linux/arch/m32r/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/m32r/kernel/time.c
   3 *
   4 *  Copyright (c) 2001, 2002  Hiroyuki Kondo, Hirokazu Takata,
   5 *                            Hitoshi Yamamoto
   6 *  Taken from i386 version.
   7 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
   8 *    Copyright (C) 1996, 1997, 1998  Ralf Baechle
   9 *
  10 *  This file contains the time handling details for PC-style clocks as
  11 *  found in some MIPS systems.
  12 *
  13 *  Some code taken from sh version.
  14 *    Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
  15 *    Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
  16 */
  17
  18#undef  DEBUG_TIMER
  19
  20#include <linux/errno.h>
  21#include <linux/init.h>
  22#include <linux/module.h>
  23#include <linux/sched.h>
  24#include <linux/kernel.h>
  25#include <linux/param.h>
  26#include <linux/string.h>
  27#include <linux/mm.h>
  28#include <linux/interrupt.h>
  29#include <linux/profile.h>
  30
  31#include <asm/io.h>
  32#include <asm/m32r.h>
  33
  34#include <asm/hw_irq.h>
  35
  36#ifdef CONFIG_SMP
  37extern void send_IPI_allbutself(int, int);
  38extern void smp_local_timer_interrupt(void);
  39#endif
  40
  41#define TICK_SIZE       (tick_nsec / 1000)
  42
  43/*
  44 * Change this if you have some constant time drift
  45 */
  46
  47/* This is for machines which generate the exact clock. */
  48#define USECS_PER_JIFFY (1000000/HZ)
  49
  50static unsigned long latch;
  51
  52static unsigned long do_gettimeoffset(void)
  53{
  54        unsigned long  elapsed_time = 0;  /* [us] */
  55
  56#if defined(CONFIG_CHIP_M32102) || defined(CONFIG_CHIP_XNUX2) \
  57        || defined(CONFIG_CHIP_VDEC2) || defined(CONFIG_CHIP_M32700) \
  58        || defined(CONFIG_CHIP_OPSP) || defined(CONFIG_CHIP_M32104)
  59#ifndef CONFIG_SMP
  60
  61        unsigned long count;
  62
  63        /* timer count may underflow right here */
  64        count = inl(M32R_MFT2CUT_PORTL);
  65
  66        if (inl(M32R_ICU_CR18_PORTL) & 0x00000100)      /* underflow check */
  67                count = 0;
  68
  69        count = (latch - count) * TICK_SIZE;
  70        elapsed_time = (count + latch / 2) / latch;
  71        /* NOTE: LATCH is equal to the "interval" value (= reload count). */
  72
  73#else /* CONFIG_SMP */
  74        unsigned long count;
  75        static unsigned long p_jiffies = -1;
  76        static unsigned long p_count = 0;
  77
  78        /* timer count may underflow right here */
  79        count = inl(M32R_MFT2CUT_PORTL);
  80
  81        if (jiffies == p_jiffies && count > p_count)
  82                count = 0;
  83
  84        p_jiffies = jiffies;
  85        p_count = count;
  86
  87        count = (latch - count) * TICK_SIZE;
  88        elapsed_time = (count + latch / 2) / latch;
  89        /* NOTE: LATCH is equal to the "interval" value (= reload count). */
  90#endif /* CONFIG_SMP */
  91#elif defined(CONFIG_CHIP_M32310)
  92#warning do_gettimeoffse not implemented
  93#else
  94#error no chip configuration
  95#endif
  96
  97        return elapsed_time;
  98}
  99
 100/*
 101 * This version of gettimeofday has near microsecond resolution.
 102 */
 103void do_gettimeofday(struct timeval *tv)
 104{
 105        unsigned long seq;
 106        unsigned long usec, sec;
 107        unsigned long max_ntp_tick = tick_usec - tickadj;
 108
 109        do {
 110                seq = read_seqbegin(&xtime_lock);
 111
 112                usec = do_gettimeoffset();
 113
 114                /*
 115                 * If time_adjust is negative then NTP is slowing the clock
 116                 * so make sure not to go into next possible interval.
 117                 * Better to lose some accuracy than have time go backwards..
 118                 */
 119                if (unlikely(time_adjust < 0))
 120                        usec = min(usec, max_ntp_tick);
 121
 122                sec = xtime.tv_sec;
 123                usec += (xtime.tv_nsec / 1000);
 124        } while (read_seqretry(&xtime_lock, seq));
 125
 126        while (usec >= 1000000) {
 127                usec -= 1000000;
 128                sec++;
 129        }
 130
 131        tv->tv_sec = sec;
 132        tv->tv_usec = usec;
 133}
 134
 135EXPORT_SYMBOL(do_gettimeofday);
 136
 137int do_settimeofday(struct timespec *tv)
 138{
 139        time_t wtm_sec, sec = tv->tv_sec;
 140        long wtm_nsec, nsec = tv->tv_nsec;
 141
 142        if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
 143                return -EINVAL;
 144
 145        write_seqlock_irq(&xtime_lock);
 146        /*
 147         * This is revolting. We need to set "xtime" correctly. However, the
 148         * value in this location is the value at the most recent update of
 149         * wall time.  Discover what correction gettimeofday() would have
 150         * made, and then undo it!
 151         */
 152        nsec -= do_gettimeoffset() * NSEC_PER_USEC;
 153
 154        wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
 155        wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
 156
 157        set_normalized_timespec(&xtime, sec, nsec);
 158        set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
 159
 160        ntp_clear();
 161        write_sequnlock_irq(&xtime_lock);
 162        clock_was_set();
 163
 164        return 0;
 165}
 166
 167EXPORT_SYMBOL(do_settimeofday);
 168
 169/*
 170 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 171 * called 500 ms after the second nowtime has started, because when
 172 * nowtime is written into the registers of the CMOS clock, it will
 173 * jump to the next second precisely 500 ms later. Check the Motorola
 174 * MC146818A or Dallas DS12887 data sheet for details.
 175 *
 176 * BUG: This routine does not handle hour overflow properly; it just
 177 *      sets the minutes. Usually you won't notice until after reboot!
 178 */
 179static inline int set_rtc_mmss(unsigned long nowtime)
 180{
 181        return 0;
 182}
 183
 184/* last time the cmos clock got updated */
 185static long last_rtc_update = 0;
 186
 187/*
 188 * timer_interrupt() needs to keep up the real-time clock,
 189 * as well as call the "do_timer()" routine every clocktick
 190 */
 191irqreturn_t timer_interrupt(int irq, void *dev_id)
 192{
 193#ifndef CONFIG_SMP
 194        profile_tick(CPU_PROFILING);
 195#endif
 196        do_timer(1);
 197
 198#ifndef CONFIG_SMP
 199        update_process_times(user_mode(get_irq_regs()));
 200#endif
 201        /*
 202         * If we have an externally synchronized Linux clock, then update
 203         * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 204         * called as close as possible to 500 ms before the new second starts.
 205         */
 206        write_seqlock(&xtime_lock);
 207        if (ntp_synced()
 208                && xtime.tv_sec > last_rtc_update + 660
 209                && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned)TICK_SIZE) / 2
 210                && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned)TICK_SIZE) / 2)
 211        {
 212                if (set_rtc_mmss(xtime.tv_sec) == 0)
 213                        last_rtc_update = xtime.tv_sec;
 214                else    /* do it again in 60 s */
 215                        last_rtc_update = xtime.tv_sec - 600;
 216        }
 217        write_sequnlock(&xtime_lock);
 218        /* As we return to user mode fire off the other CPU schedulers..
 219           this is basically because we don't yet share IRQ's around.
 220           This message is rigged to be safe on the 386 - basically it's
 221           a hack, so don't look closely for now.. */
 222
 223#ifdef CONFIG_SMP
 224        smp_local_timer_interrupt();
 225        smp_send_timer();
 226#endif
 227
 228        return IRQ_HANDLED;
 229}
 230
 231struct irqaction irq0 = {
 232        .handler = timer_interrupt,
 233        .flags = IRQF_DISABLED,
 234        .mask = CPU_MASK_NONE,
 235        .name = "MFT2",
 236};
 237
 238void __init time_init(void)
 239{
 240        unsigned int epoch, year, mon, day, hour, min, sec;
 241
 242        sec = min = hour = day = mon = year = 0;
 243        epoch = 0;
 244
 245        year = 23;
 246        mon = 4;
 247        day = 17;
 248
 249        /* Attempt to guess the epoch.  This is the same heuristic as in rtc.c
 250           so no stupid things will happen to timekeeping.  Who knows, maybe
 251           Ultrix also uses 1952 as epoch ...  */
 252        if (year > 10 && year < 44)
 253                epoch = 1980;
 254        else if (year < 96)
 255                epoch = 1952;
 256        year += epoch;
 257
 258        xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
 259        xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
 260        set_normalized_timespec(&wall_to_monotonic,
 261                -xtime.tv_sec, -xtime.tv_nsec);
 262
 263#if defined(CONFIG_CHIP_M32102) || defined(CONFIG_CHIP_XNUX2) \
 264        || defined(CONFIG_CHIP_VDEC2) || defined(CONFIG_CHIP_M32700) \
 265        || defined(CONFIG_CHIP_OPSP) || defined(CONFIG_CHIP_M32104)
 266
 267        /* M32102 MFT setup */
 268        setup_irq(M32R_IRQ_MFT2, &irq0);
 269        {
 270                unsigned long bus_clock;
 271                unsigned short divide;
 272
 273                bus_clock = boot_cpu_data.bus_clock;
 274                divide = boot_cpu_data.timer_divide;
 275                latch = (bus_clock/divide + HZ / 2) / HZ;
 276
 277                printk("Timer start : latch = %ld\n", latch);
 278
 279                outl((M32R_MFTMOD_CC_MASK | M32R_MFTMOD_TCCR \
 280                        |M32R_MFTMOD_CSSEL011), M32R_MFT2MOD_PORTL);
 281                outl(latch, M32R_MFT2RLD_PORTL);
 282                outl(latch, M32R_MFT2CUT_PORTL);
 283                outl(0, M32R_MFT2CMPRLD_PORTL);
 284                outl((M32R_MFTCR_MFT2MSK|M32R_MFTCR_MFT2EN), M32R_MFTCR_PORTL);
 285        }
 286
 287#elif defined(CONFIG_CHIP_M32310)
 288#warning time_init not implemented
 289#else
 290#error no chip configuration
 291#endif
 292}
 293