linux/arch/powerpc/platforms/iseries/mf.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
   3 * Copyright (C) 2004-2005 Stephen Rothwell  IBM Corporation
   4 *
   5 * This modules exists as an interface between a Linux secondary partition
   6 * running on an iSeries and the primary partition's Virtual Service
   7 * Processor (VSP) object.  The VSP has final authority over powering on/off
   8 * all partitions in the iSeries.  It also provides miscellaneous low-level
   9 * machine facility type operations.
  10 *
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  25 */
  26
  27#include <linux/types.h>
  28#include <linux/errno.h>
  29#include <linux/kernel.h>
  30#include <linux/init.h>
  31#include <linux/completion.h>
  32#include <linux/delay.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/bcd.h>
  35#include <linux/rtc.h>
  36
  37#include <asm/time.h>
  38#include <asm/uaccess.h>
  39#include <asm/paca.h>
  40#include <asm/abs_addr.h>
  41#include <asm/firmware.h>
  42#include <asm/iseries/mf.h>
  43#include <asm/iseries/hv_lp_config.h>
  44#include <asm/iseries/hv_lp_event.h>
  45#include <asm/iseries/it_lp_queue.h>
  46
  47#include "setup.h"
  48
  49static int mf_initialized;
  50
  51/*
  52 * This is the structure layout for the Machine Facilites LPAR event
  53 * flows.
  54 */
  55struct vsp_cmd_data {
  56        u64 token;
  57        u16 cmd;
  58        HvLpIndex lp_index;
  59        u8 result_code;
  60        u32 reserved;
  61        union {
  62                u64 state;      /* GetStateOut */
  63                u64 ipl_type;   /* GetIplTypeOut, Function02SelectIplTypeIn */
  64                u64 ipl_mode;   /* GetIplModeOut, Function02SelectIplModeIn */
  65                u64 page[4];    /* GetSrcHistoryIn */
  66                u64 flag;       /* GetAutoIplWhenPrimaryIplsOut,
  67                                   SetAutoIplWhenPrimaryIplsIn,
  68                                   WhiteButtonPowerOffIn,
  69                                   Function08FastPowerOffIn,
  70                                   IsSpcnRackPowerIncompleteOut */
  71                struct {
  72                        u64 token;
  73                        u64 address_type;
  74                        u64 side;
  75                        u32 length;
  76                        u32 offset;
  77                } kern;         /* SetKernelImageIn, GetKernelImageIn,
  78                                   SetKernelCmdLineIn, GetKernelCmdLineIn */
  79                u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
  80                u8 reserved[80];
  81        } sub_data;
  82};
  83
  84struct vsp_rsp_data {
  85        struct completion com;
  86        struct vsp_cmd_data *response;
  87};
  88
  89struct alloc_data {
  90        u16 size;
  91        u16 type;
  92        u32 count;
  93        u16 reserved1;
  94        u8 reserved2;
  95        HvLpIndex target_lp;
  96};
  97
  98struct ce_msg_data;
  99
 100typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
 101
 102struct ce_msg_comp_data {
 103        ce_msg_comp_hdlr handler;
 104        void *token;
 105};
 106
 107struct ce_msg_data {
 108        u8 ce_msg[12];
 109        char reserved[4];
 110        struct ce_msg_comp_data *completion;
 111};
 112
 113struct io_mf_lp_event {
 114        struct HvLpEvent hp_lp_event;
 115        u16 subtype_result_code;
 116        u16 reserved1;
 117        u32 reserved2;
 118        union {
 119                struct alloc_data alloc;
 120                struct ce_msg_data ce_msg;
 121                struct vsp_cmd_data vsp_cmd;
 122        } data;
 123};
 124
 125#define subtype_data(a, b, c, d)        \
 126                (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
 127
 128/*
 129 * All outgoing event traffic is kept on a FIFO queue.  The first
 130 * pointer points to the one that is outstanding, and all new
 131 * requests get stuck on the end.  Also, we keep a certain number of
 132 * preallocated pending events so that we can operate very early in
 133 * the boot up sequence (before kmalloc is ready).
 134 */
 135struct pending_event {
 136        struct pending_event *next;
 137        struct io_mf_lp_event event;
 138        MFCompleteHandler hdlr;
 139        char dma_data[72];
 140        unsigned dma_data_length;
 141        unsigned remote_address;
 142};
 143static spinlock_t pending_event_spinlock;
 144static struct pending_event *pending_event_head;
 145static struct pending_event *pending_event_tail;
 146static struct pending_event *pending_event_avail;
 147#define PENDING_EVENT_PREALLOC_LEN 16
 148static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
 149
 150/*
 151 * Put a pending event onto the available queue, so it can get reused.
 152 * Attention! You must have the pending_event_spinlock before calling!
 153 */
 154static void free_pending_event(struct pending_event *ev)
 155{
 156        if (ev != NULL) {
 157                ev->next = pending_event_avail;
 158                pending_event_avail = ev;
 159        }
 160}
 161
 162/*
 163 * Enqueue the outbound event onto the stack.  If the queue was
 164 * empty to begin with, we must also issue it via the Hypervisor
 165 * interface.  There is a section of code below that will touch
 166 * the first stack pointer without the protection of the pending_event_spinlock.
 167 * This is OK, because we know that nobody else will be modifying
 168 * the first pointer when we do this.
 169 */
 170static int signal_event(struct pending_event *ev)
 171{
 172        int rc = 0;
 173        unsigned long flags;
 174        int go = 1;
 175        struct pending_event *ev1;
 176        HvLpEvent_Rc hv_rc;
 177
 178        /* enqueue the event */
 179        if (ev != NULL) {
 180                ev->next = NULL;
 181                spin_lock_irqsave(&pending_event_spinlock, flags);
 182                if (pending_event_head == NULL)
 183                        pending_event_head = ev;
 184                else {
 185                        go = 0;
 186                        pending_event_tail->next = ev;
 187                }
 188                pending_event_tail = ev;
 189                spin_unlock_irqrestore(&pending_event_spinlock, flags);
 190        }
 191
 192        /* send the event */
 193        while (go) {
 194                go = 0;
 195
 196                /* any DMA data to send beforehand? */
 197                if (pending_event_head->dma_data_length > 0)
 198                        HvCallEvent_dmaToSp(pending_event_head->dma_data,
 199                                        pending_event_head->remote_address,
 200                                        pending_event_head->dma_data_length,
 201                                        HvLpDma_Direction_LocalToRemote);
 202
 203                hv_rc = HvCallEvent_signalLpEvent(
 204                                &pending_event_head->event.hp_lp_event);
 205                if (hv_rc != HvLpEvent_Rc_Good) {
 206                        printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
 207                                        "failed with %d\n", (int)hv_rc);
 208
 209                        spin_lock_irqsave(&pending_event_spinlock, flags);
 210                        ev1 = pending_event_head;
 211                        pending_event_head = pending_event_head->next;
 212                        if (pending_event_head != NULL)
 213                                go = 1;
 214                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 215
 216                        if (ev1 == ev)
 217                                rc = -EIO;
 218                        else if (ev1->hdlr != NULL)
 219                                (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
 220
 221                        spin_lock_irqsave(&pending_event_spinlock, flags);
 222                        free_pending_event(ev1);
 223                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 224                }
 225        }
 226
 227        return rc;
 228}
 229
 230/*
 231 * Allocate a new pending_event structure, and initialize it.
 232 */
 233static struct pending_event *new_pending_event(void)
 234{
 235        struct pending_event *ev = NULL;
 236        HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
 237        unsigned long flags;
 238        struct HvLpEvent *hev;
 239
 240        spin_lock_irqsave(&pending_event_spinlock, flags);
 241        if (pending_event_avail != NULL) {
 242                ev = pending_event_avail;
 243                pending_event_avail = pending_event_avail->next;
 244        }
 245        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 246        if (ev == NULL) {
 247                ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
 248                if (ev == NULL) {
 249                        printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
 250                                        sizeof(struct pending_event));
 251                        return NULL;
 252                }
 253        }
 254        memset(ev, 0, sizeof(struct pending_event));
 255        hev = &ev->event.hp_lp_event;
 256        hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
 257        hev->xType = HvLpEvent_Type_MachineFac;
 258        hev->xSourceLp = HvLpConfig_getLpIndex();
 259        hev->xTargetLp = primary_lp;
 260        hev->xSizeMinus1 = sizeof(ev->event) - 1;
 261        hev->xRc = HvLpEvent_Rc_Good;
 262        hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
 263                        HvLpEvent_Type_MachineFac);
 264        hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
 265                        HvLpEvent_Type_MachineFac);
 266
 267        return ev;
 268}
 269
 270static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
 271{
 272        struct pending_event *ev = new_pending_event();
 273        int rc;
 274        struct vsp_rsp_data response;
 275
 276        if (ev == NULL)
 277                return -ENOMEM;
 278
 279        init_completion(&response.com);
 280        response.response = vsp_cmd;
 281        ev->event.hp_lp_event.xSubtype = 6;
 282        ev->event.hp_lp_event.x.xSubtypeData =
 283                subtype_data('M', 'F',  'V',  'I');
 284        ev->event.data.vsp_cmd.token = (u64)&response;
 285        ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
 286        ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
 287        ev->event.data.vsp_cmd.result_code = 0xFF;
 288        ev->event.data.vsp_cmd.reserved = 0;
 289        memcpy(&(ev->event.data.vsp_cmd.sub_data),
 290                        &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
 291        mb();
 292
 293        rc = signal_event(ev);
 294        if (rc == 0)
 295                wait_for_completion(&response.com);
 296        return rc;
 297}
 298
 299
 300/*
 301 * Send a 12-byte CE message to the primary partition VSP object
 302 */
 303static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
 304{
 305        struct pending_event *ev = new_pending_event();
 306
 307        if (ev == NULL)
 308                return -ENOMEM;
 309
 310        ev->event.hp_lp_event.xSubtype = 0;
 311        ev->event.hp_lp_event.x.xSubtypeData =
 312                subtype_data('M',  'F',  'C',  'E');
 313        memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
 314        ev->event.data.ce_msg.completion = completion;
 315        return signal_event(ev);
 316}
 317
 318/*
 319 * Send a 12-byte CE message (with no data) to the primary partition VSP object
 320 */
 321static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
 322{
 323        u8 ce_msg[12];
 324
 325        memset(ce_msg, 0, sizeof(ce_msg));
 326        ce_msg[3] = ce_op;
 327        return signal_ce_msg(ce_msg, completion);
 328}
 329
 330/*
 331 * Send a 12-byte CE message and DMA data to the primary partition VSP object
 332 */
 333static int dma_and_signal_ce_msg(char *ce_msg,
 334                struct ce_msg_comp_data *completion, void *dma_data,
 335                unsigned dma_data_length, unsigned remote_address)
 336{
 337        struct pending_event *ev = new_pending_event();
 338
 339        if (ev == NULL)
 340                return -ENOMEM;
 341
 342        ev->event.hp_lp_event.xSubtype = 0;
 343        ev->event.hp_lp_event.x.xSubtypeData =
 344                subtype_data('M', 'F', 'C', 'E');
 345        memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
 346        ev->event.data.ce_msg.completion = completion;
 347        memcpy(ev->dma_data, dma_data, dma_data_length);
 348        ev->dma_data_length = dma_data_length;
 349        ev->remote_address = remote_address;
 350        return signal_event(ev);
 351}
 352
 353/*
 354 * Initiate a nice (hopefully) shutdown of Linux.  We simply are
 355 * going to try and send the init process a SIGINT signal.  If
 356 * this fails (why?), we'll simply force it off in a not-so-nice
 357 * manner.
 358 */
 359static int shutdown(void)
 360{
 361        int rc = kill_cad_pid(SIGINT, 1);
 362
 363        if (rc) {
 364                printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
 365                                "hard shutdown commencing\n", rc);
 366                mf_power_off();
 367        } else
 368                printk(KERN_INFO "mf.c: init has been successfully notified "
 369                                "to proceed with shutdown\n");
 370        return rc;
 371}
 372
 373/*
 374 * The primary partition VSP object is sending us a new
 375 * event flow.  Handle it...
 376 */
 377static void handle_int(struct io_mf_lp_event *event)
 378{
 379        struct ce_msg_data *ce_msg_data;
 380        struct ce_msg_data *pce_msg_data;
 381        unsigned long flags;
 382        struct pending_event *pev;
 383
 384        /* ack the interrupt */
 385        event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
 386        HvCallEvent_ackLpEvent(&event->hp_lp_event);
 387
 388        /* process interrupt */
 389        switch (event->hp_lp_event.xSubtype) {
 390        case 0: /* CE message */
 391                ce_msg_data = &event->data.ce_msg;
 392                switch (ce_msg_data->ce_msg[3]) {
 393                case 0x5B:      /* power control notification */
 394                        if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
 395                                printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
 396                                if (shutdown() == 0)
 397                                        signal_ce_msg_simple(0xDB, NULL);
 398                        }
 399                        break;
 400                case 0xC0:      /* get time */
 401                        spin_lock_irqsave(&pending_event_spinlock, flags);
 402                        pev = pending_event_head;
 403                        if (pev != NULL)
 404                                pending_event_head = pending_event_head->next;
 405                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 406                        if (pev == NULL)
 407                                break;
 408                        pce_msg_data = &pev->event.data.ce_msg;
 409                        if (pce_msg_data->ce_msg[3] != 0x40)
 410                                break;
 411                        if (pce_msg_data->completion != NULL) {
 412                                ce_msg_comp_hdlr handler =
 413                                        pce_msg_data->completion->handler;
 414                                void *token = pce_msg_data->completion->token;
 415
 416                                if (handler != NULL)
 417                                        (*handler)(token, ce_msg_data);
 418                        }
 419                        spin_lock_irqsave(&pending_event_spinlock, flags);
 420                        free_pending_event(pev);
 421                        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 422                        /* send next waiting event */
 423                        if (pending_event_head != NULL)
 424                                signal_event(NULL);
 425                        break;
 426                }
 427                break;
 428        case 1: /* IT sys shutdown */
 429                printk(KERN_INFO "mf.c: Commencing system shutdown\n");
 430                shutdown();
 431                break;
 432        }
 433}
 434
 435/*
 436 * The primary partition VSP object is acknowledging the receipt
 437 * of a flow we sent to them.  If there are other flows queued
 438 * up, we must send another one now...
 439 */
 440static void handle_ack(struct io_mf_lp_event *event)
 441{
 442        unsigned long flags;
 443        struct pending_event *two = NULL;
 444        unsigned long free_it = 0;
 445        struct ce_msg_data *ce_msg_data;
 446        struct ce_msg_data *pce_msg_data;
 447        struct vsp_rsp_data *rsp;
 448
 449        /* handle current event */
 450        if (pending_event_head == NULL) {
 451                printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
 452                return;
 453        }
 454
 455        switch (event->hp_lp_event.xSubtype) {
 456        case 0:     /* CE msg */
 457                ce_msg_data = &event->data.ce_msg;
 458                if (ce_msg_data->ce_msg[3] != 0x40) {
 459                        free_it = 1;
 460                        break;
 461                }
 462                if (ce_msg_data->ce_msg[2] == 0)
 463                        break;
 464                free_it = 1;
 465                pce_msg_data = &pending_event_head->event.data.ce_msg;
 466                if (pce_msg_data->completion != NULL) {
 467                        ce_msg_comp_hdlr handler =
 468                                pce_msg_data->completion->handler;
 469                        void *token = pce_msg_data->completion->token;
 470
 471                        if (handler != NULL)
 472                                (*handler)(token, ce_msg_data);
 473                }
 474                break;
 475        case 4: /* allocate */
 476        case 5: /* deallocate */
 477                if (pending_event_head->hdlr != NULL)
 478                        (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
 479                free_it = 1;
 480                break;
 481        case 6:
 482                free_it = 1;
 483                rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
 484                if (rsp == NULL) {
 485                        printk(KERN_ERR "mf.c: no rsp\n");
 486                        break;
 487                }
 488                if (rsp->response != NULL)
 489                        memcpy(rsp->response, &event->data.vsp_cmd,
 490                                        sizeof(event->data.vsp_cmd));
 491                complete(&rsp->com);
 492                break;
 493        }
 494
 495        /* remove from queue */
 496        spin_lock_irqsave(&pending_event_spinlock, flags);
 497        if ((pending_event_head != NULL) && (free_it == 1)) {
 498                struct pending_event *oldHead = pending_event_head;
 499
 500                pending_event_head = pending_event_head->next;
 501                two = pending_event_head;
 502                free_pending_event(oldHead);
 503        }
 504        spin_unlock_irqrestore(&pending_event_spinlock, flags);
 505
 506        /* send next waiting event */
 507        if (two != NULL)
 508                signal_event(NULL);
 509}
 510
 511/*
 512 * This is the generic event handler we are registering with
 513 * the Hypervisor.  Ensure the flows are for us, and then
 514 * parse it enough to know if it is an interrupt or an
 515 * acknowledge.
 516 */
 517static void hv_handler(struct HvLpEvent *event)
 518{
 519        if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
 520                if (hvlpevent_is_ack(event))
 521                        handle_ack((struct io_mf_lp_event *)event);
 522                else
 523                        handle_int((struct io_mf_lp_event *)event);
 524        } else
 525                printk(KERN_ERR "mf.c: alien event received\n");
 526}
 527
 528/*
 529 * Global kernel interface to allocate and seed events into the
 530 * Hypervisor.
 531 */
 532void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
 533                unsigned size, unsigned count, MFCompleteHandler hdlr,
 534                void *user_token)
 535{
 536        struct pending_event *ev = new_pending_event();
 537        int rc;
 538
 539        if (ev == NULL) {
 540                rc = -ENOMEM;
 541        } else {
 542                ev->event.hp_lp_event.xSubtype = 4;
 543                ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
 544                ev->event.hp_lp_event.x.xSubtypeData =
 545                        subtype_data('M', 'F', 'M', 'A');
 546                ev->event.data.alloc.target_lp = target_lp;
 547                ev->event.data.alloc.type = type;
 548                ev->event.data.alloc.size = size;
 549                ev->event.data.alloc.count = count;
 550                ev->hdlr = hdlr;
 551                rc = signal_event(ev);
 552        }
 553        if ((rc != 0) && (hdlr != NULL))
 554                (*hdlr)(user_token, rc);
 555}
 556EXPORT_SYMBOL(mf_allocate_lp_events);
 557
 558/*
 559 * Global kernel interface to unseed and deallocate events already in
 560 * Hypervisor.
 561 */
 562void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
 563                unsigned count, MFCompleteHandler hdlr, void *user_token)
 564{
 565        struct pending_event *ev = new_pending_event();
 566        int rc;
 567
 568        if (ev == NULL)
 569                rc = -ENOMEM;
 570        else {
 571                ev->event.hp_lp_event.xSubtype = 5;
 572                ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
 573                ev->event.hp_lp_event.x.xSubtypeData =
 574                        subtype_data('M', 'F', 'M', 'D');
 575                ev->event.data.alloc.target_lp = target_lp;
 576                ev->event.data.alloc.type = type;
 577                ev->event.data.alloc.count = count;
 578                ev->hdlr = hdlr;
 579                rc = signal_event(ev);
 580        }
 581        if ((rc != 0) && (hdlr != NULL))
 582                (*hdlr)(user_token, rc);
 583}
 584EXPORT_SYMBOL(mf_deallocate_lp_events);
 585
 586/*
 587 * Global kernel interface to tell the VSP object in the primary
 588 * partition to power this partition off.
 589 */
 590void mf_power_off(void)
 591{
 592        printk(KERN_INFO "mf.c: Down it goes...\n");
 593        signal_ce_msg_simple(0x4d, NULL);
 594        for (;;)
 595                ;
 596}
 597
 598/*
 599 * Global kernel interface to tell the VSP object in the primary
 600 * partition to reboot this partition.
 601 */
 602void mf_reboot(char *cmd)
 603{
 604        printk(KERN_INFO "mf.c: Preparing to bounce...\n");
 605        signal_ce_msg_simple(0x4e, NULL);
 606        for (;;)
 607                ;
 608}
 609
 610/*
 611 * Display a single word SRC onto the VSP control panel.
 612 */
 613void mf_display_src(u32 word)
 614{
 615        u8 ce[12];
 616
 617        memset(ce, 0, sizeof(ce));
 618        ce[3] = 0x4a;
 619        ce[7] = 0x01;
 620        ce[8] = word >> 24;
 621        ce[9] = word >> 16;
 622        ce[10] = word >> 8;
 623        ce[11] = word;
 624        signal_ce_msg(ce, NULL);
 625}
 626
 627/*
 628 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
 629 */
 630static __init void mf_display_progress_src(u16 value)
 631{
 632        u8 ce[12];
 633        u8 src[72];
 634
 635        memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
 636        memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
 637                "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 638                "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 639                "\x00\x00\x00\x00PROGxxxx                        ",
 640                72);
 641        src[6] = value >> 8;
 642        src[7] = value & 255;
 643        src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
 644        src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
 645        src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
 646        src[47] = "0123456789ABCDEF"[value & 15];
 647        dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
 648}
 649
 650/*
 651 * Clear the VSP control panel.  Used to "erase" an SRC that was
 652 * previously displayed.
 653 */
 654static void mf_clear_src(void)
 655{
 656        signal_ce_msg_simple(0x4b, NULL);
 657}
 658
 659void __init mf_display_progress(u16 value)
 660{
 661        if (!mf_initialized)
 662                return;
 663
 664        if (0xFFFF == value)
 665                mf_clear_src();
 666        else
 667                mf_display_progress_src(value);
 668}
 669
 670/*
 671 * Initialization code here.
 672 */
 673void __init mf_init(void)
 674{
 675        int i;
 676
 677        spin_lock_init(&pending_event_spinlock);
 678
 679        for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
 680                free_pending_event(&pending_event_prealloc[i]);
 681
 682        HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
 683
 684        /* virtual continue ack */
 685        signal_ce_msg_simple(0x57, NULL);
 686
 687        mf_initialized = 1;
 688        mb();
 689
 690        printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
 691                        "initialized\n");
 692}
 693
 694struct rtc_time_data {
 695        struct completion com;
 696        struct ce_msg_data ce_msg;
 697        int rc;
 698};
 699
 700static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
 701{
 702        struct rtc_time_data *rtc = token;
 703
 704        memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
 705        rtc->rc = 0;
 706        complete(&rtc->com);
 707}
 708
 709static int mf_set_rtc(struct rtc_time *tm)
 710{
 711        char ce_time[12];
 712        u8 day, mon, hour, min, sec, y1, y2;
 713        unsigned year;
 714
 715        year = 1900 + tm->tm_year;
 716        y1 = year / 100;
 717        y2 = year % 100;
 718
 719        sec = tm->tm_sec;
 720        min = tm->tm_min;
 721        hour = tm->tm_hour;
 722        day = tm->tm_mday;
 723        mon = tm->tm_mon + 1;
 724
 725        BIN_TO_BCD(sec);
 726        BIN_TO_BCD(min);
 727        BIN_TO_BCD(hour);
 728        BIN_TO_BCD(mon);
 729        BIN_TO_BCD(day);
 730        BIN_TO_BCD(y1);
 731        BIN_TO_BCD(y2);
 732
 733        memset(ce_time, 0, sizeof(ce_time));
 734        ce_time[3] = 0x41;
 735        ce_time[4] = y1;
 736        ce_time[5] = y2;
 737        ce_time[6] = sec;
 738        ce_time[7] = min;
 739        ce_time[8] = hour;
 740        ce_time[10] = day;
 741        ce_time[11] = mon;
 742
 743        return signal_ce_msg(ce_time, NULL);
 744}
 745
 746static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
 747{
 748        tm->tm_wday = 0;
 749        tm->tm_yday = 0;
 750        tm->tm_isdst = 0;
 751        if (rc) {
 752                tm->tm_sec = 0;
 753                tm->tm_min = 0;
 754                tm->tm_hour = 0;
 755                tm->tm_mday = 15;
 756                tm->tm_mon = 5;
 757                tm->tm_year = 52;
 758                return rc;
 759        }
 760
 761        if ((ce_msg[2] == 0xa9) ||
 762            (ce_msg[2] == 0xaf)) {
 763                /* TOD clock is not set */
 764                tm->tm_sec = 1;
 765                tm->tm_min = 1;
 766                tm->tm_hour = 1;
 767                tm->tm_mday = 10;
 768                tm->tm_mon = 8;
 769                tm->tm_year = 71;
 770                mf_set_rtc(tm);
 771        }
 772        {
 773                u8 year = ce_msg[5];
 774                u8 sec = ce_msg[6];
 775                u8 min = ce_msg[7];
 776                u8 hour = ce_msg[8];
 777                u8 day = ce_msg[10];
 778                u8 mon = ce_msg[11];
 779
 780                BCD_TO_BIN(sec);
 781                BCD_TO_BIN(min);
 782                BCD_TO_BIN(hour);
 783                BCD_TO_BIN(day);
 784                BCD_TO_BIN(mon);
 785                BCD_TO_BIN(year);
 786
 787                if (year <= 69)
 788                        year += 100;
 789
 790                tm->tm_sec = sec;
 791                tm->tm_min = min;
 792                tm->tm_hour = hour;
 793                tm->tm_mday = day;
 794                tm->tm_mon = mon;
 795                tm->tm_year = year;
 796        }
 797
 798        return 0;
 799}
 800
 801static int mf_get_rtc(struct rtc_time *tm)
 802{
 803        struct ce_msg_comp_data ce_complete;
 804        struct rtc_time_data rtc_data;
 805        int rc;
 806
 807        memset(&ce_complete, 0, sizeof(ce_complete));
 808        memset(&rtc_data, 0, sizeof(rtc_data));
 809        init_completion(&rtc_data.com);
 810        ce_complete.handler = &get_rtc_time_complete;
 811        ce_complete.token = &rtc_data;
 812        rc = signal_ce_msg_simple(0x40, &ce_complete);
 813        if (rc)
 814                return rc;
 815        wait_for_completion(&rtc_data.com);
 816        return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
 817}
 818
 819struct boot_rtc_time_data {
 820        int busy;
 821        struct ce_msg_data ce_msg;
 822        int rc;
 823};
 824
 825static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
 826{
 827        struct boot_rtc_time_data *rtc = token;
 828
 829        memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
 830        rtc->rc = 0;
 831        rtc->busy = 0;
 832}
 833
 834static int mf_get_boot_rtc(struct rtc_time *tm)
 835{
 836        struct ce_msg_comp_data ce_complete;
 837        struct boot_rtc_time_data rtc_data;
 838        int rc;
 839
 840        memset(&ce_complete, 0, sizeof(ce_complete));
 841        memset(&rtc_data, 0, sizeof(rtc_data));
 842        rtc_data.busy = 1;
 843        ce_complete.handler = &get_boot_rtc_time_complete;
 844        ce_complete.token = &rtc_data;
 845        rc = signal_ce_msg_simple(0x40, &ce_complete);
 846        if (rc)
 847                return rc;
 848        /* We need to poll here as we are not yet taking interrupts */
 849        while (rtc_data.busy) {
 850                if (hvlpevent_is_pending())
 851                        process_hvlpevents();
 852        }
 853        return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
 854}
 855
 856#ifdef CONFIG_PROC_FS
 857
 858static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
 859                int count, int *eof, void *data)
 860{
 861        int len;
 862        char *p;
 863        struct vsp_cmd_data vsp_cmd;
 864        int rc;
 865        dma_addr_t dma_addr;
 866
 867        /* The HV appears to return no more than 256 bytes of command line */
 868        if (off >= 256)
 869                return 0;
 870        if ((off + count) > 256)
 871                count = 256 - off;
 872
 873        dma_addr = iseries_hv_map(page, off + count, DMA_FROM_DEVICE);
 874        if (dma_mapping_error(dma_addr))
 875                return -ENOMEM;
 876        memset(page, 0, off + count);
 877        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 878        vsp_cmd.cmd = 33;
 879        vsp_cmd.sub_data.kern.token = dma_addr;
 880        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
 881        vsp_cmd.sub_data.kern.side = (u64)data;
 882        vsp_cmd.sub_data.kern.length = off + count;
 883        mb();
 884        rc = signal_vsp_instruction(&vsp_cmd);
 885        iseries_hv_unmap(dma_addr, off + count, DMA_FROM_DEVICE);
 886        if (rc)
 887                return rc;
 888        if (vsp_cmd.result_code != 0)
 889                return -ENOMEM;
 890        p = page;
 891        len = 0;
 892        while (len < (off + count)) {
 893                if ((*p == '\0') || (*p == '\n')) {
 894                        if (*p == '\0')
 895                                *p = '\n';
 896                        p++;
 897                        len++;
 898                        *eof = 1;
 899                        break;
 900                }
 901                p++;
 902                len++;
 903        }
 904
 905        if (len < off) {
 906                *eof = 1;
 907                len = 0;
 908        }
 909        return len;
 910}
 911
 912#if 0
 913static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
 914{
 915        struct vsp_cmd_data vsp_cmd;
 916        int rc;
 917        int len = *size;
 918        dma_addr_t dma_addr;
 919
 920        dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
 921        memset(buffer, 0, len);
 922        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 923        vsp_cmd.cmd = 32;
 924        vsp_cmd.sub_data.kern.token = dma_addr;
 925        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
 926        vsp_cmd.sub_data.kern.side = side;
 927        vsp_cmd.sub_data.kern.offset = offset;
 928        vsp_cmd.sub_data.kern.length = len;
 929        mb();
 930        rc = signal_vsp_instruction(&vsp_cmd);
 931        if (rc == 0) {
 932                if (vsp_cmd.result_code == 0)
 933                        *size = vsp_cmd.sub_data.length_out;
 934                else
 935                        rc = -ENOMEM;
 936        }
 937
 938        iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
 939
 940        return rc;
 941}
 942
 943static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
 944                int count, int *eof, void *data)
 945{
 946        int sizeToGet = count;
 947
 948        if (!capable(CAP_SYS_ADMIN))
 949                return -EACCES;
 950
 951        if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
 952                if (sizeToGet != 0) {
 953                        *start = page + off;
 954                        return sizeToGet;
 955                }
 956                *eof = 1;
 957                return 0;
 958        }
 959        *eof = 1;
 960        return 0;
 961}
 962#endif
 963
 964static int proc_mf_dump_side(char *page, char **start, off_t off,
 965                int count, int *eof, void *data)
 966{
 967        int len;
 968        char mf_current_side = ' ';
 969        struct vsp_cmd_data vsp_cmd;
 970
 971        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
 972        vsp_cmd.cmd = 2;
 973        vsp_cmd.sub_data.ipl_type = 0;
 974        mb();
 975
 976        if (signal_vsp_instruction(&vsp_cmd) == 0) {
 977                if (vsp_cmd.result_code == 0) {
 978                        switch (vsp_cmd.sub_data.ipl_type) {
 979                        case 0: mf_current_side = 'A';
 980                                break;
 981                        case 1: mf_current_side = 'B';
 982                                break;
 983                        case 2: mf_current_side = 'C';
 984                                break;
 985                        default:        mf_current_side = 'D';
 986                                break;
 987                        }
 988                }
 989        }
 990
 991        len = sprintf(page, "%c\n", mf_current_side);
 992
 993        if (len <= (off + count))
 994                *eof = 1;
 995        *start = page + off;
 996        len -= off;
 997        if (len > count)
 998                len = count;
 999        if (len < 0)
1000                len = 0;
1001        return len;
1002}
1003
1004static int proc_mf_change_side(struct file *file, const char __user *buffer,
1005                unsigned long count, void *data)
1006{
1007        char side;
1008        u64 newSide;
1009        struct vsp_cmd_data vsp_cmd;
1010
1011        if (!capable(CAP_SYS_ADMIN))
1012                return -EACCES;
1013
1014        if (count == 0)
1015                return 0;
1016
1017        if (get_user(side, buffer))
1018                return -EFAULT;
1019
1020        switch (side) {
1021        case 'A':       newSide = 0;
1022                        break;
1023        case 'B':       newSide = 1;
1024                        break;
1025        case 'C':       newSide = 2;
1026                        break;
1027        case 'D':       newSide = 3;
1028                        break;
1029        default:
1030                printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1031                return -EINVAL;
1032        }
1033
1034        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1035        vsp_cmd.sub_data.ipl_type = newSide;
1036        vsp_cmd.cmd = 10;
1037
1038        (void)signal_vsp_instruction(&vsp_cmd);
1039
1040        return count;
1041}
1042
1043#if 0
1044static void mf_getSrcHistory(char *buffer, int size)
1045{
1046        struct IplTypeReturnStuff return_stuff;
1047        struct pending_event *ev = new_pending_event();
1048        int rc = 0;
1049        char *pages[4];
1050
1051        pages[0] = kmalloc(4096, GFP_ATOMIC);
1052        pages[1] = kmalloc(4096, GFP_ATOMIC);
1053        pages[2] = kmalloc(4096, GFP_ATOMIC);
1054        pages[3] = kmalloc(4096, GFP_ATOMIC);
1055        if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1056                         || (pages[2] == NULL) || (pages[3] == NULL))
1057                return -ENOMEM;
1058
1059        return_stuff.xType = 0;
1060        return_stuff.xRc = 0;
1061        return_stuff.xDone = 0;
1062        ev->event.hp_lp_event.xSubtype = 6;
1063        ev->event.hp_lp_event.x.xSubtypeData =
1064                subtype_data('M', 'F', 'V', 'I');
1065        ev->event.data.vsp_cmd.xEvent = &return_stuff;
1066        ev->event.data.vsp_cmd.cmd = 4;
1067        ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1068        ev->event.data.vsp_cmd.result_code = 0xFF;
1069        ev->event.data.vsp_cmd.reserved = 0;
1070        ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1071        ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1072        ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1073        ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1074        mb();
1075        if (signal_event(ev) != 0)
1076                return;
1077
1078        while (return_stuff.xDone != 1)
1079                udelay(10);
1080        if (return_stuff.xRc == 0)
1081                memcpy(buffer, pages[0], size);
1082        kfree(pages[0]);
1083        kfree(pages[1]);
1084        kfree(pages[2]);
1085        kfree(pages[3]);
1086}
1087#endif
1088
1089static int proc_mf_dump_src(char *page, char **start, off_t off,
1090                int count, int *eof, void *data)
1091{
1092#if 0
1093        int len;
1094
1095        mf_getSrcHistory(page, count);
1096        len = count;
1097        len -= off;
1098        if (len < count) {
1099                *eof = 1;
1100                if (len <= 0)
1101                        return 0;
1102        } else
1103                len = count;
1104        *start = page + off;
1105        return len;
1106#else
1107        return 0;
1108#endif
1109}
1110
1111static int proc_mf_change_src(struct file *file, const char __user *buffer,
1112                unsigned long count, void *data)
1113{
1114        char stkbuf[10];
1115
1116        if (!capable(CAP_SYS_ADMIN))
1117                return -EACCES;
1118
1119        if ((count < 4) && (count != 1)) {
1120                printk(KERN_ERR "mf_proc: invalid src\n");
1121                return -EINVAL;
1122        }
1123
1124        if (count > (sizeof(stkbuf) - 1))
1125                count = sizeof(stkbuf) - 1;
1126        if (copy_from_user(stkbuf, buffer, count))
1127                return -EFAULT;
1128
1129        if ((count == 1) && (*stkbuf == '\0'))
1130                mf_clear_src();
1131        else
1132                mf_display_src(*(u32 *)stkbuf);
1133
1134        return count;
1135}
1136
1137static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1138                unsigned long count, void *data)
1139{
1140        struct vsp_cmd_data vsp_cmd;
1141        dma_addr_t dma_addr;
1142        char *page;
1143        int ret = -EACCES;
1144
1145        if (!capable(CAP_SYS_ADMIN))
1146                goto out;
1147
1148        dma_addr = 0;
1149        page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1150        ret = -ENOMEM;
1151        if (page == NULL)
1152                goto out;
1153
1154        ret = -EFAULT;
1155        if (copy_from_user(page, buffer, count))
1156                goto out_free;
1157
1158        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1159        vsp_cmd.cmd = 31;
1160        vsp_cmd.sub_data.kern.token = dma_addr;
1161        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1162        vsp_cmd.sub_data.kern.side = (u64)data;
1163        vsp_cmd.sub_data.kern.length = count;
1164        mb();
1165        (void)signal_vsp_instruction(&vsp_cmd);
1166        ret = count;
1167
1168out_free:
1169        iseries_hv_free(count, page, dma_addr);
1170out:
1171        return ret;
1172}
1173
1174static ssize_t proc_mf_change_vmlinux(struct file *file,
1175                                      const char __user *buf,
1176                                      size_t count, loff_t *ppos)
1177{
1178        struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1179        ssize_t rc;
1180        dma_addr_t dma_addr;
1181        char *page;
1182        struct vsp_cmd_data vsp_cmd;
1183
1184        rc = -EACCES;
1185        if (!capable(CAP_SYS_ADMIN))
1186                goto out;
1187
1188        dma_addr = 0;
1189        page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1190        rc = -ENOMEM;
1191        if (page == NULL) {
1192                printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1193                goto out;
1194        }
1195        rc = -EFAULT;
1196        if (copy_from_user(page, buf, count))
1197                goto out_free;
1198
1199        memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1200        vsp_cmd.cmd = 30;
1201        vsp_cmd.sub_data.kern.token = dma_addr;
1202        vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1203        vsp_cmd.sub_data.kern.side = (u64)dp->data;
1204        vsp_cmd.sub_data.kern.offset = *ppos;
1205        vsp_cmd.sub_data.kern.length = count;
1206        mb();
1207        rc = signal_vsp_instruction(&vsp_cmd);
1208        if (rc)
1209                goto out_free;
1210        rc = -ENOMEM;
1211        if (vsp_cmd.result_code != 0)
1212                goto out_free;
1213
1214        *ppos += count;
1215        rc = count;
1216out_free:
1217        iseries_hv_free(count, page, dma_addr);
1218out:
1219        return rc;
1220}
1221
1222static const struct file_operations proc_vmlinux_operations = {
1223        .write          = proc_mf_change_vmlinux,
1224};
1225
1226static int __init mf_proc_init(void)
1227{
1228        struct proc_dir_entry *mf_proc_root;
1229        struct proc_dir_entry *ent;
1230        struct proc_dir_entry *mf;
1231        char name[2];
1232        int i;
1233
1234        if (!firmware_has_feature(FW_FEATURE_ISERIES))
1235                return 0;
1236
1237        mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1238        if (!mf_proc_root)
1239                return 1;
1240
1241        name[1] = '\0';
1242        for (i = 0; i < 4; i++) {
1243                name[0] = 'A' + i;
1244                mf = proc_mkdir(name, mf_proc_root);
1245                if (!mf)
1246                        return 1;
1247
1248                ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1249                if (!ent)
1250                        return 1;
1251                ent->data = (void *)(long)i;
1252                ent->read_proc = proc_mf_dump_cmdline;
1253                ent->write_proc = proc_mf_change_cmdline;
1254
1255                if (i == 3)     /* no vmlinux entry for 'D' */
1256                        continue;
1257
1258                ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1259                if (!ent)
1260                        return 1;
1261                ent->data = (void *)(long)i;
1262                ent->proc_fops = &proc_vmlinux_operations;
1263        }
1264
1265        ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1266        if (!ent)
1267                return 1;
1268        ent->data = (void *)0;
1269        ent->read_proc = proc_mf_dump_side;
1270        ent->write_proc = proc_mf_change_side;
1271
1272        ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1273        if (!ent)
1274                return 1;
1275        ent->data = (void *)0;
1276        ent->read_proc = proc_mf_dump_src;
1277        ent->write_proc = proc_mf_change_src;
1278
1279        return 0;
1280}
1281
1282__initcall(mf_proc_init);
1283
1284#endif /* CONFIG_PROC_FS */
1285
1286/*
1287 * Get the RTC from the virtual service processor
1288 * This requires flowing LpEvents to the primary partition
1289 */
1290void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1291{
1292        mf_get_rtc(rtc_tm);
1293        rtc_tm->tm_mon--;
1294}
1295
1296/*
1297 * Set the RTC in the virtual service processor
1298 * This requires flowing LpEvents to the primary partition
1299 */
1300int iSeries_set_rtc_time(struct rtc_time *tm)
1301{
1302        mf_set_rtc(tm);
1303        return 0;
1304}
1305
1306unsigned long iSeries_get_boot_time(void)
1307{
1308        struct rtc_time tm;
1309
1310        mf_get_boot_rtc(&tm);
1311        return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1312                      tm.tm_hour, tm.tm_min, tm.tm_sec);
1313}
1314