linux/arch/sparc/mm/srmmu.c
<<
>>
Prefs
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/slab.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/bootmem.h>
  19#include <linux/fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/kdebug.h>
  22
  23#include <asm/bitext.h>
  24#include <asm/page.h>
  25#include <asm/pgalloc.h>
  26#include <asm/pgtable.h>
  27#include <asm/io.h>
  28#include <asm/vaddrs.h>
  29#include <asm/traps.h>
  30#include <asm/smp.h>
  31#include <asm/mbus.h>
  32#include <asm/cache.h>
  33#include <asm/oplib.h>
  34#include <asm/sbus.h>
  35#include <asm/asi.h>
  36#include <asm/msi.h>
  37#include <asm/a.out.h>
  38#include <asm/mmu_context.h>
  39#include <asm/io-unit.h>
  40#include <asm/cacheflush.h>
  41#include <asm/tlbflush.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/viking.h>
  45#include <asm/mxcc.h>
  46#include <asm/ross.h>
  47#include <asm/tsunami.h>
  48#include <asm/swift.h>
  49#include <asm/turbosparc.h>
  50
  51#include <asm/btfixup.h>
  52
  53enum mbus_module srmmu_modtype;
  54unsigned int hwbug_bitmask;
  55int vac_cache_size;
  56int vac_line_size;
  57
  58extern struct resource sparc_iomap;
  59
  60extern unsigned long last_valid_pfn;
  61
  62extern unsigned long page_kernel;
  63
  64pgd_t *srmmu_swapper_pg_dir;
  65
  66#ifdef CONFIG_SMP
  67#define FLUSH_BEGIN(mm)
  68#define FLUSH_END
  69#else
  70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
  71#define FLUSH_END       }
  72#endif
  73
  74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
  75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
  76
  77int flush_page_for_dma_global = 1;
  78
  79#ifdef CONFIG_SMP
  80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
  81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
  82#endif
  83
  84char *srmmu_name;
  85
  86ctxd_t *srmmu_ctx_table_phys;
  87ctxd_t *srmmu_context_table;
  88
  89int viking_mxcc_present;
  90static DEFINE_SPINLOCK(srmmu_context_spinlock);
  91
  92int is_hypersparc;
  93
  94/*
  95 * In general all page table modifications should use the V8 atomic
  96 * swap instruction.  This insures the mmu and the cpu are in sync
  97 * with respect to ref/mod bits in the page tables.
  98 */
  99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
 100{
 101        __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
 102        return value;
 103}
 104
 105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
 106{
 107        srmmu_swap((unsigned long *)ptep, pte_val(pteval));
 108}
 109
 110/* The very generic SRMMU page table operations. */
 111static inline int srmmu_device_memory(unsigned long x)
 112{
 113        return ((x & 0xF0000000) != 0);
 114}
 115
 116int srmmu_cache_pagetables;
 117
 118/* these will be initialized in srmmu_nocache_calcsize() */
 119unsigned long srmmu_nocache_size;
 120unsigned long srmmu_nocache_end;
 121
 122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
 123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 124
 125/* The context table is a nocache user with the biggest alignment needs. */
 126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 127
 128void *srmmu_nocache_pool;
 129void *srmmu_nocache_bitmap;
 130static struct bit_map srmmu_nocache_map;
 131
 132static unsigned long srmmu_pte_pfn(pte_t pte)
 133{
 134        if (srmmu_device_memory(pte_val(pte))) {
 135                /* Just return something that will cause
 136                 * pfn_valid() to return false.  This makes
 137                 * copy_one_pte() to just directly copy to
 138                 * PTE over.
 139                 */
 140                return ~0UL;
 141        }
 142        return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
 143}
 144
 145static struct page *srmmu_pmd_page(pmd_t pmd)
 146{
 147
 148        if (srmmu_device_memory(pmd_val(pmd)))
 149                BUG();
 150        return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
 151}
 152
 153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
 154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
 155
 156
 157static inline int srmmu_pte_none(pte_t pte)
 158{ return !(pte_val(pte) & 0xFFFFFFF); }
 159
 160static inline int srmmu_pte_present(pte_t pte)
 161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
 162
 163static inline void srmmu_pte_clear(pte_t *ptep)
 164{ srmmu_set_pte(ptep, __pte(0)); }
 165
 166static inline int srmmu_pmd_none(pmd_t pmd)
 167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 168
 169static inline int srmmu_pmd_bad(pmd_t pmd)
 170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 171
 172static inline int srmmu_pmd_present(pmd_t pmd)
 173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 174
 175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
 176        int i;
 177        for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
 178                srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
 179}
 180
 181static inline int srmmu_pgd_none(pgd_t pgd)          
 182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
 183
 184static inline int srmmu_pgd_bad(pgd_t pgd)
 185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 186
 187static inline int srmmu_pgd_present(pgd_t pgd)
 188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 189
 190static inline void srmmu_pgd_clear(pgd_t * pgdp)
 191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
 192
 193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
 194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
 195
 196static inline pte_t srmmu_pte_mkclean(pte_t pte)
 197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
 198
 199static inline pte_t srmmu_pte_mkold(pte_t pte)
 200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
 201
 202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
 203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
 204
 205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
 206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
 207
 208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
 209{ return __pte(pte_val(pte) | SRMMU_REF);}
 210
 211/*
 212 * Conversion functions: convert a page and protection to a page entry,
 213 * and a page entry and page directory to the page they refer to.
 214 */
 215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
 216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
 217
 218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
 219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
 220
 221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
 222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
 223
 224/* XXX should we hyper_flush_whole_icache here - Anton */
 225static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 226{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 227
 228static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
 229{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
 230
 231static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
 232{
 233        unsigned long ptp;      /* Physical address, shifted right by 4 */
 234        int i;
 235
 236        ptp = __nocache_pa((unsigned long) ptep) >> 4;
 237        for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 238                srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 239                ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 240        }
 241}
 242
 243static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
 244{
 245        unsigned long ptp;      /* Physical address, shifted right by 4 */
 246        int i;
 247
 248        ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
 249        for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 250                srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 251                ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 252        }
 253}
 254
 255static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
 256{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
 257
 258/* to find an entry in a top-level page table... */
 259static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
 260{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
 261
 262/* Find an entry in the second-level page table.. */
 263static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
 264{
 265        return (pmd_t *) srmmu_pgd_page(*dir) +
 266            ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 267}
 268
 269/* Find an entry in the third-level page table.. */ 
 270static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
 271{
 272        void *pte;
 273
 274        pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 275        return (pte_t *) pte +
 276            ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 277}
 278
 279static unsigned long srmmu_swp_type(swp_entry_t entry)
 280{
 281        return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
 282}
 283
 284static unsigned long srmmu_swp_offset(swp_entry_t entry)
 285{
 286        return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
 287}
 288
 289static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
 290{
 291        return (swp_entry_t) {
 292                  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
 293                | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
 294}
 295
 296/*
 297 * size: bytes to allocate in the nocache area.
 298 * align: bytes, number to align at.
 299 * Returns the virtual address of the allocated area.
 300 */
 301static unsigned long __srmmu_get_nocache(int size, int align)
 302{
 303        int offset;
 304
 305        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 306                printk("Size 0x%x too small for nocache request\n", size);
 307                size = SRMMU_NOCACHE_BITMAP_SHIFT;
 308        }
 309        if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
 310                printk("Size 0x%x unaligned int nocache request\n", size);
 311                size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
 312        }
 313        BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 314
 315        offset = bit_map_string_get(&srmmu_nocache_map,
 316                                        size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 317                                        align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 318        if (offset == -1) {
 319                printk("srmmu: out of nocache %d: %d/%d\n",
 320                    size, (int) srmmu_nocache_size,
 321                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 322                return 0;
 323        }
 324
 325        return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
 326}
 327
 328unsigned inline long srmmu_get_nocache(int size, int align)
 329{
 330        unsigned long tmp;
 331
 332        tmp = __srmmu_get_nocache(size, align);
 333
 334        if (tmp)
 335                memset((void *)tmp, 0, size);
 336
 337        return tmp;
 338}
 339
 340void srmmu_free_nocache(unsigned long vaddr, int size)
 341{
 342        int offset;
 343
 344        if (vaddr < SRMMU_NOCACHE_VADDR) {
 345                printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 346                    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 347                BUG();
 348        }
 349        if (vaddr+size > srmmu_nocache_end) {
 350                printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 351                    vaddr, srmmu_nocache_end);
 352                BUG();
 353        }
 354        if (size & (size-1)) {
 355                printk("Size 0x%x is not a power of 2\n", size);
 356                BUG();
 357        }
 358        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 359                printk("Size 0x%x is too small\n", size);
 360                BUG();
 361        }
 362        if (vaddr & (size-1)) {
 363                printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 364                BUG();
 365        }
 366
 367        offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 368        size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 369
 370        bit_map_clear(&srmmu_nocache_map, offset, size);
 371}
 372
 373void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
 374
 375extern unsigned long probe_memory(void);        /* in fault.c */
 376
 377/*
 378 * Reserve nocache dynamically proportionally to the amount of
 379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 380 */
 381void srmmu_nocache_calcsize(void)
 382{
 383        unsigned long sysmemavail = probe_memory() / 1024;
 384        int srmmu_nocache_npages;
 385
 386        srmmu_nocache_npages =
 387                sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 388
 389 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 390        // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 391        if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 392                srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 393
 394        /* anything above 1280 blows up */
 395        if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 396                srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 397
 398        srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 399        srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 400}
 401
 402void __init srmmu_nocache_init(void)
 403{
 404        unsigned int bitmap_bits;
 405        pgd_t *pgd;
 406        pmd_t *pmd;
 407        pte_t *pte;
 408        unsigned long paddr, vaddr;
 409        unsigned long pteval;
 410
 411        bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 412
 413        srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 414                SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 415        memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 416
 417        srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
 418        bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 419
 420        srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 421        memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 422        init_mm.pgd = srmmu_swapper_pg_dir;
 423
 424        srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 425
 426        paddr = __pa((unsigned long)srmmu_nocache_pool);
 427        vaddr = SRMMU_NOCACHE_VADDR;
 428
 429        while (vaddr < srmmu_nocache_end) {
 430                pgd = pgd_offset_k(vaddr);
 431                pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
 432                pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
 433
 434                pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 435
 436                if (srmmu_cache_pagetables)
 437                        pteval |= SRMMU_CACHE;
 438
 439                srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
 440
 441                vaddr += PAGE_SIZE;
 442                paddr += PAGE_SIZE;
 443        }
 444
 445        flush_cache_all();
 446        flush_tlb_all();
 447}
 448
 449static inline pgd_t *srmmu_get_pgd_fast(void)
 450{
 451        pgd_t *pgd = NULL;
 452
 453        pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 454        if (pgd) {
 455                pgd_t *init = pgd_offset_k(0);
 456                memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 457                memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 458                                                (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 459        }
 460
 461        return pgd;
 462}
 463
 464static void srmmu_free_pgd_fast(pgd_t *pgd)
 465{
 466        srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
 467}
 468
 469static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
 470{
 471        return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 472}
 473
 474static void srmmu_pmd_free(pmd_t * pmd)
 475{
 476        srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
 477}
 478
 479/*
 480 * Hardware needs alignment to 256 only, but we align to whole page size
 481 * to reduce fragmentation problems due to the buddy principle.
 482 * XXX Provide actual fragmentation statistics in /proc.
 483 *
 484 * Alignments up to the page size are the same for physical and virtual
 485 * addresses of the nocache area.
 486 */
 487static pte_t *
 488srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 489{
 490        return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 491}
 492
 493static struct page *
 494srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
 495{
 496        unsigned long pte;
 497
 498        if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
 499                return NULL;
 500        return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
 501}
 502
 503static void srmmu_free_pte_fast(pte_t *pte)
 504{
 505        srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
 506}
 507
 508static void srmmu_pte_free(struct page *pte)
 509{
 510        unsigned long p;
 511
 512        p = (unsigned long)page_address(pte);   /* Cached address (for test) */
 513        if (p == 0)
 514                BUG();
 515        p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
 516        p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
 517        srmmu_free_nocache(p, PTE_SIZE);
 518}
 519
 520/*
 521 */
 522static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 523{
 524        struct ctx_list *ctxp;
 525
 526        ctxp = ctx_free.next;
 527        if(ctxp != &ctx_free) {
 528                remove_from_ctx_list(ctxp);
 529                add_to_used_ctxlist(ctxp);
 530                mm->context = ctxp->ctx_number;
 531                ctxp->ctx_mm = mm;
 532                return;
 533        }
 534        ctxp = ctx_used.next;
 535        if(ctxp->ctx_mm == old_mm)
 536                ctxp = ctxp->next;
 537        if(ctxp == &ctx_used)
 538                panic("out of mmu contexts");
 539        flush_cache_mm(ctxp->ctx_mm);
 540        flush_tlb_mm(ctxp->ctx_mm);
 541        remove_from_ctx_list(ctxp);
 542        add_to_used_ctxlist(ctxp);
 543        ctxp->ctx_mm->context = NO_CONTEXT;
 544        ctxp->ctx_mm = mm;
 545        mm->context = ctxp->ctx_number;
 546}
 547
 548static inline void free_context(int context)
 549{
 550        struct ctx_list *ctx_old;
 551
 552        ctx_old = ctx_list_pool + context;
 553        remove_from_ctx_list(ctx_old);
 554        add_to_free_ctxlist(ctx_old);
 555}
 556
 557
 558static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 559    struct task_struct *tsk, int cpu)
 560{
 561        if(mm->context == NO_CONTEXT) {
 562                spin_lock(&srmmu_context_spinlock);
 563                alloc_context(old_mm, mm);
 564                spin_unlock(&srmmu_context_spinlock);
 565                srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 566        }
 567
 568        if (is_hypersparc)
 569                hyper_flush_whole_icache();
 570
 571        srmmu_set_context(mm->context);
 572}
 573
 574/* Low level IO area allocation on the SRMMU. */
 575static inline void srmmu_mapioaddr(unsigned long physaddr,
 576    unsigned long virt_addr, int bus_type)
 577{
 578        pgd_t *pgdp;
 579        pmd_t *pmdp;
 580        pte_t *ptep;
 581        unsigned long tmp;
 582
 583        physaddr &= PAGE_MASK;
 584        pgdp = pgd_offset_k(virt_addr);
 585        pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 586        ptep = srmmu_pte_offset(pmdp, virt_addr);
 587        tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 588
 589        /*
 590         * I need to test whether this is consistent over all
 591         * sun4m's.  The bus_type represents the upper 4 bits of
 592         * 36-bit physical address on the I/O space lines...
 593         */
 594        tmp |= (bus_type << 28);
 595        tmp |= SRMMU_PRIV;
 596        __flush_page_to_ram(virt_addr);
 597        srmmu_set_pte(ptep, __pte(tmp));
 598}
 599
 600static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 601    unsigned long xva, unsigned int len)
 602{
 603        while (len != 0) {
 604                len -= PAGE_SIZE;
 605                srmmu_mapioaddr(xpa, xva, bus);
 606                xva += PAGE_SIZE;
 607                xpa += PAGE_SIZE;
 608        }
 609        flush_tlb_all();
 610}
 611
 612static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 613{
 614        pgd_t *pgdp;
 615        pmd_t *pmdp;
 616        pte_t *ptep;
 617
 618        pgdp = pgd_offset_k(virt_addr);
 619        pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 620        ptep = srmmu_pte_offset(pmdp, virt_addr);
 621
 622        /* No need to flush uncacheable page. */
 623        srmmu_pte_clear(ptep);
 624}
 625
 626static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 627{
 628        while (len != 0) {
 629                len -= PAGE_SIZE;
 630                srmmu_unmapioaddr(virt_addr);
 631                virt_addr += PAGE_SIZE;
 632        }
 633        flush_tlb_all();
 634}
 635
 636/*
 637 * On the SRMMU we do not have the problems with limited tlb entries
 638 * for mapping kernel pages, so we just take things from the free page
 639 * pool.  As a side effect we are putting a little too much pressure
 640 * on the gfp() subsystem.  This setup also makes the logic of the
 641 * iommu mapping code a lot easier as we can transparently handle
 642 * mappings on the kernel stack without any special code as we did
 643 * need on the sun4c.
 644 */
 645struct thread_info *srmmu_alloc_thread_info(void)
 646{
 647        struct thread_info *ret;
 648
 649        ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
 650                                                     THREAD_INFO_ORDER);
 651#ifdef CONFIG_DEBUG_STACK_USAGE
 652        if (ret)
 653                memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
 654#endif /* DEBUG_STACK_USAGE */
 655
 656        return ret;
 657}
 658
 659static void srmmu_free_thread_info(struct thread_info *ti)
 660{
 661        free_pages((unsigned long)ti, THREAD_INFO_ORDER);
 662}
 663
 664/* tsunami.S */
 665extern void tsunami_flush_cache_all(void);
 666extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 667extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 668extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 669extern void tsunami_flush_page_to_ram(unsigned long page);
 670extern void tsunami_flush_page_for_dma(unsigned long page);
 671extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 672extern void tsunami_flush_tlb_all(void);
 673extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 674extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 675extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 676extern void tsunami_setup_blockops(void);
 677
 678/*
 679 * Workaround, until we find what's going on with Swift. When low on memory,
 680 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
 681 * out it is already in page tables/ fault again on the same instruction.
 682 * I really don't understand it, have checked it and contexts
 683 * are right, flush_tlb_all is done as well, and it faults again...
 684 * Strange. -jj
 685 *
 686 * The following code is a deadwood that may be necessary when
 687 * we start to make precise page flushes again. --zaitcev
 688 */
 689static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
 690{
 691#if 0
 692        static unsigned long last;
 693        unsigned int val;
 694        /* unsigned int n; */
 695
 696        if (address == last) {
 697                val = srmmu_hwprobe(address);
 698                if (val != 0 && pte_val(pte) != val) {
 699                        printk("swift_update_mmu_cache: "
 700                            "addr %lx put %08x probed %08x from %p\n",
 701                            address, pte_val(pte), val,
 702                            __builtin_return_address(0));
 703                        srmmu_flush_whole_tlb();
 704                }
 705        }
 706        last = address;
 707#endif
 708}
 709
 710/* swift.S */
 711extern void swift_flush_cache_all(void);
 712extern void swift_flush_cache_mm(struct mm_struct *mm);
 713extern void swift_flush_cache_range(struct vm_area_struct *vma,
 714                                    unsigned long start, unsigned long end);
 715extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 716extern void swift_flush_page_to_ram(unsigned long page);
 717extern void swift_flush_page_for_dma(unsigned long page);
 718extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 719extern void swift_flush_tlb_all(void);
 720extern void swift_flush_tlb_mm(struct mm_struct *mm);
 721extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 722                                  unsigned long start, unsigned long end);
 723extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 724
 725#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 726void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 727{
 728        int cctx, ctx1;
 729
 730        page &= PAGE_MASK;
 731        if ((ctx1 = vma->vm_mm->context) != -1) {
 732                cctx = srmmu_get_context();
 733/* Is context # ever different from current context? P3 */
 734                if (cctx != ctx1) {
 735                        printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 736                        srmmu_set_context(ctx1);
 737                        swift_flush_page(page);
 738                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 739                                        "r" (page), "i" (ASI_M_FLUSH_PROBE));
 740                        srmmu_set_context(cctx);
 741                } else {
 742                         /* Rm. prot. bits from virt. c. */
 743                        /* swift_flush_cache_all(); */
 744                        /* swift_flush_cache_page(vma, page); */
 745                        swift_flush_page(page);
 746
 747                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 748                                "r" (page), "i" (ASI_M_FLUSH_PROBE));
 749                        /* same as above: srmmu_flush_tlb_page() */
 750                }
 751        }
 752}
 753#endif
 754
 755/*
 756 * The following are all MBUS based SRMMU modules, and therefore could
 757 * be found in a multiprocessor configuration.  On the whole, these
 758 * chips seems to be much more touchy about DVMA and page tables
 759 * with respect to cache coherency.
 760 */
 761
 762/* Cypress flushes. */
 763static void cypress_flush_cache_all(void)
 764{
 765        volatile unsigned long cypress_sucks;
 766        unsigned long faddr, tagval;
 767
 768        flush_user_windows();
 769        for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
 770                __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
 771                                     "=r" (tagval) :
 772                                     "r" (faddr), "r" (0x40000),
 773                                     "i" (ASI_M_DATAC_TAG));
 774
 775                /* If modified and valid, kick it. */
 776                if((tagval & 0x60) == 0x60)
 777                        cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
 778        }
 779}
 780
 781static void cypress_flush_cache_mm(struct mm_struct *mm)
 782{
 783        register unsigned long a, b, c, d, e, f, g;
 784        unsigned long flags, faddr;
 785        int octx;
 786
 787        FLUSH_BEGIN(mm)
 788        flush_user_windows();
 789        local_irq_save(flags);
 790        octx = srmmu_get_context();
 791        srmmu_set_context(mm->context);
 792        a = 0x20; b = 0x40; c = 0x60;
 793        d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 794
 795        faddr = (0x10000 - 0x100);
 796        goto inside;
 797        do {
 798                faddr -= 0x100;
 799        inside:
 800                __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 801                                     "sta %%g0, [%0 + %2] %1\n\t"
 802                                     "sta %%g0, [%0 + %3] %1\n\t"
 803                                     "sta %%g0, [%0 + %4] %1\n\t"
 804                                     "sta %%g0, [%0 + %5] %1\n\t"
 805                                     "sta %%g0, [%0 + %6] %1\n\t"
 806                                     "sta %%g0, [%0 + %7] %1\n\t"
 807                                     "sta %%g0, [%0 + %8] %1\n\t" : :
 808                                     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
 809                                     "r" (a), "r" (b), "r" (c), "r" (d),
 810                                     "r" (e), "r" (f), "r" (g));
 811        } while(faddr);
 812        srmmu_set_context(octx);
 813        local_irq_restore(flags);
 814        FLUSH_END
 815}
 816
 817static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 818{
 819        struct mm_struct *mm = vma->vm_mm;
 820        register unsigned long a, b, c, d, e, f, g;
 821        unsigned long flags, faddr;
 822        int octx;
 823
 824        FLUSH_BEGIN(mm)
 825        flush_user_windows();
 826        local_irq_save(flags);
 827        octx = srmmu_get_context();
 828        srmmu_set_context(mm->context);
 829        a = 0x20; b = 0x40; c = 0x60;
 830        d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 831
 832        start &= SRMMU_REAL_PMD_MASK;
 833        while(start < end) {
 834                faddr = (start + (0x10000 - 0x100));
 835                goto inside;
 836                do {
 837                        faddr -= 0x100;
 838                inside:
 839                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 840                                             "sta %%g0, [%0 + %2] %1\n\t"
 841                                             "sta %%g0, [%0 + %3] %1\n\t"
 842                                             "sta %%g0, [%0 + %4] %1\n\t"
 843                                             "sta %%g0, [%0 + %5] %1\n\t"
 844                                             "sta %%g0, [%0 + %6] %1\n\t"
 845                                             "sta %%g0, [%0 + %7] %1\n\t"
 846                                             "sta %%g0, [%0 + %8] %1\n\t" : :
 847                                             "r" (faddr),
 848                                             "i" (ASI_M_FLUSH_SEG),
 849                                             "r" (a), "r" (b), "r" (c), "r" (d),
 850                                             "r" (e), "r" (f), "r" (g));
 851                } while (faddr != start);
 852                start += SRMMU_REAL_PMD_SIZE;
 853        }
 854        srmmu_set_context(octx);
 855        local_irq_restore(flags);
 856        FLUSH_END
 857}
 858
 859static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
 860{
 861        register unsigned long a, b, c, d, e, f, g;
 862        struct mm_struct *mm = vma->vm_mm;
 863        unsigned long flags, line;
 864        int octx;
 865
 866        FLUSH_BEGIN(mm)
 867        flush_user_windows();
 868        local_irq_save(flags);
 869        octx = srmmu_get_context();
 870        srmmu_set_context(mm->context);
 871        a = 0x20; b = 0x40; c = 0x60;
 872        d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 873
 874        page &= PAGE_MASK;
 875        line = (page + PAGE_SIZE) - 0x100;
 876        goto inside;
 877        do {
 878                line -= 0x100;
 879        inside:
 880                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 881                                             "sta %%g0, [%0 + %2] %1\n\t"
 882                                             "sta %%g0, [%0 + %3] %1\n\t"
 883                                             "sta %%g0, [%0 + %4] %1\n\t"
 884                                             "sta %%g0, [%0 + %5] %1\n\t"
 885                                             "sta %%g0, [%0 + %6] %1\n\t"
 886                                             "sta %%g0, [%0 + %7] %1\n\t"
 887                                             "sta %%g0, [%0 + %8] %1\n\t" : :
 888                                             "r" (line),
 889                                             "i" (ASI_M_FLUSH_PAGE),
 890                                             "r" (a), "r" (b), "r" (c), "r" (d),
 891                                             "r" (e), "r" (f), "r" (g));
 892        } while(line != page);
 893        srmmu_set_context(octx);
 894        local_irq_restore(flags);
 895        FLUSH_END
 896}
 897
 898/* Cypress is copy-back, at least that is how we configure it. */
 899static void cypress_flush_page_to_ram(unsigned long page)
 900{
 901        register unsigned long a, b, c, d, e, f, g;
 902        unsigned long line;
 903
 904        a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 905        page &= PAGE_MASK;
 906        line = (page + PAGE_SIZE) - 0x100;
 907        goto inside;
 908        do {
 909                line -= 0x100;
 910        inside:
 911                __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 912                                     "sta %%g0, [%0 + %2] %1\n\t"
 913                                     "sta %%g0, [%0 + %3] %1\n\t"
 914                                     "sta %%g0, [%0 + %4] %1\n\t"
 915                                     "sta %%g0, [%0 + %5] %1\n\t"
 916                                     "sta %%g0, [%0 + %6] %1\n\t"
 917                                     "sta %%g0, [%0 + %7] %1\n\t"
 918                                     "sta %%g0, [%0 + %8] %1\n\t" : :
 919                                     "r" (line),
 920                                     "i" (ASI_M_FLUSH_PAGE),
 921                                     "r" (a), "r" (b), "r" (c), "r" (d),
 922                                     "r" (e), "r" (f), "r" (g));
 923        } while(line != page);
 924}
 925
 926/* Cypress is also IO cache coherent. */
 927static void cypress_flush_page_for_dma(unsigned long page)
 928{
 929}
 930
 931/* Cypress has unified L2 VIPT, from which both instructions and data
 932 * are stored.  It does not have an onboard icache of any sort, therefore
 933 * no flush is necessary.
 934 */
 935static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
 936{
 937}
 938
 939static void cypress_flush_tlb_all(void)
 940{
 941        srmmu_flush_whole_tlb();
 942}
 943
 944static void cypress_flush_tlb_mm(struct mm_struct *mm)
 945{
 946        FLUSH_BEGIN(mm)
 947        __asm__ __volatile__(
 948        "lda    [%0] %3, %%g5\n\t"
 949        "sta    %2, [%0] %3\n\t"
 950        "sta    %%g0, [%1] %4\n\t"
 951        "sta    %%g5, [%0] %3\n"
 952        : /* no outputs */
 953        : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
 954          "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
 955        : "g5");
 956        FLUSH_END
 957}
 958
 959static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 960{
 961        struct mm_struct *mm = vma->vm_mm;
 962        unsigned long size;
 963
 964        FLUSH_BEGIN(mm)
 965        start &= SRMMU_PGDIR_MASK;
 966        size = SRMMU_PGDIR_ALIGN(end) - start;
 967        __asm__ __volatile__(
 968                "lda    [%0] %5, %%g5\n\t"
 969                "sta    %1, [%0] %5\n"
 970                "1:\n\t"
 971                "subcc  %3, %4, %3\n\t"
 972                "bne    1b\n\t"
 973                " sta   %%g0, [%2 + %3] %6\n\t"
 974                "sta    %%g5, [%0] %5\n"
 975        : /* no outputs */
 976        : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
 977          "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
 978          "i" (ASI_M_FLUSH_PROBE)
 979        : "g5", "cc");
 980        FLUSH_END
 981}
 982
 983static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 984{
 985        struct mm_struct *mm = vma->vm_mm;
 986
 987        FLUSH_BEGIN(mm)
 988        __asm__ __volatile__(
 989        "lda    [%0] %3, %%g5\n\t"
 990        "sta    %1, [%0] %3\n\t"
 991        "sta    %%g0, [%2] %4\n\t"
 992        "sta    %%g5, [%0] %3\n"
 993        : /* no outputs */
 994        : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
 995          "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
 996        : "g5");
 997        FLUSH_END
 998}
 999
1000/* viking.S */
1001extern void viking_flush_cache_all(void);
1002extern void viking_flush_cache_mm(struct mm_struct *mm);
1003extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1004                                     unsigned long end);
1005extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1006extern void viking_flush_page_to_ram(unsigned long page);
1007extern void viking_flush_page_for_dma(unsigned long page);
1008extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1009extern void viking_flush_page(unsigned long page);
1010extern void viking_mxcc_flush_page(unsigned long page);
1011extern void viking_flush_tlb_all(void);
1012extern void viking_flush_tlb_mm(struct mm_struct *mm);
1013extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1014                                   unsigned long end);
1015extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1016                                  unsigned long page);
1017extern void sun4dsmp_flush_tlb_all(void);
1018extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1019extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1020                                   unsigned long end);
1021extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1022                                  unsigned long page);
1023
1024/* hypersparc.S */
1025extern void hypersparc_flush_cache_all(void);
1026extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1027extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1028extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1029extern void hypersparc_flush_page_to_ram(unsigned long page);
1030extern void hypersparc_flush_page_for_dma(unsigned long page);
1031extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1032extern void hypersparc_flush_tlb_all(void);
1033extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1034extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1035extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1036extern void hypersparc_setup_blockops(void);
1037
1038/*
1039 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1040 *       kernel mappings are done with one single contiguous chunk of
1041 *       ram.  On small ram machines (classics mainly) we only get
1042 *       around 8mb mapped for us.
1043 */
1044
1045void __init early_pgtable_allocfail(char *type)
1046{
1047        prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1048        prom_halt();
1049}
1050
1051void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1052{
1053        pgd_t *pgdp;
1054        pmd_t *pmdp;
1055        pte_t *ptep;
1056
1057        while(start < end) {
1058                pgdp = pgd_offset_k(start);
1059                if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1060                        pmdp = (pmd_t *) __srmmu_get_nocache(
1061                            SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1062                        if (pmdp == NULL)
1063                                early_pgtable_allocfail("pmd");
1064                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1065                        srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1066                }
1067                pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1068                if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1069                        ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1070                        if (ptep == NULL)
1071                                early_pgtable_allocfail("pte");
1072                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
1073                        srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1074                }
1075                if (start > (0xffffffffUL - PMD_SIZE))
1076                        break;
1077                start = (start + PMD_SIZE) & PMD_MASK;
1078        }
1079}
1080
1081void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1082{
1083        pgd_t *pgdp;
1084        pmd_t *pmdp;
1085        pte_t *ptep;
1086
1087        while(start < end) {
1088                pgdp = pgd_offset_k(start);
1089                if(srmmu_pgd_none(*pgdp)) {
1090                        pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1091                        if (pmdp == NULL)
1092                                early_pgtable_allocfail("pmd");
1093                        memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1094                        srmmu_pgd_set(pgdp, pmdp);
1095                }
1096                pmdp = srmmu_pmd_offset(pgdp, start);
1097                if(srmmu_pmd_none(*pmdp)) {
1098                        ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1099                                                             PTE_SIZE);
1100                        if (ptep == NULL)
1101                                early_pgtable_allocfail("pte");
1102                        memset(ptep, 0, PTE_SIZE);
1103                        srmmu_pmd_set(pmdp, ptep);
1104                }
1105                if (start > (0xffffffffUL - PMD_SIZE))
1106                        break;
1107                start = (start + PMD_SIZE) & PMD_MASK;
1108        }
1109}
1110
1111/*
1112 * This is much cleaner than poking around physical address space
1113 * looking at the prom's page table directly which is what most
1114 * other OS's do.  Yuck... this is much better.
1115 */
1116void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1117{
1118        pgd_t *pgdp;
1119        pmd_t *pmdp;
1120        pte_t *ptep;
1121        int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1122        unsigned long prompte;
1123
1124        while(start <= end) {
1125                if (start == 0)
1126                        break; /* probably wrap around */
1127                if(start == 0xfef00000)
1128                        start = KADB_DEBUGGER_BEGVM;
1129                if(!(prompte = srmmu_hwprobe(start))) {
1130                        start += PAGE_SIZE;
1131                        continue;
1132                }
1133    
1134                /* A red snapper, see what it really is. */
1135                what = 0;
1136    
1137                if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1138                        if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1139                                what = 1;
1140                }
1141    
1142                if(!(start & ~(SRMMU_PGDIR_MASK))) {
1143                        if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1144                           prompte)
1145                                what = 2;
1146                }
1147    
1148                pgdp = pgd_offset_k(start);
1149                if(what == 2) {
1150                        *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1151                        start += SRMMU_PGDIR_SIZE;
1152                        continue;
1153                }
1154                if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1155                        pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1156                        if (pmdp == NULL)
1157                                early_pgtable_allocfail("pmd");
1158                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1159                        srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1160                }
1161                pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1162                if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1163                        ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1164                                                             PTE_SIZE);
1165                        if (ptep == NULL)
1166                                early_pgtable_allocfail("pte");
1167                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
1168                        srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1169                }
1170                if(what == 1) {
1171                        /*
1172                         * We bend the rule where all 16 PTPs in a pmd_t point
1173                         * inside the same PTE page, and we leak a perfectly
1174                         * good hardware PTE piece. Alternatives seem worse.
1175                         */
1176                        unsigned int x; /* Index of HW PMD in soft cluster */
1177                        x = (start >> PMD_SHIFT) & 15;
1178                        *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1179                        start += SRMMU_REAL_PMD_SIZE;
1180                        continue;
1181                }
1182                ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1183                *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1184                start += PAGE_SIZE;
1185        }
1186}
1187
1188#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1189
1190/* Create a third-level SRMMU 16MB page mapping. */
1191static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1192{
1193        pgd_t *pgdp = pgd_offset_k(vaddr);
1194        unsigned long big_pte;
1195
1196        big_pte = KERNEL_PTE(phys_base >> 4);
1197        *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1198}
1199
1200/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1201static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1202{
1203        unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1204        unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1205        unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1206        /* Map "low" memory only */
1207        const unsigned long min_vaddr = PAGE_OFFSET;
1208        const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1209
1210        if (vstart < min_vaddr || vstart >= max_vaddr)
1211                return vstart;
1212        
1213        if (vend > max_vaddr || vend < min_vaddr)
1214                vend = max_vaddr;
1215
1216        while(vstart < vend) {
1217                do_large_mapping(vstart, pstart);
1218                vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1219        }
1220        return vstart;
1221}
1222
1223static inline void memprobe_error(char *msg)
1224{
1225        prom_printf(msg);
1226        prom_printf("Halting now...\n");
1227        prom_halt();
1228}
1229
1230static inline void map_kernel(void)
1231{
1232        int i;
1233
1234        if (phys_base > 0) {
1235                do_large_mapping(PAGE_OFFSET, phys_base);
1236        }
1237
1238        for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1239                map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1240        }
1241
1242        BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1243}
1244
1245/* Paging initialization on the Sparc Reference MMU. */
1246extern void sparc_context_init(int);
1247
1248void (*poke_srmmu)(void) __initdata = NULL;
1249
1250extern unsigned long bootmem_init(unsigned long *pages_avail);
1251
1252void __init srmmu_paging_init(void)
1253{
1254        int i, cpunode;
1255        char node_str[128];
1256        pgd_t *pgd;
1257        pmd_t *pmd;
1258        pte_t *pte;
1259        unsigned long pages_avail;
1260
1261        sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1262
1263        if (sparc_cpu_model == sun4d)
1264                num_contexts = 65536; /* We know it is Viking */
1265        else {
1266                /* Find the number of contexts on the srmmu. */
1267                cpunode = prom_getchild(prom_root_node);
1268                num_contexts = 0;
1269                while(cpunode != 0) {
1270                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1271                        if(!strcmp(node_str, "cpu")) {
1272                                num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1273                                break;
1274                        }
1275                        cpunode = prom_getsibling(cpunode);
1276                }
1277        }
1278
1279        if(!num_contexts) {
1280                prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1281                prom_halt();
1282        }
1283
1284        pages_avail = 0;
1285        last_valid_pfn = bootmem_init(&pages_avail);
1286
1287        srmmu_nocache_calcsize();
1288        srmmu_nocache_init();
1289        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1290        map_kernel();
1291
1292        /* ctx table has to be physically aligned to its size */
1293        srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1294        srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1295
1296        for(i = 0; i < num_contexts; i++)
1297                srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1298
1299        flush_cache_all();
1300        srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1301#ifdef CONFIG_SMP
1302        /* Stop from hanging here... */
1303        local_flush_tlb_all();
1304#else
1305        flush_tlb_all();
1306#endif
1307        poke_srmmu();
1308
1309#ifdef CONFIG_SUN_IO
1310        srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1311        srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1312#endif
1313
1314        srmmu_allocate_ptable_skeleton(
1315                __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1316        srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1317
1318        pgd = pgd_offset_k(PKMAP_BASE);
1319        pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1320        pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1321        pkmap_page_table = pte;
1322
1323        flush_cache_all();
1324        flush_tlb_all();
1325
1326        sparc_context_init(num_contexts);
1327
1328        kmap_init();
1329
1330        {
1331                unsigned long zones_size[MAX_NR_ZONES];
1332                unsigned long zholes_size[MAX_NR_ZONES];
1333                unsigned long npages;
1334                int znum;
1335
1336                for (znum = 0; znum < MAX_NR_ZONES; znum++)
1337                        zones_size[znum] = zholes_size[znum] = 0;
1338
1339                npages = max_low_pfn - pfn_base;
1340
1341                zones_size[ZONE_DMA] = npages;
1342                zholes_size[ZONE_DMA] = npages - pages_avail;
1343
1344                npages = highend_pfn - max_low_pfn;
1345                zones_size[ZONE_HIGHMEM] = npages;
1346                zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1347
1348                free_area_init_node(0, &contig_page_data, zones_size,
1349                                    pfn_base, zholes_size);
1350        }
1351}
1352
1353static void srmmu_mmu_info(struct seq_file *m)
1354{
1355        seq_printf(m, 
1356                   "MMU type\t: %s\n"
1357                   "contexts\t: %d\n"
1358                   "nocache total\t: %ld\n"
1359                   "nocache used\t: %d\n",
1360                   srmmu_name,
1361                   num_contexts,
1362                   srmmu_nocache_size,
1363                   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1364}
1365
1366static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1367{
1368}
1369
1370static void srmmu_destroy_context(struct mm_struct *mm)
1371{
1372
1373        if(mm->context != NO_CONTEXT) {
1374                flush_cache_mm(mm);
1375                srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1376                flush_tlb_mm(mm);
1377                spin_lock(&srmmu_context_spinlock);
1378                free_context(mm->context);
1379                spin_unlock(&srmmu_context_spinlock);
1380                mm->context = NO_CONTEXT;
1381        }
1382}
1383
1384/* Init various srmmu chip types. */
1385static void __init srmmu_is_bad(void)
1386{
1387        prom_printf("Could not determine SRMMU chip type.\n");
1388        prom_halt();
1389}
1390
1391static void __init init_vac_layout(void)
1392{
1393        int nd, cache_lines;
1394        char node_str[128];
1395#ifdef CONFIG_SMP
1396        int cpu = 0;
1397        unsigned long max_size = 0;
1398        unsigned long min_line_size = 0x10000000;
1399#endif
1400
1401        nd = prom_getchild(prom_root_node);
1402        while((nd = prom_getsibling(nd)) != 0) {
1403                prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1404                if(!strcmp(node_str, "cpu")) {
1405                        vac_line_size = prom_getint(nd, "cache-line-size");
1406                        if (vac_line_size == -1) {
1407                                prom_printf("can't determine cache-line-size, "
1408                                            "halting.\n");
1409                                prom_halt();
1410                        }
1411                        cache_lines = prom_getint(nd, "cache-nlines");
1412                        if (cache_lines == -1) {
1413                                prom_printf("can't determine cache-nlines, halting.\n");
1414                                prom_halt();
1415                        }
1416
1417                        vac_cache_size = cache_lines * vac_line_size;
1418#ifdef CONFIG_SMP
1419                        if(vac_cache_size > max_size)
1420                                max_size = vac_cache_size;
1421                        if(vac_line_size < min_line_size)
1422                                min_line_size = vac_line_size;
1423                        //FIXME: cpus not contiguous!!
1424                        cpu++;
1425                        if (cpu >= NR_CPUS || !cpu_online(cpu))
1426                                break;
1427#else
1428                        break;
1429#endif
1430                }
1431        }
1432        if(nd == 0) {
1433                prom_printf("No CPU nodes found, halting.\n");
1434                prom_halt();
1435        }
1436#ifdef CONFIG_SMP
1437        vac_cache_size = max_size;
1438        vac_line_size = min_line_size;
1439#endif
1440        printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1441               (int)vac_cache_size, (int)vac_line_size);
1442}
1443
1444static void __init poke_hypersparc(void)
1445{
1446        volatile unsigned long clear;
1447        unsigned long mreg = srmmu_get_mmureg();
1448
1449        hyper_flush_unconditional_combined();
1450
1451        mreg &= ~(HYPERSPARC_CWENABLE);
1452        mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1453        mreg |= (HYPERSPARC_CMODE);
1454
1455        srmmu_set_mmureg(mreg);
1456
1457#if 0 /* XXX I think this is bad news... -DaveM */
1458        hyper_clear_all_tags();
1459#endif
1460
1461        put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1462        hyper_flush_whole_icache();
1463        clear = srmmu_get_faddr();
1464        clear = srmmu_get_fstatus();
1465}
1466
1467static void __init init_hypersparc(void)
1468{
1469        srmmu_name = "ROSS HyperSparc";
1470        srmmu_modtype = HyperSparc;
1471
1472        init_vac_layout();
1473
1474        is_hypersparc = 1;
1475
1476        BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1477        BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1478        BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1479        BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1480        BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1481        BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1482        BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1483
1484        BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1485        BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1486        BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1487        BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1488
1489        BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1490        BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1491        BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1492
1493
1494        poke_srmmu = poke_hypersparc;
1495
1496        hypersparc_setup_blockops();
1497}
1498
1499static void __init poke_cypress(void)
1500{
1501        unsigned long mreg = srmmu_get_mmureg();
1502        unsigned long faddr, tagval;
1503        volatile unsigned long cypress_sucks;
1504        volatile unsigned long clear;
1505
1506        clear = srmmu_get_faddr();
1507        clear = srmmu_get_fstatus();
1508
1509        if (!(mreg & CYPRESS_CENABLE)) {
1510                for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1511                        __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1512                                             "sta %%g0, [%0] %2\n\t" : :
1513                                             "r" (faddr), "r" (0x40000),
1514                                             "i" (ASI_M_DATAC_TAG));
1515                }
1516        } else {
1517                for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1518                        __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1519                                             "=r" (tagval) :
1520                                             "r" (faddr), "r" (0x40000),
1521                                             "i" (ASI_M_DATAC_TAG));
1522
1523                        /* If modified and valid, kick it. */
1524                        if((tagval & 0x60) == 0x60)
1525                                cypress_sucks = *(unsigned long *)
1526                                                        (0xf0020000 + faddr);
1527                }
1528        }
1529
1530        /* And one more, for our good neighbor, Mr. Broken Cypress. */
1531        clear = srmmu_get_faddr();
1532        clear = srmmu_get_fstatus();
1533
1534        mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1535        srmmu_set_mmureg(mreg);
1536}
1537
1538static void __init init_cypress_common(void)
1539{
1540        init_vac_layout();
1541
1542        BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1543        BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1544        BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1545        BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1546        BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1547        BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1548        BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1549
1550        BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1551        BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1552        BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1553        BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1554
1555
1556        BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1557        BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1558        BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1559
1560        poke_srmmu = poke_cypress;
1561}
1562
1563static void __init init_cypress_604(void)
1564{
1565        srmmu_name = "ROSS Cypress-604(UP)";
1566        srmmu_modtype = Cypress;
1567        init_cypress_common();
1568}
1569
1570static void __init init_cypress_605(unsigned long mrev)
1571{
1572        srmmu_name = "ROSS Cypress-605(MP)";
1573        if(mrev == 0xe) {
1574                srmmu_modtype = Cypress_vE;
1575                hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1576        } else {
1577                if(mrev == 0xd) {
1578                        srmmu_modtype = Cypress_vD;
1579                        hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1580                } else {
1581                        srmmu_modtype = Cypress;
1582                }
1583        }
1584        init_cypress_common();
1585}
1586
1587static void __init poke_swift(void)
1588{
1589        unsigned long mreg;
1590
1591        /* Clear any crap from the cache or else... */
1592        swift_flush_cache_all();
1593
1594        /* Enable I & D caches */
1595        mreg = srmmu_get_mmureg();
1596        mreg |= (SWIFT_IE | SWIFT_DE);
1597        /*
1598         * The Swift branch folding logic is completely broken.  At
1599         * trap time, if things are just right, if can mistakenly
1600         * think that a trap is coming from kernel mode when in fact
1601         * it is coming from user mode (it mis-executes the branch in
1602         * the trap code).  So you see things like crashme completely
1603         * hosing your machine which is completely unacceptable.  Turn
1604         * this shit off... nice job Fujitsu.
1605         */
1606        mreg &= ~(SWIFT_BF);
1607        srmmu_set_mmureg(mreg);
1608}
1609
1610#define SWIFT_MASKID_ADDR  0x10003018
1611static void __init init_swift(void)
1612{
1613        unsigned long swift_rev;
1614
1615        __asm__ __volatile__("lda [%1] %2, %0\n\t"
1616                             "srl %0, 0x18, %0\n\t" :
1617                             "=r" (swift_rev) :
1618                             "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1619        srmmu_name = "Fujitsu Swift";
1620        switch(swift_rev) {
1621        case 0x11:
1622        case 0x20:
1623        case 0x23:
1624        case 0x30:
1625                srmmu_modtype = Swift_lots_o_bugs;
1626                hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1627                /*
1628                 * Gee george, I wonder why Sun is so hush hush about
1629                 * this hardware bug... really braindamage stuff going
1630                 * on here.  However I think we can find a way to avoid
1631                 * all of the workaround overhead under Linux.  Basically,
1632                 * any page fault can cause kernel pages to become user
1633                 * accessible (the mmu gets confused and clears some of
1634                 * the ACC bits in kernel ptes).  Aha, sounds pretty
1635                 * horrible eh?  But wait, after extensive testing it appears
1636                 * that if you use pgd_t level large kernel pte's (like the
1637                 * 4MB pages on the Pentium) the bug does not get tripped
1638                 * at all.  This avoids almost all of the major overhead.
1639                 * Welcome to a world where your vendor tells you to,
1640                 * "apply this kernel patch" instead of "sorry for the
1641                 * broken hardware, send it back and we'll give you
1642                 * properly functioning parts"
1643                 */
1644                break;
1645        case 0x25:
1646        case 0x31:
1647                srmmu_modtype = Swift_bad_c;
1648                hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1649                /*
1650                 * You see Sun allude to this hardware bug but never
1651                 * admit things directly, they'll say things like,
1652                 * "the Swift chip cache problems" or similar.
1653                 */
1654                break;
1655        default:
1656                srmmu_modtype = Swift_ok;
1657                break;
1658        };
1659
1660        BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1661        BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1662        BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1663        BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1664
1665
1666        BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1667        BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1668        BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1669        BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1670
1671        BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1672        BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1673        BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1674
1675        BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1676
1677        flush_page_for_dma_global = 0;
1678
1679        /*
1680         * Are you now convinced that the Swift is one of the
1681         * biggest VLSI abortions of all time?  Bravo Fujitsu!
1682         * Fujitsu, the !#?!%$'d up processor people.  I bet if
1683         * you examined the microcode of the Swift you'd find
1684         * XXX's all over the place.
1685         */
1686        poke_srmmu = poke_swift;
1687}
1688
1689static void turbosparc_flush_cache_all(void)
1690{
1691        flush_user_windows();
1692        turbosparc_idflash_clear();
1693}
1694
1695static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1696{
1697        FLUSH_BEGIN(mm)
1698        flush_user_windows();
1699        turbosparc_idflash_clear();
1700        FLUSH_END
1701}
1702
1703static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1704{
1705        FLUSH_BEGIN(vma->vm_mm)
1706        flush_user_windows();
1707        turbosparc_idflash_clear();
1708        FLUSH_END
1709}
1710
1711static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1712{
1713        FLUSH_BEGIN(vma->vm_mm)
1714        flush_user_windows();
1715        if (vma->vm_flags & VM_EXEC)
1716                turbosparc_flush_icache();
1717        turbosparc_flush_dcache();
1718        FLUSH_END
1719}
1720
1721/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1722static void turbosparc_flush_page_to_ram(unsigned long page)
1723{
1724#ifdef TURBOSPARC_WRITEBACK
1725        volatile unsigned long clear;
1726
1727        if (srmmu_hwprobe(page))
1728                turbosparc_flush_page_cache(page);
1729        clear = srmmu_get_fstatus();
1730#endif
1731}
1732
1733static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1734{
1735}
1736
1737static void turbosparc_flush_page_for_dma(unsigned long page)
1738{
1739        turbosparc_flush_dcache();
1740}
1741
1742static void turbosparc_flush_tlb_all(void)
1743{
1744        srmmu_flush_whole_tlb();
1745}
1746
1747static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1748{
1749        FLUSH_BEGIN(mm)
1750        srmmu_flush_whole_tlb();
1751        FLUSH_END
1752}
1753
1754static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1755{
1756        FLUSH_BEGIN(vma->vm_mm)
1757        srmmu_flush_whole_tlb();
1758        FLUSH_END
1759}
1760
1761static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1762{
1763        FLUSH_BEGIN(vma->vm_mm)
1764        srmmu_flush_whole_tlb();
1765        FLUSH_END
1766}
1767
1768
1769static void __init poke_turbosparc(void)
1770{
1771        unsigned long mreg = srmmu_get_mmureg();
1772        unsigned long ccreg;
1773
1774        /* Clear any crap from the cache or else... */
1775        turbosparc_flush_cache_all();
1776        mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1777        mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1778        srmmu_set_mmureg(mreg);
1779        
1780        ccreg = turbosparc_get_ccreg();
1781
1782#ifdef TURBOSPARC_WRITEBACK
1783        ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1784        ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1785                        /* Write-back D-cache, emulate VLSI
1786                         * abortion number three, not number one */
1787#else
1788        /* For now let's play safe, optimize later */
1789        ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1790                        /* Do DVMA snooping in Dcache, Write-thru D-cache */
1791        ccreg &= ~(TURBOSPARC_uS2);
1792                        /* Emulate VLSI abortion number three, not number one */
1793#endif
1794
1795        switch (ccreg & 7) {
1796        case 0: /* No SE cache */
1797        case 7: /* Test mode */
1798                break;
1799        default:
1800                ccreg |= (TURBOSPARC_SCENABLE);
1801        }
1802        turbosparc_set_ccreg (ccreg);
1803
1804        mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1805        mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1806        srmmu_set_mmureg(mreg);
1807}
1808
1809static void __init init_turbosparc(void)
1810{
1811        srmmu_name = "Fujitsu TurboSparc";
1812        srmmu_modtype = TurboSparc;
1813
1814        BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1815        BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1816        BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1817        BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1818
1819        BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1820        BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1821        BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1822        BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1823
1824        BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1825
1826        BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1827        BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1828
1829        poke_srmmu = poke_turbosparc;
1830}
1831
1832static void __init poke_tsunami(void)
1833{
1834        unsigned long mreg = srmmu_get_mmureg();
1835
1836        tsunami_flush_icache();
1837        tsunami_flush_dcache();
1838        mreg &= ~TSUNAMI_ITD;
1839        mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1840        srmmu_set_mmureg(mreg);
1841}
1842
1843static void __init init_tsunami(void)
1844{
1845        /*
1846         * Tsunami's pretty sane, Sun and TI actually got it
1847         * somewhat right this time.  Fujitsu should have
1848         * taken some lessons from them.
1849         */
1850
1851        srmmu_name = "TI Tsunami";
1852        srmmu_modtype = Tsunami;
1853
1854        BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1855        BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1856        BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1857        BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1858
1859
1860        BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1861        BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1862        BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1863        BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1864
1865        BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1866        BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1867        BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1868
1869        poke_srmmu = poke_tsunami;
1870
1871        tsunami_setup_blockops();
1872}
1873
1874static void __init poke_viking(void)
1875{
1876        unsigned long mreg = srmmu_get_mmureg();
1877        static int smp_catch;
1878
1879        if(viking_mxcc_present) {
1880                unsigned long mxcc_control = mxcc_get_creg();
1881
1882                mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1883                mxcc_control &= ~(MXCC_CTL_RRC);
1884                mxcc_set_creg(mxcc_control);
1885
1886                /*
1887                 * We don't need memory parity checks.
1888                 * XXX This is a mess, have to dig out later. ecd.
1889                viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1890                 */
1891
1892                /* We do cache ptables on MXCC. */
1893                mreg |= VIKING_TCENABLE;
1894        } else {
1895                unsigned long bpreg;
1896
1897                mreg &= ~(VIKING_TCENABLE);
1898                if(smp_catch++) {
1899                        /* Must disable mixed-cmd mode here for other cpu's. */
1900                        bpreg = viking_get_bpreg();
1901                        bpreg &= ~(VIKING_ACTION_MIX);
1902                        viking_set_bpreg(bpreg);
1903
1904                        /* Just in case PROM does something funny. */
1905                        msi_set_sync();
1906                }
1907        }
1908
1909        mreg |= VIKING_SPENABLE;
1910        mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1911        mreg |= VIKING_SBENABLE;
1912        mreg &= ~(VIKING_ACENABLE);
1913        srmmu_set_mmureg(mreg);
1914
1915#ifdef CONFIG_SMP
1916        /* Avoid unnecessary cross calls. */
1917        BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1918        BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1919        BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1920        BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1921        BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1922        BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1923        BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1924        btfixup();
1925#endif
1926}
1927
1928static void __init init_viking(void)
1929{
1930        unsigned long mreg = srmmu_get_mmureg();
1931
1932        /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1933        if(mreg & VIKING_MMODE) {
1934                srmmu_name = "TI Viking";
1935                viking_mxcc_present = 0;
1936                msi_set_sync();
1937
1938                BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1939                BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1940                BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1941
1942                /*
1943                 * We need this to make sure old viking takes no hits
1944                 * on it's cache for dma snoops to workaround the
1945                 * "load from non-cacheable memory" interrupt bug.
1946                 * This is only necessary because of the new way in
1947                 * which we use the IOMMU.
1948                 */
1949                BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1950
1951                flush_page_for_dma_global = 0;
1952        } else {
1953                srmmu_name = "TI Viking/MXCC";
1954                viking_mxcc_present = 1;
1955
1956                srmmu_cache_pagetables = 1;
1957
1958                /* MXCC vikings lack the DMA snooping bug. */
1959                BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1960        }
1961
1962        BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1963        BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1964        BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1965        BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1966
1967#ifdef CONFIG_SMP
1968        if (sparc_cpu_model == sun4d) {
1969                BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1970                BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1971                BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1972                BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1973        } else
1974#endif
1975        {
1976                BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1977                BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1978                BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1979                BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1980        }
1981
1982        BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1983        BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1984
1985        poke_srmmu = poke_viking;
1986}
1987
1988/* Probe for the srmmu chip version. */
1989static void __init get_srmmu_type(void)
1990{
1991        unsigned long mreg, psr;
1992        unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1993
1994        srmmu_modtype = SRMMU_INVAL_MOD;
1995        hwbug_bitmask = 0;
1996
1997        mreg = srmmu_get_mmureg(); psr = get_psr();
1998        mod_typ = (mreg & 0xf0000000) >> 28;
1999        mod_rev = (mreg & 0x0f000000) >> 24;
2000        psr_typ = (psr >> 28) & 0xf;
2001        psr_vers = (psr >> 24) & 0xf;
2002
2003        /* First, check for HyperSparc or Cypress. */
2004        if(mod_typ == 1) {
2005                switch(mod_rev) {
2006                case 7:
2007                        /* UP or MP Hypersparc */
2008                        init_hypersparc();
2009                        break;
2010                case 0:
2011                case 2:
2012                        /* Uniprocessor Cypress */
2013                        init_cypress_604();
2014                        break;
2015                case 10:
2016                case 11:
2017                case 12:
2018                        /* _REALLY OLD_ Cypress MP chips... */
2019                case 13:
2020                case 14:
2021                case 15:
2022                        /* MP Cypress mmu/cache-controller */
2023                        init_cypress_605(mod_rev);
2024                        break;
2025                default:
2026                        /* Some other Cypress revision, assume a 605. */
2027                        init_cypress_605(mod_rev);
2028                        break;
2029                };
2030                return;
2031        }
2032        
2033        /*
2034         * Now Fujitsu TurboSparc. It might happen that it is
2035         * in Swift emulation mode, so we will check later...
2036         */
2037        if (psr_typ == 0 && psr_vers == 5) {
2038                init_turbosparc();
2039                return;
2040        }
2041
2042        /* Next check for Fujitsu Swift. */
2043        if(psr_typ == 0 && psr_vers == 4) {
2044                int cpunode;
2045                char node_str[128];
2046
2047                /* Look if it is not a TurboSparc emulating Swift... */
2048                cpunode = prom_getchild(prom_root_node);
2049                while((cpunode = prom_getsibling(cpunode)) != 0) {
2050                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2051                        if(!strcmp(node_str, "cpu")) {
2052                                if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2053                                    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2054                                        init_turbosparc();
2055                                        return;
2056                                }
2057                                break;
2058                        }
2059                }
2060                
2061                init_swift();
2062                return;
2063        }
2064
2065        /* Now the Viking family of srmmu. */
2066        if(psr_typ == 4 &&
2067           ((psr_vers == 0) ||
2068            ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2069                init_viking();
2070                return;
2071        }
2072
2073        /* Finally the Tsunami. */
2074        if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2075                init_tsunami();
2076                return;
2077        }
2078
2079        /* Oh well */
2080        srmmu_is_bad();
2081}
2082
2083/* don't laugh, static pagetables */
2084static void srmmu_check_pgt_cache(int low, int high)
2085{
2086}
2087
2088extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2089        tsetup_mmu_patchme, rtrap_mmu_patchme;
2090
2091extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2092        tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2093
2094extern unsigned long srmmu_fault;
2095
2096#define PATCH_BRANCH(insn, dest) do { \
2097                iaddr = &(insn); \
2098                daddr = &(dest); \
2099                *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2100        } while(0)
2101
2102static void __init patch_window_trap_handlers(void)
2103{
2104        unsigned long *iaddr, *daddr;
2105        
2106        PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2107        PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2108        PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2109        PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2110        PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2111        PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2112        PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2113}
2114
2115#ifdef CONFIG_SMP
2116/* Local cross-calls. */
2117static void smp_flush_page_for_dma(unsigned long page)
2118{
2119        xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2120        local_flush_page_for_dma(page);
2121}
2122
2123#endif
2124
2125static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2126{
2127        return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2128}
2129
2130static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2131{
2132        return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2133}
2134
2135static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2136{
2137        prot &= ~__pgprot(SRMMU_CACHE);
2138
2139        return prot;
2140}
2141
2142/* Load up routines and constants for sun4m and sun4d mmu */
2143void __init ld_mmu_srmmu(void)
2144{
2145        extern void ld_mmu_iommu(void);
2146        extern void ld_mmu_iounit(void);
2147        extern void ___xchg32_sun4md(void);
2148
2149        BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2150        BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2151        BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2152
2153        BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2154        BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2155
2156        BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2157        PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2158        BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2159        BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2160        BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2161        page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2162
2163        /* Functions */
2164        BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2165#ifndef CONFIG_SMP      
2166        BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2167#endif
2168        BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2169
2170        BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2171        BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2172
2173        BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2174        BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2175        BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2176
2177        BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2178
2179        BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2180        BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2181
2182        BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2183        BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2184        BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2185
2186        BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2187        BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2188        BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2189        BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2190
2191        BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2192        BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2193        BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2194        BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2195        BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2196        BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2197        
2198        BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2199        BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2200        BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2201
2202        BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2203        BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2204        BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2205        BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2206        BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2207        BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2208        BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2209        BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2210
2211        BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2212        BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2213        BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2214        BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2215        BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2216        BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2217        BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2218        BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2219        BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2220        BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2221        BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2222        BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2223
2224        BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2225        BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2226
2227        BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2228        BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2229        BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2230
2231        BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2232
2233        BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2234        BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2235
2236        BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2237        BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2238
2239        get_srmmu_type();
2240        patch_window_trap_handlers();
2241
2242#ifdef CONFIG_SMP
2243        /* El switcheroo... */
2244
2245        BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2246        BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2247        BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2248        BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2249        BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2250        BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2251        BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2252        BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2253        BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2254        BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2255        BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2256
2257        BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2258        BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2259        BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2260        BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2261        if (sparc_cpu_model != sun4d) {
2262                BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2263                BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2264                BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2265                BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2266        }
2267        BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2268        BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2269        BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2270#endif
2271
2272        if (sparc_cpu_model == sun4d)
2273                ld_mmu_iounit();
2274        else
2275                ld_mmu_iommu();
2276#ifdef CONFIG_SMP
2277        if (sparc_cpu_model == sun4d)
2278                sun4d_init_smp();
2279        else
2280                sun4m_init_smp();
2281#endif
2282}
2283