linux/arch/ia64/sn/kernel/bte.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (c) 2000-2007 Silicon Graphics, Inc.  All Rights Reserved.
   7 */
   8
   9#include <linux/module.h>
  10#include <asm/sn/nodepda.h>
  11#include <asm/sn/addrs.h>
  12#include <asm/sn/arch.h>
  13#include <asm/sn/sn_cpuid.h>
  14#include <asm/sn/pda.h>
  15#include <asm/sn/shubio.h>
  16#include <asm/nodedata.h>
  17#include <asm/delay.h>
  18
  19#include <linux/bootmem.h>
  20#include <linux/string.h>
  21#include <linux/sched.h>
  22
  23#include <asm/sn/bte.h>
  24
  25#ifndef L1_CACHE_MASK
  26#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
  27#endif
  28
  29/* two interfaces on two btes */
  30#define MAX_INTERFACES_TO_TRY           4
  31#define MAX_NODES_TO_TRY                2
  32
  33static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
  34{
  35        nodepda_t *tmp_nodepda;
  36
  37        if (nasid_to_cnodeid(nasid) == -1)
  38                return (struct bteinfo_s *)NULL;
  39
  40        tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
  41        return &tmp_nodepda->bte_if[interface];
  42
  43}
  44
  45static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
  46{
  47        if (is_shub2()) {
  48                BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
  49        } else {
  50                BTE_LNSTAT_STORE(bte, len);
  51                BTE_CTRL_STORE(bte, mode);
  52        }
  53}
  54
  55/************************************************************************
  56 * Block Transfer Engine copy related functions.
  57 *
  58 ***********************************************************************/
  59
  60/*
  61 * bte_copy(src, dest, len, mode, notification)
  62 *
  63 * Use the block transfer engine to move kernel memory from src to dest
  64 * using the assigned mode.
  65 *
  66 * Parameters:
  67 *   src - physical address of the transfer source.
  68 *   dest - physical address of the transfer destination.
  69 *   len - number of bytes to transfer from source to dest.
  70 *   mode - hardware defined.  See reference information
  71 *          for IBCT0/1 in the SHUB Programmers Reference
  72 *   notification - kernel virtual address of the notification cache
  73 *                  line.  If NULL, the default is used and
  74 *                  the bte_copy is synchronous.
  75 *
  76 * NOTE:  This function requires src, dest, and len to
  77 * be cacheline aligned.
  78 */
  79bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
  80{
  81        u64 transfer_size;
  82        u64 transfer_stat;
  83        u64 notif_phys_addr;
  84        struct bteinfo_s *bte;
  85        bte_result_t bte_status;
  86        unsigned long irq_flags;
  87        unsigned long itc_end = 0;
  88        int nasid_to_try[MAX_NODES_TO_TRY];
  89        int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
  90        int bte_if_index, nasid_index;
  91        int bte_first, btes_per_node = BTES_PER_NODE;
  92
  93        BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
  94                    src, dest, len, mode, notification));
  95
  96        if (len == 0) {
  97                return BTE_SUCCESS;
  98        }
  99
 100        BUG_ON((len & L1_CACHE_MASK) ||
 101                 (src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
 102        BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
 103
 104        /*
 105         * Start with interface corresponding to cpu number
 106         */
 107        bte_first = raw_smp_processor_id() % btes_per_node;
 108
 109        if (mode & BTE_USE_DEST) {
 110                /* try remote then local */
 111                nasid_to_try[0] = NASID_GET(dest);
 112                if (mode & BTE_USE_ANY) {
 113                        nasid_to_try[1] = my_nasid;
 114                } else {
 115                        nasid_to_try[1] = (int)NULL;
 116                }
 117        } else {
 118                /* try local then remote */
 119                nasid_to_try[0] = my_nasid;
 120                if (mode & BTE_USE_ANY) {
 121                        nasid_to_try[1] = NASID_GET(dest);
 122                } else {
 123                        nasid_to_try[1] = (int)NULL;
 124                }
 125        }
 126
 127retry_bteop:
 128        do {
 129                local_irq_save(irq_flags);
 130
 131                bte_if_index = bte_first;
 132                nasid_index = 0;
 133
 134                /* Attempt to lock one of the BTE interfaces. */
 135                while (nasid_index < MAX_NODES_TO_TRY) {
 136                        bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
 137
 138                        if (bte == NULL) {
 139                                nasid_index++;
 140                                continue;
 141                        }
 142
 143                        if (spin_trylock(&bte->spinlock)) {
 144                                if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
 145                                    (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
 146                                        /* Got the lock but BTE still busy */
 147                                        spin_unlock(&bte->spinlock);
 148                                } else {
 149                                        /* we got the lock and it's not busy */
 150                                        break;
 151                                }
 152                        }
 153
 154                        bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
 155                        if (bte_if_index == bte_first) {
 156                                /*
 157                                 * We've tried all interfaces on this node
 158                                 */
 159                                nasid_index++;
 160                        }
 161
 162                        bte = NULL;
 163                }
 164
 165                if (bte != NULL) {
 166                        break;
 167                }
 168
 169                local_irq_restore(irq_flags);
 170
 171                if (!(mode & BTE_WACQUIRE)) {
 172                        return BTEFAIL_NOTAVAIL;
 173                }
 174        } while (1);
 175
 176        if (notification == NULL) {
 177                /* User does not want to be notified. */
 178                bte->most_rcnt_na = &bte->notify;
 179        } else {
 180                bte->most_rcnt_na = notification;
 181        }
 182
 183        /* Calculate the number of cache lines to transfer. */
 184        transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
 185
 186        /* Initialize the notification to a known value. */
 187        *bte->most_rcnt_na = BTE_WORD_BUSY;
 188        notif_phys_addr = (u64)bte->most_rcnt_na;
 189
 190        /* Set the source and destination registers */
 191        BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
 192        BTE_SRC_STORE(bte, src);
 193        BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
 194        BTE_DEST_STORE(bte, dest);
 195
 196        /* Set the notification register */
 197        BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
 198        BTE_NOTIF_STORE(bte, notif_phys_addr);
 199
 200        /* Initiate the transfer */
 201        BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
 202        bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
 203
 204        itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
 205
 206        spin_unlock_irqrestore(&bte->spinlock, irq_flags);
 207
 208        if (notification != NULL) {
 209                return BTE_SUCCESS;
 210        }
 211
 212        while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
 213                cpu_relax();
 214                if (ia64_get_itc() > itc_end) {
 215                        BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
 216                                NASID_GET(bte->bte_base_addr), bte->bte_num,
 217                                BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
 218                        bte->bte_error_count++;
 219                        bte->bh_error = IBLS_ERROR;
 220                        bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
 221                        *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
 222                        goto retry_bteop;
 223                }
 224        }
 225
 226        BTE_PRINTKV((" Delay Done.  IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
 227                     BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
 228
 229        if (transfer_stat & IBLS_ERROR) {
 230                bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
 231        } else {
 232                bte_status = BTE_SUCCESS;
 233        }
 234        *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
 235
 236        BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
 237                    BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
 238
 239        return bte_status;
 240}
 241
 242EXPORT_SYMBOL(bte_copy);
 243
 244/*
 245 * bte_unaligned_copy(src, dest, len, mode)
 246 *
 247 * use the block transfer engine to move kernel
 248 * memory from src to dest using the assigned mode.
 249 *
 250 * Parameters:
 251 *   src - physical address of the transfer source.
 252 *   dest - physical address of the transfer destination.
 253 *   len - number of bytes to transfer from source to dest.
 254 *   mode - hardware defined.  See reference information
 255 *          for IBCT0/1 in the SGI documentation.
 256 *
 257 * NOTE: If the source, dest, and len are all cache line aligned,
 258 * then it would be _FAR_ preferable to use bte_copy instead.
 259 */
 260bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
 261{
 262        int destFirstCacheOffset;
 263        u64 headBteSource;
 264        u64 headBteLen;
 265        u64 headBcopySrcOffset;
 266        u64 headBcopyDest;
 267        u64 headBcopyLen;
 268        u64 footBteSource;
 269        u64 footBteLen;
 270        u64 footBcopyDest;
 271        u64 footBcopyLen;
 272        bte_result_t rv;
 273        char *bteBlock, *bteBlock_unaligned;
 274
 275        if (len == 0) {
 276                return BTE_SUCCESS;
 277        }
 278
 279        /* temporary buffer used during unaligned transfers */
 280        bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
 281        if (bteBlock_unaligned == NULL) {
 282                return BTEFAIL_NOTAVAIL;
 283        }
 284        bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
 285
 286        headBcopySrcOffset = src & L1_CACHE_MASK;
 287        destFirstCacheOffset = dest & L1_CACHE_MASK;
 288
 289        /*
 290         * At this point, the transfer is broken into
 291         * (up to) three sections.  The first section is
 292         * from the start address to the first physical
 293         * cache line, the second is from the first physical
 294         * cache line to the last complete cache line,
 295         * and the third is from the last cache line to the
 296         * end of the buffer.  The first and third sections
 297         * are handled by bte copying into a temporary buffer
 298         * and then bcopy'ing the necessary section into the
 299         * final location.  The middle section is handled with
 300         * a standard bte copy.
 301         *
 302         * One nasty exception to the above rule is when the
 303         * source and destination are not symmetrically
 304         * mis-aligned.  If the source offset from the first
 305         * cache line is different from the destination offset,
 306         * we make the first section be the entire transfer
 307         * and the bcopy the entire block into place.
 308         */
 309        if (headBcopySrcOffset == destFirstCacheOffset) {
 310
 311                /*
 312                 * Both the source and destination are the same
 313                 * distance from a cache line boundary so we can
 314                 * use the bte to transfer the bulk of the
 315                 * data.
 316                 */
 317                headBteSource = src & ~L1_CACHE_MASK;
 318                headBcopyDest = dest;
 319                if (headBcopySrcOffset) {
 320                        headBcopyLen =
 321                            (len >
 322                             (L1_CACHE_BYTES -
 323                              headBcopySrcOffset) ? L1_CACHE_BYTES
 324                             - headBcopySrcOffset : len);
 325                        headBteLen = L1_CACHE_BYTES;
 326                } else {
 327                        headBcopyLen = 0;
 328                        headBteLen = 0;
 329                }
 330
 331                if (len > headBcopyLen) {
 332                        footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
 333                        footBteLen = L1_CACHE_BYTES;
 334
 335                        footBteSource = src + len - footBcopyLen;
 336                        footBcopyDest = dest + len - footBcopyLen;
 337
 338                        if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
 339                                /*
 340                                 * We have two contiguous bcopy
 341                                 * blocks.  Merge them.
 342                                 */
 343                                headBcopyLen += footBcopyLen;
 344                                headBteLen += footBteLen;
 345                        } else if (footBcopyLen > 0) {
 346                                rv = bte_copy(footBteSource,
 347                                              ia64_tpa((unsigned long)bteBlock),
 348                                              footBteLen, mode, NULL);
 349                                if (rv != BTE_SUCCESS) {
 350                                        kfree(bteBlock_unaligned);
 351                                        return rv;
 352                                }
 353
 354                                memcpy(__va(footBcopyDest),
 355                                       (char *)bteBlock, footBcopyLen);
 356                        }
 357                } else {
 358                        footBcopyLen = 0;
 359                        footBteLen = 0;
 360                }
 361
 362                if (len > (headBcopyLen + footBcopyLen)) {
 363                        /* now transfer the middle. */
 364                        rv = bte_copy((src + headBcopyLen),
 365                                      (dest +
 366                                       headBcopyLen),
 367                                      (len - headBcopyLen -
 368                                       footBcopyLen), mode, NULL);
 369                        if (rv != BTE_SUCCESS) {
 370                                kfree(bteBlock_unaligned);
 371                                return rv;
 372                        }
 373
 374                }
 375        } else {
 376
 377                /*
 378                 * The transfer is not symmetric, we will
 379                 * allocate a buffer large enough for all the
 380                 * data, bte_copy into that buffer and then
 381                 * bcopy to the destination.
 382                 */
 383
 384                headBcopySrcOffset = src & L1_CACHE_MASK;
 385                headBcopyDest = dest;
 386                headBcopyLen = len;
 387
 388                headBteSource = src - headBcopySrcOffset;
 389                /* Add the leading and trailing bytes from source */
 390                headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
 391        }
 392
 393        if (headBcopyLen > 0) {
 394                rv = bte_copy(headBteSource,
 395                              ia64_tpa((unsigned long)bteBlock), headBteLen,
 396                              mode, NULL);
 397                if (rv != BTE_SUCCESS) {
 398                        kfree(bteBlock_unaligned);
 399                        return rv;
 400                }
 401
 402                memcpy(__va(headBcopyDest), ((char *)bteBlock +
 403                                             headBcopySrcOffset), headBcopyLen);
 404        }
 405        kfree(bteBlock_unaligned);
 406        return BTE_SUCCESS;
 407}
 408
 409EXPORT_SYMBOL(bte_unaligned_copy);
 410
 411/************************************************************************
 412 * Block Transfer Engine initialization functions.
 413 *
 414 ***********************************************************************/
 415
 416/*
 417 * bte_init_node(nodepda, cnode)
 418 *
 419 * Initialize the nodepda structure with BTE base addresses and
 420 * spinlocks.
 421 */
 422void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
 423{
 424        int i;
 425
 426        /*
 427         * Indicate that all the block transfer engines on this node
 428         * are available.
 429         */
 430
 431        /*
 432         * Allocate one bte_recover_t structure per node.  It holds
 433         * the recovery lock for node.  All the bte interface structures
 434         * will point at this one bte_recover structure to get the lock.
 435         */
 436        spin_lock_init(&mynodepda->bte_recovery_lock);
 437        init_timer(&mynodepda->bte_recovery_timer);
 438        mynodepda->bte_recovery_timer.function = bte_error_handler;
 439        mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
 440
 441        for (i = 0; i < BTES_PER_NODE; i++) {
 442                u64 *base_addr;
 443
 444                /* Which link status register should we use? */
 445                base_addr = (u64 *)
 446                    REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
 447                mynodepda->bte_if[i].bte_base_addr = base_addr;
 448                mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
 449                mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
 450                mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
 451                mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
 452
 453                /*
 454                 * Initialize the notification and spinlock
 455                 * so the first transfer can occur.
 456                 */
 457                mynodepda->bte_if[i].most_rcnt_na =
 458                    &(mynodepda->bte_if[i].notify);
 459                mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
 460                spin_lock_init(&mynodepda->bte_if[i].spinlock);
 461
 462                mynodepda->bte_if[i].bte_cnode = cnode;
 463                mynodepda->bte_if[i].bte_error_count = 0;
 464                mynodepda->bte_if[i].bte_num = i;
 465                mynodepda->bte_if[i].cleanup_active = 0;
 466                mynodepda->bte_if[i].bh_error = 0;
 467        }
 468
 469}
 470