linux/arch/sparc64/mm/init.c
<<
>>
Prefs
   1/*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/slab.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/percpu.h>
  27
  28#include <asm/head.h>
  29#include <asm/system.h>
  30#include <asm/page.h>
  31#include <asm/pgalloc.h>
  32#include <asm/pgtable.h>
  33#include <asm/oplib.h>
  34#include <asm/iommu.h>
  35#include <asm/io.h>
  36#include <asm/uaccess.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlbflush.h>
  39#include <asm/dma.h>
  40#include <asm/starfire.h>
  41#include <asm/tlb.h>
  42#include <asm/spitfire.h>
  43#include <asm/sections.h>
  44#include <asm/tsb.h>
  45#include <asm/hypervisor.h>
  46#include <asm/prom.h>
  47#include <asm/sstate.h>
  48#include <asm/mdesc.h>
  49
  50#define MAX_PHYS_ADDRESS        (1UL << 42UL)
  51#define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
  52#define KPTE_BITMAP_BYTES       \
  53        ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  54
  55unsigned long kern_linear_pte_xor[2] __read_mostly;
  56
  57/* A bitmap, one bit for every 256MB of physical memory.  If the bit
  58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  60 */
  61unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  62
  63#ifndef CONFIG_DEBUG_PAGEALLOC
  64/* A special kernel TSB for 4MB and 256MB linear mappings.
  65 * Space is allocated for this right after the trap table
  66 * in arch/sparc64/kernel/head.S
  67 */
  68extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  69#endif
  70
  71#define MAX_BANKS       32
  72
  73static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  74static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  75static int pavail_ents __initdata;
  76static int pavail_rescan_ents __initdata;
  77
  78static int cmp_p64(const void *a, const void *b)
  79{
  80        const struct linux_prom64_registers *x = a, *y = b;
  81
  82        if (x->phys_addr > y->phys_addr)
  83                return 1;
  84        if (x->phys_addr < y->phys_addr)
  85                return -1;
  86        return 0;
  87}
  88
  89static void __init read_obp_memory(const char *property,
  90                                   struct linux_prom64_registers *regs,
  91                                   int *num_ents)
  92{
  93        int node = prom_finddevice("/memory");
  94        int prop_size = prom_getproplen(node, property);
  95        int ents, ret, i;
  96
  97        ents = prop_size / sizeof(struct linux_prom64_registers);
  98        if (ents > MAX_BANKS) {
  99                prom_printf("The machine has more %s property entries than "
 100                            "this kernel can support (%d).\n",
 101                            property, MAX_BANKS);
 102                prom_halt();
 103        }
 104
 105        ret = prom_getproperty(node, property, (char *) regs, prop_size);
 106        if (ret == -1) {
 107                prom_printf("Couldn't get %s property from /memory.\n");
 108                prom_halt();
 109        }
 110
 111        /* Sanitize what we got from the firmware, by page aligning
 112         * everything.
 113         */
 114        for (i = 0; i < ents; i++) {
 115                unsigned long base, size;
 116
 117                base = regs[i].phys_addr;
 118                size = regs[i].reg_size;
 119
 120                size &= PAGE_MASK;
 121                if (base & ~PAGE_MASK) {
 122                        unsigned long new_base = PAGE_ALIGN(base);
 123
 124                        size -= new_base - base;
 125                        if ((long) size < 0L)
 126                                size = 0UL;
 127                        base = new_base;
 128                }
 129                if (size == 0UL) {
 130                        /* If it is empty, simply get rid of it.
 131                         * This simplifies the logic of the other
 132                         * functions that process these arrays.
 133                         */
 134                        memmove(&regs[i], &regs[i + 1],
 135                                (ents - i - 1) * sizeof(regs[0]));
 136                        i--;
 137                        ents--;
 138                        continue;
 139                }
 140                regs[i].phys_addr = base;
 141                regs[i].reg_size = size;
 142        }
 143
 144        *num_ents = ents;
 145
 146        sort(regs, ents, sizeof(struct linux_prom64_registers),
 147             cmp_p64, NULL);
 148}
 149
 150unsigned long *sparc64_valid_addr_bitmap __read_mostly;
 151
 152/* Kernel physical address base and size in bytes.  */
 153unsigned long kern_base __read_mostly;
 154unsigned long kern_size __read_mostly;
 155
 156/* Initial ramdisk setup */
 157extern unsigned long sparc_ramdisk_image64;
 158extern unsigned int sparc_ramdisk_image;
 159extern unsigned int sparc_ramdisk_size;
 160
 161struct page *mem_map_zero __read_mostly;
 162
 163unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 164
 165unsigned long sparc64_kern_pri_context __read_mostly;
 166unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 167unsigned long sparc64_kern_sec_context __read_mostly;
 168
 169int bigkernel = 0;
 170
 171#ifdef CONFIG_DEBUG_DCFLUSH
 172atomic_t dcpage_flushes = ATOMIC_INIT(0);
 173#ifdef CONFIG_SMP
 174atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 175#endif
 176#endif
 177
 178inline void flush_dcache_page_impl(struct page *page)
 179{
 180        BUG_ON(tlb_type == hypervisor);
 181#ifdef CONFIG_DEBUG_DCFLUSH
 182        atomic_inc(&dcpage_flushes);
 183#endif
 184
 185#ifdef DCACHE_ALIASING_POSSIBLE
 186        __flush_dcache_page(page_address(page),
 187                            ((tlb_type == spitfire) &&
 188                             page_mapping(page) != NULL));
 189#else
 190        if (page_mapping(page) != NULL &&
 191            tlb_type == spitfire)
 192                __flush_icache_page(__pa(page_address(page)));
 193#endif
 194}
 195
 196#define PG_dcache_dirty         PG_arch_1
 197#define PG_dcache_cpu_shift     32UL
 198#define PG_dcache_cpu_mask      \
 199        ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 200
 201#define dcache_dirty_cpu(page) \
 202        (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 203
 204static inline void set_dcache_dirty(struct page *page, int this_cpu)
 205{
 206        unsigned long mask = this_cpu;
 207        unsigned long non_cpu_bits;
 208
 209        non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 210        mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 211
 212        __asm__ __volatile__("1:\n\t"
 213                             "ldx       [%2], %%g7\n\t"
 214                             "and       %%g7, %1, %%g1\n\t"
 215                             "or        %%g1, %0, %%g1\n\t"
 216                             "casx      [%2], %%g7, %%g1\n\t"
 217                             "cmp       %%g7, %%g1\n\t"
 218                             "membar    #StoreLoad | #StoreStore\n\t"
 219                             "bne,pn    %%xcc, 1b\n\t"
 220                             " nop"
 221                             : /* no outputs */
 222                             : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 223                             : "g1", "g7");
 224}
 225
 226static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 227{
 228        unsigned long mask = (1UL << PG_dcache_dirty);
 229
 230        __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 231                             "1:\n\t"
 232                             "ldx       [%2], %%g7\n\t"
 233                             "srlx      %%g7, %4, %%g1\n\t"
 234                             "and       %%g1, %3, %%g1\n\t"
 235                             "cmp       %%g1, %0\n\t"
 236                             "bne,pn    %%icc, 2f\n\t"
 237                             " andn     %%g7, %1, %%g1\n\t"
 238                             "casx      [%2], %%g7, %%g1\n\t"
 239                             "cmp       %%g7, %%g1\n\t"
 240                             "membar    #StoreLoad | #StoreStore\n\t"
 241                             "bne,pn    %%xcc, 1b\n\t"
 242                             " nop\n"
 243                             "2:"
 244                             : /* no outputs */
 245                             : "r" (cpu), "r" (mask), "r" (&page->flags),
 246                               "i" (PG_dcache_cpu_mask),
 247                               "i" (PG_dcache_cpu_shift)
 248                             : "g1", "g7");
 249}
 250
 251static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 252{
 253        unsigned long tsb_addr = (unsigned long) ent;
 254
 255        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 256                tsb_addr = __pa(tsb_addr);
 257
 258        __tsb_insert(tsb_addr, tag, pte);
 259}
 260
 261unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 262unsigned long _PAGE_SZBITS __read_mostly;
 263
 264void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
 265{
 266        struct mm_struct *mm;
 267        struct tsb *tsb;
 268        unsigned long tag, flags;
 269        unsigned long tsb_index, tsb_hash_shift;
 270
 271        if (tlb_type != hypervisor) {
 272                unsigned long pfn = pte_pfn(pte);
 273                unsigned long pg_flags;
 274                struct page *page;
 275
 276                if (pfn_valid(pfn) &&
 277                    (page = pfn_to_page(pfn), page_mapping(page)) &&
 278                    ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
 279                        int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 280                                   PG_dcache_cpu_mask);
 281                        int this_cpu = get_cpu();
 282
 283                        /* This is just to optimize away some function calls
 284                         * in the SMP case.
 285                         */
 286                        if (cpu == this_cpu)
 287                                flush_dcache_page_impl(page);
 288                        else
 289                                smp_flush_dcache_page_impl(page, cpu);
 290
 291                        clear_dcache_dirty_cpu(page, cpu);
 292
 293                        put_cpu();
 294                }
 295        }
 296
 297        mm = vma->vm_mm;
 298
 299        tsb_index = MM_TSB_BASE;
 300        tsb_hash_shift = PAGE_SHIFT;
 301
 302        spin_lock_irqsave(&mm->context.lock, flags);
 303
 304#ifdef CONFIG_HUGETLB_PAGE
 305        if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
 306                if ((tlb_type == hypervisor &&
 307                     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 308                    (tlb_type != hypervisor &&
 309                     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
 310                        tsb_index = MM_TSB_HUGE;
 311                        tsb_hash_shift = HPAGE_SHIFT;
 312                }
 313        }
 314#endif
 315
 316        tsb = mm->context.tsb_block[tsb_index].tsb;
 317        tsb += ((address >> tsb_hash_shift) &
 318                (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 319        tag = (address >> 22UL);
 320        tsb_insert(tsb, tag, pte_val(pte));
 321
 322        spin_unlock_irqrestore(&mm->context.lock, flags);
 323}
 324
 325void flush_dcache_page(struct page *page)
 326{
 327        struct address_space *mapping;
 328        int this_cpu;
 329
 330        if (tlb_type == hypervisor)
 331                return;
 332
 333        /* Do not bother with the expensive D-cache flush if it
 334         * is merely the zero page.  The 'bigcore' testcase in GDB
 335         * causes this case to run millions of times.
 336         */
 337        if (page == ZERO_PAGE(0))
 338                return;
 339
 340        this_cpu = get_cpu();
 341
 342        mapping = page_mapping(page);
 343        if (mapping && !mapping_mapped(mapping)) {
 344                int dirty = test_bit(PG_dcache_dirty, &page->flags);
 345                if (dirty) {
 346                        int dirty_cpu = dcache_dirty_cpu(page);
 347
 348                        if (dirty_cpu == this_cpu)
 349                                goto out;
 350                        smp_flush_dcache_page_impl(page, dirty_cpu);
 351                }
 352                set_dcache_dirty(page, this_cpu);
 353        } else {
 354                /* We could delay the flush for the !page_mapping
 355                 * case too.  But that case is for exec env/arg
 356                 * pages and those are %99 certainly going to get
 357                 * faulted into the tlb (and thus flushed) anyways.
 358                 */
 359                flush_dcache_page_impl(page);
 360        }
 361
 362out:
 363        put_cpu();
 364}
 365
 366void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 367{
 368        /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 369        if (tlb_type == spitfire) {
 370                unsigned long kaddr;
 371
 372                /* This code only runs on Spitfire cpus so this is
 373                 * why we can assume _PAGE_PADDR_4U.
 374                 */
 375                for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 376                        unsigned long paddr, mask = _PAGE_PADDR_4U;
 377
 378                        if (kaddr >= PAGE_OFFSET)
 379                                paddr = kaddr & mask;
 380                        else {
 381                                pgd_t *pgdp = pgd_offset_k(kaddr);
 382                                pud_t *pudp = pud_offset(pgdp, kaddr);
 383                                pmd_t *pmdp = pmd_offset(pudp, kaddr);
 384                                pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 385
 386                                paddr = pte_val(*ptep) & mask;
 387                        }
 388                        __flush_icache_page(paddr);
 389                }
 390        }
 391}
 392
 393void show_mem(void)
 394{
 395        unsigned long total = 0, reserved = 0;
 396        unsigned long shared = 0, cached = 0;
 397        pg_data_t *pgdat;
 398
 399        printk(KERN_INFO "Mem-info:\n");
 400        show_free_areas();
 401        printk(KERN_INFO "Free swap:       %6ldkB\n",
 402               nr_swap_pages << (PAGE_SHIFT-10));
 403        for_each_online_pgdat(pgdat) {
 404                unsigned long i, flags;
 405
 406                pgdat_resize_lock(pgdat, &flags);
 407                for (i = 0; i < pgdat->node_spanned_pages; i++) {
 408                        struct page *page = pgdat_page_nr(pgdat, i);
 409                        total++;
 410                        if (PageReserved(page))
 411                                reserved++;
 412                        else if (PageSwapCache(page))
 413                                cached++;
 414                        else if (page_count(page))
 415                                shared += page_count(page) - 1;
 416                }
 417                pgdat_resize_unlock(pgdat, &flags);
 418        }
 419
 420        printk(KERN_INFO "%lu pages of RAM\n", total);
 421        printk(KERN_INFO "%lu reserved pages\n", reserved);
 422        printk(KERN_INFO "%lu pages shared\n", shared);
 423        printk(KERN_INFO "%lu pages swap cached\n", cached);
 424
 425        printk(KERN_INFO "%lu pages dirty\n",
 426               global_page_state(NR_FILE_DIRTY));
 427        printk(KERN_INFO "%lu pages writeback\n",
 428               global_page_state(NR_WRITEBACK));
 429        printk(KERN_INFO "%lu pages mapped\n",
 430               global_page_state(NR_FILE_MAPPED));
 431        printk(KERN_INFO "%lu pages slab\n",
 432                global_page_state(NR_SLAB_RECLAIMABLE) +
 433                global_page_state(NR_SLAB_UNRECLAIMABLE));
 434        printk(KERN_INFO "%lu pages pagetables\n",
 435               global_page_state(NR_PAGETABLE));
 436}
 437
 438void mmu_info(struct seq_file *m)
 439{
 440        if (tlb_type == cheetah)
 441                seq_printf(m, "MMU Type\t: Cheetah\n");
 442        else if (tlb_type == cheetah_plus)
 443                seq_printf(m, "MMU Type\t: Cheetah+\n");
 444        else if (tlb_type == spitfire)
 445                seq_printf(m, "MMU Type\t: Spitfire\n");
 446        else if (tlb_type == hypervisor)
 447                seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 448        else
 449                seq_printf(m, "MMU Type\t: ???\n");
 450
 451#ifdef CONFIG_DEBUG_DCFLUSH
 452        seq_printf(m, "DCPageFlushes\t: %d\n",
 453                   atomic_read(&dcpage_flushes));
 454#ifdef CONFIG_SMP
 455        seq_printf(m, "DCPageFlushesXC\t: %d\n",
 456                   atomic_read(&dcpage_flushes_xcall));
 457#endif /* CONFIG_SMP */
 458#endif /* CONFIG_DEBUG_DCFLUSH */
 459}
 460
 461struct linux_prom_translation {
 462        unsigned long virt;
 463        unsigned long size;
 464        unsigned long data;
 465};
 466
 467/* Exported for kernel TLB miss handling in ktlb.S */
 468struct linux_prom_translation prom_trans[512] __read_mostly;
 469unsigned int prom_trans_ents __read_mostly;
 470
 471/* Exported for SMP bootup purposes. */
 472unsigned long kern_locked_tte_data;
 473
 474/* The obp translations are saved based on 8k pagesize, since obp can
 475 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 476 * HI_OBP_ADDRESS range are handled in ktlb.S.
 477 */
 478static inline int in_obp_range(unsigned long vaddr)
 479{
 480        return (vaddr >= LOW_OBP_ADDRESS &&
 481                vaddr < HI_OBP_ADDRESS);
 482}
 483
 484static int cmp_ptrans(const void *a, const void *b)
 485{
 486        const struct linux_prom_translation *x = a, *y = b;
 487
 488        if (x->virt > y->virt)
 489                return 1;
 490        if (x->virt < y->virt)
 491                return -1;
 492        return 0;
 493}
 494
 495/* Read OBP translations property into 'prom_trans[]'.  */
 496static void __init read_obp_translations(void)
 497{
 498        int n, node, ents, first, last, i;
 499
 500        node = prom_finddevice("/virtual-memory");
 501        n = prom_getproplen(node, "translations");
 502        if (unlikely(n == 0 || n == -1)) {
 503                prom_printf("prom_mappings: Couldn't get size.\n");
 504                prom_halt();
 505        }
 506        if (unlikely(n > sizeof(prom_trans))) {
 507                prom_printf("prom_mappings: Size %Zd is too big.\n", n);
 508                prom_halt();
 509        }
 510
 511        if ((n = prom_getproperty(node, "translations",
 512                                  (char *)&prom_trans[0],
 513                                  sizeof(prom_trans))) == -1) {
 514                prom_printf("prom_mappings: Couldn't get property.\n");
 515                prom_halt();
 516        }
 517
 518        n = n / sizeof(struct linux_prom_translation);
 519
 520        ents = n;
 521
 522        sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 523             cmp_ptrans, NULL);
 524
 525        /* Now kick out all the non-OBP entries.  */
 526        for (i = 0; i < ents; i++) {
 527                if (in_obp_range(prom_trans[i].virt))
 528                        break;
 529        }
 530        first = i;
 531        for (; i < ents; i++) {
 532                if (!in_obp_range(prom_trans[i].virt))
 533                        break;
 534        }
 535        last = i;
 536
 537        for (i = 0; i < (last - first); i++) {
 538                struct linux_prom_translation *src = &prom_trans[i + first];
 539                struct linux_prom_translation *dest = &prom_trans[i];
 540
 541                *dest = *src;
 542        }
 543        for (; i < ents; i++) {
 544                struct linux_prom_translation *dest = &prom_trans[i];
 545                dest->virt = dest->size = dest->data = 0x0UL;
 546        }
 547
 548        prom_trans_ents = last - first;
 549
 550        if (tlb_type == spitfire) {
 551                /* Clear diag TTE bits. */
 552                for (i = 0; i < prom_trans_ents; i++)
 553                        prom_trans[i].data &= ~0x0003fe0000000000UL;
 554        }
 555}
 556
 557static void __init hypervisor_tlb_lock(unsigned long vaddr,
 558                                       unsigned long pte,
 559                                       unsigned long mmu)
 560{
 561        unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 562
 563        if (ret != 0) {
 564                prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
 565                            "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 566                prom_halt();
 567        }
 568}
 569
 570static unsigned long kern_large_tte(unsigned long paddr);
 571
 572static void __init remap_kernel(void)
 573{
 574        unsigned long phys_page, tte_vaddr, tte_data;
 575        int tlb_ent = sparc64_highest_locked_tlbent();
 576
 577        tte_vaddr = (unsigned long) KERNBASE;
 578        phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
 579        tte_data = kern_large_tte(phys_page);
 580
 581        kern_locked_tte_data = tte_data;
 582
 583        /* Now lock us into the TLBs via Hypervisor or OBP. */
 584        if (tlb_type == hypervisor) {
 585                hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 586                hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 587                if (bigkernel) {
 588                        tte_vaddr += 0x400000;
 589                        tte_data += 0x400000;
 590                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 591                        hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 592                }
 593        } else {
 594                prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
 595                prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
 596                if (bigkernel) {
 597                        tlb_ent -= 1;
 598                        prom_dtlb_load(tlb_ent,
 599                                       tte_data + 0x400000, 
 600                                       tte_vaddr + 0x400000);
 601                        prom_itlb_load(tlb_ent,
 602                                       tte_data + 0x400000, 
 603                                       tte_vaddr + 0x400000);
 604                }
 605                sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
 606        }
 607        if (tlb_type == cheetah_plus) {
 608                sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 609                                            CTX_CHEETAH_PLUS_NUC);
 610                sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 611                sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 612        }
 613}
 614
 615
 616static void __init inherit_prom_mappings(void)
 617{
 618        read_obp_translations();
 619
 620        /* Now fixup OBP's idea about where we really are mapped. */
 621        prom_printf("Remapping the kernel... ");
 622        remap_kernel();
 623        prom_printf("done.\n");
 624}
 625
 626void prom_world(int enter)
 627{
 628        if (!enter)
 629                set_fs((mm_segment_t) { get_thread_current_ds() });
 630
 631        __asm__ __volatile__("flushw");
 632}
 633
 634void __flush_dcache_range(unsigned long start, unsigned long end)
 635{
 636        unsigned long va;
 637
 638        if (tlb_type == spitfire) {
 639                int n = 0;
 640
 641                for (va = start; va < end; va += 32) {
 642                        spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 643                        if (++n >= 512)
 644                                break;
 645                }
 646        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 647                start = __pa(start);
 648                end = __pa(end);
 649                for (va = start; va < end; va += 32)
 650                        __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 651                                             "membar #Sync"
 652                                             : /* no outputs */
 653                                             : "r" (va),
 654                                               "i" (ASI_DCACHE_INVALIDATE));
 655        }
 656}
 657
 658/* get_new_mmu_context() uses "cache + 1".  */
 659DEFINE_SPINLOCK(ctx_alloc_lock);
 660unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 661#define MAX_CTX_NR      (1UL << CTX_NR_BITS)
 662#define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
 663DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 664
 665/* Caller does TLB context flushing on local CPU if necessary.
 666 * The caller also ensures that CTX_VALID(mm->context) is false.
 667 *
 668 * We must be careful about boundary cases so that we never
 669 * let the user have CTX 0 (nucleus) or we ever use a CTX
 670 * version of zero (and thus NO_CONTEXT would not be caught
 671 * by version mis-match tests in mmu_context.h).
 672 *
 673 * Always invoked with interrupts disabled.
 674 */
 675void get_new_mmu_context(struct mm_struct *mm)
 676{
 677        unsigned long ctx, new_ctx;
 678        unsigned long orig_pgsz_bits;
 679        unsigned long flags;
 680        int new_version;
 681
 682        spin_lock_irqsave(&ctx_alloc_lock, flags);
 683        orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 684        ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 685        new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 686        new_version = 0;
 687        if (new_ctx >= (1 << CTX_NR_BITS)) {
 688                new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 689                if (new_ctx >= ctx) {
 690                        int i;
 691                        new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 692                                CTX_FIRST_VERSION;
 693                        if (new_ctx == 1)
 694                                new_ctx = CTX_FIRST_VERSION;
 695
 696                        /* Don't call memset, for 16 entries that's just
 697                         * plain silly...
 698                         */
 699                        mmu_context_bmap[0] = 3;
 700                        mmu_context_bmap[1] = 0;
 701                        mmu_context_bmap[2] = 0;
 702                        mmu_context_bmap[3] = 0;
 703                        for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 704                                mmu_context_bmap[i + 0] = 0;
 705                                mmu_context_bmap[i + 1] = 0;
 706                                mmu_context_bmap[i + 2] = 0;
 707                                mmu_context_bmap[i + 3] = 0;
 708                        }
 709                        new_version = 1;
 710                        goto out;
 711                }
 712        }
 713        mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 714        new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 715out:
 716        tlb_context_cache = new_ctx;
 717        mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 718        spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 719
 720        if (unlikely(new_version))
 721                smp_new_mmu_context_version();
 722}
 723
 724/* Find a free area for the bootmem map, avoiding the kernel image
 725 * and the initial ramdisk.
 726 */
 727static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
 728                                               unsigned long end_pfn)
 729{
 730        unsigned long avoid_start, avoid_end, bootmap_size;
 731        int i;
 732
 733        bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
 734        bootmap_size <<= PAGE_SHIFT;
 735
 736        avoid_start = avoid_end = 0;
 737#ifdef CONFIG_BLK_DEV_INITRD
 738        avoid_start = initrd_start;
 739        avoid_end = PAGE_ALIGN(initrd_end);
 740#endif
 741
 742#ifdef CONFIG_DEBUG_BOOTMEM
 743        prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
 744                    kern_base, PAGE_ALIGN(kern_base + kern_size),
 745                    avoid_start, avoid_end);
 746#endif
 747        for (i = 0; i < pavail_ents; i++) {
 748                unsigned long start, end;
 749
 750                start = pavail[i].phys_addr;
 751                end = start + pavail[i].reg_size;
 752
 753                while (start < end) {
 754                        if (start >= kern_base &&
 755                            start < PAGE_ALIGN(kern_base + kern_size)) {
 756                                start = PAGE_ALIGN(kern_base + kern_size);
 757                                continue;
 758                        }
 759                        if (start >= avoid_start && start < avoid_end) {
 760                                start = avoid_end;
 761                                continue;
 762                        }
 763
 764                        if ((end - start) < bootmap_size)
 765                                break;
 766
 767                        if (start < kern_base &&
 768                            (start + bootmap_size) > kern_base) {
 769                                start = PAGE_ALIGN(kern_base + kern_size);
 770                                continue;
 771                        }
 772
 773                        if (start < avoid_start &&
 774                            (start + bootmap_size) > avoid_start) {
 775                                start = avoid_end;
 776                                continue;
 777                        }
 778
 779                        /* OK, it doesn't overlap anything, use it.  */
 780#ifdef CONFIG_DEBUG_BOOTMEM
 781                        prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
 782                                    start >> PAGE_SHIFT, start);
 783#endif
 784                        return start >> PAGE_SHIFT;
 785                }
 786        }
 787
 788        prom_printf("Cannot find free area for bootmap, aborting.\n");
 789        prom_halt();
 790}
 791
 792static void __init trim_pavail(unsigned long *cur_size_p,
 793                               unsigned long *end_of_phys_p)
 794{
 795        unsigned long to_trim = *cur_size_p - cmdline_memory_size;
 796        unsigned long avoid_start, avoid_end;
 797        int i;
 798
 799        to_trim = PAGE_ALIGN(to_trim);
 800
 801        avoid_start = avoid_end = 0;
 802#ifdef CONFIG_BLK_DEV_INITRD
 803        avoid_start = initrd_start;
 804        avoid_end = PAGE_ALIGN(initrd_end);
 805#endif
 806
 807        /* Trim some pavail[] entries in order to satisfy the
 808         * requested "mem=xxx" kernel command line specification.
 809         *
 810         * We must not trim off the kernel image area nor the
 811         * initial ramdisk range (if any).  Also, we must not trim
 812         * any pavail[] entry down to zero in order to preserve
 813         * the invariant that all pavail[] entries have a non-zero
 814         * size which is assumed by all of the code in here.
 815         */
 816        for (i = 0; i < pavail_ents; i++) {
 817                unsigned long start, end, kern_end;
 818                unsigned long trim_low, trim_high, n;
 819
 820                kern_end = PAGE_ALIGN(kern_base + kern_size);
 821
 822                trim_low = start = pavail[i].phys_addr;
 823                trim_high = end = start + pavail[i].reg_size;
 824
 825                if (kern_base >= start &&
 826                    kern_base < end) {
 827                        trim_low = kern_base;
 828                        if (kern_end >= end)
 829                                continue;
 830                }
 831                if (kern_end >= start &&
 832                    kern_end < end) {
 833                        trim_high = kern_end;
 834                }
 835                if (avoid_start &&
 836                    avoid_start >= start &&
 837                    avoid_start < end) {
 838                        if (trim_low > avoid_start)
 839                                trim_low = avoid_start;
 840                        if (avoid_end >= end)
 841                                continue;
 842                }
 843                if (avoid_end &&
 844                    avoid_end >= start &&
 845                    avoid_end < end) {
 846                        if (trim_high < avoid_end)
 847                                trim_high = avoid_end;
 848                }
 849
 850                if (trim_high <= trim_low)
 851                        continue;
 852
 853                if (trim_low == start && trim_high == end) {
 854                        /* Whole chunk is available for trimming.
 855                         * Trim all except one page, in order to keep
 856                         * entry non-empty.
 857                         */
 858                        n = (end - start) - PAGE_SIZE;
 859                        if (n > to_trim)
 860                                n = to_trim;
 861
 862                        if (n) {
 863                                pavail[i].phys_addr += n;
 864                                pavail[i].reg_size -= n;
 865                                to_trim -= n;
 866                        }
 867                } else {
 868                        n = (trim_low - start);
 869                        if (n > to_trim)
 870                                n = to_trim;
 871
 872                        if (n) {
 873                                pavail[i].phys_addr += n;
 874                                pavail[i].reg_size -= n;
 875                                to_trim -= n;
 876                        }
 877                        if (to_trim) {
 878                                n = end - trim_high;
 879                                if (n > to_trim)
 880                                        n = to_trim;
 881                                if (n) {
 882                                        pavail[i].reg_size -= n;
 883                                        to_trim -= n;
 884                                }
 885                        }
 886                }
 887
 888                if (!to_trim)
 889                        break;
 890        }
 891
 892        /* Recalculate.  */
 893        *cur_size_p = 0UL;
 894        for (i = 0; i < pavail_ents; i++) {
 895                *end_of_phys_p = pavail[i].phys_addr +
 896                        pavail[i].reg_size;
 897                *cur_size_p += pavail[i].reg_size;
 898        }
 899}
 900
 901/* About pages_avail, this is the value we will use to calculate
 902 * the zholes_size[] argument given to free_area_init_node().  The
 903 * page allocator uses this to calculate nr_kernel_pages,
 904 * nr_all_pages and zone->present_pages.  On NUMA it is used
 905 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
 906 *
 907 * So this number should really be set to what the page allocator
 908 * actually ends up with.  This means:
 909 * 1) It should include bootmem map pages, we'll release those.
 910 * 2) It should not include the kernel image, except for the
 911 *    __init sections which we will also release.
 912 * 3) It should include the initrd image, since we'll release
 913 *    that too.
 914 */
 915static unsigned long __init bootmem_init(unsigned long *pages_avail,
 916                                         unsigned long phys_base)
 917{
 918        unsigned long bootmap_size, end_pfn;
 919        unsigned long end_of_phys_memory = 0UL;
 920        unsigned long bootmap_pfn, bytes_avail, size;
 921        int i;
 922
 923#ifdef CONFIG_DEBUG_BOOTMEM
 924        prom_printf("bootmem_init: Scan pavail, ");
 925#endif
 926
 927        bytes_avail = 0UL;
 928        for (i = 0; i < pavail_ents; i++) {
 929                end_of_phys_memory = pavail[i].phys_addr +
 930                        pavail[i].reg_size;
 931                bytes_avail += pavail[i].reg_size;
 932        }
 933
 934        /* Determine the location of the initial ramdisk before trying
 935         * to honor the "mem=xxx" command line argument.  We must know
 936         * where the kernel image and the ramdisk image are so that we
 937         * do not trim those two areas from the physical memory map.
 938         */
 939
 940#ifdef CONFIG_BLK_DEV_INITRD
 941        /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
 942        if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 943                unsigned long ramdisk_image = sparc_ramdisk_image ?
 944                        sparc_ramdisk_image : sparc_ramdisk_image64;
 945                ramdisk_image -= KERNBASE;
 946                initrd_start = ramdisk_image + phys_base;
 947                initrd_end = initrd_start + sparc_ramdisk_size;
 948                if (initrd_end > end_of_phys_memory) {
 949                        printk(KERN_CRIT "initrd extends beyond end of memory "
 950                                         "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
 951                               initrd_end, end_of_phys_memory);
 952                        initrd_start = 0;
 953                        initrd_end = 0;
 954                }
 955        }
 956#endif  
 957
 958        if (cmdline_memory_size &&
 959            bytes_avail > cmdline_memory_size)
 960                trim_pavail(&bytes_avail,
 961                            &end_of_phys_memory);
 962
 963        *pages_avail = bytes_avail >> PAGE_SHIFT;
 964
 965        end_pfn = end_of_phys_memory >> PAGE_SHIFT;
 966
 967        /* Initialize the boot-time allocator. */
 968        max_pfn = max_low_pfn = end_pfn;
 969        min_low_pfn = (phys_base >> PAGE_SHIFT);
 970
 971        bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
 972
 973#ifdef CONFIG_DEBUG_BOOTMEM
 974        prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
 975                    min_low_pfn, bootmap_pfn, max_low_pfn);
 976#endif
 977        bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
 978                                         min_low_pfn, end_pfn);
 979
 980        /* Now register the available physical memory with the
 981         * allocator.
 982         */
 983        for (i = 0; i < pavail_ents; i++) {
 984#ifdef CONFIG_DEBUG_BOOTMEM
 985                prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
 986                            i, pavail[i].phys_addr, pavail[i].reg_size);
 987#endif
 988                free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
 989        }
 990
 991#ifdef CONFIG_BLK_DEV_INITRD
 992        if (initrd_start) {
 993                size = initrd_end - initrd_start;
 994
 995                /* Reserve the initrd image area. */
 996#ifdef CONFIG_DEBUG_BOOTMEM
 997                prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
 998                        initrd_start, initrd_end);
 999#endif
1000                reserve_bootmem(initrd_start, size);
1001
1002                initrd_start += PAGE_OFFSET;
1003                initrd_end += PAGE_OFFSET;
1004        }
1005#endif
1006        /* Reserve the kernel text/data/bss. */
1007#ifdef CONFIG_DEBUG_BOOTMEM
1008        prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1009#endif
1010        reserve_bootmem(kern_base, kern_size);
1011        *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1012
1013        /* Add back in the initmem pages. */
1014        size = ((unsigned long)(__init_end) & PAGE_MASK) -
1015                PAGE_ALIGN((unsigned long)__init_begin);
1016        *pages_avail += size >> PAGE_SHIFT;
1017
1018        /* Reserve the bootmem map.   We do not account for it
1019         * in pages_avail because we will release that memory
1020         * in free_all_bootmem.
1021         */
1022        size = bootmap_size;
1023#ifdef CONFIG_DEBUG_BOOTMEM
1024        prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1025                    (bootmap_pfn << PAGE_SHIFT), size);
1026#endif
1027        reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1028
1029        for (i = 0; i < pavail_ents; i++) {
1030                unsigned long start_pfn, end_pfn;
1031
1032                start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1033                end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1034#ifdef CONFIG_DEBUG_BOOTMEM
1035                prom_printf("memory_present(0, %lx, %lx)\n",
1036                            start_pfn, end_pfn);
1037#endif
1038                memory_present(0, start_pfn, end_pfn);
1039        }
1040
1041        sparse_init();
1042
1043        return end_pfn;
1044}
1045
1046static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1047static int pall_ents __initdata;
1048
1049#ifdef CONFIG_DEBUG_PAGEALLOC
1050static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1051{
1052        unsigned long vstart = PAGE_OFFSET + pstart;
1053        unsigned long vend = PAGE_OFFSET + pend;
1054        unsigned long alloc_bytes = 0UL;
1055
1056        if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1057                prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1058                            vstart, vend);
1059                prom_halt();
1060        }
1061
1062        while (vstart < vend) {
1063                unsigned long this_end, paddr = __pa(vstart);
1064                pgd_t *pgd = pgd_offset_k(vstart);
1065                pud_t *pud;
1066                pmd_t *pmd;
1067                pte_t *pte;
1068
1069                pud = pud_offset(pgd, vstart);
1070                if (pud_none(*pud)) {
1071                        pmd_t *new;
1072
1073                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1074                        alloc_bytes += PAGE_SIZE;
1075                        pud_populate(&init_mm, pud, new);
1076                }
1077
1078                pmd = pmd_offset(pud, vstart);
1079                if (!pmd_present(*pmd)) {
1080                        pte_t *new;
1081
1082                        new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1083                        alloc_bytes += PAGE_SIZE;
1084                        pmd_populate_kernel(&init_mm, pmd, new);
1085                }
1086
1087                pte = pte_offset_kernel(pmd, vstart);
1088                this_end = (vstart + PMD_SIZE) & PMD_MASK;
1089                if (this_end > vend)
1090                        this_end = vend;
1091
1092                while (vstart < this_end) {
1093                        pte_val(*pte) = (paddr | pgprot_val(prot));
1094
1095                        vstart += PAGE_SIZE;
1096                        paddr += PAGE_SIZE;
1097                        pte++;
1098                }
1099        }
1100
1101        return alloc_bytes;
1102}
1103
1104extern unsigned int kvmap_linear_patch[1];
1105#endif /* CONFIG_DEBUG_PAGEALLOC */
1106
1107static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1108{
1109        const unsigned long shift_256MB = 28;
1110        const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1111        const unsigned long size_256MB = (1UL << shift_256MB);
1112
1113        while (start < end) {
1114                long remains;
1115
1116                remains = end - start;
1117                if (remains < size_256MB)
1118                        break;
1119
1120                if (start & mask_256MB) {
1121                        start = (start + size_256MB) & ~mask_256MB;
1122                        continue;
1123                }
1124
1125                while (remains >= size_256MB) {
1126                        unsigned long index = start >> shift_256MB;
1127
1128                        __set_bit(index, kpte_linear_bitmap);
1129
1130                        start += size_256MB;
1131                        remains -= size_256MB;
1132                }
1133        }
1134}
1135
1136static void __init init_kpte_bitmap(void)
1137{
1138        unsigned long i;
1139
1140        for (i = 0; i < pall_ents; i++) {
1141                unsigned long phys_start, phys_end;
1142
1143                phys_start = pall[i].phys_addr;
1144                phys_end = phys_start + pall[i].reg_size;
1145
1146                mark_kpte_bitmap(phys_start, phys_end);
1147        }
1148}
1149
1150static void __init kernel_physical_mapping_init(void)
1151{
1152#ifdef CONFIG_DEBUG_PAGEALLOC
1153        unsigned long i, mem_alloced = 0UL;
1154
1155        for (i = 0; i < pall_ents; i++) {
1156                unsigned long phys_start, phys_end;
1157
1158                phys_start = pall[i].phys_addr;
1159                phys_end = phys_start + pall[i].reg_size;
1160
1161                mem_alloced += kernel_map_range(phys_start, phys_end,
1162                                                PAGE_KERNEL);
1163        }
1164
1165        printk("Allocated %ld bytes for kernel page tables.\n",
1166               mem_alloced);
1167
1168        kvmap_linear_patch[0] = 0x01000000; /* nop */
1169        flushi(&kvmap_linear_patch[0]);
1170
1171        __flush_tlb_all();
1172#endif
1173}
1174
1175#ifdef CONFIG_DEBUG_PAGEALLOC
1176void kernel_map_pages(struct page *page, int numpages, int enable)
1177{
1178        unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1179        unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1180
1181        kernel_map_range(phys_start, phys_end,
1182                         (enable ? PAGE_KERNEL : __pgprot(0)));
1183
1184        flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1185                               PAGE_OFFSET + phys_end);
1186
1187        /* we should perform an IPI and flush all tlbs,
1188         * but that can deadlock->flush only current cpu.
1189         */
1190        __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1191                                 PAGE_OFFSET + phys_end);
1192}
1193#endif
1194
1195unsigned long __init find_ecache_flush_span(unsigned long size)
1196{
1197        int i;
1198
1199        for (i = 0; i < pavail_ents; i++) {
1200                if (pavail[i].reg_size >= size)
1201                        return pavail[i].phys_addr;
1202        }
1203
1204        return ~0UL;
1205}
1206
1207static void __init tsb_phys_patch(void)
1208{
1209        struct tsb_ldquad_phys_patch_entry *pquad;
1210        struct tsb_phys_patch_entry *p;
1211
1212        pquad = &__tsb_ldquad_phys_patch;
1213        while (pquad < &__tsb_ldquad_phys_patch_end) {
1214                unsigned long addr = pquad->addr;
1215
1216                if (tlb_type == hypervisor)
1217                        *(unsigned int *) addr = pquad->sun4v_insn;
1218                else
1219                        *(unsigned int *) addr = pquad->sun4u_insn;
1220                wmb();
1221                __asm__ __volatile__("flush     %0"
1222                                     : /* no outputs */
1223                                     : "r" (addr));
1224
1225                pquad++;
1226        }
1227
1228        p = &__tsb_phys_patch;
1229        while (p < &__tsb_phys_patch_end) {
1230                unsigned long addr = p->addr;
1231
1232                *(unsigned int *) addr = p->insn;
1233                wmb();
1234                __asm__ __volatile__("flush     %0"
1235                                     : /* no outputs */
1236                                     : "r" (addr));
1237
1238                p++;
1239        }
1240}
1241
1242/* Don't mark as init, we give this to the Hypervisor.  */
1243#ifndef CONFIG_DEBUG_PAGEALLOC
1244#define NUM_KTSB_DESCR  2
1245#else
1246#define NUM_KTSB_DESCR  1
1247#endif
1248static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1249extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1250
1251static void __init sun4v_ktsb_init(void)
1252{
1253        unsigned long ktsb_pa;
1254
1255        /* First KTSB for PAGE_SIZE mappings.  */
1256        ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1257
1258        switch (PAGE_SIZE) {
1259        case 8 * 1024:
1260        default:
1261                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1262                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1263                break;
1264
1265        case 64 * 1024:
1266                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1267                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1268                break;
1269
1270        case 512 * 1024:
1271                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1272                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1273                break;
1274
1275        case 4 * 1024 * 1024:
1276                ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1277                ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1278                break;
1279        };
1280
1281        ktsb_descr[0].assoc = 1;
1282        ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1283        ktsb_descr[0].ctx_idx = 0;
1284        ktsb_descr[0].tsb_base = ktsb_pa;
1285        ktsb_descr[0].resv = 0;
1286
1287#ifndef CONFIG_DEBUG_PAGEALLOC
1288        /* Second KTSB for 4MB/256MB mappings.  */
1289        ktsb_pa = (kern_base +
1290                   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1291
1292        ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1293        ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1294                                   HV_PGSZ_MASK_256MB);
1295        ktsb_descr[1].assoc = 1;
1296        ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1297        ktsb_descr[1].ctx_idx = 0;
1298        ktsb_descr[1].tsb_base = ktsb_pa;
1299        ktsb_descr[1].resv = 0;
1300#endif
1301}
1302
1303void __cpuinit sun4v_ktsb_register(void)
1304{
1305        unsigned long pa, ret;
1306
1307        pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1308
1309        ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1310        if (ret != 0) {
1311                prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1312                            "errors with %lx\n", pa, ret);
1313                prom_halt();
1314        }
1315}
1316
1317/* paging_init() sets up the page tables */
1318
1319extern void cheetah_ecache_flush_init(void);
1320extern void sun4v_patch_tlb_handlers(void);
1321
1322extern void cpu_probe(void);
1323extern void central_probe(void);
1324
1325static unsigned long last_valid_pfn;
1326pgd_t swapper_pg_dir[2048];
1327
1328static void sun4u_pgprot_init(void);
1329static void sun4v_pgprot_init(void);
1330
1331void __init paging_init(void)
1332{
1333        unsigned long end_pfn, pages_avail, shift, phys_base;
1334        unsigned long real_end, i;
1335
1336        /* These build time checkes make sure that the dcache_dirty_cpu()
1337         * page->flags usage will work.
1338         *
1339         * When a page gets marked as dcache-dirty, we store the
1340         * cpu number starting at bit 32 in the page->flags.  Also,
1341         * functions like clear_dcache_dirty_cpu use the cpu mask
1342         * in 13-bit signed-immediate instruction fields.
1343         */
1344        BUILD_BUG_ON(FLAGS_RESERVED != 32);
1345        BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1346                     ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1347        BUILD_BUG_ON(NR_CPUS > 4096);
1348
1349        kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1350        kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1351
1352        sstate_booting();
1353
1354        /* Invalidate both kernel TSBs.  */
1355        memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1356#ifndef CONFIG_DEBUG_PAGEALLOC
1357        memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1358#endif
1359
1360        if (tlb_type == hypervisor)
1361                sun4v_pgprot_init();
1362        else
1363                sun4u_pgprot_init();
1364
1365        if (tlb_type == cheetah_plus ||
1366            tlb_type == hypervisor)
1367                tsb_phys_patch();
1368
1369        if (tlb_type == hypervisor) {
1370                sun4v_patch_tlb_handlers();
1371                sun4v_ktsb_init();
1372        }
1373
1374        /* Find available physical memory... */
1375        read_obp_memory("available", &pavail[0], &pavail_ents);
1376
1377        phys_base = 0xffffffffffffffffUL;
1378        for (i = 0; i < pavail_ents; i++)
1379                phys_base = min(phys_base, pavail[i].phys_addr);
1380
1381        set_bit(0, mmu_context_bmap);
1382
1383        shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1384
1385        real_end = (unsigned long)_end;
1386        if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1387                bigkernel = 1;
1388        if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1389                prom_printf("paging_init: Kernel > 8MB, too large.\n");
1390                prom_halt();
1391        }
1392
1393        /* Set kernel pgd to upper alias so physical page computations
1394         * work.
1395         */
1396        init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1397        
1398        memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1399
1400        /* Now can init the kernel/bad page tables. */
1401        pud_set(pud_offset(&swapper_pg_dir[0], 0),
1402                swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1403        
1404        inherit_prom_mappings();
1405        
1406        read_obp_memory("reg", &pall[0], &pall_ents);
1407
1408        init_kpte_bitmap();
1409
1410        /* Ok, we can use our TLB miss and window trap handlers safely.  */
1411        setup_tba();
1412
1413        __flush_tlb_all();
1414
1415        if (tlb_type == hypervisor)
1416                sun4v_ktsb_register();
1417
1418        /* Setup bootmem... */
1419        pages_avail = 0;
1420        last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1421
1422        max_mapnr = last_valid_pfn;
1423
1424        kernel_physical_mapping_init();
1425
1426        real_setup_per_cpu_areas();
1427
1428        prom_build_devicetree();
1429
1430        if (tlb_type == hypervisor)
1431                sun4v_mdesc_init();
1432
1433        {
1434                unsigned long zones_size[MAX_NR_ZONES];
1435                unsigned long zholes_size[MAX_NR_ZONES];
1436                int znum;
1437
1438                for (znum = 0; znum < MAX_NR_ZONES; znum++)
1439                        zones_size[znum] = zholes_size[znum] = 0;
1440
1441                zones_size[ZONE_NORMAL] = end_pfn;
1442                zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1443
1444                free_area_init_node(0, &contig_page_data, zones_size,
1445                                    __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1446                                    zholes_size);
1447        }
1448
1449        prom_printf("Booting Linux...\n");
1450
1451        central_probe();
1452        cpu_probe();
1453}
1454
1455static void __init taint_real_pages(void)
1456{
1457        int i;
1458
1459        read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1460
1461        /* Find changes discovered in the physmem available rescan and
1462         * reserve the lost portions in the bootmem maps.
1463         */
1464        for (i = 0; i < pavail_ents; i++) {
1465                unsigned long old_start, old_end;
1466
1467                old_start = pavail[i].phys_addr;
1468                old_end = old_start +
1469                        pavail[i].reg_size;
1470                while (old_start < old_end) {
1471                        int n;
1472
1473                        for (n = 0; n < pavail_rescan_ents; n++) {
1474                                unsigned long new_start, new_end;
1475
1476                                new_start = pavail_rescan[n].phys_addr;
1477                                new_end = new_start +
1478                                        pavail_rescan[n].reg_size;
1479
1480                                if (new_start <= old_start &&
1481                                    new_end >= (old_start + PAGE_SIZE)) {
1482                                        set_bit(old_start >> 22,
1483                                                sparc64_valid_addr_bitmap);
1484                                        goto do_next_page;
1485                                }
1486                        }
1487                        reserve_bootmem(old_start, PAGE_SIZE);
1488
1489                do_next_page:
1490                        old_start += PAGE_SIZE;
1491                }
1492        }
1493}
1494
1495int __init page_in_phys_avail(unsigned long paddr)
1496{
1497        int i;
1498
1499        paddr &= PAGE_MASK;
1500
1501        for (i = 0; i < pavail_rescan_ents; i++) {
1502                unsigned long start, end;
1503
1504                start = pavail_rescan[i].phys_addr;
1505                end = start + pavail_rescan[i].reg_size;
1506
1507                if (paddr >= start && paddr < end)
1508                        return 1;
1509        }
1510        if (paddr >= kern_base && paddr < (kern_base + kern_size))
1511                return 1;
1512#ifdef CONFIG_BLK_DEV_INITRD
1513        if (paddr >= __pa(initrd_start) &&
1514            paddr < __pa(PAGE_ALIGN(initrd_end)))
1515                return 1;
1516#endif
1517
1518        return 0;
1519}
1520
1521void __init mem_init(void)
1522{
1523        unsigned long codepages, datapages, initpages;
1524        unsigned long addr, last;
1525        int i;
1526
1527        i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1528        i += 1;
1529        sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1530        if (sparc64_valid_addr_bitmap == NULL) {
1531                prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1532                prom_halt();
1533        }
1534        memset(sparc64_valid_addr_bitmap, 0, i << 3);
1535
1536        addr = PAGE_OFFSET + kern_base;
1537        last = PAGE_ALIGN(kern_size) + addr;
1538        while (addr < last) {
1539                set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1540                addr += PAGE_SIZE;
1541        }
1542
1543        taint_real_pages();
1544
1545        high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1546
1547#ifdef CONFIG_DEBUG_BOOTMEM
1548        prom_printf("mem_init: Calling free_all_bootmem().\n");
1549#endif
1550
1551        /* We subtract one to account for the mem_map_zero page
1552         * allocated below.
1553         */
1554        totalram_pages = num_physpages = free_all_bootmem() - 1;
1555
1556        /*
1557         * Set up the zero page, mark it reserved, so that page count
1558         * is not manipulated when freeing the page from user ptes.
1559         */
1560        mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1561        if (mem_map_zero == NULL) {
1562                prom_printf("paging_init: Cannot alloc zero page.\n");
1563                prom_halt();
1564        }
1565        SetPageReserved(mem_map_zero);
1566
1567        codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1568        codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1569        datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1570        datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1571        initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1572        initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1573
1574        printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1575               nr_free_pages() << (PAGE_SHIFT-10),
1576               codepages << (PAGE_SHIFT-10),
1577               datapages << (PAGE_SHIFT-10), 
1578               initpages << (PAGE_SHIFT-10), 
1579               PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1580
1581        if (tlb_type == cheetah || tlb_type == cheetah_plus)
1582                cheetah_ecache_flush_init();
1583}
1584
1585void free_initmem(void)
1586{
1587        unsigned long addr, initend;
1588
1589        /*
1590         * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1591         */
1592        addr = PAGE_ALIGN((unsigned long)(__init_begin));
1593        initend = (unsigned long)(__init_end) & PAGE_MASK;
1594        for (; addr < initend; addr += PAGE_SIZE) {
1595                unsigned long page;
1596                struct page *p;
1597
1598                page = (addr +
1599                        ((unsigned long) __va(kern_base)) -
1600                        ((unsigned long) KERNBASE));
1601                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1602                p = virt_to_page(page);
1603
1604                ClearPageReserved(p);
1605                init_page_count(p);
1606                __free_page(p);
1607                num_physpages++;
1608                totalram_pages++;
1609        }
1610}
1611
1612#ifdef CONFIG_BLK_DEV_INITRD
1613void free_initrd_mem(unsigned long start, unsigned long end)
1614{
1615        if (start < end)
1616                printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1617        for (; start < end; start += PAGE_SIZE) {
1618                struct page *p = virt_to_page(start);
1619
1620                ClearPageReserved(p);
1621                init_page_count(p);
1622                __free_page(p);
1623                num_physpages++;
1624                totalram_pages++;
1625        }
1626}
1627#endif
1628
1629#define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1630#define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1631#define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1632#define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1633#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1634#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1635
1636pgprot_t PAGE_KERNEL __read_mostly;
1637EXPORT_SYMBOL(PAGE_KERNEL);
1638
1639pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1640pgprot_t PAGE_COPY __read_mostly;
1641
1642pgprot_t PAGE_SHARED __read_mostly;
1643EXPORT_SYMBOL(PAGE_SHARED);
1644
1645pgprot_t PAGE_EXEC __read_mostly;
1646unsigned long pg_iobits __read_mostly;
1647
1648unsigned long _PAGE_IE __read_mostly;
1649EXPORT_SYMBOL(_PAGE_IE);
1650
1651unsigned long _PAGE_E __read_mostly;
1652EXPORT_SYMBOL(_PAGE_E);
1653
1654unsigned long _PAGE_CACHE __read_mostly;
1655EXPORT_SYMBOL(_PAGE_CACHE);
1656
1657#ifdef CONFIG_SPARSEMEM_VMEMMAP
1658
1659#define VMEMMAP_CHUNK_SHIFT     22
1660#define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
1661#define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
1662#define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1663
1664#define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1665                          sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1666unsigned long vmemmap_table[VMEMMAP_SIZE];
1667
1668int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1669{
1670        unsigned long vstart = (unsigned long) start;
1671        unsigned long vend = (unsigned long) (start + nr);
1672        unsigned long phys_start = (vstart - VMEMMAP_BASE);
1673        unsigned long phys_end = (vend - VMEMMAP_BASE);
1674        unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1675        unsigned long end = VMEMMAP_ALIGN(phys_end);
1676        unsigned long pte_base;
1677
1678        pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1679                    _PAGE_CP_4U | _PAGE_CV_4U |
1680                    _PAGE_P_4U | _PAGE_W_4U);
1681        if (tlb_type == hypervisor)
1682                pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1683                            _PAGE_CP_4V | _PAGE_CV_4V |
1684                            _PAGE_P_4V | _PAGE_W_4V);
1685
1686        for (; addr < end; addr += VMEMMAP_CHUNK) {
1687                unsigned long *vmem_pp =
1688                        vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1689                void *block;
1690
1691                if (!(*vmem_pp & _PAGE_VALID)) {
1692                        block = vmemmap_alloc_block(1UL << 22, node);
1693                        if (!block)
1694                                return -ENOMEM;
1695
1696                        *vmem_pp = pte_base | __pa(block);
1697
1698                        printk(KERN_INFO "[%p-%p] page_structs=%lu "
1699                               "node=%d entry=%lu/%lu\n", start, block, nr,
1700                               node,
1701                               addr >> VMEMMAP_CHUNK_SHIFT,
1702                               VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1703                }
1704        }
1705        return 0;
1706}
1707#endif /* CONFIG_SPARSEMEM_VMEMMAP */
1708
1709static void prot_init_common(unsigned long page_none,
1710                             unsigned long page_shared,
1711                             unsigned long page_copy,
1712                             unsigned long page_readonly,
1713                             unsigned long page_exec_bit)
1714{
1715        PAGE_COPY = __pgprot(page_copy);
1716        PAGE_SHARED = __pgprot(page_shared);
1717
1718        protection_map[0x0] = __pgprot(page_none);
1719        protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1720        protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1721        protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1722        protection_map[0x4] = __pgprot(page_readonly);
1723        protection_map[0x5] = __pgprot(page_readonly);
1724        protection_map[0x6] = __pgprot(page_copy);
1725        protection_map[0x7] = __pgprot(page_copy);
1726        protection_map[0x8] = __pgprot(page_none);
1727        protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1728        protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1729        protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1730        protection_map[0xc] = __pgprot(page_readonly);
1731        protection_map[0xd] = __pgprot(page_readonly);
1732        protection_map[0xe] = __pgprot(page_shared);
1733        protection_map[0xf] = __pgprot(page_shared);
1734}
1735
1736static void __init sun4u_pgprot_init(void)
1737{
1738        unsigned long page_none, page_shared, page_copy, page_readonly;
1739        unsigned long page_exec_bit;
1740
1741        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1742                                _PAGE_CACHE_4U | _PAGE_P_4U |
1743                                __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1744                                _PAGE_EXEC_4U);
1745        PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1746                                       _PAGE_CACHE_4U | _PAGE_P_4U |
1747                                       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1748                                       _PAGE_EXEC_4U | _PAGE_L_4U);
1749        PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1750
1751        _PAGE_IE = _PAGE_IE_4U;
1752        _PAGE_E = _PAGE_E_4U;
1753        _PAGE_CACHE = _PAGE_CACHE_4U;
1754
1755        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1756                     __ACCESS_BITS_4U | _PAGE_E_4U);
1757
1758#ifdef CONFIG_DEBUG_PAGEALLOC
1759        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1760                0xfffff80000000000;
1761#else
1762        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1763                0xfffff80000000000;
1764#endif
1765        kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1766                                   _PAGE_P_4U | _PAGE_W_4U);
1767
1768        /* XXX Should use 256MB on Panther. XXX */
1769        kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1770
1771        _PAGE_SZBITS = _PAGE_SZBITS_4U;
1772        _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1773                              _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1774                              _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1775
1776
1777        page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1778        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1779                       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1780        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1781                       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1782        page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1783                           __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1784
1785        page_exec_bit = _PAGE_EXEC_4U;
1786
1787        prot_init_common(page_none, page_shared, page_copy, page_readonly,
1788                         page_exec_bit);
1789}
1790
1791static void __init sun4v_pgprot_init(void)
1792{
1793        unsigned long page_none, page_shared, page_copy, page_readonly;
1794        unsigned long page_exec_bit;
1795
1796        PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1797                                _PAGE_CACHE_4V | _PAGE_P_4V |
1798                                __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1799                                _PAGE_EXEC_4V);
1800        PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1801        PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1802
1803        _PAGE_IE = _PAGE_IE_4V;
1804        _PAGE_E = _PAGE_E_4V;
1805        _PAGE_CACHE = _PAGE_CACHE_4V;
1806
1807#ifdef CONFIG_DEBUG_PAGEALLOC
1808        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1809                0xfffff80000000000;
1810#else
1811        kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1812                0xfffff80000000000;
1813#endif
1814        kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1815                                   _PAGE_P_4V | _PAGE_W_4V);
1816
1817#ifdef CONFIG_DEBUG_PAGEALLOC
1818        kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1819                0xfffff80000000000;
1820#else
1821        kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1822                0xfffff80000000000;
1823#endif
1824        kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1825                                   _PAGE_P_4V | _PAGE_W_4V);
1826
1827        pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1828                     __ACCESS_BITS_4V | _PAGE_E_4V);
1829
1830        _PAGE_SZBITS = _PAGE_SZBITS_4V;
1831        _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1832                             _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1833                             _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1834                             _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1835
1836        page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1837        page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1838                       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1839        page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1840                       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1841        page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1842                         __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1843
1844        page_exec_bit = _PAGE_EXEC_4V;
1845
1846        prot_init_common(page_none, page_shared, page_copy, page_readonly,
1847                         page_exec_bit);
1848}
1849
1850unsigned long pte_sz_bits(unsigned long sz)
1851{
1852        if (tlb_type == hypervisor) {
1853                switch (sz) {
1854                case 8 * 1024:
1855                default:
1856                        return _PAGE_SZ8K_4V;
1857                case 64 * 1024:
1858                        return _PAGE_SZ64K_4V;
1859                case 512 * 1024:
1860                        return _PAGE_SZ512K_4V;
1861                case 4 * 1024 * 1024:
1862                        return _PAGE_SZ4MB_4V;
1863                };
1864        } else {
1865                switch (sz) {
1866                case 8 * 1024:
1867                default:
1868                        return _PAGE_SZ8K_4U;
1869                case 64 * 1024:
1870                        return _PAGE_SZ64K_4U;
1871                case 512 * 1024:
1872                        return _PAGE_SZ512K_4U;
1873                case 4 * 1024 * 1024:
1874                        return _PAGE_SZ4MB_4U;
1875                };
1876        }
1877}
1878
1879pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1880{
1881        pte_t pte;
1882
1883        pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1884        pte_val(pte) |= (((unsigned long)space) << 32);
1885        pte_val(pte) |= pte_sz_bits(page_size);
1886
1887        return pte;
1888}
1889
1890static unsigned long kern_large_tte(unsigned long paddr)
1891{
1892        unsigned long val;
1893
1894        val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1895               _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1896               _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1897        if (tlb_type == hypervisor)
1898                val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1899                       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1900                       _PAGE_EXEC_4V | _PAGE_W_4V);
1901
1902        return val | paddr;
1903}
1904
1905/* If not locked, zap it. */
1906void __flush_tlb_all(void)
1907{
1908        unsigned long pstate;
1909        int i;
1910
1911        __asm__ __volatile__("flushw\n\t"
1912                             "rdpr      %%pstate, %0\n\t"
1913                             "wrpr      %0, %1, %%pstate"
1914                             : "=r" (pstate)
1915                             : "i" (PSTATE_IE));
1916        if (tlb_type == hypervisor) {
1917                sun4v_mmu_demap_all();
1918        } else if (tlb_type == spitfire) {
1919                for (i = 0; i < 64; i++) {
1920                        /* Spitfire Errata #32 workaround */
1921                        /* NOTE: Always runs on spitfire, so no
1922                         *       cheetah+ page size encodings.
1923                         */
1924                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1925                                             "flush     %%g6"
1926                                             : /* No outputs */
1927                                             : "r" (0),
1928                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1929
1930                        if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1931                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1932                                                     "membar #Sync"
1933                                                     : /* no outputs */
1934                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1935                                spitfire_put_dtlb_data(i, 0x0UL);
1936                        }
1937
1938                        /* Spitfire Errata #32 workaround */
1939                        /* NOTE: Always runs on spitfire, so no
1940                         *       cheetah+ page size encodings.
1941                         */
1942                        __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1943                                             "flush     %%g6"
1944                                             : /* No outputs */
1945                                             : "r" (0),
1946                                             "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1947
1948                        if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1949                                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1950                                                     "membar #Sync"
1951                                                     : /* no outputs */
1952                                                     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1953                                spitfire_put_itlb_data(i, 0x0UL);
1954                        }
1955                }
1956        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1957                cheetah_flush_dtlb_all();
1958                cheetah_flush_itlb_all();
1959        }
1960        __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1961                             : : "r" (pstate));
1962}
1963
1964#ifdef CONFIG_MEMORY_HOTPLUG
1965
1966void online_page(struct page *page)
1967{
1968        ClearPageReserved(page);
1969        init_page_count(page);
1970        __free_page(page);
1971        totalram_pages++;
1972        num_physpages++;
1973}
1974
1975#endif /* CONFIG_MEMORY_HOTPLUG */
1976