Rohit Seth <rohit.seth@intel.com>
   9 *      Suresh Siddha <suresh.b.siddha@intel.com>
  10 *      Gordon Jin <gordon.jin@intel.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 *
  14 * 12/26/04 S.Siddha, G.Jin, R.Seth
  15 *                      Add multi-threading and multi-core detection
  16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18 * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
  19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20 * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
  21 * 01/07/99 S.Eranian   added the support for command line argument
  22 * 06/24/99 W.Drummond  added boot_cpu_data.
  23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24 */
  25#include <linux/module.h>
  26#include <linux/init.h>
  27
  28#include <linux/acpi.h>
  29#include <linux/bootmem.h>
  30#include <linux/console.h>
  31#include <linux/delay.h>
  32#include <linux/kernel.h>
  33#include <linux/reboot.h>
  34#include <linux/sched.h>
  35#include <linux/seq_file.h>
  36#include <linux/string.h>
  37#include <linux/threads.h>
  38#include <linux/screen_info.h>
  39#include <linux/dmi.h>
  40#include <linux/serial.h>
  41#include <linux/serial_core.h>
  42#include <linux/efi.h>
  43#include <linux/initrd.h>
  44#include <linux/pm.h>
  45#include <linux/cpufreq.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48
  49#include <asm/ia32.h>
  50#include <asm/machvec.h>
  51#include <asm/mca.h>
  52#include <asm/meminit.h>
  53#include <asm/page.h>
  54#include <asm/patch.h>
  55#include <asm/pgtable.h>
  56#include <asm/processor.h>
  57#include <asm/sal.h>
  58#include <asm/sections.h>
  59#include <asm/setup.h>
  60#include <asm/smp.h>
  61#include <asm/system.h>
  62#include <asm/unistd.h>
  63#include <asm/hpsim.h>
  64
  65#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  66# error "struct cpuinfo_ia64 too big!"
  67#endif
  68
  69#ifdef CONFIG_SMP
  70unsigned long __per_cpu_offset[NR_CPUS];
  71EXPORT_SYMBOL(__per_cpu_offset);
  72#endif
  73
  74extern void ia64_setup_printk_clock(void);
  75
  76DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  77DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  78unsigned long ia64_cycles_per_usec;
  79struct ia64_boot_param *ia64_boot_param;
  80struct screen_info screen_info;
  81unsigned long vga_console_iobase;
  82unsigned long vga_console_membase;
  83
  84static struct resource data_resource = {
  85        .name   = "Kernel data",
  86        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
  87};
  88
  89static struct resource code_resource = {
  90        .name   = "Kernel code",
  91        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
  92};
  93
  94static struct resource bss_resource = {
  95        .name   = "Kernel bss",
  96        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
  97};
  98
  99unsigned long ia64_max_cacheline_size;
 100
 101int dma_get_cache_alignment(void)
 102{
 103        return ia64_max_cacheline_size;
 104}
 105EXPORT_SYMBOL(dma_get_cache_alignment);
 106
 107unsigned long ia64_iobase;      /* virtual address for I/O accesses */
 108EXPORT_SYMBOL(ia64_iobase);
 109struct io_space io_space[MAX_IO_SPACES];
 110EXPORT_SYMBOL(io_space);
 111unsigned int num_io_spaces;
 112
 113/*
 114 * "flush_icache_range()" needs to know what processor dependent stride size to use
 115 * when it makes i-cache(s) coherent with d-caches.
 116 */
 117#define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
 118unsigned long ia64_i_cache_stride_shift = ~0;
 119
 120/*
 121 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 122 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 123 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 124 * address of the second buffer must be aligned to (merge_mask+1) in order to be
 125 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 126 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 127 * page-size of 2^64.
 128 */
 129unsigned long ia64_max_iommu_merge_mask = ~0UL;
 130EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 131
 132/*
 133 * We use a special marker for the end of memory and it uses the extra (+1) slot
 134 */
 135struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 136int num_rsvd_regions __initdata;
 137
 138
 139/*
 140 * Filter incoming memory segments based on the primitive map created from the boot
 141 * parameters. Segments contained in the map are removed from the memory ranges. A
 142 * caller-specified function is called with the memory ranges that remain after filtering.
 143 * This routine does not assume the incoming segments are sorted.
 144 */
 145int __init
 146filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
 147{
 148        unsigned long range_start, range_end, prev_start;
 149        void (*func)(unsigned long, unsigned long, int);
 150        int i;
 151
 152#if IGNORE_PFN0
 153        if (start == PAGE_OFFSET) {
 154                printk(KERN_WARNING "warning: skipping physical page 0\n");
 155                start += PAGE_SIZE;
 156                if (start >= end) return 0;
 157        }
 158#endif
 159        /*
 160         * lowest possible address(walker uses virtual)
 161         */
 162        prev_start = PAGE_OFFSET;
 163        func = arg;
 164
 165        for (i = 0; i < num_rsvd_regions; ++i) {
 166                range_start = max(start, prev_start);
 167                range_end   = min(end, rsvd_region[i].start);
 168
 169                if (range_start < range_end)
 170                        call_pernode_memory(__pa(range_start), range_end - range_start, func);
 171
 172                /* nothing more available in this segment */
 173                if (range_end == end) return 0;
 174
 175                prev_start = rsvd_region[i].end;
 176        }
 177        /* end of memory marker allows full processing inside loop body */
 178        return 0;
 179}
 180
 181static void __init
 182sort_regions (struct rsvd_region *rsvd_region, int max)
 183{
 184        int j;
 185
 186        /* simple bubble sorting */
 187        while (max--) {
 188                for (j = 0; j < max; ++j) {
 189                        if (rsvd_region[j].start > rsvd_region[j+1].start) {
 190                                struct rsvd_region tmp;
 191                                tmp = rsvd_region[j];
 192                                rsvd_region[j] = rsvd_region[j + 1];
 193                                rsvd_region[j + 1] = tmp;
 194                        }
 195                }
 196        }
 197}
 198
 199/*
 200 * Request address space for all standard resources
 201 */
 202static int __init register_memory(void)
 203{
 204        code_resource.start = ia64_tpa(_text);
 205        code_resource.end   = ia64_tpa(_etext) - 1;
 206        data_resource.start = ia64_tpa(_etext);
 207        data_resource.end   = ia64_tpa(_edata) - 1;
 208        bss_resource.start  = ia64_tpa(__bss_start);
 209        bss_resource.end    = ia64_tpa(_end) - 1;
 210        efi_initialize_iomem_resources(&code_resource, &data_resource,
 211                        &bss_resource);
 212
 213        return 0;
 214}
 215
 216__initcall(register_memory);
 217
 218
 219#ifdef CONFIG_KEXEC
 220static void __init setup_crashkernel(unsigned long total, int *n)
 221{
 222        unsigned long long base = 0, size = 0;
 223        int ret;
 224
 225        ret = parse_crashkernel(boot_command_line, total,
 226                        &size, &base);
 227        if (ret == 0 && size > 0) {
 228                if (!base) {
 229                        sort_regions(rsvd_region, *n);
 230                        base = kdump_find_rsvd_region(size,
 231                                        rsvd_region, *n);
 232                }
 233                if (base != ~0UL) {
 234                        printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 235                                        "for crashkernel (System RAM: %ldMB)\n",
 236                                        (unsigned long)(size >> 20),
 237                                        (unsigned long)(base >> 20),
 238                                        (unsigned long)(total >> 20));
 239                        rsvd_region[*n].start =
 240                                (unsigned long)__va(base);
 241                        rsvd_region[*n].end =
 242                                (unsigned long)__va(base + size);
 243                        (*n)++;
 244                        crashk_res.start = base;
 245                        crashk_res.end = base + size - 1;
 246                }
 247        }
 248        efi_memmap_res.start = ia64_boot_param->efi_memmap;
 249        efi_memmap_res.end = efi_memmap_res.start +
 250                ia64_boot_param->efi_memmap_size;
 251        boot_param_res.start = __pa(ia64_boot_param);
 252        boot_param_res.end = boot_param_res.start +
 253                sizeof(*ia64_boot_param);
 254}
 255#else
 256static inline void __init setup_crashkernel(unsigned long total, int *n)
 257{}
 258#endif
 259
 260/**
 261 * reserve_memory - setup reserved memory areas
 262 *
 263 * Setup the reserved memory areas set aside for the boot parameters,
 264 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 265 * see include/asm-ia64/meminit.h if you need to define more.
 266 */
 267void __init
 268reserve_memory (void)
 269{
 270        int n = 0;
 271        unsigned long total_memory;
 272
 273        /*
 274         * none of the entries in this table overlap
 275         */
 276        rsvd_region[n].start = (unsigned long) ia64_boot_param;
 277        rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 278        n++;
 279
 280        rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 281        rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 282        n++;
 283
 284        rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 285        rsvd_region[n].end   = (rsvd_region[n].start
 286                                + strlen(__va(ia64_boot_param->command_line)) + 1);
 287        n++;
 288
 289        rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 290        rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 291        n++;
 292
 293#ifdef CONFIG_BLK_DEV_INITRD
 294        if (ia64_boot_param->initrd_start) {
 295                rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 296                rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 297                n++;
 298        }
 299#endif
 300
 301#ifdef CONFIG_PROC_VMCORE
 302        if (reserve_elfcorehdr(&rsvd_region[n].start,
 303                               &rsvd_region[n].end) == 0)
 304                n++;
 305#endif
 306
 307        total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 308        n++;
 309
 310        setup_crashkernel(total_memory, &n);
 311
 312        /* end of memory marker */
 313        rsvd_region[n].start = ~0UL;
 314        rsvd_region[n].end   = ~0UL;
 315        n++;
 316
 317        num_rsvd_regions = n;
 318        BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 319
 320        sort_regions(rsvd_region, num_rsvd_regions);
 321}
 322
 323
 324/**
 325 * find_initrd - get initrd parameters from the boot parameter structure
 326 *
 327 * Grab the initrd start and end from the boot parameter struct given us by
 328 * the boot loader.
 329 */
 330void __init
 331find_initrd (void)
 332{
 333#ifdef CONFIG_BLK_DEV_INITRD
 334        if (ia64_boot_param->initrd_start) {
 335                initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 336                initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 337
 338                printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
 339                       initrd_start, ia64_boot_param->initrd_size);
 340        }
 341#endif
 342}
 343
 344static void __init
 345io_port_init (void)
 346{
 347        unsigned long phys_iobase;
 348
 349        /*
 350         * Set `iobase' based on the EFI memory map or, failing that, the
 351         * value firmware left in ar.k0.
 352         *
 353         * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 354         * the port's virtual address, so ia32_load_state() loads it with a
 355         * user virtual address.  But in ia64 mode, glibc uses the
 356         * *physical* address in ar.k0 to mmap the appropriate area from
 357         * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 358         * cases, user-mode can only use the legacy 0-64K I/O port space.
 359         *
 360         * ar.k0 is not involved in kernel I/O port accesses, which can use
 361         * any of the I/O port spaces and are done via MMIO using the
 362         * virtual mmio_base from the appropriate io_space[].
 363         */
 364        phys_iobase = efi_get_iobase();
 365        if (!phys_iobase) {
 366                phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 367                printk(KERN_INFO "No I/O port range found in EFI memory map, "
 368                        "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 369        }
 370        ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 371        ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 372
 373        /* setup legacy IO port space */
 374        io_space[0].mmio_base = ia64_iobase;
 375        io_space[0].sparse = 1;
 376        num_io_spaces = 1;
 377}
 378
 379/**
 380 * early_console_setup - setup debugging console
 381 *
 382 * Consoles started here require little enough setup that we can start using
 383 * them very early in the boot process, either right after the machine
 384 * vector initialization, or even before if the drivers can detect their hw.
 385 *
 386 * Returns non-zero if a console couldn't be setup.
 387 */
 388static inline int __init
 389early_console_setup (char *cmdline)
 390{
 391        int earlycons = 0;
 392
 393#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 394        {
 395                extern int sn_serial_console_early_setup(void);
 396                if (!sn_serial_console_early_setup())
 397                        earlycons++;
 398        }
 399#endif
 400#ifdef CONFIG_EFI_PCDP
 401        if (!efi_setup_pcdp_console(cmdline))
 402                earlycons++;
 403#endif
 404        if (!simcons_register())
 405                earlycons++;
 406
 407        return (earlycons) ? 0 : -1;
 408}
 409
 410static inline void
 411mark_bsp_online (void)
 412{
 413#ifdef CONFIG_SMP
 414        /* If we register an early console, allow CPU 0 to printk */
 415        cpu_set(smp_processor_id(), cpu_online_map);
 416#endif
 417}
 418
 419static __initdata int nomca;
 420static __init int setup_nomca(char *s)
 421{
 422        nomca = 1;
 423        return 0;
 424}
 425early_param("nomca", setup_nomca);
 426
 427#ifdef CONFIG_PROC_VMCORE
 428/* elfcorehdr= specifies the location of elf core header
 429 * stored by the crashed kernel.
 430 */
 431static int __init parse_elfcorehdr(char *arg)
 432{
 433        if (!arg)
 434                return -EINVAL;
 435
 436        elfcorehdr_addr = memparse(arg, &arg);
 437        return 0;
 438}
 439early_param("elfcorehdr", parse_elfcorehdr);
 440
 441int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
 442{
 443        unsigned long length;
 444
 445        /* We get the address using the kernel command line,
 446         * but the size is extracted from the EFI tables.
 447         * Both address and size are required for reservation
 448         * to work properly.
 449         */
 450
 451        if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
 452                return -EINVAL;
 453
 454        if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 455                elfcorehdr_addr = ELFCORE_ADDR_MAX;
 456                return -EINVAL;
 457        }
 458
 459        *start = (unsigned long)__va(elfcorehdr_addr);
 460        *end = *start + length;
 461        return 0;
 462}
 463
 464#endif /* CONFIG_PROC_VMCORE */
 465
 466void __init
 467setup_arch (char **cmdline_p)
 468{
 469        unw_init();
 470
 471        ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 472
 473        *cmdline_p = __va(ia64_boot_param->command_line);
 474        strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 475
 476        efi_init();
 477        io_port_init();
 478
 479#ifdef CONFIG_IA64_GENERIC
 480        /* machvec needs to be parsed from the command line
 481         * before parse_early_param() is called to ensure
 482         * that ia64_mv is initialised before any command line
 483         * settings may cause console setup to occur
 484         */
 485        machvec_init_from_cmdline(*cmdline_p);
 486#endif
 487
 488        parse_early_param();
 489
 490        if (early_console_setup(*cmdline_p) == 0)
 491                mark_bsp_online();
 492
 493#ifdef CONFIG_ACPI
 494        /* Initialize the ACPI boot-time table parser */
 495        acpi_table_init();
 496# ifdef CONFIG_ACPI_NUMA
 497        acpi_numa_init();
 498# endif
 499#else
 500# ifdef CONFIG_SMP
 501        smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
 502# endif
 503#endif /* CONFIG_APCI_BOOT */
 504
 505        find_memory();
 506
 507        /* process SAL system table: */
 508        ia64_sal_init(__va(efi.sal_systab));
 509
 510        ia64_setup_printk_clock();
 511
 512#ifdef CONFIG_SMP
 513        cpu_physical_id(0) = hard_smp_processor_id();
 514#endif
 515
 516        cpu_init();     /* initialize the bootstrap CPU */
 517        mmu_context_init();     /* initialize context_id bitmap */
 518
 519        check_sal_cache_flush();
 520
 521#ifdef CONFIG_ACPI
 522        acpi_boot_init();
 523#endif
 524
 525#ifdef CONFIG_VT
 526        if (!conswitchp) {
 527# if defined(CONFIG_DUMMY_CONSOLE)
 528                conswitchp = &dummy_con;
 529# endif
 530# if defined(CONFIG_VGA_CONSOLE)
 531                /*
 532                 * Non-legacy systems may route legacy VGA MMIO range to system
 533                 * memory.  vga_con probes the MMIO hole, so memory looks like
 534                 * a VGA device to it.  The EFI memory map can tell us if it's
 535                 * memory so we can avoid this problem.
 536                 */
 537                if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 538                        conswitchp = &vga_con;
 539# endif
 540        }
 541#endif
 542
 543        /* enable IA-64 Machine Check Abort Handling unless disabled */
 544        if (!nomca)
 545                ia64_mca_init();
 546
 547        platform_setup(cmdline_p);
 548        paging_init();
 549}
 550
 551/*
 552 * Display cpu info for all CPUs.
 553 */
 554static int
 555show_cpuinfo (struct seq_file *m, void *v)
 556{
 557#ifdef CONFIG_SMP
 558#       define lpj      c->loops_per_jiffy
 559#       define cpunum   c->cpu
 560#else
 561#       define lpj      loops_per_jiffy
 562#       define cpunum   0
 563#endif
 564        static struct {
 565                unsigned long mask;
 566                const char *feature_name;
 567        } feature_bits[] = {
 568                { 1UL << 0, "branchlong" },
 569                { 1UL << 1, "spontaneous deferral"},
 570                { 1UL << 2, "16-byte atomic ops" }
 571        };
 572        char features[128], *cp, *sep;
 573        struct cpuinfo_ia64 *c = v;
 574        unsigned long mask;
 575        unsigned long proc_freq;
 576        int i, size;
 577
 578        mask = c->features;
 579
 580        /* build the feature string: */
 581        memcpy(features, "standard", 9);
 582        cp = features;
 583        size = sizeof(features);
 584        sep = "";
 585        for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 586                if (mask & feature_bits[i].mask) {
 587                        cp += snprintf(cp, size, "%s%s", sep,
 588                                       feature_bits[i].feature_name),
 589                        sep = ", ";
 590                        mask &= ~feature_bits[i].mask;
 591                        size = sizeof(features) - (cp - features);
 592                }
 593        }
 594        if (mask && size > 1) {
 595                /* print unknown features as a hex value */
 596                snprintf(cp, size, "%s0x%lx", sep, mask);
 597        }
 598
 599        proc_freq = cpufreq_quick_get(cpunum);
 600        if (!proc_freq)
 601                proc_freq = c->proc_freq / 1000;
 602
 603        seq_printf(m,
 604                   "processor  : %d\n"
 605                   "vendor     : %s\n"
 606                   "arch       : IA-64\n"
 607                   "family     : %u\n"
 608                   "model      : %u\n"
 609                   "model name : %s\n"
 610                   "revision   : %u\n"
 611                   "archrev    : %u\n"
 612                   "features   : %s\n"
 613                   "cpu number : %lu\n"
 614                   "cpu regs   : %u\n"
 615                   "cpu MHz    : %lu.%03lu\n"
 616                   "itc MHz    : %lu.%06lu\n"
 617                   "BogoMIPS   : %lu.%02lu\n",
 618                   cpunum, c->vendor, c->family, c->model,
 619                   c->model_name, c->revision, c->archrev,
 620                   features, c->ppn, c->number,
 621                   proc_freq / 1000, proc_freq % 1000,
 622                   c->itc_freq / 1000000, c->itc_freq % 1000000,
 623                   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 624#ifdef CONFIG_SMP
 625        seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
 626        if (c->socket_id != -1)
 627                seq_printf(m, "physical id: %u\n", c->socket_id);
 628        if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 629                seq_printf(m,
 630                           "core id    : %u\n"
 631                           "thread id  : %u\n",
 632                           c->core_id, c->thread_id);
 633#endif
 634        seq_printf(m,"\n");
 635
 636        return 0;
 637}
 638
 639static void *
 640c_start (struct seq_file *m, loff_t *pos)
 641{
 642#ifdef CONFIG_SMP
 643        while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
 644                ++*pos;
 645#endif
 646        return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
 647}
 648
 649static void *
 650c_next (struct seq_file *m, void *v, loff_t *pos)
 651{
 652        ++*pos;
 653        return c_start(m, pos);
 654}
 655
 656static void
 657c_stop (struct seq_file *m, void *v)
 658{
 659}
 660
 661struct seq_operations cpuinfo_op = {
 662        .start =        c_start,
 663        .next =         c_next,
 664        .stop =         c_stop,
 665        .show =         show_cpuinfo
 666};
 667
 668#define MAX_BRANDS      8
 669static char brandname[MAX_BRANDS][128];
 670
 671static char * __cpuinit
 672get_model_name(__u8 family, __u8 model)
 673{
 674        static int overflow;
 675        char brand[128];
 676        int i;
 677
 678        memcpy(brand, "Unknown", 8);
 679        if (ia64_pal_get_brand_info(brand)) {
 680                if (family == 0x7)
 681                        memcpy(brand, "Merced", 7);
 682                else if (family == 0x1f) switch (model) {
 683                        case 0: memcpy(brand, "McKinley", 9); break;
 684                        case 1: memcpy(brand, "Madison", 8); break;
 685                        case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 686                }
 687        }
 688        for (i = 0; i < MAX_BRANDS; i++)
 689                if (strcmp(brandname[i], brand) == 0)
 690                        return brandname[i];
 691        for (i = 0; i < MAX_BRANDS; i++)
 692                if (brandname[i][0] == '\0')
 693                        return strcpy(brandname[i], brand);
 694        if (overflow++ == 0)
 695                printk(KERN_ERR
 696                       "%s: Table overflow. Some processor model information will be missing\n",
 697                       __FUNCTION__);
 698        return "Unknown";
 699}
 700
 701static void __cpuinit
 702identify_cpu (struct cpuinfo_ia64 *c)
 703{
 704        union {
 705                unsigned long bits[5];
 706                struct {
 707                        /* id 0 & 1: */
 708                        char vendor[16];
 709
 710                        /* id 2 */
 711                        u64 ppn;                /* processor serial number */
 712
 713                        /* id 3: */
 714                        unsigned number         :  8;
 715                        unsigned revision       :  8;
 716                        unsigned model          :  8;
 717                        unsigned family         :  8;
 718                        unsigned archrev        :  8;
 719                        unsigned reserved       : 24;
 720
 721                        /* id 4: */
 722                        u64 features;
 723                } field;
 724        } cpuid;
 725        pal_vm_info_1_u_t vm1;
 726        pal_vm_info_2_u_t vm2;
 727        pal_status_t status;
 728        unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
 729        int i;
 730        for (i = 0; i < 5; ++i)
 731                cpuid.bits[i] = ia64_get_cpuid(i);
 732
 733        memcpy(c->vendor, cpuid.field.vendor, 16);
 734#ifdef CONFIG_SMP
 735        c->cpu = smp_processor_id();
 736
 737        /* below default values will be overwritten  by identify_siblings() 
 738         * for Multi-Threading/Multi-Core capable CPUs
 739         */
 740        c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 741        c->socket_id = -1;
 742
 743        identify_siblings(c);
 744
 745        if (c->threads_per_core > smp_num_siblings)
 746                smp_num_siblings = c->threads_per_core;
 747#endif
 748        c->ppn = cpuid.field.ppn;
 749        c->number = cpuid.field.number;
 750        c->revision = cpuid.field.revision;
 751        c->model = cpuid.field.model;
 752        c->family = cpuid.field.family;
 753        c->archrev = cpuid.field.archrev;
 754        c->features = cpuid.field.features;
 755        c->model_name = get_model_name(c->family, c->model);
 756
 757        status = ia64_pal_vm_summary(&vm1, &vm2);
 758        if (status == PAL_STATUS_SUCCESS) {
 759                impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 760                phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 761        }
 762        c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 763        c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 764}
 765
 766void __init
 767setup_per_cpu_areas (void)
 768{
 769        /* start_kernel() requires this... */
 770#ifdef CONFIG_ACPI_HOTPLUG_CPU
 771        prefill_possible_map();
 772#endif
 773}
 774
 775/*
 776 * Calculate the max. cache line size.
 777 *
 778 * In addition, the minimum of the i-cache stride sizes is calculated for
 779 * "flush_icache_range()".
 780 */
 781static void __cpuinit
 782get_max_cacheline_size (void)
 783{
 784        unsigned long line_size, max = 1;
 785        u64 l, levels, unique_caches;
 786        pal_cache_config_info_t cci;
 787        s64 status;
 788
 789        status = ia64_pal_cache_summary(&levels, &unique_caches);
 790        if (status != 0) {
 791                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 792                       __FUNCTION__, status);
 793                max = SMP_CACHE_BYTES;
 794                /* Safest setup for "flush_icache_range()" */
 795                ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 796                goto out;
 797        }
 798
 799        for (l = 0; l < levels; ++l) {
 800                status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
 801                                                    &cci);
 802                if (status != 0) {
 803                        printk(KERN_ERR
 804                               "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
 805                               __FUNCTION__, l, status);
 806                        max = SMP_CACHE_BYTES;
 807                        /* The safest setup for "flush_icache_range()" */
 808                        cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 809                        cci.pcci_unified = 1;
 810                }
 811                line_size = 1 << cci.pcci_line_size;
 812                if (line_size > max)
 813                        max = line_size;
 814                if (!cci.pcci_unified) {
 815                        status = ia64_pal_cache_config_info(l,
 816                                                    /* cache_type (instruction)= */ 1,
 817                                                    &cci);
 818                        if (status != 0) {
 819                                printk(KERN_ERR
 820                                "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
 821                                        __FUNCTION__, l, status);
 822                                /* The safest setup for "flush_icache_range()" */
 823                                cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 824                        }
 825                }
 826                if (cci.pcci_stride < ia64_i_cache_stride_shift)
 827                        ia64_i_cache_stride_shift = cci.pcci_stride;
 828        }
 829  out:
 830        if (max > ia64_max_cacheline_size)
 831                ia64_max_cacheline_size = max;
 832}
 833
 834/*
 835 * cpu_init() initializes state that is per-CPU.  This function acts
 836 * as a 'CPU state barrier', nothing should get across.
 837 */
 838void __cpuinit
 839cpu_init (void)
 840{
 841        extern void __cpuinit ia64_mmu_init (void *);
 842        static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 843        unsigned long num_phys_stacked;
 844        pal_vm_info_2_u_t vmi;
 845        unsigned int max_ctx;
 846        struct cpuinfo_ia64 *cpu_info;
 847        void *cpu_data;
 848
 849        cpu_data = per_cpu_init();
 850#ifdef CONFIG_SMP
 851        /*
 852         * insert boot cpu into sibling and core mapes
 853         * (must be done after per_cpu area is setup)
 854         */
 855        if (smp_processor_id() == 0) {
 856                cpu_set(0, per_cpu(cpu_sibling_map, 0));
 857                cpu_set(0, cpu_core_map[0]);
 858        }
 859#endif
 860
 861        /*
 862         * We set ar.k3 so that assembly code in MCA handler can compute
 863         * physical addresses of per cpu variables with a simple:
 864         *   phys = ar.k3 + &per_cpu_var
 865         */
 866        ia64_set_kr(IA64_KR_PER_CPU_DATA,
 867                    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 868
 869        get_max_cacheline_size();
 870
 871        /*
 872         * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 873         * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 874         * depends on the data returned by identify_cpu().  We break the dependency by
 875         * accessing cpu_data() through the canonical per-CPU address.
 876         */
 877        cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
 878        identify_cpu(cpu_info);
 879
 880#ifdef CONFIG_MCKINLEY
 881        {
 882#               define FEATURE_SET 16
 883                struct ia64_pal_retval iprv;
 884
 885                if (cpu_info->family == 0x1f) {
 886                        PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 887                        if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 888                                PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 889                                              (iprv.v1 | 0x80), FEATURE_SET, 0);
 890                }
 891        }
 892#endif
 893
 894        /* Clear the stack memory reserved for pt_regs: */
 895        memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 896
 897        ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 898
 899        /*
 900         * Initialize the page-table base register to a global
 901         * directory with all zeroes.  This ensure that we can handle
 902         * TLB-misses to user address-space even before we created the
 903         * first user address-space.  This may happen, e.g., due to
 904         * aggressive use of lfetch.fault.
 905         */
 906        ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 907
 908        /*
 909         * Initialize default control register to defer speculative faults except
 910         * for those arising from TLB misses, which are not deferred.  The
 911         * kernel MUST NOT depend on a particular setting of these bits (in other words,
 912         * the kernel must have recovery code for all speculative accesses).  Turn on
 913         * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 914         * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 915         * be fine).
 916         */
 917        ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
 918                                        | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
 919        atomic_inc(&init_mm.mm_count);
 920        current->active_mm = &init_mm;
 921        if (current->mm)
 922                BUG();
 923
 924        ia64_mmu_init(ia64_imva(cpu_data));
 925        ia64_mca_cpu_init(ia64_imva(cpu_data));
 926
 927#ifdef CONFIG_IA32_SUPPORT
 928        ia32_cpu_init();
 929#endif
 930
 931        /* Clear ITC to eliminate sched_clock() overflows in human time.  */
 932        ia64_set_itc(0);
 933
 934        /* disable all local interrupt sources: */
 935        ia64_set_itv(1 << 16);
 936        ia64_set_lrr0(1 << 16);
 937        ia64_set_lrr1(1 << 16);
 938        ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
 939        ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
 940
 941        /* clear TPR & XTP to enable all interrupt classes: */
 942        ia64_setreg(_IA64_REG_CR_TPR, 0);
 943
 944        /* Clear any pending interrupts left by SAL/EFI */
 945        while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
 946                ia64_eoi();
 947
 948#ifdef CONFIG_SMP
 949        normal_xtp();
 950#endif
 951
 952        /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
 953        if (ia64_pal_vm_summary(NULL, &vmi) == 0)
 954                max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
 955        else {
 956                printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
 957                max_ctx = (1U << 15) - 1;       /* use architected minimum */
 958        }
 959        while (max_ctx < ia64_ctx.max_ctx) {
 960                unsigned int old = ia64_ctx.max_ctx;
 961                if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
 962                        break;
 963        }
 964
 965        if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
 966                printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
 967                       "stacked regs\n");
 968                num_phys_stacked = 96;
 969        }
 970        /* size of physical stacked register partition plus 8 bytes: */
 971        if (num_phys_stacked > max_num_phys_stacked) {
 972                ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
 973                max_num_phys_stacked = num_phys_stacked;
 974        }
 975        platform_cpu_init();
 976        pm_idle = default_idle;
 977}
 978
 979void __init
 980check_bugs (void)
 981{
 982        ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
 983                               (unsigned long) __end___mckinley_e9_bundles);
 984}
 985
 986static int __init run_dmi_scan(void)
 987{
 988        dmi_scan_machine();
 989        return 0;
 990}
 991core_initcall(run_dmi_scan);
 992