linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000 2001, 2002  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/module.h>
  16#include <linux/screen_info.h>
  17#include <linux/bootmem.h>
  18#include <linux/initrd.h>
  19#include <linux/root_dev.h>
  20#include <linux/highmem.h>
  21#include <linux/console.h>
  22#include <linux/pfn.h>
  23#include <linux/debugfs.h>
  24
  25#include <asm/addrspace.h>
  26#include <asm/bootinfo.h>
  27#include <asm/cache.h>
  28#include <asm/cpu.h>
  29#include <asm/sections.h>
  30#include <asm/setup.h>
  31#include <asm/system.h>
  32
  33struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  34
  35EXPORT_SYMBOL(cpu_data);
  36
  37#ifdef CONFIG_VT
  38struct screen_info screen_info;
  39#endif
  40
  41/*
  42 * Despite it's name this variable is even if we don't have PCI
  43 */
  44unsigned int PCI_DMA_BUS_IS_PHYS;
  45
  46EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  47
  48/*
  49 * Setup information
  50 *
  51 * These are initialized so they are in the .data section
  52 */
  53unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  54
  55EXPORT_SYMBOL(mips_machtype);
  56
  57struct boot_mem_map boot_mem_map;
  58
  59static char command_line[CL_SIZE];
  60       char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
  61
  62/*
  63 * mips_io_port_base is the begin of the address space to which x86 style
  64 * I/O ports are mapped.
  65 */
  66const unsigned long mips_io_port_base __read_mostly = -1;
  67EXPORT_SYMBOL(mips_io_port_base);
  68
  69/*
  70 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
  71 * for the processor.
  72 */
  73unsigned long isa_slot_offset;
  74EXPORT_SYMBOL(isa_slot_offset);
  75
  76static struct resource code_resource = { .name = "Kernel code", };
  77static struct resource data_resource = { .name = "Kernel data", };
  78
  79void __init add_memory_region(phys_t start, phys_t size, long type)
  80{
  81        int x = boot_mem_map.nr_map;
  82        struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  83
  84        /* Sanity check */
  85        if (start + size < start) {
  86                printk("Trying to add an invalid memory region, skipped\n");
  87                return;
  88        }
  89
  90        /*
  91         * Try to merge with previous entry if any.  This is far less than
  92         * perfect but is sufficient for most real world cases.
  93         */
  94        if (x && prev->addr + prev->size == start && prev->type == type) {
  95                prev->size += size;
  96                return;
  97        }
  98
  99        if (x == BOOT_MEM_MAP_MAX) {
 100                printk("Ooops! Too many entries in the memory map!\n");
 101                return;
 102        }
 103
 104        boot_mem_map.map[x].addr = start;
 105        boot_mem_map.map[x].size = size;
 106        boot_mem_map.map[x].type = type;
 107        boot_mem_map.nr_map++;
 108}
 109
 110static void __init print_memory_map(void)
 111{
 112        int i;
 113        const int field = 2 * sizeof(unsigned long);
 114
 115        for (i = 0; i < boot_mem_map.nr_map; i++) {
 116                printk(" memory: %0*Lx @ %0*Lx ",
 117                       field, (unsigned long long) boot_mem_map.map[i].size,
 118                       field, (unsigned long long) boot_mem_map.map[i].addr);
 119
 120                switch (boot_mem_map.map[i].type) {
 121                case BOOT_MEM_RAM:
 122                        printk("(usable)\n");
 123                        break;
 124                case BOOT_MEM_ROM_DATA:
 125                        printk("(ROM data)\n");
 126                        break;
 127                case BOOT_MEM_RESERVED:
 128                        printk("(reserved)\n");
 129                        break;
 130                default:
 131                        printk("type %lu\n", boot_mem_map.map[i].type);
 132                        break;
 133                }
 134        }
 135}
 136
 137/*
 138 * Manage initrd
 139 */
 140#ifdef CONFIG_BLK_DEV_INITRD
 141
 142static int __init rd_start_early(char *p)
 143{
 144        unsigned long start = memparse(p, &p);
 145
 146#ifdef CONFIG_64BIT
 147        /* Guess if the sign extension was forgotten by bootloader */
 148        if (start < XKPHYS)
 149                start = (int)start;
 150#endif
 151        initrd_start = start;
 152        initrd_end += start;
 153        return 0;
 154}
 155early_param("rd_start", rd_start_early);
 156
 157static int __init rd_size_early(char *p)
 158{
 159        initrd_end += memparse(p, &p);
 160        return 0;
 161}
 162early_param("rd_size", rd_size_early);
 163
 164/* it returns the next free pfn after initrd */
 165static unsigned long __init init_initrd(void)
 166{
 167        unsigned long end;
 168        u32 *initrd_header;
 169
 170        /*
 171         * Board specific code or command line parser should have
 172         * already set up initrd_start and initrd_end. In these cases
 173         * perfom sanity checks and use them if all looks good.
 174         */
 175        if (initrd_start && initrd_end > initrd_start)
 176                goto sanitize;
 177
 178        /*
 179         * See if initrd has been added to the kernel image by
 180         * arch/mips/boot/addinitrd.c. In that case a header is
 181         * prepended to initrd and is made up by 8 bytes. The fisrt
 182         * word is a magic number and the second one is the size of
 183         * initrd.  Initrd start must be page aligned in any cases.
 184         */
 185        initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
 186        if (initrd_header[0] != 0x494E5244)
 187                goto disable;
 188        initrd_start = (unsigned long)(initrd_header + 2);
 189        initrd_end = initrd_start + initrd_header[1];
 190
 191sanitize:
 192        if (initrd_start & ~PAGE_MASK) {
 193                printk(KERN_ERR "initrd start must be page aligned\n");
 194                goto disable;
 195        }
 196        if (initrd_start < PAGE_OFFSET) {
 197                printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
 198                goto disable;
 199        }
 200
 201        /*
 202         * Sanitize initrd addresses. For example firmware
 203         * can't guess if they need to pass them through
 204         * 64-bits values if the kernel has been built in pure
 205         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 206         * addresses now, so the code can now safely use __pa().
 207         */
 208        end = __pa(initrd_end);
 209        initrd_end = (unsigned long)__va(end);
 210        initrd_start = (unsigned long)__va(__pa(initrd_start));
 211
 212        ROOT_DEV = Root_RAM0;
 213        return PFN_UP(end);
 214disable:
 215        initrd_start = 0;
 216        initrd_end = 0;
 217        return 0;
 218}
 219
 220static void __init finalize_initrd(void)
 221{
 222        unsigned long size = initrd_end - initrd_start;
 223
 224        if (size == 0) {
 225                printk(KERN_INFO "Initrd not found or empty");
 226                goto disable;
 227        }
 228        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 229                printk("Initrd extends beyond end of memory");
 230                goto disable;
 231        }
 232
 233        reserve_bootmem(__pa(initrd_start), size);
 234        initrd_below_start_ok = 1;
 235
 236        printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
 237               initrd_start, size);
 238        return;
 239disable:
 240        printk(" - disabling initrd\n");
 241        initrd_start = 0;
 242        initrd_end = 0;
 243}
 244
 245#else  /* !CONFIG_BLK_DEV_INITRD */
 246
 247static unsigned long __init init_initrd(void)
 248{
 249        return 0;
 250}
 251
 252#define finalize_initrd()       do {} while (0)
 253
 254#endif
 255
 256/*
 257 * Initialize the bootmem allocator. It also setup initrd related data
 258 * if needed.
 259 */
 260#ifdef CONFIG_SGI_IP27
 261
 262static void __init bootmem_init(void)
 263{
 264        init_initrd();
 265        finalize_initrd();
 266}
 267
 268#else  /* !CONFIG_SGI_IP27 */
 269
 270static void __init bootmem_init(void)
 271{
 272        unsigned long reserved_end;
 273        unsigned long mapstart = ~0UL;
 274        unsigned long bootmap_size;
 275        int i;
 276
 277        /*
 278         * Init any data related to initrd. It's a nop if INITRD is
 279         * not selected. Once that done we can determine the low bound
 280         * of usable memory.
 281         */
 282        reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
 283
 284        /*
 285         * max_low_pfn is not a number of pages. The number of pages
 286         * of the system is given by 'max_low_pfn - min_low_pfn'.
 287         */
 288        min_low_pfn = ~0UL;
 289        max_low_pfn = 0;
 290
 291        /*
 292         * Find the highest page frame number we have available.
 293         */
 294        for (i = 0; i < boot_mem_map.nr_map; i++) {
 295                unsigned long start, end;
 296
 297                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 298                        continue;
 299
 300                start = PFN_UP(boot_mem_map.map[i].addr);
 301                end = PFN_DOWN(boot_mem_map.map[i].addr
 302                                + boot_mem_map.map[i].size);
 303
 304                if (end > max_low_pfn)
 305                        max_low_pfn = end;
 306                if (start < min_low_pfn)
 307                        min_low_pfn = start;
 308                if (end <= reserved_end)
 309                        continue;
 310                if (start >= mapstart)
 311                        continue;
 312                mapstart = max(reserved_end, start);
 313        }
 314
 315        if (min_low_pfn >= max_low_pfn)
 316                panic("Incorrect memory mapping !!!");
 317        if (min_low_pfn > ARCH_PFN_OFFSET) {
 318                printk(KERN_INFO
 319                       "Wasting %lu bytes for tracking %lu unused pages\n",
 320                       (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 321                       min_low_pfn - ARCH_PFN_OFFSET);
 322        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
 323                printk(KERN_INFO
 324                       "%lu free pages won't be used\n",
 325                       ARCH_PFN_OFFSET - min_low_pfn);
 326        }
 327        min_low_pfn = ARCH_PFN_OFFSET;
 328
 329        /*
 330         * Determine low and high memory ranges
 331         */
 332        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 333#ifdef CONFIG_HIGHMEM
 334                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 335                highend_pfn = max_low_pfn;
 336#endif
 337                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 338        }
 339
 340        /*
 341         * Initialize the boot-time allocator with low memory only.
 342         */
 343        bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
 344                                         min_low_pfn, max_low_pfn);
 345
 346
 347        for (i = 0; i < boot_mem_map.nr_map; i++) {
 348                unsigned long start, end;
 349
 350                start = PFN_UP(boot_mem_map.map[i].addr);
 351                end = PFN_DOWN(boot_mem_map.map[i].addr
 352                                + boot_mem_map.map[i].size);
 353
 354                if (start <= min_low_pfn)
 355                        start = min_low_pfn;
 356                if (start >= end)
 357                        continue;
 358
 359#ifndef CONFIG_HIGHMEM
 360                if (end > max_low_pfn)
 361                        end = max_low_pfn;
 362
 363                /*
 364                 * ... finally, is the area going away?
 365                 */
 366                if (end <= start)
 367                        continue;
 368#endif
 369
 370                add_active_range(0, start, end);
 371        }
 372
 373        /*
 374         * Register fully available low RAM pages with the bootmem allocator.
 375         */
 376        for (i = 0; i < boot_mem_map.nr_map; i++) {
 377                unsigned long start, end, size;
 378
 379                /*
 380                 * Reserve usable memory.
 381                 */
 382                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 383                        continue;
 384
 385                start = PFN_UP(boot_mem_map.map[i].addr);
 386                end   = PFN_DOWN(boot_mem_map.map[i].addr
 387                                    + boot_mem_map.map[i].size);
 388                /*
 389                 * We are rounding up the start address of usable memory
 390                 * and at the end of the usable range downwards.
 391                 */
 392                if (start >= max_low_pfn)
 393                        continue;
 394                if (start < reserved_end)
 395                        start = reserved_end;
 396                if (end > max_low_pfn)
 397                        end = max_low_pfn;
 398
 399                /*
 400                 * ... finally, is the area going away?
 401                 */
 402                if (end <= start)
 403                        continue;
 404                size = end - start;
 405
 406                /* Register lowmem ranges */
 407                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 408                memory_present(0, start, end);
 409        }
 410
 411        /*
 412         * Reserve the bootmap memory.
 413         */
 414        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
 415
 416        /*
 417         * Reserve initrd memory if needed.
 418         */
 419        finalize_initrd();
 420}
 421
 422#endif  /* CONFIG_SGI_IP27 */
 423
 424/*
 425 * arch_mem_init - initialize memory managment subsystem
 426 *
 427 *  o plat_mem_setup() detects the memory configuration and will record detected
 428 *    memory areas using add_memory_region.
 429 *
 430 * At this stage the memory configuration of the system is known to the
 431 * kernel but generic memory managment system is still entirely uninitialized.
 432 *
 433 *  o bootmem_init()
 434 *  o sparse_init()
 435 *  o paging_init()
 436 *
 437 * At this stage the bootmem allocator is ready to use.
 438 *
 439 * NOTE: historically plat_mem_setup did the entire platform initialization.
 440 *       This was rather impractical because it meant plat_mem_setup had to
 441 * get away without any kind of memory allocator.  To keep old code from
 442 * breaking plat_setup was just renamed to plat_setup and a second platform
 443 * initialization hook for anything else was introduced.
 444 */
 445
 446static int usermem __initdata = 0;
 447
 448static int __init early_parse_mem(char *p)
 449{
 450        unsigned long start, size;
 451
 452        /*
 453         * If a user specifies memory size, we
 454         * blow away any automatically generated
 455         * size.
 456         */
 457        if (usermem == 0) {
 458                boot_mem_map.nr_map = 0;
 459                usermem = 1;
 460        }
 461        start = 0;
 462        size = memparse(p, &p);
 463        if (*p == '@')
 464                start = memparse(p + 1, &p);
 465
 466        add_memory_region(start, size, BOOT_MEM_RAM);
 467        return 0;
 468}
 469early_param("mem", early_parse_mem);
 470
 471static void __init arch_mem_init(char **cmdline_p)
 472{
 473        extern void plat_mem_setup(void);
 474
 475        /* call board setup routine */
 476        plat_mem_setup();
 477
 478        printk("Determined physical RAM map:\n");
 479        print_memory_map();
 480
 481        strlcpy(command_line, arcs_cmdline, sizeof(command_line));
 482        strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
 483
 484        *cmdline_p = command_line;
 485
 486        parse_early_param();
 487
 488        if (usermem) {
 489                printk("User-defined physical RAM map:\n");
 490                print_memory_map();
 491        }
 492
 493        bootmem_init();
 494        sparse_init();
 495        paging_init();
 496}
 497
 498static void __init resource_init(void)
 499{
 500        int i;
 501
 502        if (UNCAC_BASE != IO_BASE)
 503                return;
 504
 505        code_resource.start = __pa_symbol(&_text);
 506        code_resource.end = __pa_symbol(&_etext) - 1;
 507        data_resource.start = __pa_symbol(&_etext);
 508        data_resource.end = __pa_symbol(&_edata) - 1;
 509
 510        /*
 511         * Request address space for all standard RAM.
 512         */
 513        for (i = 0; i < boot_mem_map.nr_map; i++) {
 514                struct resource *res;
 515                unsigned long start, end;
 516
 517                start = boot_mem_map.map[i].addr;
 518                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 519                if (start >= HIGHMEM_START)
 520                        continue;
 521                if (end >= HIGHMEM_START)
 522                        end = HIGHMEM_START - 1;
 523
 524                res = alloc_bootmem(sizeof(struct resource));
 525                switch (boot_mem_map.map[i].type) {
 526                case BOOT_MEM_RAM:
 527                case BOOT_MEM_ROM_DATA:
 528                        res->name = "System RAM";
 529                        break;
 530                case BOOT_MEM_RESERVED:
 531                default:
 532                        res->name = "reserved";
 533                }
 534
 535                res->start = start;
 536                res->end = end;
 537
 538                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 539                request_resource(&iomem_resource, res);
 540
 541                /*
 542                 *  We don't know which RAM region contains kernel data,
 543                 *  so we try it repeatedly and let the resource manager
 544                 *  test it.
 545                 */
 546                request_resource(res, &code_resource);
 547                request_resource(res, &data_resource);
 548        }
 549}
 550
 551void __init setup_arch(char **cmdline_p)
 552{
 553        cpu_probe();
 554        prom_init();
 555
 556#ifdef CONFIG_EARLY_PRINTK
 557        {
 558                extern void setup_early_printk(void);
 559
 560                setup_early_printk();
 561        }
 562#endif
 563        cpu_report();
 564
 565#if defined(CONFIG_VT)
 566#if defined(CONFIG_VGA_CONSOLE)
 567        conswitchp = &vga_con;
 568#elif defined(CONFIG_DUMMY_CONSOLE)
 569        conswitchp = &dummy_con;
 570#endif
 571#endif
 572
 573        arch_mem_init(cmdline_p);
 574
 575        resource_init();
 576#ifdef CONFIG_SMP
 577        plat_smp_setup();
 578#endif
 579}
 580
 581static int __init fpu_disable(char *s)
 582{
 583        int i;
 584
 585        for (i = 0; i < NR_CPUS; i++)
 586                cpu_data[i].options &= ~MIPS_CPU_FPU;
 587
 588        return 1;
 589}
 590
 591__setup("nofpu", fpu_disable);
 592
 593static int __init dsp_disable(char *s)
 594{
 595        cpu_data[0].ases &= ~MIPS_ASE_DSP;
 596
 597        return 1;
 598}
 599
 600__setup("nodsp", dsp_disable);
 601
 602unsigned long kernelsp[NR_CPUS];
 603unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
 604
 605#ifdef CONFIG_DEBUG_FS
 606struct dentry *mips_debugfs_dir;
 607static int __init debugfs_mips(void)
 608{
 609        struct dentry *d;
 610
 611        d = debugfs_create_dir("mips", NULL);
 612        if (IS_ERR(d))
 613                return PTR_ERR(d);
 614        mips_debugfs_dir = d;
 615        return 0;
 616}
 617arch_initcall(debugfs_mips);
 618#endif
 619