linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/mm.h>
  14#include <linux/mmzone.h>
  15#include <linux/module.h>
  16#include <linux/personality.h>
  17#include <linux/reboot.h>
  18#include <linux/slab.h>
  19#include <linux/swap.h>
  20#include <linux/proc_fs.h>
  21#include <linux/bitops.h>
  22#include <linux/kexec.h>
  23
  24#include <asm/a.out.h>
  25#include <asm/dma.h>
  26#include <asm/ia32.h>
  27#include <asm/io.h>
  28#include <asm/machvec.h>
  29#include <asm/numa.h>
  30#include <asm/patch.h>
  31#include <asm/pgalloc.h>
  32#include <asm/sal.h>
  33#include <asm/sections.h>
  34#include <asm/system.h>
  35#include <asm/tlb.h>
  36#include <asm/uaccess.h>
  37#include <asm/unistd.h>
  38#include <asm/mca.h>
  39
  40DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  41
  42extern void ia64_tlb_init (void);
  43
  44unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  45
  46#ifdef CONFIG_VIRTUAL_MEM_MAP
  47unsigned long vmalloc_end = VMALLOC_END_INIT;
  48EXPORT_SYMBOL(vmalloc_end);
  49struct page *vmem_map;
  50EXPORT_SYMBOL(vmem_map);
  51#endif
  52
  53struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  54EXPORT_SYMBOL(zero_page_memmap_ptr);
  55
  56void
  57__ia64_sync_icache_dcache (pte_t pte)
  58{
  59        unsigned long addr;
  60        struct page *page;
  61        unsigned long order;
  62
  63        page = pte_page(pte);
  64        addr = (unsigned long) page_address(page);
  65
  66        if (test_bit(PG_arch_1, &page->flags))
  67                return;                         /* i-cache is already coherent with d-cache */
  68
  69        if (PageCompound(page)) {
  70                order = compound_order(page);
  71                flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
  72        }
  73        else
  74                flush_icache_range(addr, addr + PAGE_SIZE);
  75        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  76}
  77
  78/*
  79 * Since DMA is i-cache coherent, any (complete) pages that were written via
  80 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  81 * flush them when they get mapped into an executable vm-area.
  82 */
  83void
  84dma_mark_clean(void *addr, size_t size)
  85{
  86        unsigned long pg_addr, end;
  87
  88        pg_addr = PAGE_ALIGN((unsigned long) addr);
  89        end = (unsigned long) addr + size;
  90        while (pg_addr + PAGE_SIZE <= end) {
  91                struct page *page = virt_to_page(pg_addr);
  92                set_bit(PG_arch_1, &page->flags);
  93                pg_addr += PAGE_SIZE;
  94        }
  95}
  96
  97inline void
  98ia64_set_rbs_bot (void)
  99{
 100        unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
 101
 102        if (stack_size > MAX_USER_STACK_SIZE)
 103                stack_size = MAX_USER_STACK_SIZE;
 104        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
 105}
 106
 107/*
 108 * This performs some platform-dependent address space initialization.
 109 * On IA-64, we want to setup the VM area for the register backing
 110 * store (which grows upwards) and install the gateway page which is
 111 * used for signal trampolines, etc.
 112 */
 113void
 114ia64_init_addr_space (void)
 115{
 116        struct vm_area_struct *vma;
 117
 118        ia64_set_rbs_bot();
 119
 120        /*
 121         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 122         * the problem.  When the process attempts to write to the register backing store
 123         * for the first time, it will get a SEGFAULT in this case.
 124         */
 125        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 126        if (vma) {
 127                vma->vm_mm = current->mm;
 128                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 129                vma->vm_end = vma->vm_start + PAGE_SIZE;
 130                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 131                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 132                down_write(&current->mm->mmap_sem);
 133                if (insert_vm_struct(current->mm, vma)) {
 134                        up_write(&current->mm->mmap_sem);
 135                        kmem_cache_free(vm_area_cachep, vma);
 136                        return;
 137                }
 138                up_write(&current->mm->mmap_sem);
 139        }
 140
 141        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 142        if (!(current->personality & MMAP_PAGE_ZERO)) {
 143                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 144                if (vma) {
 145                        vma->vm_mm = current->mm;
 146                        vma->vm_end = PAGE_SIZE;
 147                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 148                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
 149                        down_write(&current->mm->mmap_sem);
 150                        if (insert_vm_struct(current->mm, vma)) {
 151                                up_write(&current->mm->mmap_sem);
 152                                kmem_cache_free(vm_area_cachep, vma);
 153                                return;
 154                        }
 155                        up_write(&current->mm->mmap_sem);
 156                }
 157        }
 158}
 159
 160void
 161free_initmem (void)
 162{
 163        unsigned long addr, eaddr;
 164
 165        addr = (unsigned long) ia64_imva(__init_begin);
 166        eaddr = (unsigned long) ia64_imva(__init_end);
 167        while (addr < eaddr) {
 168                ClearPageReserved(virt_to_page(addr));
 169                init_page_count(virt_to_page(addr));
 170                free_page(addr);
 171                ++totalram_pages;
 172                addr += PAGE_SIZE;
 173        }
 174        printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
 175               (__init_end - __init_begin) >> 10);
 176}
 177
 178void __init
 179free_initrd_mem (unsigned long start, unsigned long end)
 180{
 181        struct page *page;
 182        /*
 183         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 184         * Thus EFI and the kernel may have different page sizes. It is
 185         * therefore possible to have the initrd share the same page as
 186         * the end of the kernel (given current setup).
 187         *
 188         * To avoid freeing/using the wrong page (kernel sized) we:
 189         *      - align up the beginning of initrd
 190         *      - align down the end of initrd
 191         *
 192         *  |             |
 193         *  |=============| a000
 194         *  |             |
 195         *  |             |
 196         *  |             | 9000
 197         *  |/////////////|
 198         *  |/////////////|
 199         *  |=============| 8000
 200         *  |///INITRD////|
 201         *  |/////////////|
 202         *  |/////////////| 7000
 203         *  |             |
 204         *  |KKKKKKKKKKKKK|
 205         *  |=============| 6000
 206         *  |KKKKKKKKKKKKK|
 207         *  |KKKKKKKKKKKKK|
 208         *  K=kernel using 8KB pages
 209         *
 210         * In this example, we must free page 8000 ONLY. So we must align up
 211         * initrd_start and keep initrd_end as is.
 212         */
 213        start = PAGE_ALIGN(start);
 214        end = end & PAGE_MASK;
 215
 216        if (start < end)
 217                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 218
 219        for (; start < end; start += PAGE_SIZE) {
 220                if (!virt_addr_valid(start))
 221                        continue;
 222                page = virt_to_page(start);
 223                ClearPageReserved(page);
 224                init_page_count(page);
 225                free_page(start);
 226                ++totalram_pages;
 227        }
 228}
 229
 230/*
 231 * This installs a clean page in the kernel's page table.
 232 */
 233static struct page * __init
 234put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 235{
 236        pgd_t *pgd;
 237        pud_t *pud;
 238        pmd_t *pmd;
 239        pte_t *pte;
 240
 241        if (!PageReserved(page))
 242                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 243                       page_address(page));
 244
 245        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 246
 247        {
 248                pud = pud_alloc(&init_mm, pgd, address);
 249                if (!pud)
 250                        goto out;
 251                pmd = pmd_alloc(&init_mm, pud, address);
 252                if (!pmd)
 253                        goto out;
 254                pte = pte_alloc_kernel(pmd, address);
 255                if (!pte)
 256                        goto out;
 257                if (!pte_none(*pte))
 258                        goto out;
 259                set_pte(pte, mk_pte(page, pgprot));
 260        }
 261  out:
 262        /* no need for flush_tlb */
 263        return page;
 264}
 265
 266static void __init
 267setup_gate (void)
 268{
 269        struct page *page;
 270
 271        /*
 272         * Map the gate page twice: once read-only to export the ELF
 273         * headers etc. and once execute-only page to enable
 274         * privilege-promotion via "epc":
 275         */
 276        page = virt_to_page(ia64_imva(__start_gate_section));
 277        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 278#ifdef HAVE_BUGGY_SEGREL
 279        page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 280        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 281#else
 282        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 283        /* Fill in the holes (if any) with read-only zero pages: */
 284        {
 285                unsigned long addr;
 286
 287                for (addr = GATE_ADDR + PAGE_SIZE;
 288                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 289                     addr += PAGE_SIZE)
 290                {
 291                        put_kernel_page(ZERO_PAGE(0), addr,
 292                                        PAGE_READONLY);
 293                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 294                                        PAGE_READONLY);
 295                }
 296        }
 297#endif
 298        ia64_patch_gate();
 299}
 300
 301void __devinit
 302ia64_mmu_init (void *my_cpu_data)
 303{
 304        unsigned long pta, impl_va_bits;
 305        extern void __devinit tlb_init (void);
 306
 307#ifdef CONFIG_DISABLE_VHPT
 308#       define VHPT_ENABLE_BIT  0
 309#else
 310#       define VHPT_ENABLE_BIT  1
 311#endif
 312
 313        /*
 314         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 315         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 316         * virtual address space are implemented but if we pick a large enough page size
 317         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 318         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 319         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 320         * problem in practice.  Alternatively, we could truncate the top of the mapped
 321         * address space to not permit mappings that would overlap with the VMLPT.
 322         * --davidm 00/12/06
 323         */
 324#       define pte_bits                 3
 325#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 326        /*
 327         * The virtual page table has to cover the entire implemented address space within
 328         * a region even though not all of this space may be mappable.  The reason for
 329         * this is that the Access bit and Dirty bit fault handlers perform
 330         * non-speculative accesses to the virtual page table, so the address range of the
 331         * virtual page table itself needs to be covered by virtual page table.
 332         */
 333#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 334#       define POW2(n)                  (1ULL << (n))
 335
 336        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 337
 338        if (impl_va_bits < 51 || impl_va_bits > 61)
 339                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 340        /*
 341         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 342         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 343         * the test makes sure that our mapped space doesn't overlap the
 344         * unimplemented hole in the middle of the region.
 345         */
 346        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 347            (mapped_space_bits > impl_va_bits - 1))
 348                panic("Cannot build a big enough virtual-linear page table"
 349                      " to cover mapped address space.\n"
 350                      " Try using a smaller page size.\n");
 351
 352
 353        /* place the VMLPT at the end of each page-table mapped region: */
 354        pta = POW2(61) - POW2(vmlpt_bits);
 355
 356        /*
 357         * Set the (virtually mapped linear) page table address.  Bit
 358         * 8 selects between the short and long format, bits 2-7 the
 359         * size of the table, and bit 0 whether the VHPT walker is
 360         * enabled.
 361         */
 362        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 363
 364        ia64_tlb_init();
 365
 366#ifdef  CONFIG_HUGETLB_PAGE
 367        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 368        ia64_srlz_d();
 369#endif
 370}
 371
 372#ifdef CONFIG_VIRTUAL_MEM_MAP
 373int vmemmap_find_next_valid_pfn(int node, int i)
 374{
 375        unsigned long end_address, hole_next_pfn;
 376        unsigned long stop_address;
 377        pg_data_t *pgdat = NODE_DATA(node);
 378
 379        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 380        end_address = PAGE_ALIGN(end_address);
 381
 382        stop_address = (unsigned long) &vmem_map[
 383                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 384
 385        do {
 386                pgd_t *pgd;
 387                pud_t *pud;
 388                pmd_t *pmd;
 389                pte_t *pte;
 390
 391                pgd = pgd_offset_k(end_address);
 392                if (pgd_none(*pgd)) {
 393                        end_address += PGDIR_SIZE;
 394                        continue;
 395                }
 396
 397                pud = pud_offset(pgd, end_address);
 398                if (pud_none(*pud)) {
 399                        end_address += PUD_SIZE;
 400                        continue;
 401                }
 402
 403                pmd = pmd_offset(pud, end_address);
 404                if (pmd_none(*pmd)) {
 405                        end_address += PMD_SIZE;
 406                        continue;
 407                }
 408
 409                pte = pte_offset_kernel(pmd, end_address);
 410retry_pte:
 411                if (pte_none(*pte)) {
 412                        end_address += PAGE_SIZE;
 413                        pte++;
 414                        if ((end_address < stop_address) &&
 415                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 416                                goto retry_pte;
 417                        continue;
 418                }
 419                /* Found next valid vmem_map page */
 420                break;
 421        } while (end_address < stop_address);
 422
 423        end_address = min(end_address, stop_address);
 424        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 425        hole_next_pfn = end_address / sizeof(struct page);
 426        return hole_next_pfn - pgdat->node_start_pfn;
 427}
 428
 429int __init
 430create_mem_map_page_table (u64 start, u64 end, void *arg)
 431{
 432        unsigned long address, start_page, end_page;
 433        struct page *map_start, *map_end;
 434        int node;
 435        pgd_t *pgd;
 436        pud_t *pud;
 437        pmd_t *pmd;
 438        pte_t *pte;
 439
 440        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 441        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 442
 443        start_page = (unsigned long) map_start & PAGE_MASK;
 444        end_page = PAGE_ALIGN((unsigned long) map_end);
 445        node = paddr_to_nid(__pa(start));
 446
 447        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 448                pgd = pgd_offset_k(address);
 449                if (pgd_none(*pgd))
 450                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 451                pud = pud_offset(pgd, address);
 452
 453                if (pud_none(*pud))
 454                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 455                pmd = pmd_offset(pud, address);
 456
 457                if (pmd_none(*pmd))
 458                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 459                pte = pte_offset_kernel(pmd, address);
 460
 461                if (pte_none(*pte))
 462                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 463                                             PAGE_KERNEL));
 464        }
 465        return 0;
 466}
 467
 468struct memmap_init_callback_data {
 469        struct page *start;
 470        struct page *end;
 471        int nid;
 472        unsigned long zone;
 473};
 474
 475static int __meminit
 476virtual_memmap_init (u64 start, u64 end, void *arg)
 477{
 478        struct memmap_init_callback_data *args;
 479        struct page *map_start, *map_end;
 480
 481        args = (struct memmap_init_callback_data *) arg;
 482        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 483        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 484
 485        if (map_start < args->start)
 486                map_start = args->start;
 487        if (map_end > args->end)
 488                map_end = args->end;
 489
 490        /*
 491         * We have to initialize "out of bounds" struct page elements that fit completely
 492         * on the same pages that were allocated for the "in bounds" elements because they
 493         * may be referenced later (and found to be "reserved").
 494         */
 495        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 496        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 497                    / sizeof(struct page));
 498
 499        if (map_start < map_end)
 500                memmap_init_zone((unsigned long)(map_end - map_start),
 501                                 args->nid, args->zone, page_to_pfn(map_start),
 502                                 MEMMAP_EARLY);
 503        return 0;
 504}
 505
 506void __meminit
 507memmap_init (unsigned long size, int nid, unsigned long zone,
 508             unsigned long start_pfn)
 509{
 510        if (!vmem_map)
 511                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 512        else {
 513                struct page *start;
 514                struct memmap_init_callback_data args;
 515
 516                start = pfn_to_page(start_pfn);
 517                args.start = start;
 518                args.end = start + size;
 519                args.nid = nid;
 520                args.zone = zone;
 521
 522                efi_memmap_walk(virtual_memmap_init, &args);
 523        }
 524}
 525
 526int
 527ia64_pfn_valid (unsigned long pfn)
 528{
 529        char byte;
 530        struct page *pg = pfn_to_page(pfn);
 531
 532        return     (__get_user(byte, (char __user *) pg) == 0)
 533                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 534                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 535}
 536EXPORT_SYMBOL(ia64_pfn_valid);
 537
 538int __init
 539find_largest_hole (u64 start, u64 end, void *arg)
 540{
 541        u64 *max_gap = arg;
 542
 543        static u64 last_end = PAGE_OFFSET;
 544
 545        /* NOTE: this algorithm assumes efi memmap table is ordered */
 546
 547        if (*max_gap < (start - last_end))
 548                *max_gap = start - last_end;
 549        last_end = end;
 550        return 0;
 551}
 552
 553#endif /* CONFIG_VIRTUAL_MEM_MAP */
 554
 555int __init
 556register_active_ranges(u64 start, u64 end, void *arg)
 557{
 558        int nid = paddr_to_nid(__pa(start));
 559
 560        if (nid < 0)
 561                nid = 0;
 562#ifdef CONFIG_KEXEC
 563        if (start > crashk_res.start && start < crashk_res.end)
 564                start = crashk_res.end;
 565        if (end > crashk_res.start && end < crashk_res.end)
 566                end = crashk_res.start;
 567#endif
 568
 569        if (start < end)
 570                add_active_range(nid, __pa(start) >> PAGE_SHIFT,
 571                        __pa(end) >> PAGE_SHIFT);
 572        return 0;
 573}
 574
 575static int __init
 576count_reserved_pages (u64 start, u64 end, void *arg)
 577{
 578        unsigned long num_reserved = 0;
 579        unsigned long *count = arg;
 580
 581        for (; start < end; start += PAGE_SIZE)
 582                if (PageReserved(virt_to_page(start)))
 583                        ++num_reserved;
 584        *count += num_reserved;
 585        return 0;
 586}
 587
 588int
 589find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
 590{
 591        unsigned long pfn_start, pfn_end;
 592#ifdef CONFIG_FLATMEM
 593        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 594        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 595#else
 596        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 597        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 598#endif
 599        min_low_pfn = min(min_low_pfn, pfn_start);
 600        max_low_pfn = max(max_low_pfn, pfn_end);
 601        return 0;
 602}
 603
 604/*
 605 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 606 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 607 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 608 * useful for performance testing, but conceivably could also come in handy for debugging
 609 * purposes.
 610 */
 611
 612static int nolwsys __initdata;
 613
 614static int __init
 615nolwsys_setup (char *s)
 616{
 617        nolwsys = 1;
 618        return 1;
 619}
 620
 621__setup("nolwsys", nolwsys_setup);
 622
 623void __init
 624mem_init (void)
 625{
 626        long reserved_pages, codesize, datasize, initsize;
 627        pg_data_t *pgdat;
 628        int i;
 629        static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
 630
 631        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 632        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 633        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 634
 635#ifdef CONFIG_PCI
 636        /*
 637         * This needs to be called _after_ the command line has been parsed but _before_
 638         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 639         * been freed.
 640         */
 641        platform_dma_init();
 642#endif
 643
 644#ifdef CONFIG_FLATMEM
 645        if (!mem_map)
 646                BUG();
 647        max_mapnr = max_low_pfn;
 648#endif
 649
 650        high_memory = __va(max_low_pfn * PAGE_SIZE);
 651
 652        kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
 653        kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
 654        kclist_add(&kcore_kernel, _stext, _end - _stext);
 655
 656        for_each_online_pgdat(pgdat)
 657                if (pgdat->bdata->node_bootmem_map)
 658                        totalram_pages += free_all_bootmem_node(pgdat);
 659
 660        reserved_pages = 0;
 661        efi_memmap_walk(count_reserved_pages, &reserved_pages);
 662
 663        codesize =  (unsigned long) _etext - (unsigned long) _stext;
 664        datasize =  (unsigned long) _edata - (unsigned long) _etext;
 665        initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
 666
 667        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
 668               "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
 669               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
 670               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
 671
 672
 673        /*
 674         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 675         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 676         * code can tell them apart.
 677         */
 678        for (i = 0; i < NR_syscalls; ++i) {
 679                extern unsigned long fsyscall_table[NR_syscalls];
 680                extern unsigned long sys_call_table[NR_syscalls];
 681
 682                if (!fsyscall_table[i] || nolwsys)
 683                        fsyscall_table[i] = sys_call_table[i] | 1;
 684        }
 685        setup_gate();
 686
 687#ifdef CONFIG_IA32_SUPPORT
 688        ia32_mem_init();
 689#endif
 690}
 691
 692#ifdef CONFIG_MEMORY_HOTPLUG
 693void online_page(struct page *page)
 694{
 695        ClearPageReserved(page);
 696        init_page_count(page);
 697        __free_page(page);
 698        totalram_pages++;
 699        num_physpages++;
 700}
 701
 702int arch_add_memory(int nid, u64 start, u64 size)
 703{
 704        pg_data_t *pgdat;
 705        struct zone *zone;
 706        unsigned long start_pfn = start >> PAGE_SHIFT;
 707        unsigned long nr_pages = size >> PAGE_SHIFT;
 708        int ret;
 709
 710        pgdat = NODE_DATA(nid);
 711
 712        zone = pgdat->node_zones + ZONE_NORMAL;
 713        ret = __add_pages(zone, start_pfn, nr_pages);
 714
 715        if (ret)
 716                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 717                       __FUNCTION__,  ret);
 718
 719        return ret;
 720}
 721#ifdef CONFIG_MEMORY_HOTREMOVE
 722int remove_memory(u64 start, u64 size)
 723{
 724        unsigned long start_pfn, end_pfn;
 725        unsigned long timeout = 120 * HZ;
 726        int ret;
 727        start_pfn = start >> PAGE_SHIFT;
 728        end_pfn = start_pfn + (size >> PAGE_SHIFT);
 729        ret = offline_pages(start_pfn, end_pfn, timeout);
 730        if (ret)
 731                goto out;
 732        /* we can free mem_map at this point */
 733out:
 734        return ret;
 735}
 736EXPORT_SYMBOL_GPL(remove_memory);
 737#endif /* CONFIG_MEMORY_HOTREMOVE */
 738#endif
 739