linux/block/cfq-iosched.c
<<
>>
Prefs
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/blkdev.h>
  11#include <linux/elevator.h>
  12#include <linux/rbtree.h>
  13#include <linux/ioprio.h>
  14
  15/*
  16 * tunables
  17 */
  18static const int cfq_quantum = 4;               /* max queue in one round of service */
  19static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  20static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
  21static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
  22
  23static const int cfq_slice_sync = HZ / 10;
  24static int cfq_slice_async = HZ / 25;
  25static const int cfq_slice_async_rq = 2;
  26static int cfq_slice_idle = HZ / 125;
  27
  28/*
  29 * grace period before allowing idle class to get disk access
  30 */
  31#define CFQ_IDLE_GRACE          (HZ / 10)
  32
  33/*
  34 * below this threshold, we consider thinktime immediate
  35 */
  36#define CFQ_MIN_TT              (2)
  37
  38#define CFQ_SLICE_SCALE         (5)
  39
  40#define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
  41#define RQ_CFQQ(rq)             ((rq)->elevator_private2)
  42
  43static struct kmem_cache *cfq_pool;
  44static struct kmem_cache *cfq_ioc_pool;
  45
  46static DEFINE_PER_CPU(unsigned long, ioc_count);
  47static struct completion *ioc_gone;
  48
  49#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
  50#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  51#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  52
  53#define ASYNC                   (0)
  54#define SYNC                    (1)
  55
  56#define sample_valid(samples)   ((samples) > 80)
  57
  58/*
  59 * Most of our rbtree usage is for sorting with min extraction, so
  60 * if we cache the leftmost node we don't have to walk down the tree
  61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  62 * move this into the elevator for the rq sorting as well.
  63 */
  64struct cfq_rb_root {
  65        struct rb_root rb;
  66        struct rb_node *left;
  67};
  68#define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
  69
  70/*
  71 * Per block device queue structure
  72 */
  73struct cfq_data {
  74        struct request_queue *queue;
  75
  76        /*
  77         * rr list of queues with requests and the count of them
  78         */
  79        struct cfq_rb_root service_tree;
  80        unsigned int busy_queues;
  81
  82        int rq_in_driver;
  83        int sync_flight;
  84        int hw_tag;
  85
  86        /*
  87         * idle window management
  88         */
  89        struct timer_list idle_slice_timer;
  90        struct work_struct unplug_work;
  91
  92        struct cfq_queue *active_queue;
  93        struct cfq_io_context *active_cic;
  94
  95        /*
  96         * async queue for each priority case
  97         */
  98        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  99        struct cfq_queue *async_idle_cfqq;
 100
 101        struct timer_list idle_class_timer;
 102
 103        sector_t last_position;
 104        unsigned long last_end_request;
 105
 106        /*
 107         * tunables, see top of file
 108         */
 109        unsigned int cfq_quantum;
 110        unsigned int cfq_fifo_expire[2];
 111        unsigned int cfq_back_penalty;
 112        unsigned int cfq_back_max;
 113        unsigned int cfq_slice[2];
 114        unsigned int cfq_slice_async_rq;
 115        unsigned int cfq_slice_idle;
 116
 117        struct list_head cic_list;
 118};
 119
 120/*
 121 * Per process-grouping structure
 122 */
 123struct cfq_queue {
 124        /* reference count */
 125        atomic_t ref;
 126        /* parent cfq_data */
 127        struct cfq_data *cfqd;
 128        /* service_tree member */
 129        struct rb_node rb_node;
 130        /* service_tree key */
 131        unsigned long rb_key;
 132        /* sorted list of pending requests */
 133        struct rb_root sort_list;
 134        /* if fifo isn't expired, next request to serve */
 135        struct request *next_rq;
 136        /* requests queued in sort_list */
 137        int queued[2];
 138        /* currently allocated requests */
 139        int allocated[2];
 140        /* pending metadata requests */
 141        int meta_pending;
 142        /* fifo list of requests in sort_list */
 143        struct list_head fifo;
 144
 145        unsigned long slice_end;
 146        long slice_resid;
 147
 148        /* number of requests that are on the dispatch list or inside driver */
 149        int dispatched;
 150
 151        /* io prio of this group */
 152        unsigned short ioprio, org_ioprio;
 153        unsigned short ioprio_class, org_ioprio_class;
 154
 155        /* various state flags, see below */
 156        unsigned int flags;
 157};
 158
 159enum cfqq_state_flags {
 160        CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
 161        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
 162        CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
 163        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
 164        CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
 165        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
 166        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
 167        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
 168        CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
 169        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
 170        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
 171};
 172
 173#define CFQ_CFQQ_FNS(name)                                              \
 174static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
 175{                                                                       \
 176        cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
 177}                                                                       \
 178static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
 179{                                                                       \
 180        cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
 181}                                                                       \
 182static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
 183{                                                                       \
 184        return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
 185}
 186
 187CFQ_CFQQ_FNS(on_rr);
 188CFQ_CFQQ_FNS(wait_request);
 189CFQ_CFQQ_FNS(must_alloc);
 190CFQ_CFQQ_FNS(must_alloc_slice);
 191CFQ_CFQQ_FNS(must_dispatch);
 192CFQ_CFQQ_FNS(fifo_expire);
 193CFQ_CFQQ_FNS(idle_window);
 194CFQ_CFQQ_FNS(prio_changed);
 195CFQ_CFQQ_FNS(queue_new);
 196CFQ_CFQQ_FNS(slice_new);
 197CFQ_CFQQ_FNS(sync);
 198#undef CFQ_CFQQ_FNS
 199
 200static void cfq_dispatch_insert(struct request_queue *, struct request *);
 201static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
 202                                       struct task_struct *, gfp_t);
 203static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
 204                                                struct io_context *);
 205
 206static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
 207                                            int is_sync)
 208{
 209        return cic->cfqq[!!is_sync];
 210}
 211
 212static inline void cic_set_cfqq(struct cfq_io_context *cic,
 213                                struct cfq_queue *cfqq, int is_sync)
 214{
 215        cic->cfqq[!!is_sync] = cfqq;
 216}
 217
 218/*
 219 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 220 * set (in which case it could also be direct WRITE).
 221 */
 222static inline int cfq_bio_sync(struct bio *bio)
 223{
 224        if (bio_data_dir(bio) == READ || bio_sync(bio))
 225                return 1;
 226
 227        return 0;
 228}
 229
 230/*
 231 * scheduler run of queue, if there are requests pending and no one in the
 232 * driver that will restart queueing
 233 */
 234static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 235{
 236        if (cfqd->busy_queues)
 237                kblockd_schedule_work(&cfqd->unplug_work);
 238}
 239
 240static int cfq_queue_empty(struct request_queue *q)
 241{
 242        struct cfq_data *cfqd = q->elevator->elevator_data;
 243
 244        return !cfqd->busy_queues;
 245}
 246
 247/*
 248 * Scale schedule slice based on io priority. Use the sync time slice only
 249 * if a queue is marked sync and has sync io queued. A sync queue with async
 250 * io only, should not get full sync slice length.
 251 */
 252static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
 253                                 unsigned short prio)
 254{
 255        const int base_slice = cfqd->cfq_slice[sync];
 256
 257        WARN_ON(prio >= IOPRIO_BE_NR);
 258
 259        return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 260}
 261
 262static inline int
 263cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 264{
 265        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 266}
 267
 268static inline void
 269cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 270{
 271        cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
 272}
 273
 274/*
 275 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 276 * isn't valid until the first request from the dispatch is activated
 277 * and the slice time set.
 278 */
 279static inline int cfq_slice_used(struct cfq_queue *cfqq)
 280{
 281        if (cfq_cfqq_slice_new(cfqq))
 282                return 0;
 283        if (time_before(jiffies, cfqq->slice_end))
 284                return 0;
 285
 286        return 1;
 287}
 288
 289/*
 290 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 291 * We choose the request that is closest to the head right now. Distance
 292 * behind the head is penalized and only allowed to a certain extent.
 293 */
 294static struct request *
 295cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
 296{
 297        sector_t last, s1, s2, d1 = 0, d2 = 0;
 298        unsigned long back_max;
 299#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
 300#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
 301        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 302
 303        if (rq1 == NULL || rq1 == rq2)
 304                return rq2;
 305        if (rq2 == NULL)
 306                return rq1;
 307
 308        if (rq_is_sync(rq1) && !rq_is_sync(rq2))
 309                return rq1;
 310        else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
 311                return rq2;
 312        if (rq_is_meta(rq1) && !rq_is_meta(rq2))
 313                return rq1;
 314        else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
 315                return rq2;
 316
 317        s1 = rq1->sector;
 318        s2 = rq2->sector;
 319
 320        last = cfqd->last_position;
 321
 322        /*
 323         * by definition, 1KiB is 2 sectors
 324         */
 325        back_max = cfqd->cfq_back_max * 2;
 326
 327        /*
 328         * Strict one way elevator _except_ in the case where we allow
 329         * short backward seeks which are biased as twice the cost of a
 330         * similar forward seek.
 331         */
 332        if (s1 >= last)
 333                d1 = s1 - last;
 334        else if (s1 + back_max >= last)
 335                d1 = (last - s1) * cfqd->cfq_back_penalty;
 336        else
 337                wrap |= CFQ_RQ1_WRAP;
 338
 339        if (s2 >= last)
 340                d2 = s2 - last;
 341        else if (s2 + back_max >= last)
 342                d2 = (last - s2) * cfqd->cfq_back_penalty;
 343        else
 344                wrap |= CFQ_RQ2_WRAP;
 345
 346        /* Found required data */
 347
 348        /*
 349         * By doing switch() on the bit mask "wrap" we avoid having to
 350         * check two variables for all permutations: --> faster!
 351         */
 352        switch (wrap) {
 353        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 354                if (d1 < d2)
 355                        return rq1;
 356                else if (d2 < d1)
 357                        return rq2;
 358                else {
 359                        if (s1 >= s2)
 360                                return rq1;
 361                        else
 362                                return rq2;
 363                }
 364
 365        case CFQ_RQ2_WRAP:
 366                return rq1;
 367        case CFQ_RQ1_WRAP:
 368                return rq2;
 369        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 370        default:
 371                /*
 372                 * Since both rqs are wrapped,
 373                 * start with the one that's further behind head
 374                 * (--> only *one* back seek required),
 375                 * since back seek takes more time than forward.
 376                 */
 377                if (s1 <= s2)
 378                        return rq1;
 379                else
 380                        return rq2;
 381        }
 382}
 383
 384/*
 385 * The below is leftmost cache rbtree addon
 386 */
 387static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
 388{
 389        if (!root->left)
 390                root->left = rb_first(&root->rb);
 391
 392        return root->left;
 393}
 394
 395static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
 396{
 397        if (root->left == n)
 398                root->left = NULL;
 399
 400        rb_erase(n, &root->rb);
 401        RB_CLEAR_NODE(n);
 402}
 403
 404/*
 405 * would be nice to take fifo expire time into account as well
 406 */
 407static struct request *
 408cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 409                  struct request *last)
 410{
 411        struct rb_node *rbnext = rb_next(&last->rb_node);
 412        struct rb_node *rbprev = rb_prev(&last->rb_node);
 413        struct request *next = NULL, *prev = NULL;
 414
 415        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 416
 417        if (rbprev)
 418                prev = rb_entry_rq(rbprev);
 419
 420        if (rbnext)
 421                next = rb_entry_rq(rbnext);
 422        else {
 423                rbnext = rb_first(&cfqq->sort_list);
 424                if (rbnext && rbnext != &last->rb_node)
 425                        next = rb_entry_rq(rbnext);
 426        }
 427
 428        return cfq_choose_req(cfqd, next, prev);
 429}
 430
 431static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
 432                                      struct cfq_queue *cfqq)
 433{
 434        /*
 435         * just an approximation, should be ok.
 436         */
 437        return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
 438                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
 439}
 440
 441/*
 442 * The cfqd->service_tree holds all pending cfq_queue's that have
 443 * requests waiting to be processed. It is sorted in the order that
 444 * we will service the queues.
 445 */
 446static void cfq_service_tree_add(struct cfq_data *cfqd,
 447                                    struct cfq_queue *cfqq, int add_front)
 448{
 449        struct rb_node **p = &cfqd->service_tree.rb.rb_node;
 450        struct rb_node *parent = NULL;
 451        unsigned long rb_key;
 452        int left;
 453
 454        if (!add_front) {
 455                rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
 456                rb_key += cfqq->slice_resid;
 457                cfqq->slice_resid = 0;
 458        } else
 459                rb_key = 0;
 460
 461        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
 462                /*
 463                 * same position, nothing more to do
 464                 */
 465                if (rb_key == cfqq->rb_key)
 466                        return;
 467
 468                cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
 469        }
 470
 471        left = 1;
 472        while (*p) {
 473                struct cfq_queue *__cfqq;
 474                struct rb_node **n;
 475
 476                parent = *p;
 477                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
 478
 479                /*
 480                 * sort RT queues first, we always want to give
 481                 * preference to them. IDLE queues goes to the back.
 482                 * after that, sort on the next service time.
 483                 */
 484                if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
 485                        n = &(*p)->rb_left;
 486                else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
 487                        n = &(*p)->rb_right;
 488                else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
 489                        n = &(*p)->rb_left;
 490                else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
 491                        n = &(*p)->rb_right;
 492                else if (rb_key < __cfqq->rb_key)
 493                        n = &(*p)->rb_left;
 494                else
 495                        n = &(*p)->rb_right;
 496
 497                if (n == &(*p)->rb_right)
 498                        left = 0;
 499
 500                p = n;
 501        }
 502
 503        if (left)
 504                cfqd->service_tree.left = &cfqq->rb_node;
 505
 506        cfqq->rb_key = rb_key;
 507        rb_link_node(&cfqq->rb_node, parent, p);
 508        rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
 509}
 510
 511/*
 512 * Update cfqq's position in the service tree.
 513 */
 514static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 515{
 516        /*
 517         * Resorting requires the cfqq to be on the RR list already.
 518         */
 519        if (cfq_cfqq_on_rr(cfqq))
 520                cfq_service_tree_add(cfqd, cfqq, 0);
 521}
 522
 523/*
 524 * add to busy list of queues for service, trying to be fair in ordering
 525 * the pending list according to last request service
 526 */
 527static inline void
 528cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 529{
 530        BUG_ON(cfq_cfqq_on_rr(cfqq));
 531        cfq_mark_cfqq_on_rr(cfqq);
 532        cfqd->busy_queues++;
 533
 534        cfq_resort_rr_list(cfqd, cfqq);
 535}
 536
 537/*
 538 * Called when the cfqq no longer has requests pending, remove it from
 539 * the service tree.
 540 */
 541static inline void
 542cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 543{
 544        BUG_ON(!cfq_cfqq_on_rr(cfqq));
 545        cfq_clear_cfqq_on_rr(cfqq);
 546
 547        if (!RB_EMPTY_NODE(&cfqq->rb_node))
 548                cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
 549
 550        BUG_ON(!cfqd->busy_queues);
 551        cfqd->busy_queues--;
 552}
 553
 554/*
 555 * rb tree support functions
 556 */
 557static inline void cfq_del_rq_rb(struct request *rq)
 558{
 559        struct cfq_queue *cfqq = RQ_CFQQ(rq);
 560        struct cfq_data *cfqd = cfqq->cfqd;
 561        const int sync = rq_is_sync(rq);
 562
 563        BUG_ON(!cfqq->queued[sync]);
 564        cfqq->queued[sync]--;
 565
 566        elv_rb_del(&cfqq->sort_list, rq);
 567
 568        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
 569                cfq_del_cfqq_rr(cfqd, cfqq);
 570}
 571
 572static void cfq_add_rq_rb(struct request *rq)
 573{
 574        struct cfq_queue *cfqq = RQ_CFQQ(rq);
 575        struct cfq_data *cfqd = cfqq->cfqd;
 576        struct request *__alias;
 577
 578        cfqq->queued[rq_is_sync(rq)]++;
 579
 580        /*
 581         * looks a little odd, but the first insert might return an alias.
 582         * if that happens, put the alias on the dispatch list
 583         */
 584        while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
 585                cfq_dispatch_insert(cfqd->queue, __alias);
 586
 587        if (!cfq_cfqq_on_rr(cfqq))
 588                cfq_add_cfqq_rr(cfqd, cfqq);
 589
 590        /*
 591         * check if this request is a better next-serve candidate
 592         */
 593        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
 594        BUG_ON(!cfqq->next_rq);
 595}
 596
 597static inline void
 598cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
 599{
 600        elv_rb_del(&cfqq->sort_list, rq);
 601        cfqq->queued[rq_is_sync(rq)]--;
 602        cfq_add_rq_rb(rq);
 603}
 604
 605static struct request *
 606cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
 607{
 608        struct task_struct *tsk = current;
 609        struct cfq_io_context *cic;
 610        struct cfq_queue *cfqq;
 611
 612        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
 613        if (!cic)
 614                return NULL;
 615
 616        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
 617        if (cfqq) {
 618                sector_t sector = bio->bi_sector + bio_sectors(bio);
 619
 620                return elv_rb_find(&cfqq->sort_list, sector);
 621        }
 622
 623        return NULL;
 624}
 625
 626static void cfq_activate_request(struct request_queue *q, struct request *rq)
 627{
 628        struct cfq_data *cfqd = q->elevator->elevator_data;
 629
 630        cfqd->rq_in_driver++;
 631
 632        /*
 633         * If the depth is larger 1, it really could be queueing. But lets
 634         * make the mark a little higher - idling could still be good for
 635         * low queueing, and a low queueing number could also just indicate
 636         * a SCSI mid layer like behaviour where limit+1 is often seen.
 637         */
 638        if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
 639                cfqd->hw_tag = 1;
 640
 641        cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
 642}
 643
 644static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
 645{
 646        struct cfq_data *cfqd = q->elevator->elevator_data;
 647
 648        WARN_ON(!cfqd->rq_in_driver);
 649        cfqd->rq_in_driver--;
 650}
 651
 652static void cfq_remove_request(struct request *rq)
 653{
 654        struct cfq_queue *cfqq = RQ_CFQQ(rq);
 655
 656        if (cfqq->next_rq == rq)
 657                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
 658
 659        list_del_init(&rq->queuelist);
 660        cfq_del_rq_rb(rq);
 661
 662        if (rq_is_meta(rq)) {
 663                WARN_ON(!cfqq->meta_pending);
 664                cfqq->meta_pending--;
 665        }
 666}
 667
 668static int cfq_merge(struct request_queue *q, struct request **req,
 669                     struct bio *bio)
 670{
 671        struct cfq_data *cfqd = q->elevator->elevator_data;
 672        struct request *__rq;
 673
 674        __rq = cfq_find_rq_fmerge(cfqd, bio);
 675        if (__rq && elv_rq_merge_ok(__rq, bio)) {
 676                *req = __rq;
 677                return ELEVATOR_FRONT_MERGE;
 678        }
 679
 680        return ELEVATOR_NO_MERGE;
 681}
 682
 683static void cfq_merged_request(struct request_queue *q, struct request *req,
 684                               int type)
 685{
 686        if (type == ELEVATOR_FRONT_MERGE) {
 687                struct cfq_queue *cfqq = RQ_CFQQ(req);
 688
 689                cfq_reposition_rq_rb(cfqq, req);
 690        }
 691}
 692
 693static void
 694cfq_merged_requests(struct request_queue *q, struct request *rq,
 695                    struct request *next)
 696{
 697        /*
 698         * reposition in fifo if next is older than rq
 699         */
 700        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
 701            time_before(next->start_time, rq->start_time))
 702                list_move(&rq->queuelist, &next->queuelist);
 703
 704        cfq_remove_request(next);
 705}
 706
 707static int cfq_allow_merge(struct request_queue *q, struct request *rq,
 708                           struct bio *bio)
 709{
 710        struct cfq_data *cfqd = q->elevator->elevator_data;
 711        struct cfq_io_context *cic;
 712        struct cfq_queue *cfqq;
 713
 714        /*
 715         * Disallow merge of a sync bio into an async request.
 716         */
 717        if (cfq_bio_sync(bio) && !rq_is_sync(rq))
 718                return 0;
 719
 720        /*
 721         * Lookup the cfqq that this bio will be queued with. Allow
 722         * merge only if rq is queued there.
 723         */
 724        cic = cfq_cic_rb_lookup(cfqd, current->io_context);
 725        if (!cic)
 726                return 0;
 727
 728        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
 729        if (cfqq == RQ_CFQQ(rq))
 730                return 1;
 731
 732        return 0;
 733}
 734
 735static inline void
 736__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 737{
 738        if (cfqq) {
 739                /*
 740                 * stop potential idle class queues waiting service
 741                 */
 742                del_timer(&cfqd->idle_class_timer);
 743
 744                cfqq->slice_end = 0;
 745                cfq_clear_cfqq_must_alloc_slice(cfqq);
 746                cfq_clear_cfqq_fifo_expire(cfqq);
 747                cfq_mark_cfqq_slice_new(cfqq);
 748                cfq_clear_cfqq_queue_new(cfqq);
 749        }
 750
 751        cfqd->active_queue = cfqq;
 752}
 753
 754/*
 755 * current cfqq expired its slice (or was too idle), select new one
 756 */
 757static void
 758__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 759                    int timed_out)
 760{
 761        if (cfq_cfqq_wait_request(cfqq))
 762                del_timer(&cfqd->idle_slice_timer);
 763
 764        cfq_clear_cfqq_must_dispatch(cfqq);
 765        cfq_clear_cfqq_wait_request(cfqq);
 766
 767        /*
 768         * store what was left of this slice, if the queue idled/timed out
 769         */
 770        if (timed_out && !cfq_cfqq_slice_new(cfqq))
 771                cfqq->slice_resid = cfqq->slice_end - jiffies;
 772
 773        cfq_resort_rr_list(cfqd, cfqq);
 774
 775        if (cfqq == cfqd->active_queue)
 776                cfqd->active_queue = NULL;
 777
 778        if (cfqd->active_cic) {
 779                put_io_context(cfqd->active_cic->ioc);
 780                cfqd->active_cic = NULL;
 781        }
 782}
 783
 784static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
 785{
 786        struct cfq_queue *cfqq = cfqd->active_queue;
 787
 788        if (cfqq)
 789                __cfq_slice_expired(cfqd, cfqq, timed_out);
 790}
 791
 792static int start_idle_class_timer(struct cfq_data *cfqd)
 793{
 794        unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
 795        unsigned long now = jiffies;
 796
 797        if (time_before(now, end) &&
 798            time_after_eq(now, cfqd->last_end_request)) {
 799                mod_timer(&cfqd->idle_class_timer, end);
 800                return 1;
 801        }
 802
 803        return 0;
 804}
 805
 806/*
 807 * Get next queue for service. Unless we have a queue preemption,
 808 * we'll simply select the first cfqq in the service tree.
 809 */
 810static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
 811{
 812        struct cfq_queue *cfqq;
 813        struct rb_node *n;
 814
 815        if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
 816                return NULL;
 817
 818        n = cfq_rb_first(&cfqd->service_tree);
 819        cfqq = rb_entry(n, struct cfq_queue, rb_node);
 820
 821        if (cfq_class_idle(cfqq)) {
 822                /*
 823                 * if we have idle queues and no rt or be queues had
 824                 * pending requests, either allow immediate service if
 825                 * the grace period has passed or arm the idle grace
 826                 * timer
 827                 */
 828                if (start_idle_class_timer(cfqd))
 829                        cfqq = NULL;
 830        }
 831
 832        return cfqq;
 833}
 834
 835/*
 836 * Get and set a new active queue for service.
 837 */
 838static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
 839{
 840        struct cfq_queue *cfqq;
 841
 842        cfqq = cfq_get_next_queue(cfqd);
 843        __cfq_set_active_queue(cfqd, cfqq);
 844        return cfqq;
 845}
 846
 847static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
 848                                          struct request *rq)
 849{
 850        if (rq->sector >= cfqd->last_position)
 851                return rq->sector - cfqd->last_position;
 852        else
 853                return cfqd->last_position - rq->sector;
 854}
 855
 856static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
 857{
 858        struct cfq_io_context *cic = cfqd->active_cic;
 859
 860        if (!sample_valid(cic->seek_samples))
 861                return 0;
 862
 863        return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
 864}
 865
 866static int cfq_close_cooperator(struct cfq_data *cfq_data,
 867                                struct cfq_queue *cfqq)
 868{
 869        /*
 870         * We should notice if some of the queues are cooperating, eg
 871         * working closely on the same area of the disk. In that case,
 872         * we can group them together and don't waste time idling.
 873         */
 874        return 0;
 875}
 876
 877#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
 878
 879static void cfq_arm_slice_timer(struct cfq_data *cfqd)
 880{
 881        struct cfq_queue *cfqq = cfqd->active_queue;
 882        struct cfq_io_context *cic;
 883        unsigned long sl;
 884
 885        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
 886        WARN_ON(cfq_cfqq_slice_new(cfqq));
 887
 888        /*
 889         * idle is disabled, either manually or by past process history
 890         */
 891        if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
 892                return;
 893
 894        /*
 895         * task has exited, don't wait
 896         */
 897        cic = cfqd->active_cic;
 898        if (!cic || !cic->ioc->task)
 899                return;
 900
 901        /*
 902         * See if this prio level has a good candidate
 903         */
 904        if (cfq_close_cooperator(cfqd, cfqq) &&
 905            (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
 906                return;
 907
 908        cfq_mark_cfqq_must_dispatch(cfqq);
 909        cfq_mark_cfqq_wait_request(cfqq);
 910
 911        /*
 912         * we don't want to idle for seeks, but we do want to allow
 913         * fair distribution of slice time for a process doing back-to-back
 914         * seeks. so allow a little bit of time for him to submit a new rq
 915         */
 916        sl = cfqd->cfq_slice_idle;
 917        if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
 918                sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
 919
 920        mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
 921}
 922
 923/*
 924 * Move request from internal lists to the request queue dispatch list.
 925 */
 926static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
 927{
 928        struct cfq_data *cfqd = q->elevator->elevator_data;
 929        struct cfq_queue *cfqq = RQ_CFQQ(rq);
 930
 931        cfq_remove_request(rq);
 932        cfqq->dispatched++;
 933        elv_dispatch_sort(q, rq);
 934
 935        if (cfq_cfqq_sync(cfqq))
 936                cfqd->sync_flight++;
 937}
 938
 939/*
 940 * return expired entry, or NULL to just start from scratch in rbtree
 941 */
 942static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
 943{
 944        struct cfq_data *cfqd = cfqq->cfqd;
 945        struct request *rq;
 946        int fifo;
 947
 948        if (cfq_cfqq_fifo_expire(cfqq))
 949                return NULL;
 950
 951        cfq_mark_cfqq_fifo_expire(cfqq);
 952
 953        if (list_empty(&cfqq->fifo))
 954                return NULL;
 955
 956        fifo = cfq_cfqq_sync(cfqq);
 957        rq = rq_entry_fifo(cfqq->fifo.next);
 958
 959        if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
 960                return NULL;
 961
 962        return rq;
 963}
 964
 965static inline int
 966cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 967{
 968        const int base_rq = cfqd->cfq_slice_async_rq;
 969
 970        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
 971
 972        return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
 973}
 974
 975/*
 976 * Select a queue for service. If we have a current active queue,
 977 * check whether to continue servicing it, or retrieve and set a new one.
 978 */
 979static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
 980{
 981        struct cfq_queue *cfqq;
 982
 983        cfqq = cfqd->active_queue;
 984        if (!cfqq)
 985                goto new_queue;
 986
 987        /*
 988         * The active queue has run out of time, expire it and select new.
 989         */
 990        if (cfq_slice_used(cfqq))
 991                goto expire;
 992
 993        /*
 994         * The active queue has requests and isn't expired, allow it to
 995         * dispatch.
 996         */
 997        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
 998                goto keep_queue;
 999
1000        /*
1001         * No requests pending. If the active queue still has requests in
1002         * flight or is idling for a new request, allow either of these
1003         * conditions to happen (or time out) before selecting a new queue.
1004         */
1005        if (timer_pending(&cfqd->idle_slice_timer) ||
1006            (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1007                cfqq = NULL;
1008                goto keep_queue;
1009        }
1010
1011expire:
1012        cfq_slice_expired(cfqd, 0);
1013new_queue:
1014        cfqq = cfq_set_active_queue(cfqd);
1015keep_queue:
1016        return cfqq;
1017}
1018
1019/*
1020 * Dispatch some requests from cfqq, moving them to the request queue
1021 * dispatch list.
1022 */
1023static int
1024__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1025                        int max_dispatch)
1026{
1027        int dispatched = 0;
1028
1029        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1030
1031        do {
1032                struct request *rq;
1033
1034                /*
1035                 * follow expired path, else get first next available
1036                 */
1037                if ((rq = cfq_check_fifo(cfqq)) == NULL)
1038                        rq = cfqq->next_rq;
1039
1040                /*
1041                 * finally, insert request into driver dispatch list
1042                 */
1043                cfq_dispatch_insert(cfqd->queue, rq);
1044
1045                dispatched++;
1046
1047                if (!cfqd->active_cic) {
1048                        atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1049                        cfqd->active_cic = RQ_CIC(rq);
1050                }
1051
1052                if (RB_EMPTY_ROOT(&cfqq->sort_list))
1053                        break;
1054
1055        } while (dispatched < max_dispatch);
1056
1057        /*
1058         * expire an async queue immediately if it has used up its slice. idle
1059         * queue always expire after 1 dispatch round.
1060         */
1061        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1062            dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1063            cfq_class_idle(cfqq))) {
1064                cfqq->slice_end = jiffies + 1;
1065                cfq_slice_expired(cfqd, 0);
1066        }
1067
1068        return dispatched;
1069}
1070
1071static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1072{
1073        int dispatched = 0;
1074
1075        while (cfqq->next_rq) {
1076                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1077                dispatched++;
1078        }
1079
1080        BUG_ON(!list_empty(&cfqq->fifo));
1081        return dispatched;
1082}
1083
1084/*
1085 * Drain our current requests. Used for barriers and when switching
1086 * io schedulers on-the-fly.
1087 */
1088static int cfq_forced_dispatch(struct cfq_data *cfqd)
1089{
1090        int dispatched = 0;
1091        struct rb_node *n;
1092
1093        while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1094                struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1095
1096                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1097        }
1098
1099        cfq_slice_expired(cfqd, 0);
1100
1101        BUG_ON(cfqd->busy_queues);
1102
1103        return dispatched;
1104}
1105
1106static int cfq_dispatch_requests(struct request_queue *q, int force)
1107{
1108        struct cfq_data *cfqd = q->elevator->elevator_data;
1109        struct cfq_queue *cfqq;
1110        int dispatched;
1111
1112        if (!cfqd->busy_queues)
1113                return 0;
1114
1115        if (unlikely(force))
1116                return cfq_forced_dispatch(cfqd);
1117
1118        dispatched = 0;
1119        while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1120                int max_dispatch;
1121
1122                max_dispatch = cfqd->cfq_quantum;
1123                if (cfq_class_idle(cfqq))
1124                        max_dispatch = 1;
1125
1126                if (cfqq->dispatched >= max_dispatch) {
1127                        if (cfqd->busy_queues > 1)
1128                                break;
1129                        if (cfqq->dispatched >= 4 * max_dispatch)
1130                                break;
1131                }
1132
1133                if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1134                        break;
1135
1136                cfq_clear_cfqq_must_dispatch(cfqq);
1137                cfq_clear_cfqq_wait_request(cfqq);
1138                del_timer(&cfqd->idle_slice_timer);
1139
1140                dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1141        }
1142
1143        return dispatched;
1144}
1145
1146/*
1147 * task holds one reference to the queue, dropped when task exits. each rq
1148 * in-flight on this queue also holds a reference, dropped when rq is freed.
1149 *
1150 * queue lock must be held here.
1151 */
1152static void cfq_put_queue(struct cfq_queue *cfqq)
1153{
1154        struct cfq_data *cfqd = cfqq->cfqd;
1155
1156        BUG_ON(atomic_read(&cfqq->ref) <= 0);
1157
1158        if (!atomic_dec_and_test(&cfqq->ref))
1159                return;
1160
1161        BUG_ON(rb_first(&cfqq->sort_list));
1162        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1163        BUG_ON(cfq_cfqq_on_rr(cfqq));
1164
1165        if (unlikely(cfqd->active_queue == cfqq)) {
1166                __cfq_slice_expired(cfqd, cfqq, 0);
1167                cfq_schedule_dispatch(cfqd);
1168        }
1169
1170        kmem_cache_free(cfq_pool, cfqq);
1171}
1172
1173static void cfq_free_io_context(struct io_context *ioc)
1174{
1175        struct cfq_io_context *__cic;
1176        struct rb_node *n;
1177        int freed = 0;
1178
1179        ioc->ioc_data = NULL;
1180
1181        while ((n = rb_first(&ioc->cic_root)) != NULL) {
1182                __cic = rb_entry(n, struct cfq_io_context, rb_node);
1183                rb_erase(&__cic->rb_node, &ioc->cic_root);
1184                kmem_cache_free(cfq_ioc_pool, __cic);
1185                freed++;
1186        }
1187
1188        elv_ioc_count_mod(ioc_count, -freed);
1189
1190        if (ioc_gone && !elv_ioc_count_read(ioc_count))
1191                complete(ioc_gone);
1192}
1193
1194static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1195{
1196        if (unlikely(cfqq == cfqd->active_queue)) {
1197                __cfq_slice_expired(cfqd, cfqq, 0);
1198                cfq_schedule_dispatch(cfqd);
1199        }
1200
1201        cfq_put_queue(cfqq);
1202}
1203
1204static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1205                                         struct cfq_io_context *cic)
1206{
1207        list_del_init(&cic->queue_list);
1208        smp_wmb();
1209        cic->key = NULL;
1210
1211        if (cic->cfqq[ASYNC]) {
1212                cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1213                cic->cfqq[ASYNC] = NULL;
1214        }
1215
1216        if (cic->cfqq[SYNC]) {
1217                cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1218                cic->cfqq[SYNC] = NULL;
1219        }
1220}
1221
1222static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1223{
1224        struct cfq_data *cfqd = cic->key;
1225
1226        if (cfqd) {
1227                struct request_queue *q = cfqd->queue;
1228
1229                spin_lock_irq(q->queue_lock);
1230                __cfq_exit_single_io_context(cfqd, cic);
1231                spin_unlock_irq(q->queue_lock);
1232        }
1233}
1234
1235/*
1236 * The process that ioc belongs to has exited, we need to clean up
1237 * and put the internal structures we have that belongs to that process.
1238 */
1239static void cfq_exit_io_context(struct io_context *ioc)
1240{
1241        struct cfq_io_context *__cic;
1242        struct rb_node *n;
1243
1244        ioc->ioc_data = NULL;
1245
1246        /*
1247         * put the reference this task is holding to the various queues
1248         */
1249        n = rb_first(&ioc->cic_root);
1250        while (n != NULL) {
1251                __cic = rb_entry(n, struct cfq_io_context, rb_node);
1252
1253                cfq_exit_single_io_context(__cic);
1254                n = rb_next(n);
1255        }
1256}
1257
1258static struct cfq_io_context *
1259cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1260{
1261        struct cfq_io_context *cic;
1262
1263        cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1264                                                        cfqd->queue->node);
1265        if (cic) {
1266                cic->last_end_request = jiffies;
1267                INIT_LIST_HEAD(&cic->queue_list);
1268                cic->dtor = cfq_free_io_context;
1269                cic->exit = cfq_exit_io_context;
1270                elv_ioc_count_inc(ioc_count);
1271        }
1272
1273        return cic;
1274}
1275
1276static void cfq_init_prio_data(struct cfq_queue *cfqq)
1277{
1278        struct task_struct *tsk = current;
1279        int ioprio_class;
1280
1281        if (!cfq_cfqq_prio_changed(cfqq))
1282                return;
1283
1284        ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1285        switch (ioprio_class) {
1286                default:
1287                        printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1288                case IOPRIO_CLASS_NONE:
1289                        /*
1290                         * no prio set, place us in the middle of the BE classes
1291                         */
1292                        cfqq->ioprio = task_nice_ioprio(tsk);
1293                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1294                        break;
1295                case IOPRIO_CLASS_RT:
1296                        cfqq->ioprio = task_ioprio(tsk);
1297                        cfqq->ioprio_class = IOPRIO_CLASS_RT;
1298                        break;
1299                case IOPRIO_CLASS_BE:
1300                        cfqq->ioprio = task_ioprio(tsk);
1301                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1302                        break;
1303                case IOPRIO_CLASS_IDLE:
1304                        cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1305                        cfqq->ioprio = 7;
1306                        cfq_clear_cfqq_idle_window(cfqq);
1307                        break;
1308        }
1309
1310        /*
1311         * keep track of original prio settings in case we have to temporarily
1312         * elevate the priority of this queue
1313         */
1314        cfqq->org_ioprio = cfqq->ioprio;
1315        cfqq->org_ioprio_class = cfqq->ioprio_class;
1316        cfq_clear_cfqq_prio_changed(cfqq);
1317}
1318
1319static inline void changed_ioprio(struct cfq_io_context *cic)
1320{
1321        struct cfq_data *cfqd = cic->key;
1322        struct cfq_queue *cfqq;
1323        unsigned long flags;
1324
1325        if (unlikely(!cfqd))
1326                return;
1327
1328        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1329
1330        cfqq = cic->cfqq[ASYNC];
1331        if (cfqq) {
1332                struct cfq_queue *new_cfqq;
1333                new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1334                                         GFP_ATOMIC);
1335                if (new_cfqq) {
1336                        cic->cfqq[ASYNC] = new_cfqq;
1337                        cfq_put_queue(cfqq);
1338                }
1339        }
1340
1341        cfqq = cic->cfqq[SYNC];
1342        if (cfqq)
1343                cfq_mark_cfqq_prio_changed(cfqq);
1344
1345        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1346}
1347
1348static void cfq_ioc_set_ioprio(struct io_context *ioc)
1349{
1350        struct cfq_io_context *cic;
1351        struct rb_node *n;
1352
1353        ioc->ioprio_changed = 0;
1354
1355        n = rb_first(&ioc->cic_root);
1356        while (n != NULL) {
1357                cic = rb_entry(n, struct cfq_io_context, rb_node);
1358
1359                changed_ioprio(cic);
1360                n = rb_next(n);
1361        }
1362}
1363
1364static struct cfq_queue *
1365cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1366                     struct task_struct *tsk, gfp_t gfp_mask)
1367{
1368        struct cfq_queue *cfqq, *new_cfqq = NULL;
1369        struct cfq_io_context *cic;
1370
1371retry:
1372        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1373        /* cic always exists here */
1374        cfqq = cic_to_cfqq(cic, is_sync);
1375
1376        if (!cfqq) {
1377                if (new_cfqq) {
1378                        cfqq = new_cfqq;
1379                        new_cfqq = NULL;
1380                } else if (gfp_mask & __GFP_WAIT) {
1381                        /*
1382                         * Inform the allocator of the fact that we will
1383                         * just repeat this allocation if it fails, to allow
1384                         * the allocator to do whatever it needs to attempt to
1385                         * free memory.
1386                         */
1387                        spin_unlock_irq(cfqd->queue->queue_lock);
1388                        new_cfqq = kmem_cache_alloc_node(cfq_pool,
1389                                        gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1390                                        cfqd->queue->node);
1391                        spin_lock_irq(cfqd->queue->queue_lock);
1392                        goto retry;
1393                } else {
1394                        cfqq = kmem_cache_alloc_node(cfq_pool,
1395                                        gfp_mask | __GFP_ZERO,
1396                                        cfqd->queue->node);
1397                        if (!cfqq)
1398                                goto out;
1399                }
1400
1401                RB_CLEAR_NODE(&cfqq->rb_node);
1402                INIT_LIST_HEAD(&cfqq->fifo);
1403
1404                atomic_set(&cfqq->ref, 0);
1405                cfqq->cfqd = cfqd;
1406
1407                if (is_sync) {
1408                        cfq_mark_cfqq_idle_window(cfqq);
1409                        cfq_mark_cfqq_sync(cfqq);
1410                }
1411
1412                cfq_mark_cfqq_prio_changed(cfqq);
1413                cfq_mark_cfqq_queue_new(cfqq);
1414
1415                cfq_init_prio_data(cfqq);
1416        }
1417
1418        if (new_cfqq)
1419                kmem_cache_free(cfq_pool, new_cfqq);
1420
1421out:
1422        WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1423        return cfqq;
1424}
1425
1426static struct cfq_queue **
1427cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1428{
1429        switch(ioprio_class) {
1430        case IOPRIO_CLASS_RT:
1431                return &cfqd->async_cfqq[0][ioprio];
1432        case IOPRIO_CLASS_BE:
1433                return &cfqd->async_cfqq[1][ioprio];
1434        case IOPRIO_CLASS_IDLE:
1435                return &cfqd->async_idle_cfqq;
1436        default:
1437                BUG();
1438        }
1439}
1440
1441static struct cfq_queue *
1442cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1443              gfp_t gfp_mask)
1444{
1445        const int ioprio = task_ioprio(tsk);
1446        const int ioprio_class = task_ioprio_class(tsk);
1447        struct cfq_queue **async_cfqq = NULL;
1448        struct cfq_queue *cfqq = NULL;
1449
1450        if (!is_sync) {
1451                async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1452                cfqq = *async_cfqq;
1453        }
1454
1455        if (!cfqq) {
1456                cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
1457                if (!cfqq)
1458                        return NULL;
1459        }
1460
1461        /*
1462         * pin the queue now that it's allocated, scheduler exit will prune it
1463         */
1464        if (!is_sync && !(*async_cfqq)) {
1465                atomic_inc(&cfqq->ref);
1466                *async_cfqq = cfqq;
1467        }
1468
1469        atomic_inc(&cfqq->ref);
1470        return cfqq;
1471}
1472
1473/*
1474 * We drop cfq io contexts lazily, so we may find a dead one.
1475 */
1476static void
1477cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1478{
1479        WARN_ON(!list_empty(&cic->queue_list));
1480
1481        if (ioc->ioc_data == cic)
1482                ioc->ioc_data = NULL;
1483
1484        rb_erase(&cic->rb_node, &ioc->cic_root);
1485        kmem_cache_free(cfq_ioc_pool, cic);
1486        elv_ioc_count_dec(ioc_count);
1487}
1488
1489static struct cfq_io_context *
1490cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1491{
1492        struct rb_node *n;
1493        struct cfq_io_context *cic;
1494        void *k, *key = cfqd;
1495
1496        if (unlikely(!ioc))
1497                return NULL;
1498
1499        /*
1500         * we maintain a last-hit cache, to avoid browsing over the tree
1501         */
1502        cic = ioc->ioc_data;
1503        if (cic && cic->key == cfqd)
1504                return cic;
1505
1506restart:
1507        n = ioc->cic_root.rb_node;
1508        while (n) {
1509                cic = rb_entry(n, struct cfq_io_context, rb_node);
1510                /* ->key must be copied to avoid race with cfq_exit_queue() */
1511                k = cic->key;
1512                if (unlikely(!k)) {
1513                        cfq_drop_dead_cic(ioc, cic);
1514                        goto restart;
1515                }
1516
1517                if (key < k)
1518                        n = n->rb_left;
1519                else if (key > k)
1520                        n = n->rb_right;
1521                else {
1522                        ioc->ioc_data = cic;
1523                        return cic;
1524                }
1525        }
1526
1527        return NULL;
1528}
1529
1530static inline void
1531cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1532             struct cfq_io_context *cic)
1533{
1534        struct rb_node **p;
1535        struct rb_node *parent;
1536        struct cfq_io_context *__cic;
1537        unsigned long flags;
1538        void *k;
1539
1540        cic->ioc = ioc;
1541        cic->key = cfqd;
1542
1543restart:
1544        parent = NULL;
1545        p = &ioc->cic_root.rb_node;
1546        while (*p) {
1547                parent = *p;
1548                __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1549                /* ->key must be copied to avoid race with cfq_exit_queue() */
1550                k = __cic->key;
1551                if (unlikely(!k)) {
1552                        cfq_drop_dead_cic(ioc, __cic);
1553                        goto restart;
1554                }
1555
1556                if (cic->key < k)
1557                        p = &(*p)->rb_left;
1558                else if (cic->key > k)
1559                        p = &(*p)->rb_right;
1560                else
1561                        BUG();
1562        }
1563
1564        rb_link_node(&cic->rb_node, parent, p);
1565        rb_insert_color(&cic->rb_node, &ioc->cic_root);
1566
1567        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1568        list_add(&cic->queue_list, &cfqd->cic_list);
1569        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1570}
1571
1572/*
1573 * Setup general io context and cfq io context. There can be several cfq
1574 * io contexts per general io context, if this process is doing io to more
1575 * than one device managed by cfq.
1576 */
1577static struct cfq_io_context *
1578cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1579{
1580        struct io_context *ioc = NULL;
1581        struct cfq_io_context *cic;
1582
1583        might_sleep_if(gfp_mask & __GFP_WAIT);
1584
1585        ioc = get_io_context(gfp_mask, cfqd->queue->node);
1586        if (!ioc)
1587                return NULL;
1588
1589        cic = cfq_cic_rb_lookup(cfqd, ioc);
1590        if (cic)
1591                goto out;
1592
1593        cic = cfq_alloc_io_context(cfqd, gfp_mask);
1594        if (cic == NULL)
1595                goto err;
1596
1597        cfq_cic_link(cfqd, ioc, cic);
1598out:
1599        smp_read_barrier_depends();
1600        if (unlikely(ioc->ioprio_changed))
1601                cfq_ioc_set_ioprio(ioc);
1602
1603        return cic;
1604err:
1605        put_io_context(ioc);
1606        return NULL;
1607}
1608
1609static void
1610cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1611{
1612        unsigned long elapsed = jiffies - cic->last_end_request;
1613        unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1614
1615        cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1616        cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1617        cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1618}
1619
1620static void
1621cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1622                       struct request *rq)
1623{
1624        sector_t sdist;
1625        u64 total;
1626
1627        if (cic->last_request_pos < rq->sector)
1628                sdist = rq->sector - cic->last_request_pos;
1629        else
1630                sdist = cic->last_request_pos - rq->sector;
1631
1632        /*
1633         * Don't allow the seek distance to get too large from the
1634         * odd fragment, pagein, etc
1635         */
1636        if (cic->seek_samples <= 60) /* second&third seek */
1637                sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1638        else
1639                sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1640
1641        cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1642        cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1643        total = cic->seek_total + (cic->seek_samples/2);
1644        do_div(total, cic->seek_samples);
1645        cic->seek_mean = (sector_t)total;
1646}
1647
1648/*
1649 * Disable idle window if the process thinks too long or seeks so much that
1650 * it doesn't matter
1651 */
1652static void
1653cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1654                       struct cfq_io_context *cic)
1655{
1656        int enable_idle;
1657
1658        if (!cfq_cfqq_sync(cfqq))
1659                return;
1660
1661        enable_idle = cfq_cfqq_idle_window(cfqq);
1662
1663        if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1664            (cfqd->hw_tag && CIC_SEEKY(cic)))
1665                enable_idle = 0;
1666        else if (sample_valid(cic->ttime_samples)) {
1667                if (cic->ttime_mean > cfqd->cfq_slice_idle)
1668                        enable_idle = 0;
1669                else
1670                        enable_idle = 1;
1671        }
1672
1673        if (enable_idle)
1674                cfq_mark_cfqq_idle_window(cfqq);
1675        else
1676                cfq_clear_cfqq_idle_window(cfqq);
1677}
1678
1679/*
1680 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1681 * no or if we aren't sure, a 1 will cause a preempt.
1682 */
1683static int
1684cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1685                   struct request *rq)
1686{
1687        struct cfq_queue *cfqq;
1688
1689        cfqq = cfqd->active_queue;
1690        if (!cfqq)
1691                return 0;
1692
1693        if (cfq_slice_used(cfqq))
1694                return 1;
1695
1696        if (cfq_class_idle(new_cfqq))
1697                return 0;
1698
1699        if (cfq_class_idle(cfqq))
1700                return 1;
1701
1702        /*
1703         * if the new request is sync, but the currently running queue is
1704         * not, let the sync request have priority.
1705         */
1706        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1707                return 1;
1708
1709        /*
1710         * So both queues are sync. Let the new request get disk time if
1711         * it's a metadata request and the current queue is doing regular IO.
1712         */
1713        if (rq_is_meta(rq) && !cfqq->meta_pending)
1714                return 1;
1715
1716        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1717                return 0;
1718
1719        /*
1720         * if this request is as-good as one we would expect from the
1721         * current cfqq, let it preempt
1722         */
1723        if (cfq_rq_close(cfqd, rq))
1724                return 1;
1725
1726        return 0;
1727}
1728
1729/*
1730 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1731 * let it have half of its nominal slice.
1732 */
1733static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1734{
1735        cfq_slice_expired(cfqd, 1);
1736
1737        /*
1738         * Put the new queue at the front of the of the current list,
1739         * so we know that it will be selected next.
1740         */
1741        BUG_ON(!cfq_cfqq_on_rr(cfqq));
1742
1743        cfq_service_tree_add(cfqd, cfqq, 1);
1744
1745        cfqq->slice_end = 0;
1746        cfq_mark_cfqq_slice_new(cfqq);
1747}
1748
1749/*
1750 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1751 * something we should do about it
1752 */
1753static void
1754cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1755                struct request *rq)
1756{
1757        struct cfq_io_context *cic = RQ_CIC(rq);
1758
1759        if (rq_is_meta(rq))
1760                cfqq->meta_pending++;
1761
1762        cfq_update_io_thinktime(cfqd, cic);
1763        cfq_update_io_seektime(cfqd, cic, rq);
1764        cfq_update_idle_window(cfqd, cfqq, cic);
1765
1766        cic->last_request_pos = rq->sector + rq->nr_sectors;
1767
1768        if (cfqq == cfqd->active_queue) {
1769                /*
1770                 * if we are waiting for a request for this queue, let it rip
1771                 * immediately and flag that we must not expire this queue
1772                 * just now
1773                 */
1774                if (cfq_cfqq_wait_request(cfqq)) {
1775                        cfq_mark_cfqq_must_dispatch(cfqq);
1776                        del_timer(&cfqd->idle_slice_timer);
1777                        blk_start_queueing(cfqd->queue);
1778                }
1779        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1780                /*
1781                 * not the active queue - expire current slice if it is
1782                 * idle and has expired it's mean thinktime or this new queue
1783                 * has some old slice time left and is of higher priority
1784                 */
1785                cfq_preempt_queue(cfqd, cfqq);
1786                cfq_mark_cfqq_must_dispatch(cfqq);
1787                blk_start_queueing(cfqd->queue);
1788        }
1789}
1790
1791static void cfq_insert_request(struct request_queue *q, struct request *rq)
1792{
1793        struct cfq_data *cfqd = q->elevator->elevator_data;
1794        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1795
1796        cfq_init_prio_data(cfqq);
1797
1798        cfq_add_rq_rb(rq);
1799
1800        list_add_tail(&rq->queuelist, &cfqq->fifo);
1801
1802        cfq_rq_enqueued(cfqd, cfqq, rq);
1803}
1804
1805static void cfq_completed_request(struct request_queue *q, struct request *rq)
1806{
1807        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1808        struct cfq_data *cfqd = cfqq->cfqd;
1809        const int sync = rq_is_sync(rq);
1810        unsigned long now;
1811
1812        now = jiffies;
1813
1814        WARN_ON(!cfqd->rq_in_driver);
1815        WARN_ON(!cfqq->dispatched);
1816        cfqd->rq_in_driver--;
1817        cfqq->dispatched--;
1818
1819        if (cfq_cfqq_sync(cfqq))
1820                cfqd->sync_flight--;
1821
1822        if (!cfq_class_idle(cfqq))
1823                cfqd->last_end_request = now;
1824
1825        if (sync)
1826                RQ_CIC(rq)->last_end_request = now;
1827
1828        /*
1829         * If this is the active queue, check if it needs to be expired,
1830         * or if we want to idle in case it has no pending requests.
1831         */
1832        if (cfqd->active_queue == cfqq) {
1833                if (cfq_cfqq_slice_new(cfqq)) {
1834                        cfq_set_prio_slice(cfqd, cfqq);
1835                        cfq_clear_cfqq_slice_new(cfqq);
1836                }
1837                if (cfq_slice_used(cfqq))
1838                        cfq_slice_expired(cfqd, 1);
1839                else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1840                        cfq_arm_slice_timer(cfqd);
1841        }
1842
1843        if (!cfqd->rq_in_driver)
1844                cfq_schedule_dispatch(cfqd);
1845}
1846
1847/*
1848 * we temporarily boost lower priority queues if they are holding fs exclusive
1849 * resources. they are boosted to normal prio (CLASS_BE/4)
1850 */
1851static void cfq_prio_boost(struct cfq_queue *cfqq)
1852{
1853        if (has_fs_excl()) {
1854                /*
1855                 * boost idle prio on transactions that would lock out other
1856                 * users of the filesystem
1857                 */
1858                if (cfq_class_idle(cfqq))
1859                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1860                if (cfqq->ioprio > IOPRIO_NORM)
1861                        cfqq->ioprio = IOPRIO_NORM;
1862        } else {
1863                /*
1864                 * check if we need to unboost the queue
1865                 */
1866                if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1867                        cfqq->ioprio_class = cfqq->org_ioprio_class;
1868                if (cfqq->ioprio != cfqq->org_ioprio)
1869                        cfqq->ioprio = cfqq->org_ioprio;
1870        }
1871}
1872
1873static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1874{
1875        if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1876            !cfq_cfqq_must_alloc_slice(cfqq)) {
1877                cfq_mark_cfqq_must_alloc_slice(cfqq);
1878                return ELV_MQUEUE_MUST;
1879        }
1880
1881        return ELV_MQUEUE_MAY;
1882}
1883
1884static int cfq_may_queue(struct request_queue *q, int rw)
1885{
1886        struct cfq_data *cfqd = q->elevator->elevator_data;
1887        struct task_struct *tsk = current;
1888        struct cfq_io_context *cic;
1889        struct cfq_queue *cfqq;
1890
1891        /*
1892         * don't force setup of a queue from here, as a call to may_queue
1893         * does not necessarily imply that a request actually will be queued.
1894         * so just lookup a possibly existing queue, or return 'may queue'
1895         * if that fails
1896         */
1897        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1898        if (!cic)
1899                return ELV_MQUEUE_MAY;
1900
1901        cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1902        if (cfqq) {
1903                cfq_init_prio_data(cfqq);
1904                cfq_prio_boost(cfqq);
1905
1906                return __cfq_may_queue(cfqq);
1907        }
1908
1909        return ELV_MQUEUE_MAY;
1910}
1911
1912/*
1913 * queue lock held here
1914 */
1915static void cfq_put_request(struct request *rq)
1916{
1917        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1918
1919        if (cfqq) {
1920                const int rw = rq_data_dir(rq);
1921
1922                BUG_ON(!cfqq->allocated[rw]);
1923                cfqq->allocated[rw]--;
1924
1925                put_io_context(RQ_CIC(rq)->ioc);
1926
1927                rq->elevator_private = NULL;
1928                rq->elevator_private2 = NULL;
1929
1930                cfq_put_queue(cfqq);
1931        }
1932}
1933
1934/*
1935 * Allocate cfq data structures associated with this request.
1936 */
1937static int
1938cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1939{
1940        struct cfq_data *cfqd = q->elevator->elevator_data;
1941        struct task_struct *tsk = current;
1942        struct cfq_io_context *cic;
1943        const int rw = rq_data_dir(rq);
1944        const int is_sync = rq_is_sync(rq);
1945        struct cfq_queue *cfqq;
1946        unsigned long flags;
1947
1948        might_sleep_if(gfp_mask & __GFP_WAIT);
1949
1950        cic = cfq_get_io_context(cfqd, gfp_mask);
1951
1952        spin_lock_irqsave(q->queue_lock, flags);
1953
1954        if (!cic)
1955                goto queue_fail;
1956
1957        cfqq = cic_to_cfqq(cic, is_sync);
1958        if (!cfqq) {
1959                cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1960
1961                if (!cfqq)
1962                        goto queue_fail;
1963
1964                cic_set_cfqq(cic, cfqq, is_sync);
1965        }
1966
1967        cfqq->allocated[rw]++;
1968        cfq_clear_cfqq_must_alloc(cfqq);
1969        atomic_inc(&cfqq->ref);
1970
1971        spin_unlock_irqrestore(q->queue_lock, flags);
1972
1973        rq->elevator_private = cic;
1974        rq->elevator_private2 = cfqq;
1975        return 0;
1976
1977queue_fail:
1978        if (cic)
1979                put_io_context(cic->ioc);
1980
1981        cfq_schedule_dispatch(cfqd);
1982        spin_unlock_irqrestore(q->queue_lock, flags);
1983        return 1;
1984}
1985
1986static void cfq_kick_queue(struct work_struct *work)
1987{
1988        struct cfq_data *cfqd =
1989                container_of(work, struct cfq_data, unplug_work);
1990        struct request_queue *q = cfqd->queue;
1991        unsigned long flags;
1992
1993        spin_lock_irqsave(q->queue_lock, flags);
1994        blk_start_queueing(q);
1995        spin_unlock_irqrestore(q->queue_lock, flags);
1996}
1997
1998/*
1999 * Timer running if the active_queue is currently idling inside its time slice
2000 */
2001static void cfq_idle_slice_timer(unsigned long data)
2002{
2003        struct cfq_data *cfqd = (struct cfq_data *) data;
2004        struct cfq_queue *cfqq;
2005        unsigned long flags;
2006        int timed_out = 1;
2007
2008        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2009
2010        if ((cfqq = cfqd->active_queue) != NULL) {
2011                timed_out = 0;
2012
2013                /*
2014                 * expired
2015                 */
2016                if (cfq_slice_used(cfqq))
2017                        goto expire;
2018
2019                /*
2020                 * only expire and reinvoke request handler, if there are
2021                 * other queues with pending requests
2022                 */
2023                if (!cfqd->busy_queues)
2024                        goto out_cont;
2025
2026                /*
2027                 * not expired and it has a request pending, let it dispatch
2028                 */
2029                if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2030                        cfq_mark_cfqq_must_dispatch(cfqq);
2031                        goto out_kick;
2032                }
2033        }
2034expire:
2035        cfq_slice_expired(cfqd, timed_out);
2036out_kick:
2037        cfq_schedule_dispatch(cfqd);
2038out_cont:
2039        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2040}
2041
2042/*
2043 * Timer running if an idle class queue is waiting for service
2044 */
2045static void cfq_idle_class_timer(unsigned long data)
2046{
2047        struct cfq_data *cfqd = (struct cfq_data *) data;
2048        unsigned long flags;
2049
2050        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2051
2052        /*
2053         * race with a non-idle queue, reset timer
2054         */
2055        if (!start_idle_class_timer(cfqd))
2056                cfq_schedule_dispatch(cfqd);
2057
2058        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2059}
2060
2061static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2062{
2063        del_timer_sync(&cfqd->idle_slice_timer);
2064        del_timer_sync(&cfqd->idle_class_timer);
2065        kblockd_flush_work(&cfqd->unplug_work);
2066}
2067
2068static void cfq_put_async_queues(struct cfq_data *cfqd)
2069{
2070        int i;
2071
2072        for (i = 0; i < IOPRIO_BE_NR; i++) {
2073                if (cfqd->async_cfqq[0][i])
2074                        cfq_put_queue(cfqd->async_cfqq[0][i]);
2075                if (cfqd->async_cfqq[1][i])
2076                        cfq_put_queue(cfqd->async_cfqq[1][i]);
2077        }
2078
2079        if (cfqd->async_idle_cfqq)
2080                cfq_put_queue(cfqd->async_idle_cfqq);
2081}
2082
2083static void cfq_exit_queue(elevator_t *e)
2084{
2085        struct cfq_data *cfqd = e->elevator_data;
2086        struct request_queue *q = cfqd->queue;
2087
2088        cfq_shutdown_timer_wq(cfqd);
2089
2090        spin_lock_irq(q->queue_lock);
2091
2092        if (cfqd->active_queue)
2093                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2094
2095        while (!list_empty(&cfqd->cic_list)) {
2096                struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2097                                                        struct cfq_io_context,
2098                                                        queue_list);
2099
2100                __cfq_exit_single_io_context(cfqd, cic);
2101        }
2102
2103        cfq_put_async_queues(cfqd);
2104
2105        spin_unlock_irq(q->queue_lock);
2106
2107        cfq_shutdown_timer_wq(cfqd);
2108
2109        kfree(cfqd);
2110}
2111
2112static void *cfq_init_queue(struct request_queue *q)
2113{
2114        struct cfq_data *cfqd;
2115
2116        cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2117        if (!cfqd)
2118                return NULL;
2119
2120        cfqd->service_tree = CFQ_RB_ROOT;
2121        INIT_LIST_HEAD(&cfqd->cic_list);
2122
2123        cfqd->queue = q;
2124
2125        init_timer(&cfqd->idle_slice_timer);
2126        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2127        cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2128
2129        init_timer(&cfqd->idle_class_timer);
2130        cfqd->idle_class_timer.function = cfq_idle_class_timer;
2131        cfqd->idle_class_timer.data = (unsigned long) cfqd;
2132
2133        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2134
2135        cfqd->last_end_request = jiffies;
2136        cfqd->cfq_quantum = cfq_quantum;
2137        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2138        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2139        cfqd->cfq_back_max = cfq_back_max;
2140        cfqd->cfq_back_penalty = cfq_back_penalty;
2141        cfqd->cfq_slice[0] = cfq_slice_async;
2142        cfqd->cfq_slice[1] = cfq_slice_sync;
2143        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2144        cfqd->cfq_slice_idle = cfq_slice_idle;
2145
2146        return cfqd;
2147}
2148
2149static void cfq_slab_kill(void)
2150{
2151        if (cfq_pool)
2152                kmem_cache_destroy(cfq_pool);
2153        if (cfq_ioc_pool)
2154                kmem_cache_destroy(cfq_ioc_pool);
2155}
2156
2157static int __init cfq_slab_setup(void)
2158{
2159        cfq_pool = KMEM_CACHE(cfq_queue, 0);
2160        if (!cfq_pool)
2161                goto fail;
2162
2163        cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2164        if (!cfq_ioc_pool)
2165                goto fail;
2166
2167        return 0;
2168fail:
2169        cfq_slab_kill();
2170        return -ENOMEM;
2171}
2172
2173/*
2174 * sysfs parts below -->
2175 */
2176static ssize_t
2177cfq_var_show(unsigned int var, char *page)
2178{
2179        return sprintf(page, "%d\n", var);
2180}
2181
2182static ssize_t
2183cfq_var_store(unsigned int *var, const char *page, size_t count)
2184{
2185        char *p = (char *) page;
2186
2187        *var = simple_strtoul(p, &p, 10);
2188        return count;
2189}
2190
2191#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2192static ssize_t __FUNC(elevator_t *e, char *page)                        \
2193{                                                                       \
2194        struct cfq_data *cfqd = e->elevator_data;                       \
2195        unsigned int __data = __VAR;                                    \
2196        if (__CONV)                                                     \
2197                __data = jiffies_to_msecs(__data);                      \
2198        return cfq_var_show(__data, (page));                            \
2199}
2200SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2201SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2202SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2203SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2204SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2205SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2206SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2207SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2208SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2209#undef SHOW_FUNCTION
2210
2211#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2212static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2213{                                                                       \
2214        struct cfq_data *cfqd = e->elevator_data;                       \
2215        unsigned int __data;                                            \
2216        int ret = cfq_var_store(&__data, (page), count);                \
2217        if (__data < (MIN))                                             \
2218                __data = (MIN);                                         \
2219        else if (__data > (MAX))                                        \
2220                __data = (MAX);                                         \
2221        if (__CONV)                                                     \
2222                *(__PTR) = msecs_to_jiffies(__data);                    \
2223        else                                                            \
2224                *(__PTR) = __data;                                      \
2225        return ret;                                                     \
2226}
2227STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2228STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2229STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2230STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2231STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2232STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2233STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2234STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2235STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2236#undef STORE_FUNCTION
2237
2238#define CFQ_ATTR(name) \
2239        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2240
2241static struct elv_fs_entry cfq_attrs[] = {
2242        CFQ_ATTR(quantum),
2243        CFQ_ATTR(fifo_expire_sync),
2244        CFQ_ATTR(fifo_expire_async),
2245        CFQ_ATTR(back_seek_max),
2246        CFQ_ATTR(back_seek_penalty),
2247        CFQ_ATTR(slice_sync),
2248        CFQ_ATTR(slice_async),
2249        CFQ_ATTR(slice_async_rq),
2250        CFQ_ATTR(slice_idle),
2251        __ATTR_NULL
2252};
2253
2254static struct elevator_type iosched_cfq = {
2255        .ops = {
2256                .elevator_merge_fn =            cfq_merge,
2257                .elevator_merged_fn =           cfq_merged_request,
2258                .elevator_merge_req_fn =        cfq_merged_requests,
2259                .elevator_allow_merge_fn =      cfq_allow_merge,
2260                .elevator_dispatch_fn =         cfq_dispatch_requests,
2261                .elevator_add_req_fn =          cfq_insert_request,
2262                .elevator_activate_req_fn =     cfq_activate_request,
2263                .elevator_deactivate_req_fn =   cfq_deactivate_request,
2264                .elevator_queue_empty_fn =      cfq_queue_empty,
2265                .elevator_completed_req_fn =    cfq_completed_request,
2266                .elevator_former_req_fn =       elv_rb_former_request,
2267                .elevator_latter_req_fn =       elv_rb_latter_request,
2268                .elevator_set_req_fn =          cfq_set_request,
2269                .elevator_put_req_fn =          cfq_put_request,
2270                .elevator_may_queue_fn =        cfq_may_queue,
2271                .elevator_init_fn =             cfq_init_queue,
2272                .elevator_exit_fn =             cfq_exit_queue,
2273                .trim =                         cfq_free_io_context,
2274        },
2275        .elevator_attrs =       cfq_attrs,
2276        .elevator_name =        "cfq",
2277        .elevator_owner =       THIS_MODULE,
2278};
2279
2280static int __init cfq_init(void)
2281{
2282        /*
2283         * could be 0 on HZ < 1000 setups
2284         */
2285        if (!cfq_slice_async)
2286                cfq_slice_async = 1;
2287        if (!cfq_slice_idle)
2288                cfq_slice_idle = 1;
2289
2290        if (cfq_slab_setup())
2291                return -ENOMEM;
2292
2293        elv_register(&iosched_cfq);
2294
2295        return 0;
2296}
2297
2298static void __exit cfq_exit(void)
2299{
2300        DECLARE_COMPLETION_ONSTACK(all_gone);
2301        elv_unregister(&iosched_cfq);
2302        ioc_gone = &all_gone;
2303        /* ioc_gone's update must be visible before reading ioc_count */
2304        smp_wmb();
2305        if (elv_ioc_count_read(ioc_count))
2306                wait_for_completion(ioc_gone);
2307        synchronize_rcu();
2308        cfq_slab_kill();
2309}
2310
2311module_init(cfq_init);
2312module_exit(cfq_exit);
2313
2314MODULE_AUTHOR("Jens Axboe");
2315MODULE_LICENSE("GPL");
2316MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2317