linux/arch/x86/mach-voyager/voyager_smp.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8 -*- */
   2
   3/* Copyright (C) 1999,2001
   4 *
   5 * Author: J.E.J.Bottomley@HansenPartnership.com
   6 *
   7 * linux/arch/i386/kernel/voyager_smp.c
   8 *
   9 * This file provides all the same external entries as smp.c but uses
  10 * the voyager hal to provide the functionality
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/mc146818rtc.h>
  17#include <linux/cache.h>
  18#include <linux/interrupt.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/bootmem.h>
  22#include <linux/completion.h>
  23#include <asm/desc.h>
  24#include <asm/voyager.h>
  25#include <asm/vic.h>
  26#include <asm/mtrr.h>
  27#include <asm/pgalloc.h>
  28#include <asm/tlbflush.h>
  29#include <asm/arch_hooks.h>
  30
  31/* TLB state -- visible externally, indexed physically */
  32DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
  33
  34/* CPU IRQ affinity -- set to all ones initially */
  35static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1]  = ~0UL };
  36
  37/* per CPU data structure (for /proc/cpuinfo et al), visible externally
  38 * indexed physically */
  39DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
  40EXPORT_PER_CPU_SYMBOL(cpu_info);
  41
  42/* physical ID of the CPU used to boot the system */
  43unsigned char boot_cpu_id;
  44
  45/* The memory line addresses for the Quad CPIs */
  46struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
  47
  48/* The masks for the Extended VIC processors, filled in by cat_init */
  49__u32 voyager_extended_vic_processors = 0;
  50
  51/* Masks for the extended Quad processors which cannot be VIC booted */
  52__u32 voyager_allowed_boot_processors = 0;
  53
  54/* The mask for the Quad Processors (both extended and non-extended) */
  55__u32 voyager_quad_processors = 0;
  56
  57/* Total count of live CPUs, used in process.c to display
  58 * the CPU information and in irq.c for the per CPU irq
  59 * activity count.  Finally exported by i386_ksyms.c */
  60static int voyager_extended_cpus = 1;
  61
  62/* Have we found an SMP box - used by time.c to do the profiling
  63   interrupt for timeslicing; do not set to 1 until the per CPU timer
  64   interrupt is active */
  65int smp_found_config = 0;
  66
  67/* Used for the invalidate map that's also checked in the spinlock */
  68static volatile unsigned long smp_invalidate_needed;
  69
  70/* Bitmask of currently online CPUs - used by setup.c for
  71   /proc/cpuinfo, visible externally but still physical */
  72cpumask_t cpu_online_map = CPU_MASK_NONE;
  73EXPORT_SYMBOL(cpu_online_map);
  74
  75/* Bitmask of CPUs present in the system - exported by i386_syms.c, used
  76 * by scheduler but indexed physically */
  77cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  78
  79
  80/* The internal functions */
  81static void send_CPI(__u32 cpuset, __u8 cpi);
  82static void ack_CPI(__u8 cpi);
  83static int ack_QIC_CPI(__u8 cpi);
  84static void ack_special_QIC_CPI(__u8 cpi);
  85static void ack_VIC_CPI(__u8 cpi);
  86static void send_CPI_allbutself(__u8 cpi);
  87static void mask_vic_irq(unsigned int irq);
  88static void unmask_vic_irq(unsigned int irq);
  89static unsigned int startup_vic_irq(unsigned int irq);
  90static void enable_local_vic_irq(unsigned int irq);
  91static void disable_local_vic_irq(unsigned int irq);
  92static void before_handle_vic_irq(unsigned int irq);
  93static void after_handle_vic_irq(unsigned int irq);
  94static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
  95static void ack_vic_irq(unsigned int irq);
  96static void vic_enable_cpi(void);
  97static void do_boot_cpu(__u8 cpuid);
  98static void do_quad_bootstrap(void);
  99
 100int hard_smp_processor_id(void);
 101int safe_smp_processor_id(void);
 102
 103/* Inline functions */
 104static inline void
 105send_one_QIC_CPI(__u8 cpu, __u8 cpi)
 106{
 107        voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
 108                (smp_processor_id() << 16) + cpi;
 109}
 110
 111static inline void
 112send_QIC_CPI(__u32 cpuset, __u8 cpi)
 113{
 114        int cpu;
 115
 116        for_each_online_cpu(cpu) {
 117                if(cpuset & (1<<cpu)) {
 118#ifdef VOYAGER_DEBUG
 119                        if(!cpu_isset(cpu, cpu_online_map))
 120                                VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
 121#endif
 122                        send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
 123                }
 124        }
 125}
 126
 127static inline void
 128wrapper_smp_local_timer_interrupt(void)
 129{
 130        irq_enter();
 131        smp_local_timer_interrupt();
 132        irq_exit();
 133}
 134
 135static inline void
 136send_one_CPI(__u8 cpu, __u8 cpi)
 137{
 138        if(voyager_quad_processors & (1<<cpu))
 139                send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
 140        else
 141                send_CPI(1<<cpu, cpi);
 142}
 143
 144static inline void
 145send_CPI_allbutself(__u8 cpi)
 146{
 147        __u8 cpu = smp_processor_id();
 148        __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
 149        send_CPI(mask, cpi);
 150}
 151
 152static inline int
 153is_cpu_quad(void)
 154{
 155        __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
 156        return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
 157}
 158
 159static inline int
 160is_cpu_extended(void)
 161{
 162        __u8 cpu = hard_smp_processor_id();
 163
 164        return(voyager_extended_vic_processors & (1<<cpu));
 165}
 166
 167static inline int
 168is_cpu_vic_boot(void)
 169{
 170        __u8 cpu = hard_smp_processor_id();
 171
 172        return(voyager_extended_vic_processors
 173               & voyager_allowed_boot_processors & (1<<cpu));
 174}
 175
 176
 177static inline void
 178ack_CPI(__u8 cpi)
 179{
 180        switch(cpi) {
 181        case VIC_CPU_BOOT_CPI:
 182                if(is_cpu_quad() && !is_cpu_vic_boot())
 183                        ack_QIC_CPI(cpi);
 184                else
 185                        ack_VIC_CPI(cpi);
 186                break;
 187        case VIC_SYS_INT:
 188        case VIC_CMN_INT: 
 189                /* These are slightly strange.  Even on the Quad card,
 190                 * They are vectored as VIC CPIs */
 191                if(is_cpu_quad())
 192                        ack_special_QIC_CPI(cpi);
 193                else
 194                        ack_VIC_CPI(cpi);
 195                break;
 196        default:
 197                printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
 198                break;
 199        }
 200}
 201
 202/* local variables */
 203
 204/* The VIC IRQ descriptors -- these look almost identical to the
 205 * 8259 IRQs except that masks and things must be kept per processor
 206 */
 207static struct irq_chip vic_chip = {
 208        .name           = "VIC",
 209        .startup        = startup_vic_irq,
 210        .mask           = mask_vic_irq,
 211        .unmask         = unmask_vic_irq,
 212        .set_affinity   = set_vic_irq_affinity,
 213};
 214
 215/* used to count up as CPUs are brought on line (starts at 0) */
 216static int cpucount = 0;
 217
 218/* steal a page from the bottom of memory for the trampoline and
 219 * squirrel its address away here.  This will be in kernel virtual
 220 * space */
 221static __u32 trampoline_base;
 222
 223/* The per cpu profile stuff - used in smp_local_timer_interrupt */
 224static DEFINE_PER_CPU(int, prof_multiplier) = 1;
 225static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
 226static DEFINE_PER_CPU(int, prof_counter) =  1;
 227
 228/* the map used to check if a CPU has booted */
 229static __u32 cpu_booted_map;
 230
 231/* the synchronize flag used to hold all secondary CPUs spinning in
 232 * a tight loop until the boot sequence is ready for them */
 233static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
 234
 235/* This is for the new dynamic CPU boot code */
 236cpumask_t cpu_callin_map = CPU_MASK_NONE;
 237cpumask_t cpu_callout_map = CPU_MASK_NONE;
 238EXPORT_SYMBOL(cpu_callout_map);
 239cpumask_t cpu_possible_map = CPU_MASK_NONE;
 240EXPORT_SYMBOL(cpu_possible_map);
 241
 242/* The per processor IRQ masks (these are usually kept in sync) */
 243static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
 244
 245/* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
 246static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
 247
 248/* Lock for enable/disable of VIC interrupts */
 249static  __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
 250
 251/* The boot processor is correctly set up in PC mode when it 
 252 * comes up, but the secondaries need their master/slave 8259
 253 * pairs initializing correctly */
 254
 255/* Interrupt counters (per cpu) and total - used to try to
 256 * even up the interrupt handling routines */
 257static long vic_intr_total = 0;
 258static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
 259static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
 260
 261/* Since we can only use CPI0, we fake all the other CPIs */
 262static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
 263
 264/* debugging routine to read the isr of the cpu's pic */
 265static inline __u16
 266vic_read_isr(void)
 267{
 268        __u16 isr;
 269
 270        outb(0x0b, 0xa0);
 271        isr = inb(0xa0) << 8;
 272        outb(0x0b, 0x20);
 273        isr |= inb(0x20);
 274
 275        return isr;
 276}
 277
 278static __init void
 279qic_setup(void)
 280{
 281        if(!is_cpu_quad()) {
 282                /* not a quad, no setup */
 283                return;
 284        }
 285        outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
 286        outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
 287        
 288        if(is_cpu_extended()) {
 289                /* the QIC duplicate of the VIC base register */
 290                outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
 291                outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
 292
 293                /* FIXME: should set up the QIC timer and memory parity
 294                 * error vectors here */
 295        }
 296}
 297
 298static __init void
 299vic_setup_pic(void)
 300{
 301        outb(1, VIC_REDIRECT_REGISTER_1);
 302        /* clear the claim registers for dynamic routing */
 303        outb(0, VIC_CLAIM_REGISTER_0);
 304        outb(0, VIC_CLAIM_REGISTER_1);
 305
 306        outb(0, VIC_PRIORITY_REGISTER);
 307        /* Set the Primary and Secondary Microchannel vector
 308         * bases to be the same as the ordinary interrupts
 309         *
 310         * FIXME: This would be more efficient using separate
 311         * vectors. */
 312        outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
 313        outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
 314        /* Now initiallise the master PIC belonging to this CPU by
 315         * sending the four ICWs */
 316
 317        /* ICW1: level triggered, ICW4 needed */
 318        outb(0x19, 0x20);
 319
 320        /* ICW2: vector base */
 321        outb(FIRST_EXTERNAL_VECTOR, 0x21);
 322
 323        /* ICW3: slave at line 2 */
 324        outb(0x04, 0x21);
 325
 326        /* ICW4: 8086 mode */
 327        outb(0x01, 0x21);
 328
 329        /* now the same for the slave PIC */
 330
 331        /* ICW1: level trigger, ICW4 needed */
 332        outb(0x19, 0xA0);
 333
 334        /* ICW2: slave vector base */
 335        outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
 336        
 337        /* ICW3: slave ID */
 338        outb(0x02, 0xA1);
 339
 340        /* ICW4: 8086 mode */
 341        outb(0x01, 0xA1);
 342}
 343
 344static void
 345do_quad_bootstrap(void)
 346{
 347        if(is_cpu_quad() && is_cpu_vic_boot()) {
 348                int i;
 349                unsigned long flags;
 350                __u8 cpuid = hard_smp_processor_id();
 351
 352                local_irq_save(flags);
 353
 354                for(i = 0; i<4; i++) {
 355                        /* FIXME: this would be >>3 &0x7 on the 32 way */
 356                        if(((cpuid >> 2) & 0x03) == i)
 357                                /* don't lower our own mask! */
 358                                continue;
 359
 360                        /* masquerade as local Quad CPU */
 361                        outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
 362                        /* enable the startup CPI */
 363                        outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
 364                        /* restore cpu id */
 365                        outb(0, QIC_PROCESSOR_ID);
 366                }
 367                local_irq_restore(flags);
 368        }
 369}
 370
 371
 372/* Set up all the basic stuff: read the SMP config and make all the
 373 * SMP information reflect only the boot cpu.  All others will be
 374 * brought on-line later. */
 375void __init 
 376find_smp_config(void)
 377{
 378        int i;
 379
 380        boot_cpu_id = hard_smp_processor_id();
 381
 382        printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
 383
 384        /* initialize the CPU structures (moved from smp_boot_cpus) */
 385        for(i=0; i<NR_CPUS; i++) {
 386                cpu_irq_affinity[i] = ~0;
 387        }
 388        cpu_online_map = cpumask_of_cpu(boot_cpu_id);
 389
 390        /* The boot CPU must be extended */
 391        voyager_extended_vic_processors = 1<<boot_cpu_id;
 392        /* initially, all of the first 8 CPUs can boot */
 393        voyager_allowed_boot_processors = 0xff;
 394        /* set up everything for just this CPU, we can alter
 395         * this as we start the other CPUs later */
 396        /* now get the CPU disposition from the extended CMOS */
 397        cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
 398        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
 399        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
 400        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
 401        cpu_possible_map = phys_cpu_present_map;
 402        printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
 403        /* Here we set up the VIC to enable SMP */
 404        /* enable the CPIs by writing the base vector to their register */
 405        outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
 406        outb(1, VIC_REDIRECT_REGISTER_1);
 407        /* set the claim registers for static routing --- Boot CPU gets
 408         * all interrupts untill all other CPUs started */
 409        outb(0xff, VIC_CLAIM_REGISTER_0);
 410        outb(0xff, VIC_CLAIM_REGISTER_1);
 411        /* Set the Primary and Secondary Microchannel vector
 412         * bases to be the same as the ordinary interrupts
 413         *
 414         * FIXME: This would be more efficient using separate
 415         * vectors. */
 416        outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
 417        outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
 418
 419        /* Finally tell the firmware that we're driving */
 420        outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
 421             VOYAGER_SUS_IN_CONTROL_PORT);
 422
 423        current_thread_info()->cpu = boot_cpu_id;
 424        x86_write_percpu(cpu_number, boot_cpu_id);
 425}
 426
 427/*
 428 *      The bootstrap kernel entry code has set these up. Save them
 429 *      for a given CPU, id is physical */
 430void __init
 431smp_store_cpu_info(int id)
 432{
 433        struct cpuinfo_x86 *c = &cpu_data(id);
 434
 435        *c = boot_cpu_data;
 436
 437        identify_secondary_cpu(c);
 438}
 439
 440/* set up the trampoline and return the physical address of the code */
 441static __u32 __init
 442setup_trampoline(void)
 443{
 444        /* these two are global symbols in trampoline.S */
 445        extern const __u8 trampoline_end[];
 446        extern const __u8 trampoline_data[];
 447
 448        memcpy((__u8 *)trampoline_base, trampoline_data,
 449               trampoline_end - trampoline_data);
 450        return virt_to_phys((__u8 *)trampoline_base);
 451}
 452
 453/* Routine initially called when a non-boot CPU is brought online */
 454static void __init
 455start_secondary(void *unused)
 456{
 457        __u8 cpuid = hard_smp_processor_id();
 458        /* external functions not defined in the headers */
 459        extern void calibrate_delay(void);
 460
 461        cpu_init();
 462
 463        /* OK, we're in the routine */
 464        ack_CPI(VIC_CPU_BOOT_CPI);
 465
 466        /* setup the 8259 master slave pair belonging to this CPU ---
 467         * we won't actually receive any until the boot CPU
 468         * relinquishes it's static routing mask */
 469        vic_setup_pic();
 470
 471        qic_setup();
 472
 473        if(is_cpu_quad() && !is_cpu_vic_boot()) {
 474                /* clear the boot CPI */
 475                __u8 dummy;
 476
 477                dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
 478                printk("read dummy %d\n", dummy);
 479        }
 480
 481        /* lower the mask to receive CPIs */
 482        vic_enable_cpi();
 483
 484        VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
 485
 486        /* enable interrupts */
 487        local_irq_enable();
 488
 489        /* get our bogomips */
 490        calibrate_delay();
 491
 492        /* save our processor parameters */
 493        smp_store_cpu_info(cpuid);
 494
 495        /* if we're a quad, we may need to bootstrap other CPUs */
 496        do_quad_bootstrap();
 497
 498        /* FIXME: this is rather a poor hack to prevent the CPU
 499         * activating softirqs while it's supposed to be waiting for
 500         * permission to proceed.  Without this, the new per CPU stuff
 501         * in the softirqs will fail */
 502        local_irq_disable();
 503        cpu_set(cpuid, cpu_callin_map);
 504
 505        /* signal that we're done */
 506        cpu_booted_map = 1;
 507
 508        while (!cpu_isset(cpuid, smp_commenced_mask))
 509                rep_nop();
 510        local_irq_enable();
 511
 512        local_flush_tlb();
 513
 514        cpu_set(cpuid, cpu_online_map);
 515        wmb();
 516        cpu_idle();
 517}
 518
 519
 520/* Routine to kick start the given CPU and wait for it to report ready
 521 * (or timeout in startup).  When this routine returns, the requested
 522 * CPU is either fully running and configured or known to be dead.
 523 *
 524 * We call this routine sequentially 1 CPU at a time, so no need for
 525 * locking */
 526
 527static void __init
 528do_boot_cpu(__u8 cpu)
 529{
 530        struct task_struct *idle;
 531        int timeout;
 532        unsigned long flags;
 533        int quad_boot = (1<<cpu) & voyager_quad_processors 
 534                & ~( voyager_extended_vic_processors
 535                     & voyager_allowed_boot_processors);
 536
 537        /* This is an area in head.S which was used to set up the
 538         * initial kernel stack.  We need to alter this to give the
 539         * booting CPU a new stack (taken from its idle process) */
 540        extern struct {
 541                __u8 *esp;
 542                unsigned short ss;
 543        } stack_start;
 544        /* This is the format of the CPI IDT gate (in real mode) which
 545         * we're hijacking to boot the CPU */
 546        union   IDTFormat {
 547                struct seg {
 548                        __u16   Offset;
 549                        __u16   Segment;
 550                } idt;
 551                __u32 val;
 552        } hijack_source;
 553
 554        __u32 *hijack_vector;
 555        __u32 start_phys_address = setup_trampoline();
 556
 557        /* There's a clever trick to this: The linux trampoline is
 558         * compiled to begin at absolute location zero, so make the
 559         * address zero but have the data segment selector compensate
 560         * for the actual address */
 561        hijack_source.idt.Offset = start_phys_address & 0x000F;
 562        hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
 563
 564        cpucount++;
 565        alternatives_smp_switch(1);
 566
 567        idle = fork_idle(cpu);
 568        if(IS_ERR(idle))
 569                panic("failed fork for CPU%d", cpu);
 570        idle->thread.eip = (unsigned long) start_secondary;
 571        /* init_tasks (in sched.c) is indexed logically */
 572        stack_start.esp = (void *) idle->thread.esp;
 573
 574        init_gdt(cpu);
 575        per_cpu(current_task, cpu) = idle;
 576        early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
 577        irq_ctx_init(cpu);
 578
 579        /* Note: Don't modify initial ss override */
 580        VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu, 
 581                (unsigned long)hijack_source.val, hijack_source.idt.Segment,
 582                hijack_source.idt.Offset, stack_start.esp));
 583
 584        /* init lowmem identity mapping */
 585        clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
 586                        min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
 587        flush_tlb_all();
 588
 589        if(quad_boot) {
 590                printk("CPU %d: non extended Quad boot\n", cpu);
 591                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
 592                *hijack_vector = hijack_source.val;
 593        } else {
 594                printk("CPU%d: extended VIC boot\n", cpu);
 595                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
 596                *hijack_vector = hijack_source.val;
 597                /* VIC errata, may also receive interrupt at this address */
 598                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
 599                *hijack_vector = hijack_source.val;
 600        }
 601        /* All non-boot CPUs start with interrupts fully masked.  Need
 602         * to lower the mask of the CPI we're about to send.  We do
 603         * this in the VIC by masquerading as the processor we're
 604         * about to boot and lowering its interrupt mask */
 605        local_irq_save(flags);
 606        if(quad_boot) {
 607                send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
 608        } else {
 609                outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
 610                /* here we're altering registers belonging to `cpu' */
 611                
 612                outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
 613                /* now go back to our original identity */
 614                outb(boot_cpu_id, VIC_PROCESSOR_ID);
 615
 616                /* and boot the CPU */
 617
 618                send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
 619        }
 620        cpu_booted_map = 0;
 621        local_irq_restore(flags);
 622
 623        /* now wait for it to become ready (or timeout) */
 624        for(timeout = 0; timeout < 50000; timeout++) {
 625                if(cpu_booted_map)
 626                        break;
 627                udelay(100);
 628        }
 629        /* reset the page table */
 630        zap_low_mappings();
 631          
 632        if (cpu_booted_map) {
 633                VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
 634                        cpu, smp_processor_id()));
 635        
 636                printk("CPU%d: ", cpu);
 637                print_cpu_info(&cpu_data(cpu));
 638                wmb();
 639                cpu_set(cpu, cpu_callout_map);
 640                cpu_set(cpu, cpu_present_map);
 641        }
 642        else {
 643                printk("CPU%d FAILED TO BOOT: ", cpu);
 644                if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
 645                        printk("Stuck.\n");
 646                else
 647                        printk("Not responding.\n");
 648                
 649                cpucount--;
 650        }
 651}
 652
 653void __init
 654smp_boot_cpus(void)
 655{
 656        int i;
 657
 658        /* CAT BUS initialisation must be done after the memory */
 659        /* FIXME: The L4 has a catbus too, it just needs to be
 660         * accessed in a totally different way */
 661        if(voyager_level == 5) {
 662                voyager_cat_init();
 663
 664                /* now that the cat has probed the Voyager System Bus, sanity
 665                 * check the cpu map */
 666                if( ((voyager_quad_processors | voyager_extended_vic_processors)
 667                     & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
 668                        /* should panic */
 669                        printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
 670                }
 671        } else if(voyager_level == 4)
 672                voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
 673
 674        /* this sets up the idle task to run on the current cpu */
 675        voyager_extended_cpus = 1;
 676        /* Remove the global_irq_holder setting, it triggers a BUG() on
 677         * schedule at the moment */
 678        //global_irq_holder = boot_cpu_id;
 679
 680        /* FIXME: Need to do something about this but currently only works
 681         * on CPUs with a tsc which none of mine have. 
 682        smp_tune_scheduling();
 683         */
 684        smp_store_cpu_info(boot_cpu_id);
 685        printk("CPU%d: ", boot_cpu_id);
 686        print_cpu_info(&cpu_data(boot_cpu_id));
 687
 688        if(is_cpu_quad()) {
 689                /* booting on a Quad CPU */
 690                printk("VOYAGER SMP: Boot CPU is Quad\n");
 691                qic_setup();
 692                do_quad_bootstrap();
 693        }
 694
 695        /* enable our own CPIs */
 696        vic_enable_cpi();
 697
 698        cpu_set(boot_cpu_id, cpu_online_map);
 699        cpu_set(boot_cpu_id, cpu_callout_map);
 700        
 701        /* loop over all the extended VIC CPUs and boot them.  The 
 702         * Quad CPUs must be bootstrapped by their extended VIC cpu */
 703        for(i = 0; i < NR_CPUS; i++) {
 704                if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
 705                        continue;
 706                do_boot_cpu(i);
 707                /* This udelay seems to be needed for the Quad boots
 708                 * don't remove unless you know what you're doing */
 709                udelay(1000);
 710        }
 711        /* we could compute the total bogomips here, but why bother?,
 712         * Code added from smpboot.c */
 713        {
 714                unsigned long bogosum = 0;
 715                for (i = 0; i < NR_CPUS; i++)
 716                        if (cpu_isset(i, cpu_online_map))
 717                                bogosum += cpu_data(i).loops_per_jiffy;
 718                printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 719                        cpucount+1,
 720                        bogosum/(500000/HZ),
 721                        (bogosum/(5000/HZ))%100);
 722        }
 723        voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
 724        printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
 725        /* that's it, switch to symmetric mode */
 726        outb(0, VIC_PRIORITY_REGISTER);
 727        outb(0, VIC_CLAIM_REGISTER_0);
 728        outb(0, VIC_CLAIM_REGISTER_1);
 729        
 730        VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
 731}
 732
 733/* Reload the secondary CPUs task structure (this function does not
 734 * return ) */
 735void __init 
 736initialize_secondary(void)
 737{
 738#if 0
 739        // AC kernels only
 740        set_current(hard_get_current());
 741#endif
 742
 743        /*
 744         * We don't actually need to load the full TSS,
 745         * basically just the stack pointer and the eip.
 746         */
 747
 748        asm volatile(
 749                "movl %0,%%esp\n\t"
 750                "jmp *%1"
 751                :
 752                :"r" (current->thread.esp),"r" (current->thread.eip));
 753}
 754
 755/* handle a Voyager SYS_INT -- If we don't, the base board will
 756 * panic the system.
 757 *
 758 * System interrupts occur because some problem was detected on the
 759 * various busses.  To find out what you have to probe all the
 760 * hardware via the CAT bus.  FIXME: At the moment we do nothing. */
 761fastcall void
 762smp_vic_sys_interrupt(struct pt_regs *regs)
 763{
 764        ack_CPI(VIC_SYS_INT);
 765        printk("Voyager SYSTEM INTERRUPT\n");   
 766}
 767
 768/* Handle a voyager CMN_INT; These interrupts occur either because of
 769 * a system status change or because a single bit memory error
 770 * occurred.  FIXME: At the moment, ignore all this. */
 771fastcall void
 772smp_vic_cmn_interrupt(struct pt_regs *regs)
 773{
 774        static __u8 in_cmn_int = 0;
 775        static DEFINE_SPINLOCK(cmn_int_lock);
 776
 777        /* common ints are broadcast, so make sure we only do this once */
 778        _raw_spin_lock(&cmn_int_lock);
 779        if(in_cmn_int)
 780                goto unlock_end;
 781
 782        in_cmn_int++;
 783        _raw_spin_unlock(&cmn_int_lock);
 784
 785        VDEBUG(("Voyager COMMON INTERRUPT\n"));
 786
 787        if(voyager_level == 5)
 788                voyager_cat_do_common_interrupt();
 789
 790        _raw_spin_lock(&cmn_int_lock);
 791        in_cmn_int = 0;
 792 unlock_end:
 793        _raw_spin_unlock(&cmn_int_lock);
 794        ack_CPI(VIC_CMN_INT);
 795}
 796
 797/*
 798 * Reschedule call back. Nothing to do, all the work is done
 799 * automatically when we return from the interrupt.  */
 800static void
 801smp_reschedule_interrupt(void)
 802{
 803        /* do nothing */
 804}
 805
 806static struct mm_struct * flush_mm;
 807static unsigned long flush_va;
 808static DEFINE_SPINLOCK(tlbstate_lock);
 809#define FLUSH_ALL       0xffffffff
 810
 811/*
 812 * We cannot call mmdrop() because we are in interrupt context, 
 813 * instead update mm->cpu_vm_mask.
 814 *
 815 * We need to reload %cr3 since the page tables may be going
 816 * away from under us..
 817 */
 818static inline void
 819leave_mm (unsigned long cpu)
 820{
 821        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
 822                BUG();
 823        cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
 824        load_cr3(swapper_pg_dir);
 825}
 826
 827
 828/*
 829 * Invalidate call-back
 830 */
 831static void 
 832smp_invalidate_interrupt(void)
 833{
 834        __u8 cpu = smp_processor_id();
 835
 836        if (!test_bit(cpu, &smp_invalidate_needed))
 837                return;
 838        /* This will flood messages.  Don't uncomment unless you see
 839         * Problems with cross cpu invalidation
 840        VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
 841                smp_processor_id()));
 842        */
 843
 844        if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
 845                if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
 846                        if (flush_va == FLUSH_ALL)
 847                                local_flush_tlb();
 848                        else
 849                                __flush_tlb_one(flush_va);
 850                } else
 851                        leave_mm(cpu);
 852        }
 853        smp_mb__before_clear_bit();
 854        clear_bit(cpu, &smp_invalidate_needed);
 855        smp_mb__after_clear_bit();
 856}
 857
 858/* All the new flush operations for 2.4 */
 859
 860
 861/* This routine is called with a physical cpu mask */
 862static void
 863voyager_flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
 864                          unsigned long va)
 865{
 866        int stuck = 50000;
 867
 868        if (!cpumask)
 869                BUG();
 870        if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
 871                BUG();
 872        if (cpumask & (1 << smp_processor_id()))
 873                BUG();
 874        if (!mm)
 875                BUG();
 876
 877        spin_lock(&tlbstate_lock);
 878        
 879        flush_mm = mm;
 880        flush_va = va;
 881        atomic_set_mask(cpumask, &smp_invalidate_needed);
 882        /*
 883         * We have to send the CPI only to
 884         * CPUs affected.
 885         */
 886        send_CPI(cpumask, VIC_INVALIDATE_CPI);
 887
 888        while (smp_invalidate_needed) {
 889                mb();
 890                if(--stuck == 0) {
 891                        printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
 892                        break;
 893                }
 894        }
 895
 896        /* Uncomment only to debug invalidation problems
 897        VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
 898        */
 899
 900        flush_mm = NULL;
 901        flush_va = 0;
 902        spin_unlock(&tlbstate_lock);
 903}
 904
 905void
 906flush_tlb_current_task(void)
 907{
 908        struct mm_struct *mm = current->mm;
 909        unsigned long cpu_mask;
 910
 911        preempt_disable();
 912
 913        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
 914        local_flush_tlb();
 915        if (cpu_mask)
 916                voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
 917
 918        preempt_enable();
 919}
 920
 921
 922void
 923flush_tlb_mm (struct mm_struct * mm)
 924{
 925        unsigned long cpu_mask;
 926
 927        preempt_disable();
 928
 929        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
 930
 931        if (current->active_mm == mm) {
 932                if (current->mm)
 933                        local_flush_tlb();
 934                else
 935                        leave_mm(smp_processor_id());
 936        }
 937        if (cpu_mask)
 938                voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
 939
 940        preempt_enable();
 941}
 942
 943void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
 944{
 945        struct mm_struct *mm = vma->vm_mm;
 946        unsigned long cpu_mask;
 947
 948        preempt_disable();
 949
 950        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
 951        if (current->active_mm == mm) {
 952                if(current->mm)
 953                        __flush_tlb_one(va);
 954                 else
 955                        leave_mm(smp_processor_id());
 956        }
 957
 958        if (cpu_mask)
 959                voyager_flush_tlb_others(cpu_mask, mm, va);
 960
 961        preempt_enable();
 962}
 963EXPORT_SYMBOL(flush_tlb_page);
 964
 965/* enable the requested IRQs */
 966static void
 967smp_enable_irq_interrupt(void)
 968{
 969        __u8 irq;
 970        __u8 cpu = get_cpu();
 971
 972        VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
 973               vic_irq_enable_mask[cpu]));
 974
 975        spin_lock(&vic_irq_lock);
 976        for(irq = 0; irq < 16; irq++) {
 977                if(vic_irq_enable_mask[cpu] & (1<<irq))
 978                        enable_local_vic_irq(irq);
 979        }
 980        vic_irq_enable_mask[cpu] = 0;
 981        spin_unlock(&vic_irq_lock);
 982
 983        put_cpu_no_resched();
 984}
 985        
 986/*
 987 *      CPU halt call-back
 988 */
 989static void
 990smp_stop_cpu_function(void *dummy)
 991{
 992        VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
 993        cpu_clear(smp_processor_id(), cpu_online_map);
 994        local_irq_disable();
 995        for(;;)
 996                halt();
 997}
 998
 999static DEFINE_SPINLOCK(call_lock);
1000
1001struct call_data_struct {
1002        void (*func) (void *info);
1003        void *info;
1004        volatile unsigned long started;
1005        volatile unsigned long finished;
1006        int wait;
1007};
1008
1009static struct call_data_struct * call_data;
1010
1011/* execute a thread on a new CPU.  The function to be called must be
1012 * previously set up.  This is used to schedule a function for
1013 * execution on all CPUs - set up the function then broadcast a
1014 * function_interrupt CPI to come here on each CPU */
1015static void
1016smp_call_function_interrupt(void)
1017{
1018        void (*func) (void *info) = call_data->func;
1019        void *info = call_data->info;
1020        /* must take copy of wait because call_data may be replaced
1021         * unless the function is waiting for us to finish */
1022        int wait = call_data->wait;
1023        __u8 cpu = smp_processor_id();
1024
1025        /*
1026         * Notify initiating CPU that I've grabbed the data and am
1027         * about to execute the function
1028         */
1029        mb();
1030        if(!test_and_clear_bit(cpu, &call_data->started)) {
1031                /* If the bit wasn't set, this could be a replay */
1032                printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1033                return;
1034        }
1035        /*
1036         * At this point the info structure may be out of scope unless wait==1
1037         */
1038        irq_enter();
1039        (*func)(info);
1040        __get_cpu_var(irq_stat).irq_call_count++;
1041        irq_exit();
1042        if (wait) {
1043                mb();
1044                clear_bit(cpu, &call_data->finished);
1045        }
1046}
1047
1048static int
1049voyager_smp_call_function_mask (cpumask_t cpumask,
1050                                void (*func) (void *info), void *info,
1051                                int wait)
1052{
1053        struct call_data_struct data;
1054        u32 mask = cpus_addr(cpumask)[0];
1055
1056        mask &= ~(1<<smp_processor_id());
1057
1058        if (!mask)
1059                return 0;
1060
1061        /* Can deadlock when called with interrupts disabled */
1062        WARN_ON(irqs_disabled());
1063
1064        data.func = func;
1065        data.info = info;
1066        data.started = mask;
1067        data.wait = wait;
1068        if (wait)
1069                data.finished = mask;
1070
1071        spin_lock(&call_lock);
1072        call_data = &data;
1073        wmb();
1074        /* Send a message to all other CPUs and wait for them to respond */
1075        send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1076
1077        /* Wait for response */
1078        while (data.started)
1079                barrier();
1080
1081        if (wait)
1082                while (data.finished)
1083                        barrier();
1084
1085        spin_unlock(&call_lock);
1086
1087        return 0;
1088}
1089
1090/* Sorry about the name.  In an APIC based system, the APICs
1091 * themselves are programmed to send a timer interrupt.  This is used
1092 * by linux to reschedule the processor.  Voyager doesn't have this,
1093 * so we use the system clock to interrupt one processor, which in
1094 * turn, broadcasts a timer CPI to all the others --- we receive that
1095 * CPI here.  We don't use this actually for counting so losing
1096 * ticks doesn't matter 
1097 *
1098 * FIXME: For those CPUs which actually have a local APIC, we could
1099 * try to use it to trigger this interrupt instead of having to
1100 * broadcast the timer tick.  Unfortunately, all my pentium DYADs have
1101 * no local APIC, so I can't do this
1102 *
1103 * This function is currently a placeholder and is unused in the code */
1104fastcall void 
1105smp_apic_timer_interrupt(struct pt_regs *regs)
1106{
1107        struct pt_regs *old_regs = set_irq_regs(regs);
1108        wrapper_smp_local_timer_interrupt();
1109        set_irq_regs(old_regs);
1110}
1111
1112/* All of the QUAD interrupt GATES */
1113fastcall void
1114smp_qic_timer_interrupt(struct pt_regs *regs)
1115{
1116        struct pt_regs *old_regs = set_irq_regs(regs);
1117        ack_QIC_CPI(QIC_TIMER_CPI);
1118        wrapper_smp_local_timer_interrupt();
1119        set_irq_regs(old_regs);
1120}
1121
1122fastcall void
1123smp_qic_invalidate_interrupt(struct pt_regs *regs)
1124{
1125        ack_QIC_CPI(QIC_INVALIDATE_CPI);
1126        smp_invalidate_interrupt();
1127}
1128
1129fastcall void
1130smp_qic_reschedule_interrupt(struct pt_regs *regs)
1131{
1132        ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1133        smp_reschedule_interrupt();
1134}
1135
1136fastcall void
1137smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1138{
1139        ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1140        smp_enable_irq_interrupt();
1141}
1142
1143fastcall void
1144smp_qic_call_function_interrupt(struct pt_regs *regs)
1145{
1146        ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1147        smp_call_function_interrupt();
1148}
1149
1150fastcall void
1151smp_vic_cpi_interrupt(struct pt_regs *regs)
1152{
1153        struct pt_regs *old_regs = set_irq_regs(regs);
1154        __u8 cpu = smp_processor_id();
1155
1156        if(is_cpu_quad())
1157                ack_QIC_CPI(VIC_CPI_LEVEL0);
1158        else
1159                ack_VIC_CPI(VIC_CPI_LEVEL0);
1160
1161        if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1162                wrapper_smp_local_timer_interrupt();
1163        if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1164                smp_invalidate_interrupt();
1165        if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1166                smp_reschedule_interrupt();
1167        if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1168                smp_enable_irq_interrupt();
1169        if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1170                smp_call_function_interrupt();
1171        set_irq_regs(old_regs);
1172}
1173
1174static void
1175do_flush_tlb_all(void* info)
1176{
1177        unsigned long cpu = smp_processor_id();
1178
1179        __flush_tlb_all();
1180        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1181                leave_mm(cpu);
1182}
1183
1184
1185/* flush the TLB of every active CPU in the system */
1186void
1187flush_tlb_all(void)
1188{
1189        on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1190}
1191
1192/* used to set up the trampoline for other CPUs when the memory manager
1193 * is sorted out */
1194void __init
1195smp_alloc_memory(void)
1196{
1197        trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1198        if(__pa(trampoline_base) >= 0x93000)
1199                BUG();
1200}
1201
1202/* send a reschedule CPI to one CPU by physical CPU number*/
1203static void
1204voyager_smp_send_reschedule(int cpu)
1205{
1206        send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1207}
1208
1209
1210int
1211hard_smp_processor_id(void)
1212{
1213        __u8 i;
1214        __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1215        if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1216                return cpumask & 0x1F;
1217
1218        for(i = 0; i < 8; i++) {
1219                if(cpumask & (1<<i))
1220                        return i;
1221        }
1222        printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1223        return 0;
1224}
1225
1226int
1227safe_smp_processor_id(void)
1228{
1229        return hard_smp_processor_id();
1230}
1231
1232/* broadcast a halt to all other CPUs */
1233static void
1234voyager_smp_send_stop(void)
1235{
1236        smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1237}
1238
1239/* this function is triggered in time.c when a clock tick fires
1240 * we need to re-broadcast the tick to all CPUs */
1241void
1242smp_vic_timer_interrupt(void)
1243{
1244        send_CPI_allbutself(VIC_TIMER_CPI);
1245        smp_local_timer_interrupt();
1246}
1247
1248/* local (per CPU) timer interrupt.  It does both profiling and
1249 * process statistics/rescheduling.
1250 *
1251 * We do profiling in every local tick, statistics/rescheduling
1252 * happen only every 'profiling multiplier' ticks. The default
1253 * multiplier is 1 and it can be changed by writing the new multiplier
1254 * value into /proc/profile.
1255 */
1256void
1257smp_local_timer_interrupt(void)
1258{
1259        int cpu = smp_processor_id();
1260        long weight;
1261
1262        profile_tick(CPU_PROFILING);
1263        if (--per_cpu(prof_counter, cpu) <= 0) {
1264                /*
1265                 * The multiplier may have changed since the last time we got
1266                 * to this point as a result of the user writing to
1267                 * /proc/profile. In this case we need to adjust the APIC
1268                 * timer accordingly.
1269                 *
1270                 * Interrupts are already masked off at this point.
1271                 */
1272                per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1273                if (per_cpu(prof_counter, cpu) !=
1274                                        per_cpu(prof_old_multiplier, cpu)) {
1275                        /* FIXME: need to update the vic timer tick here */
1276                        per_cpu(prof_old_multiplier, cpu) =
1277                                                per_cpu(prof_counter, cpu);
1278                }
1279
1280                update_process_times(user_mode_vm(get_irq_regs()));
1281        }
1282
1283        if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1284                /* only extended VIC processors participate in
1285                 * interrupt distribution */
1286                return;
1287
1288        /*
1289         * We take the 'long' return path, and there every subsystem
1290         * grabs the appropriate locks (kernel lock/ irq lock).
1291         *
1292         * we might want to decouple profiling from the 'long path',
1293         * and do the profiling totally in assembly.
1294         *
1295         * Currently this isn't too much of an issue (performance wise),
1296         * we can take more than 100K local irqs per second on a 100 MHz P5.
1297         */
1298
1299        if((++vic_tick[cpu] & 0x7) != 0)
1300                return;
1301        /* get here every 16 ticks (about every 1/6 of a second) */
1302
1303        /* Change our priority to give someone else a chance at getting
1304         * the IRQ. The algorithm goes like this:
1305         *
1306         * In the VIC, the dynamically routed interrupt is always
1307         * handled by the lowest priority eligible (i.e. receiving
1308         * interrupts) CPU.  If >1 eligible CPUs are equal lowest, the
1309         * lowest processor number gets it.
1310         *
1311         * The priority of a CPU is controlled by a special per-CPU
1312         * VIC priority register which is 3 bits wide 0 being lowest
1313         * and 7 highest priority..
1314         *
1315         * Therefore we subtract the average number of interrupts from
1316         * the number we've fielded.  If this number is negative, we
1317         * lower the activity count and if it is positive, we raise
1318         * it.
1319         *
1320         * I'm afraid this still leads to odd looking interrupt counts:
1321         * the totals are all roughly equal, but the individual ones
1322         * look rather skewed.
1323         *
1324         * FIXME: This algorithm is total crap when mixed with SMP
1325         * affinity code since we now try to even up the interrupt
1326         * counts when an affinity binding is keeping them on a
1327         * particular CPU*/
1328        weight = (vic_intr_count[cpu]*voyager_extended_cpus
1329                  - vic_intr_total) >> 4;
1330        weight += 4;
1331        if(weight > 7)
1332                weight = 7;
1333        if(weight < 0)
1334                weight = 0;
1335        
1336        outb((__u8)weight, VIC_PRIORITY_REGISTER);
1337
1338#ifdef VOYAGER_DEBUG
1339        if((vic_tick[cpu] & 0xFFF) == 0) {
1340                /* print this message roughly every 25 secs */
1341                printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1342                       cpu, vic_tick[cpu], weight);
1343        }
1344#endif
1345}
1346
1347/* setup the profiling timer */
1348int 
1349setup_profiling_timer(unsigned int multiplier)
1350{
1351        int i;
1352
1353        if ( (!multiplier))
1354                return -EINVAL;
1355
1356        /* 
1357         * Set the new multiplier for each CPU. CPUs don't start using the
1358         * new values until the next timer interrupt in which they do process
1359         * accounting.
1360         */
1361        for (i = 0; i < NR_CPUS; ++i)
1362                per_cpu(prof_multiplier, i) = multiplier;
1363
1364        return 0;
1365}
1366
1367/* This is a bit of a mess, but forced on us by the genirq changes
1368 * there's no genirq handler that really does what voyager wants
1369 * so hack it up with the simple IRQ handler */
1370static void fastcall
1371handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1372{
1373        before_handle_vic_irq(irq);
1374        handle_simple_irq(irq, desc);
1375        after_handle_vic_irq(irq);
1376}
1377
1378
1379/*  The CPIs are handled in the per cpu 8259s, so they must be
1380 *  enabled to be received: FIX: enabling the CPIs in the early
1381 *  boot sequence interferes with bug checking; enable them later
1382 *  on in smp_init */
1383#define VIC_SET_GATE(cpi, vector) \
1384        set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1385#define QIC_SET_GATE(cpi, vector) \
1386        set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1387
1388void __init
1389smp_intr_init(void)
1390{
1391        int i;
1392
1393        /* initialize the per cpu irq mask to all disabled */
1394        for(i = 0; i < NR_CPUS; i++)
1395                vic_irq_mask[i] = 0xFFFF;
1396
1397        VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1398
1399        VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1400        VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1401
1402        QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1403        QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1404        QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1405        QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1406        QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1407        
1408
1409        /* now put the VIC descriptor into the first 48 IRQs 
1410         *
1411         * This is for later: first 16 correspond to PC IRQs; next 16
1412         * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1413        for(i = 0; i < 48; i++)
1414                set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1415}
1416
1417/* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1418 * processor to receive CPI */
1419static void
1420send_CPI(__u32 cpuset, __u8 cpi)
1421{
1422        int cpu;
1423        __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1424
1425        if(cpi < VIC_START_FAKE_CPI) {
1426                /* fake CPI are only used for booting, so send to the 
1427                 * extended quads as well---Quads must be VIC booted */
1428                outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1429                return;
1430        }
1431        if(quad_cpuset)
1432                send_QIC_CPI(quad_cpuset, cpi);
1433        cpuset &= ~quad_cpuset;
1434        cpuset &= 0xff;         /* only first 8 CPUs vaild for VIC CPI */
1435        if(cpuset == 0)
1436                return;
1437        for_each_online_cpu(cpu) {
1438                if(cpuset & (1<<cpu))
1439                        set_bit(cpi, &vic_cpi_mailbox[cpu]);
1440        }
1441        if(cpuset)
1442                outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1443}
1444
1445/* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1446 * set the cache line to shared by reading it.
1447 *
1448 * DON'T make this inline otherwise the cache line read will be
1449 * optimised away
1450 * */
1451static int
1452ack_QIC_CPI(__u8 cpi) {
1453        __u8 cpu = hard_smp_processor_id();
1454
1455        cpi &= 7;
1456
1457        outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1458        return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1459}
1460
1461static void
1462ack_special_QIC_CPI(__u8 cpi)
1463{
1464        switch(cpi) {
1465        case VIC_CMN_INT:
1466                outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1467                break;
1468        case VIC_SYS_INT:
1469                outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1470                break;
1471        }
1472        /* also clear at the VIC, just in case (nop for non-extended proc) */
1473        ack_VIC_CPI(cpi);
1474}
1475
1476/* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1477static void
1478ack_VIC_CPI(__u8 cpi)
1479{
1480#ifdef VOYAGER_DEBUG
1481        unsigned long flags;
1482        __u16 isr;
1483        __u8 cpu = smp_processor_id();
1484
1485        local_irq_save(flags);
1486        isr = vic_read_isr();
1487        if((isr & (1<<(cpi &7))) == 0) {
1488                printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1489        }
1490#endif
1491        /* send specific EOI; the two system interrupts have
1492         * bit 4 set for a separate vector but behave as the
1493         * corresponding 3 bit intr */
1494        outb_p(0x60|(cpi & 7),0x20);
1495
1496#ifdef VOYAGER_DEBUG
1497        if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1498                printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1499        }
1500        local_irq_restore(flags);
1501#endif
1502}
1503
1504/* cribbed with thanks from irq.c */
1505#define __byte(x,y)     (((unsigned char *)&(y))[x])
1506#define cached_21(cpu)  (__byte(0,vic_irq_mask[cpu]))
1507#define cached_A1(cpu)  (__byte(1,vic_irq_mask[cpu]))
1508
1509static unsigned int
1510startup_vic_irq(unsigned int irq)
1511{
1512        unmask_vic_irq(irq);
1513
1514        return 0;
1515}
1516
1517/* The enable and disable routines.  This is where we run into
1518 * conflicting architectural philosophy.  Fundamentally, the voyager
1519 * architecture does not expect to have to disable interrupts globally
1520 * (the IRQ controllers belong to each CPU).  The processor masquerade
1521 * which is used to start the system shouldn't be used in a running OS
1522 * since it will cause great confusion if two separate CPUs drive to
1523 * the same IRQ controller (I know, I've tried it).
1524 *
1525 * The solution is a variant on the NCR lazy SPL design:
1526 *
1527 * 1) To disable an interrupt, do nothing (other than set the
1528 *    IRQ_DISABLED flag).  This dares the interrupt actually to arrive.
1529 *
1530 * 2) If the interrupt dares to come in, raise the local mask against
1531 *    it (this will result in all the CPU masks being raised
1532 *    eventually).
1533 *
1534 * 3) To enable the interrupt, lower the mask on the local CPU and
1535 *    broadcast an Interrupt enable CPI which causes all other CPUs to
1536 *    adjust their masks accordingly.  */
1537
1538static void
1539unmask_vic_irq(unsigned int irq)
1540{
1541        /* linux doesn't to processor-irq affinity, so enable on
1542         * all CPUs we know about */
1543        int cpu = smp_processor_id(), real_cpu;
1544        __u16 mask = (1<<irq);
1545        __u32 processorList = 0;
1546        unsigned long flags;
1547
1548        VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1549                irq, cpu, cpu_irq_affinity[cpu]));
1550        spin_lock_irqsave(&vic_irq_lock, flags);
1551        for_each_online_cpu(real_cpu) {
1552                if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1553                        continue;
1554                if(!(cpu_irq_affinity[real_cpu] & mask)) {
1555                        /* irq has no affinity for this CPU, ignore */
1556                        continue;
1557                }
1558                if(real_cpu == cpu) {
1559                        enable_local_vic_irq(irq);
1560                }
1561                else if(vic_irq_mask[real_cpu] & mask) {
1562                        vic_irq_enable_mask[real_cpu] |= mask;
1563                        processorList |= (1<<real_cpu);
1564                }
1565        }
1566        spin_unlock_irqrestore(&vic_irq_lock, flags);
1567        if(processorList)
1568                send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1569}
1570
1571static void
1572mask_vic_irq(unsigned int irq)
1573{
1574        /* lazy disable, do nothing */
1575}
1576
1577static void
1578enable_local_vic_irq(unsigned int irq)
1579{
1580        __u8 cpu = smp_processor_id();
1581        __u16 mask = ~(1 << irq);
1582        __u16 old_mask = vic_irq_mask[cpu];
1583
1584        vic_irq_mask[cpu] &= mask;
1585        if(vic_irq_mask[cpu] == old_mask)
1586                return;
1587
1588        VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1589                irq, cpu));
1590
1591        if (irq & 8) {
1592                outb_p(cached_A1(cpu),0xA1);
1593                (void)inb_p(0xA1);
1594        }
1595        else {
1596                outb_p(cached_21(cpu),0x21);
1597                (void)inb_p(0x21);
1598        }
1599}
1600
1601static void
1602disable_local_vic_irq(unsigned int irq)
1603{
1604        __u8 cpu = smp_processor_id();
1605        __u16 mask = (1 << irq);
1606        __u16 old_mask = vic_irq_mask[cpu];
1607
1608        if(irq == 7)
1609                return;
1610
1611        vic_irq_mask[cpu] |= mask;
1612        if(old_mask == vic_irq_mask[cpu])
1613                return;
1614
1615        VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1616                irq, cpu));
1617
1618        if (irq & 8) {
1619                outb_p(cached_A1(cpu),0xA1);
1620                (void)inb_p(0xA1);
1621        }
1622        else {
1623                outb_p(cached_21(cpu),0x21);
1624                (void)inb_p(0x21);
1625        }
1626}
1627
1628/* The VIC is level triggered, so the ack can only be issued after the
1629 * interrupt completes.  However, we do Voyager lazy interrupt
1630 * handling here: It is an extremely expensive operation to mask an
1631 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED).  If
1632 * this interrupt actually comes in, then we mask and ack here to push
1633 * the interrupt off to another CPU */
1634static void
1635before_handle_vic_irq(unsigned int irq)
1636{
1637        irq_desc_t *desc = irq_desc + irq;
1638        __u8 cpu = smp_processor_id();
1639
1640        _raw_spin_lock(&vic_irq_lock);
1641        vic_intr_total++;
1642        vic_intr_count[cpu]++;
1643
1644        if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1645                /* The irq is not in our affinity mask, push it off
1646                 * onto another CPU */
1647                VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1648                        irq, cpu));
1649                disable_local_vic_irq(irq);
1650                /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1651                 * actually calling the interrupt routine */
1652                desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1653        } else if(desc->status & IRQ_DISABLED) {
1654                /* Damn, the interrupt actually arrived, do the lazy
1655                 * disable thing. The interrupt routine in irq.c will
1656                 * not handle a IRQ_DISABLED interrupt, so nothing more
1657                 * need be done here */
1658                VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1659                        irq, cpu));
1660                disable_local_vic_irq(irq);
1661                desc->status |= IRQ_REPLAY;
1662        } else {
1663                desc->status &= ~IRQ_REPLAY;
1664        }
1665
1666        _raw_spin_unlock(&vic_irq_lock);
1667}
1668
1669/* Finish the VIC interrupt: basically mask */
1670static void
1671after_handle_vic_irq(unsigned int irq)
1672{
1673        irq_desc_t *desc = irq_desc + irq;
1674
1675        _raw_spin_lock(&vic_irq_lock);
1676        {
1677                unsigned int status = desc->status & ~IRQ_INPROGRESS;
1678#ifdef VOYAGER_DEBUG
1679                __u16 isr;
1680#endif
1681
1682                desc->status = status;
1683                if ((status & IRQ_DISABLED))
1684                        disable_local_vic_irq(irq);
1685#ifdef VOYAGER_DEBUG
1686                /* DEBUG: before we ack, check what's in progress */
1687                isr = vic_read_isr();
1688                if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1689                        int i;
1690                        __u8 cpu = smp_processor_id();
1691                        __u8 real_cpu;
1692                        int mask; /* Um... initialize me??? --RR */
1693
1694                        printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1695                               cpu, irq);
1696                        for_each_possible_cpu(real_cpu, mask) {
1697
1698                                outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1699                                     VIC_PROCESSOR_ID);
1700                                isr = vic_read_isr();
1701                                if(isr & (1<<irq)) {
1702                                        printk("VOYAGER SMP: CPU%d ack irq %d\n",
1703                                               real_cpu, irq);
1704                                        ack_vic_irq(irq);
1705                                }
1706                                outb(cpu, VIC_PROCESSOR_ID);
1707                        }
1708                }
1709#endif /* VOYAGER_DEBUG */
1710                /* as soon as we ack, the interrupt is eligible for
1711                 * receipt by another CPU so everything must be in
1712                 * order here  */
1713                ack_vic_irq(irq);
1714                if(status & IRQ_REPLAY) {
1715                        /* replay is set if we disable the interrupt
1716                         * in the before_handle_vic_irq() routine, so
1717                         * clear the in progress bit here to allow the
1718                         * next CPU to handle this correctly */
1719                        desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1720                }
1721#ifdef VOYAGER_DEBUG
1722                isr = vic_read_isr();
1723                if((isr & (1<<irq)) != 0)
1724                        printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1725                               irq, isr);
1726#endif /* VOYAGER_DEBUG */
1727        }
1728        _raw_spin_unlock(&vic_irq_lock);
1729
1730        /* All code after this point is out of the main path - the IRQ
1731         * may be intercepted by another CPU if reasserted */
1732}
1733
1734
1735/* Linux processor - interrupt affinity manipulations.
1736 *
1737 * For each processor, we maintain a 32 bit irq affinity mask.
1738 * Initially it is set to all 1's so every processor accepts every
1739 * interrupt.  In this call, we change the processor's affinity mask:
1740 *
1741 * Change from enable to disable:
1742 *
1743 * If the interrupt ever comes in to the processor, we will disable it
1744 * and ack it to push it off to another CPU, so just accept the mask here.
1745 *
1746 * Change from disable to enable:
1747 *
1748 * change the mask and then do an interrupt enable CPI to re-enable on
1749 * the selected processors */
1750
1751void
1752set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1753{
1754        /* Only extended processors handle interrupts */
1755        unsigned long real_mask;
1756        unsigned long irq_mask = 1 << irq;
1757        int cpu;
1758
1759        real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1760        
1761        if(cpus_addr(mask)[0] == 0)
1762                /* can't have no CPUs to accept the interrupt -- extremely
1763                 * bad things will happen */
1764                return;
1765
1766        if(irq == 0)
1767                /* can't change the affinity of the timer IRQ.  This
1768                 * is due to the constraint in the voyager
1769                 * architecture that the CPI also comes in on and IRQ
1770                 * line and we have chosen IRQ0 for this.  If you
1771                 * raise the mask on this interrupt, the processor
1772                 * will no-longer be able to accept VIC CPIs */
1773                return;
1774
1775        if(irq >= 32) 
1776                /* You can only have 32 interrupts in a voyager system
1777                 * (and 32 only if you have a secondary microchannel
1778                 * bus) */
1779                return;
1780
1781        for_each_online_cpu(cpu) {
1782                unsigned long cpu_mask = 1 << cpu;
1783                
1784                if(cpu_mask & real_mask) {
1785                        /* enable the interrupt for this cpu */
1786                        cpu_irq_affinity[cpu] |= irq_mask;
1787                } else {
1788                        /* disable the interrupt for this cpu */
1789                        cpu_irq_affinity[cpu] &= ~irq_mask;
1790                }
1791        }
1792        /* this is magic, we now have the correct affinity maps, so
1793         * enable the interrupt.  This will send an enable CPI to
1794         * those CPUs who need to enable it in their local masks,
1795         * causing them to correct for the new affinity . If the
1796         * interrupt is currently globally disabled, it will simply be
1797         * disabled again as it comes in (voyager lazy disable).  If
1798         * the affinity map is tightened to disable the interrupt on a
1799         * cpu, it will be pushed off when it comes in */
1800        unmask_vic_irq(irq);
1801}
1802
1803static void
1804ack_vic_irq(unsigned int irq)
1805{
1806        if (irq & 8) {
1807                outb(0x62,0x20);        /* Specific EOI to cascade */
1808                outb(0x60|(irq & 7),0xA0);
1809        } else {
1810                outb(0x60 | (irq & 7),0x20);
1811        }
1812}
1813
1814/* enable the CPIs.  In the VIC, the CPIs are delivered by the 8259
1815 * but are not vectored by it.  This means that the 8259 mask must be
1816 * lowered to receive them */
1817static __init void
1818vic_enable_cpi(void)
1819{
1820        __u8 cpu = smp_processor_id();
1821        
1822        /* just take a copy of the current mask (nop for boot cpu) */
1823        vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1824
1825        enable_local_vic_irq(VIC_CPI_LEVEL0);
1826        enable_local_vic_irq(VIC_CPI_LEVEL1);
1827        /* for sys int and cmn int */
1828        enable_local_vic_irq(7);
1829
1830        if(is_cpu_quad()) {
1831                outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1832                outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1833                VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1834                        cpu, QIC_CPI_ENABLE));
1835        }
1836
1837        VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1838                cpu, vic_irq_mask[cpu]));
1839}
1840
1841void
1842voyager_smp_dump()
1843{
1844        int old_cpu = smp_processor_id(), cpu;
1845
1846        /* dump the interrupt masks of each processor */
1847        for_each_online_cpu(cpu) {
1848                __u16 imr, isr, irr;
1849                unsigned long flags;
1850
1851                local_irq_save(flags);
1852                outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1853                imr = (inb(0xa1) << 8) | inb(0x21);
1854                outb(0x0a, 0xa0);
1855                irr = inb(0xa0) << 8;
1856                outb(0x0a, 0x20);
1857                irr |= inb(0x20);
1858                outb(0x0b, 0xa0);
1859                isr = inb(0xa0) << 8;
1860                outb(0x0b, 0x20);
1861                isr |= inb(0x20);
1862                outb(old_cpu, VIC_PROCESSOR_ID);
1863                local_irq_restore(flags);
1864                printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1865                       cpu, vic_irq_mask[cpu], imr, irr, isr);
1866#if 0
1867                /* These lines are put in to try to unstick an un ack'd irq */
1868                if(isr != 0) {
1869                        int irq;
1870                        for(irq=0; irq<16; irq++) {
1871                                if(isr & (1<<irq)) {
1872                                        printk("\tCPU%d: ack irq %d\n",
1873                                               cpu, irq);
1874                                        local_irq_save(flags);
1875                                        outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1876                                             VIC_PROCESSOR_ID);
1877                                        ack_vic_irq(irq);
1878                                        outb(old_cpu, VIC_PROCESSOR_ID);
1879                                        local_irq_restore(flags);
1880                                }
1881                        }
1882                }
1883#endif
1884        }
1885}
1886
1887void
1888smp_voyager_power_off(void *dummy)
1889{
1890        if(smp_processor_id() == boot_cpu_id) 
1891                voyager_power_off();
1892        else
1893                smp_stop_cpu_function(NULL);
1894}
1895
1896static void __init
1897voyager_smp_prepare_cpus(unsigned int max_cpus)
1898{
1899        /* FIXME: ignore max_cpus for now */
1900        smp_boot_cpus();
1901}
1902
1903static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1904{
1905        init_gdt(smp_processor_id());
1906        switch_to_new_gdt();
1907
1908        cpu_set(smp_processor_id(), cpu_online_map);
1909        cpu_set(smp_processor_id(), cpu_callout_map);
1910        cpu_set(smp_processor_id(), cpu_possible_map);
1911        cpu_set(smp_processor_id(), cpu_present_map);
1912}
1913
1914static int __cpuinit
1915voyager_cpu_up(unsigned int cpu)
1916{
1917        /* This only works at boot for x86.  See "rewrite" above. */
1918        if (cpu_isset(cpu, smp_commenced_mask))
1919                return -ENOSYS;
1920
1921        /* In case one didn't come up */
1922        if (!cpu_isset(cpu, cpu_callin_map))
1923                return -EIO;
1924        /* Unleash the CPU! */
1925        cpu_set(cpu, smp_commenced_mask);
1926        while (!cpu_isset(cpu, cpu_online_map))
1927                mb();
1928        return 0;
1929}
1930
1931static void __init
1932voyager_smp_cpus_done(unsigned int max_cpus)
1933{
1934        zap_low_mappings();
1935}
1936
1937void __init
1938smp_setup_processor_id(void)
1939{
1940        current_thread_info()->cpu = hard_smp_processor_id();
1941        x86_write_percpu(cpu_number, hard_smp_processor_id());
1942}
1943
1944struct smp_ops smp_ops = {
1945        .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1946        .smp_prepare_cpus = voyager_smp_prepare_cpus,
1947        .cpu_up = voyager_cpu_up,
1948        .smp_cpus_done = voyager_smp_cpus_done,
1949
1950        .smp_send_stop = voyager_smp_send_stop,
1951        .smp_send_reschedule = voyager_smp_send_reschedule,
1952        .smp_call_function_mask = voyager_smp_call_function_mask,
1953};
1954