linux/arch/x86/kernel/efi_32.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 1.0
   5 *
   6 * Copyright (C) 1999 VA Linux Systems
   7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *      Stephane Eranian <eranian@hpl.hp.com>
  11 *
  12 * All EFI Runtime Services are not implemented yet as EFI only
  13 * supports physical mode addressing on SoftSDV. This is to be fixed
  14 * in a future version.  --drummond 1999-07-20
  15 *
  16 * Implemented EFI runtime services and virtual mode calls.  --davidm
  17 *
  18 * Goutham Rao: <goutham.rao@intel.com>
  19 *      Skip non-WB memory and ignore empty memory ranges.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/types.h>
  26#include <linux/time.h>
  27#include <linux/spinlock.h>
  28#include <linux/bootmem.h>
  29#include <linux/ioport.h>
  30#include <linux/module.h>
  31#include <linux/efi.h>
  32#include <linux/kexec.h>
  33
  34#include <asm/setup.h>
  35#include <asm/io.h>
  36#include <asm/page.h>
  37#include <asm/pgtable.h>
  38#include <asm/processor.h>
  39#include <asm/desc.h>
  40#include <asm/tlbflush.h>
  41
  42#define EFI_DEBUG       0
  43#define PFX             "EFI: "
  44
  45extern efi_status_t asmlinkage efi_call_phys(void *, ...);
  46
  47struct efi efi;
  48EXPORT_SYMBOL(efi);
  49static struct efi efi_phys;
  50struct efi_memory_map memmap;
  51
  52/*
  53 * We require an early boot_ioremap mapping mechanism initially
  54 */
  55extern void * boot_ioremap(unsigned long, unsigned long);
  56
  57/*
  58 * To make EFI call EFI runtime service in physical addressing mode we need
  59 * prelog/epilog before/after the invocation to disable interrupt, to
  60 * claim EFI runtime service handler exclusively and to duplicate a memory in
  61 * low memory space say 0 - 3G.
  62 */
  63
  64static unsigned long efi_rt_eflags;
  65static DEFINE_SPINLOCK(efi_rt_lock);
  66static pgd_t efi_bak_pg_dir_pointer[2];
  67
  68static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
  69{
  70        unsigned long cr4;
  71        unsigned long temp;
  72        struct Xgt_desc_struct gdt_descr;
  73
  74        spin_lock(&efi_rt_lock);
  75        local_irq_save(efi_rt_eflags);
  76
  77        /*
  78         * If I don't have PSE, I should just duplicate two entries in page
  79         * directory. If I have PSE, I just need to duplicate one entry in
  80         * page directory.
  81         */
  82        cr4 = read_cr4();
  83
  84        if (cr4 & X86_CR4_PSE) {
  85                efi_bak_pg_dir_pointer[0].pgd =
  86                    swapper_pg_dir[pgd_index(0)].pgd;
  87                swapper_pg_dir[0].pgd =
  88                    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  89        } else {
  90                efi_bak_pg_dir_pointer[0].pgd =
  91                    swapper_pg_dir[pgd_index(0)].pgd;
  92                efi_bak_pg_dir_pointer[1].pgd =
  93                    swapper_pg_dir[pgd_index(0x400000)].pgd;
  94                swapper_pg_dir[pgd_index(0)].pgd =
  95                    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  96                temp = PAGE_OFFSET + 0x400000;
  97                swapper_pg_dir[pgd_index(0x400000)].pgd =
  98                    swapper_pg_dir[pgd_index(temp)].pgd;
  99        }
 100
 101        /*
 102         * After the lock is released, the original page table is restored.
 103         */
 104        local_flush_tlb();
 105
 106        gdt_descr.address = __pa(get_cpu_gdt_table(0));
 107        gdt_descr.size = GDT_SIZE - 1;
 108        load_gdt(&gdt_descr);
 109}
 110
 111static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
 112{
 113        unsigned long cr4;
 114        struct Xgt_desc_struct gdt_descr;
 115
 116        gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
 117        gdt_descr.size = GDT_SIZE - 1;
 118        load_gdt(&gdt_descr);
 119
 120        cr4 = read_cr4();
 121
 122        if (cr4 & X86_CR4_PSE) {
 123                swapper_pg_dir[pgd_index(0)].pgd =
 124                    efi_bak_pg_dir_pointer[0].pgd;
 125        } else {
 126                swapper_pg_dir[pgd_index(0)].pgd =
 127                    efi_bak_pg_dir_pointer[0].pgd;
 128                swapper_pg_dir[pgd_index(0x400000)].pgd =
 129                    efi_bak_pg_dir_pointer[1].pgd;
 130        }
 131
 132        /*
 133         * After the lock is released, the original page table is restored.
 134         */
 135        local_flush_tlb();
 136
 137        local_irq_restore(efi_rt_eflags);
 138        spin_unlock(&efi_rt_lock);
 139}
 140
 141static efi_status_t
 142phys_efi_set_virtual_address_map(unsigned long memory_map_size,
 143                                 unsigned long descriptor_size,
 144                                 u32 descriptor_version,
 145                                 efi_memory_desc_t *virtual_map)
 146{
 147        efi_status_t status;
 148
 149        efi_call_phys_prelog();
 150        status = efi_call_phys(efi_phys.set_virtual_address_map,
 151                                     memory_map_size, descriptor_size,
 152                                     descriptor_version, virtual_map);
 153        efi_call_phys_epilog();
 154        return status;
 155}
 156
 157static efi_status_t
 158phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 159{
 160        efi_status_t status;
 161
 162        efi_call_phys_prelog();
 163        status = efi_call_phys(efi_phys.get_time, tm, tc);
 164        efi_call_phys_epilog();
 165        return status;
 166}
 167
 168inline int efi_set_rtc_mmss(unsigned long nowtime)
 169{
 170        int real_seconds, real_minutes;
 171        efi_status_t    status;
 172        efi_time_t      eft;
 173        efi_time_cap_t  cap;
 174
 175        spin_lock(&efi_rt_lock);
 176        status = efi.get_time(&eft, &cap);
 177        spin_unlock(&efi_rt_lock);
 178        if (status != EFI_SUCCESS)
 179                panic("Ooops, efitime: can't read time!\n");
 180        real_seconds = nowtime % 60;
 181        real_minutes = nowtime / 60;
 182
 183        if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
 184                real_minutes += 30;
 185        real_minutes %= 60;
 186
 187        eft.minute = real_minutes;
 188        eft.second = real_seconds;
 189
 190        if (status != EFI_SUCCESS) {
 191                printk("Ooops: efitime: can't read time!\n");
 192                return -1;
 193        }
 194        return 0;
 195}
 196/*
 197 * This is used during kernel init before runtime
 198 * services have been remapped and also during suspend, therefore,
 199 * we'll need to call both in physical and virtual modes.
 200 */
 201inline unsigned long efi_get_time(void)
 202{
 203        efi_status_t status;
 204        efi_time_t eft;
 205        efi_time_cap_t cap;
 206
 207        if (efi.get_time) {
 208                /* if we are in virtual mode use remapped function */
 209                status = efi.get_time(&eft, &cap);
 210        } else {
 211                /* we are in physical mode */
 212                status = phys_efi_get_time(&eft, &cap);
 213        }
 214
 215        if (status != EFI_SUCCESS)
 216                printk("Oops: efitime: can't read time status: 0x%lx\n",status);
 217
 218        return mktime(eft.year, eft.month, eft.day, eft.hour,
 219                        eft.minute, eft.second);
 220}
 221
 222int is_available_memory(efi_memory_desc_t * md)
 223{
 224        if (!(md->attribute & EFI_MEMORY_WB))
 225                return 0;
 226
 227        switch (md->type) {
 228                case EFI_LOADER_CODE:
 229                case EFI_LOADER_DATA:
 230                case EFI_BOOT_SERVICES_CODE:
 231                case EFI_BOOT_SERVICES_DATA:
 232                case EFI_CONVENTIONAL_MEMORY:
 233                        return 1;
 234        }
 235        return 0;
 236}
 237
 238/*
 239 * We need to map the EFI memory map again after paging_init().
 240 */
 241void __init efi_map_memmap(void)
 242{
 243        memmap.map = NULL;
 244
 245        memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
 246                        (memmap.nr_map * memmap.desc_size));
 247        if (memmap.map == NULL)
 248                printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
 249
 250        memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
 251}
 252
 253#if EFI_DEBUG
 254static void __init print_efi_memmap(void)
 255{
 256        efi_memory_desc_t *md;
 257        void *p;
 258        int i;
 259
 260        for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
 261                md = p;
 262                printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
 263                        "range=[0x%016llx-0x%016llx) (%lluMB)\n",
 264                        i, md->type, md->attribute, md->phys_addr,
 265                        md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
 266                        (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 267        }
 268}
 269#endif  /*  EFI_DEBUG  */
 270
 271/*
 272 * Walks the EFI memory map and calls CALLBACK once for each EFI
 273 * memory descriptor that has memory that is available for kernel use.
 274 */
 275void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
 276{
 277        int prev_valid = 0;
 278        struct range {
 279                unsigned long start;
 280                unsigned long end;
 281        } uninitialized_var(prev), curr;
 282        efi_memory_desc_t *md;
 283        unsigned long start, end;
 284        void *p;
 285
 286        for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 287                md = p;
 288
 289                if ((md->num_pages == 0) || (!is_available_memory(md)))
 290                        continue;
 291
 292                curr.start = md->phys_addr;
 293                curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
 294
 295                if (!prev_valid) {
 296                        prev = curr;
 297                        prev_valid = 1;
 298                } else {
 299                        if (curr.start < prev.start)
 300                                printk(KERN_INFO PFX "Unordered memory map\n");
 301                        if (prev.end == curr.start)
 302                                prev.end = curr.end;
 303                        else {
 304                                start =
 305                                    (unsigned long) (PAGE_ALIGN(prev.start));
 306                                end = (unsigned long) (prev.end & PAGE_MASK);
 307                                if ((end > start)
 308                                    && (*callback) (start, end, arg) < 0)
 309                                        return;
 310                                prev = curr;
 311                        }
 312                }
 313        }
 314        if (prev_valid) {
 315                start = (unsigned long) PAGE_ALIGN(prev.start);
 316                end = (unsigned long) (prev.end & PAGE_MASK);
 317                if (end > start)
 318                        (*callback) (start, end, arg);
 319        }
 320}
 321
 322void __init efi_init(void)
 323{
 324        efi_config_table_t *config_tables;
 325        efi_runtime_services_t *runtime;
 326        efi_char16_t *c16;
 327        char vendor[100] = "unknown";
 328        unsigned long num_config_tables;
 329        int i = 0;
 330
 331        memset(&efi, 0, sizeof(efi) );
 332        memset(&efi_phys, 0, sizeof(efi_phys));
 333
 334        efi_phys.systab =
 335                (efi_system_table_t *)boot_params.efi_info.efi_systab;
 336        memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
 337        memmap.nr_map = boot_params.efi_info.efi_memmap_size/
 338                boot_params.efi_info.efi_memdesc_size;
 339        memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
 340        memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
 341
 342        efi.systab = (efi_system_table_t *)
 343                boot_ioremap((unsigned long) efi_phys.systab,
 344                        sizeof(efi_system_table_t));
 345        /*
 346         * Verify the EFI Table
 347         */
 348        if (efi.systab == NULL)
 349                printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
 350        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 351                printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
 352        if ((efi.systab->hdr.revision >> 16) == 0)
 353                printk(KERN_ERR PFX "Warning: EFI system table version "
 354                       "%d.%02d, expected 1.00 or greater\n",
 355                       efi.systab->hdr.revision >> 16,
 356                       efi.systab->hdr.revision & 0xffff);
 357
 358        /*
 359         * Grab some details from the system table
 360         */
 361        num_config_tables = efi.systab->nr_tables;
 362        config_tables = (efi_config_table_t *)efi.systab->tables;
 363        runtime = efi.systab->runtime;
 364
 365        /*
 366         * Show what we know for posterity
 367         */
 368        c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
 369        if (c16) {
 370                for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
 371                        vendor[i] = *c16++;
 372                vendor[i] = '\0';
 373        } else
 374                printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
 375
 376        printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
 377               efi.systab->hdr.revision >> 16,
 378               efi.systab->hdr.revision & 0xffff, vendor);
 379
 380        /*
 381         * Let's see what config tables the firmware passed to us.
 382         */
 383        config_tables = (efi_config_table_t *)
 384                                boot_ioremap((unsigned long) config_tables,
 385                                num_config_tables * sizeof(efi_config_table_t));
 386
 387        if (config_tables == NULL)
 388                printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
 389
 390        efi.mps        = EFI_INVALID_TABLE_ADDR;
 391        efi.acpi       = EFI_INVALID_TABLE_ADDR;
 392        efi.acpi20     = EFI_INVALID_TABLE_ADDR;
 393        efi.smbios     = EFI_INVALID_TABLE_ADDR;
 394        efi.sal_systab = EFI_INVALID_TABLE_ADDR;
 395        efi.boot_info  = EFI_INVALID_TABLE_ADDR;
 396        efi.hcdp       = EFI_INVALID_TABLE_ADDR;
 397        efi.uga        = EFI_INVALID_TABLE_ADDR;
 398
 399        for (i = 0; i < num_config_tables; i++) {
 400                if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
 401                        efi.mps = config_tables[i].table;
 402                        printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
 403                } else
 404                    if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
 405                        efi.acpi20 = config_tables[i].table;
 406                        printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
 407                } else
 408                    if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
 409                        efi.acpi = config_tables[i].table;
 410                        printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
 411                } else
 412                    if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
 413                        efi.smbios = config_tables[i].table;
 414                        printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
 415                } else
 416                    if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
 417                        efi.hcdp = config_tables[i].table;
 418                        printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
 419                } else
 420                    if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
 421                        efi.uga = config_tables[i].table;
 422                        printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
 423                }
 424        }
 425        printk("\n");
 426
 427        /*
 428         * Check out the runtime services table. We need to map
 429         * the runtime services table so that we can grab the physical
 430         * address of several of the EFI runtime functions, needed to
 431         * set the firmware into virtual mode.
 432         */
 433
 434        runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
 435                                                runtime,
 436                                                sizeof(efi_runtime_services_t));
 437        if (runtime != NULL) {
 438                /*
 439                 * We will only need *early* access to the following
 440                 * two EFI runtime services before set_virtual_address_map
 441                 * is invoked.
 442                 */
 443                efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
 444                efi_phys.set_virtual_address_map =
 445                        (efi_set_virtual_address_map_t *)
 446                                runtime->set_virtual_address_map;
 447        } else
 448                printk(KERN_ERR PFX "Could not map the runtime service table!\n");
 449
 450        /* Map the EFI memory map for use until paging_init() */
 451        memmap.map = boot_ioremap(boot_params.efi_info.efi_memmap,
 452                                  boot_params.efi_info.efi_memmap_size);
 453        if (memmap.map == NULL)
 454                printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
 455
 456        memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
 457
 458#if EFI_DEBUG
 459        print_efi_memmap();
 460#endif
 461}
 462
 463static inline void __init check_range_for_systab(efi_memory_desc_t *md)
 464{
 465        if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
 466                ((unsigned long)efi_phys.systab < md->phys_addr +
 467                ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
 468                unsigned long addr;
 469
 470                addr = md->virt_addr - md->phys_addr +
 471                        (unsigned long)efi_phys.systab;
 472                efi.systab = (efi_system_table_t *)addr;
 473        }
 474}
 475
 476/*
 477 * Wrap all the virtual calls in a way that forces the parameters on the stack.
 478 */
 479
 480#define efi_call_virt(f, args...) \
 481     ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
 482
 483static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 484{
 485        return efi_call_virt(get_time, tm, tc);
 486}
 487
 488static efi_status_t virt_efi_set_time (efi_time_t *tm)
 489{
 490        return efi_call_virt(set_time, tm);
 491}
 492
 493static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
 494                                              efi_bool_t *pending,
 495                                              efi_time_t *tm)
 496{
 497        return efi_call_virt(get_wakeup_time, enabled, pending, tm);
 498}
 499
 500static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
 501                                              efi_time_t *tm)
 502{
 503        return efi_call_virt(set_wakeup_time, enabled, tm);
 504}
 505
 506static efi_status_t virt_efi_get_variable (efi_char16_t *name,
 507                                           efi_guid_t *vendor, u32 *attr,
 508                                           unsigned long *data_size, void *data)
 509{
 510        return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
 511}
 512
 513static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
 514                                                efi_char16_t *name,
 515                                                efi_guid_t *vendor)
 516{
 517        return efi_call_virt(get_next_variable, name_size, name, vendor);
 518}
 519
 520static efi_status_t virt_efi_set_variable (efi_char16_t *name,
 521                                           efi_guid_t *vendor,
 522                                           unsigned long attr,
 523                                           unsigned long data_size, void *data)
 524{
 525        return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
 526}
 527
 528static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
 529{
 530        return efi_call_virt(get_next_high_mono_count, count);
 531}
 532
 533static void virt_efi_reset_system (int reset_type, efi_status_t status,
 534                                   unsigned long data_size,
 535                                   efi_char16_t *data)
 536{
 537        efi_call_virt(reset_system, reset_type, status, data_size, data);
 538}
 539
 540/*
 541 * This function will switch the EFI runtime services to virtual mode.
 542 * Essentially, look through the EFI memmap and map every region that
 543 * has the runtime attribute bit set in its memory descriptor and update
 544 * that memory descriptor with the virtual address obtained from ioremap().
 545 * This enables the runtime services to be called without having to
 546 * thunk back into physical mode for every invocation.
 547 */
 548
 549void __init efi_enter_virtual_mode(void)
 550{
 551        efi_memory_desc_t *md;
 552        efi_status_t status;
 553        void *p;
 554
 555        efi.systab = NULL;
 556
 557        for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 558                md = p;
 559
 560                if (!(md->attribute & EFI_MEMORY_RUNTIME))
 561                        continue;
 562
 563                md->virt_addr = (unsigned long)ioremap(md->phys_addr,
 564                        md->num_pages << EFI_PAGE_SHIFT);
 565                if (!(unsigned long)md->virt_addr) {
 566                        printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
 567                                (unsigned long)md->phys_addr);
 568                }
 569                /* update the virtual address of the EFI system table */
 570                check_range_for_systab(md);
 571        }
 572
 573        BUG_ON(!efi.systab);
 574
 575        status = phys_efi_set_virtual_address_map(
 576                        memmap.desc_size * memmap.nr_map,
 577                        memmap.desc_size,
 578                        memmap.desc_version,
 579                        memmap.phys_map);
 580
 581        if (status != EFI_SUCCESS) {
 582                printk (KERN_ALERT "You are screwed! "
 583                        "Unable to switch EFI into virtual mode "
 584                        "(status=%lx)\n", status);
 585                panic("EFI call to SetVirtualAddressMap() failed!");
 586        }
 587
 588        /*
 589         * Now that EFI is in virtual mode, update the function
 590         * pointers in the runtime service table to the new virtual addresses.
 591         */
 592
 593        efi.get_time = virt_efi_get_time;
 594        efi.set_time = virt_efi_set_time;
 595        efi.get_wakeup_time = virt_efi_get_wakeup_time;
 596        efi.set_wakeup_time = virt_efi_set_wakeup_time;
 597        efi.get_variable = virt_efi_get_variable;
 598        efi.get_next_variable = virt_efi_get_next_variable;
 599        efi.set_variable = virt_efi_set_variable;
 600        efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
 601        efi.reset_system = virt_efi_reset_system;
 602}
 603
 604void __init
 605efi_initialize_iomem_resources(struct resource *code_resource,
 606                               struct resource *data_resource,
 607                               struct resource *bss_resource)
 608{
 609        struct resource *res;
 610        efi_memory_desc_t *md;
 611        void *p;
 612
 613        for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 614                md = p;
 615
 616                if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
 617                    0x100000000ULL)
 618                        continue;
 619                res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 620                switch (md->type) {
 621                case EFI_RESERVED_TYPE:
 622                        res->name = "Reserved Memory";
 623                        break;
 624                case EFI_LOADER_CODE:
 625                        res->name = "Loader Code";
 626                        break;
 627                case EFI_LOADER_DATA:
 628                        res->name = "Loader Data";
 629                        break;
 630                case EFI_BOOT_SERVICES_DATA:
 631                        res->name = "BootServices Data";
 632                        break;
 633                case EFI_BOOT_SERVICES_CODE:
 634                        res->name = "BootServices Code";
 635                        break;
 636                case EFI_RUNTIME_SERVICES_CODE:
 637                        res->name = "Runtime Service Code";
 638                        break;
 639                case EFI_RUNTIME_SERVICES_DATA:
 640                        res->name = "Runtime Service Data";
 641                        break;
 642                case EFI_CONVENTIONAL_MEMORY:
 643                        res->name = "Conventional Memory";
 644                        break;
 645                case EFI_UNUSABLE_MEMORY:
 646                        res->name = "Unusable Memory";
 647                        break;
 648                case EFI_ACPI_RECLAIM_MEMORY:
 649                        res->name = "ACPI Reclaim";
 650                        break;
 651                case EFI_ACPI_MEMORY_NVS:
 652                        res->name = "ACPI NVS";
 653                        break;
 654                case EFI_MEMORY_MAPPED_IO:
 655                        res->name = "Memory Mapped IO";
 656                        break;
 657                case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
 658                        res->name = "Memory Mapped IO Port Space";
 659                        break;
 660                default:
 661                        res->name = "Reserved";
 662                        break;
 663                }
 664                res->start = md->phys_addr;
 665                res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
 666                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 667                if (request_resource(&iomem_resource, res) < 0)
 668                        printk(KERN_ERR PFX "Failed to allocate res %s : "
 669                                "0x%llx-0x%llx\n", res->name,
 670                                (unsigned long long)res->start,
 671                                (unsigned long long)res->end);
 672                /*
 673                 * We don't know which region contains kernel data so we try
 674                 * it repeatedly and let the resource manager test it.
 675                 */
 676                if (md->type == EFI_CONVENTIONAL_MEMORY) {
 677                        request_resource(res, code_resource);
 678                        request_resource(res, data_resource);
 679                        request_resource(res, bss_resource);
 680#ifdef CONFIG_KEXEC
 681                        request_resource(res, &crashk_res);
 682#endif
 683                }
 684        }
 685}
 686
 687/*
 688 * Convenience functions to obtain memory types and attributes
 689 */
 690
 691u32 efi_mem_type(unsigned long phys_addr)
 692{
 693        efi_memory_desc_t *md;
 694        void *p;
 695
 696        for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 697                md = p;
 698                if ((md->phys_addr <= phys_addr) && (phys_addr <
 699                        (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
 700                        return md->type;
 701        }
 702        return 0;
 703}
 704
 705u64 efi_mem_attributes(unsigned long phys_addr)
 706{
 707        efi_memory_desc_t *md;
 708        void *p;
 709
 710        for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 711                md = p;
 712                if ((md->phys_addr <= phys_addr) && (phys_addr <
 713                        (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
 714                        return md->attribute;
 715        }
 716        return 0;
 717}
 718