linux/drivers/char/istallion.c
<<
>>
Prefs
   1/*****************************************************************************/
   2
   3/*
   4 *      istallion.c  -- stallion intelligent multiport serial driver.
   5 *
   6 *      Copyright (C) 1996-1999  Stallion Technologies
   7 *      Copyright (C) 1994-1996  Greg Ungerer.
   8 *
   9 *      This code is loosely based on the Linux serial driver, written by
  10 *      Linus Torvalds, Theodore T'so and others.
  11 *
  12 *      This program is free software; you can redistribute it and/or modify
  13 *      it under the terms of the GNU General Public License as published by
  14 *      the Free Software Foundation; either version 2 of the License, or
  15 *      (at your option) any later version.
  16 *
  17 */
  18
  19/*****************************************************************************/
  20
  21#include <linux/module.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/tty.h>
  25#include <linux/tty_flip.h>
  26#include <linux/serial.h>
  27#include <linux/cdk.h>
  28#include <linux/comstats.h>
  29#include <linux/istallion.h>
  30#include <linux/ioport.h>
  31#include <linux/delay.h>
  32#include <linux/init.h>
  33#include <linux/device.h>
  34#include <linux/wait.h>
  35#include <linux/eisa.h>
  36#include <linux/ctype.h>
  37
  38#include <asm/io.h>
  39#include <asm/uaccess.h>
  40
  41#include <linux/pci.h>
  42
  43/*****************************************************************************/
  44
  45/*
  46 *      Define different board types. Not all of the following board types
  47 *      are supported by this driver. But I will use the standard "assigned"
  48 *      board numbers. Currently supported boards are abbreviated as:
  49 *      ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
  50 *      STAL = Stallion.
  51 */
  52#define BRD_UNKNOWN     0
  53#define BRD_STALLION    1
  54#define BRD_BRUMBY4     2
  55#define BRD_ONBOARD2    3
  56#define BRD_ONBOARD     4
  57#define BRD_ONBOARDE    7
  58#define BRD_ECP         23
  59#define BRD_ECPE        24
  60#define BRD_ECPMC       25
  61#define BRD_ECPPCI      29
  62
  63#define BRD_BRUMBY      BRD_BRUMBY4
  64
  65/*
  66 *      Define a configuration structure to hold the board configuration.
  67 *      Need to set this up in the code (for now) with the boards that are
  68 *      to be configured into the system. This is what needs to be modified
  69 *      when adding/removing/modifying boards. Each line entry in the
  70 *      stli_brdconf[] array is a board. Each line contains io/irq/memory
  71 *      ranges for that board (as well as what type of board it is).
  72 *      Some examples:
  73 *              { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
  74 *      This line will configure an EasyConnection 8/64 at io address 2a0,
  75 *      and shared memory address of cc000. Multiple EasyConnection 8/64
  76 *      boards can share the same shared memory address space. No interrupt
  77 *      is required for this board type.
  78 *      Another example:
  79 *              { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
  80 *      This line will configure an EasyConnection 8/64 EISA in slot 5 and
  81 *      shared memory address of 0x80000000 (2 GByte). Multiple
  82 *      EasyConnection 8/64 EISA boards can share the same shared memory
  83 *      address space. No interrupt is required for this board type.
  84 *      Another example:
  85 *              { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
  86 *      This line will configure an ONboard (ISA type) at io address 240,
  87 *      and shared memory address of d0000. Multiple ONboards can share
  88 *      the same shared memory address space. No interrupt required.
  89 *      Another example:
  90 *              { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
  91 *      This line will configure a Brumby board (any number of ports!) at
  92 *      io address 360 and shared memory address of c8000. All Brumby boards
  93 *      configured into a system must have their own separate io and memory
  94 *      addresses. No interrupt is required.
  95 *      Another example:
  96 *              { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
  97 *      This line will configure an original Stallion board at io address 330
  98 *      and shared memory address d0000 (this would only be valid for a "V4.0"
  99 *      or Rev.O Stallion board). All Stallion boards configured into the
 100 *      system must have their own separate io and memory addresses. No
 101 *      interrupt is required.
 102 */
 103
 104struct stlconf {
 105        int             brdtype;
 106        int             ioaddr1;
 107        int             ioaddr2;
 108        unsigned long   memaddr;
 109        int             irq;
 110        int             irqtype;
 111};
 112
 113static unsigned int stli_nrbrds;
 114
 115/* stli_lock must NOT be taken holding brd_lock */
 116static spinlock_t stli_lock;    /* TTY logic lock */
 117static spinlock_t brd_lock;     /* Board logic lock */
 118
 119/*
 120 *      There is some experimental EISA board detection code in this driver.
 121 *      By default it is disabled, but for those that want to try it out,
 122 *      then set the define below to be 1.
 123 */
 124#define STLI_EISAPROBE  0
 125
 126/*****************************************************************************/
 127
 128/*
 129 *      Define some important driver characteristics. Device major numbers
 130 *      allocated as per Linux Device Registry.
 131 */
 132#ifndef STL_SIOMEMMAJOR
 133#define STL_SIOMEMMAJOR         28
 134#endif
 135#ifndef STL_SERIALMAJOR
 136#define STL_SERIALMAJOR         24
 137#endif
 138#ifndef STL_CALLOUTMAJOR
 139#define STL_CALLOUTMAJOR        25
 140#endif
 141
 142/*****************************************************************************/
 143
 144/*
 145 *      Define our local driver identity first. Set up stuff to deal with
 146 *      all the local structures required by a serial tty driver.
 147 */
 148static char     *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
 149static char     *stli_drvname = "istallion";
 150static char     *stli_drvversion = "5.6.0";
 151static char     *stli_serialname = "ttyE";
 152
 153static struct tty_driver        *stli_serial;
 154
 155
 156#define STLI_TXBUFSIZE          4096
 157
 158/*
 159 *      Use a fast local buffer for cooked characters. Typically a whole
 160 *      bunch of cooked characters come in for a port, 1 at a time. So we
 161 *      save those up into a local buffer, then write out the whole lot
 162 *      with a large memcpy. Just use 1 buffer for all ports, since its
 163 *      use it is only need for short periods of time by each port.
 164 */
 165static char                     *stli_txcookbuf;
 166static int                      stli_txcooksize;
 167static int                      stli_txcookrealsize;
 168static struct tty_struct        *stli_txcooktty;
 169
 170/*
 171 *      Define a local default termios struct. All ports will be created
 172 *      with this termios initially. Basically all it defines is a raw port
 173 *      at 9600 baud, 8 data bits, no parity, 1 stop bit.
 174 */
 175static struct ktermios          stli_deftermios = {
 176        .c_cflag        = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
 177        .c_cc           = INIT_C_CC,
 178        .c_ispeed       = 9600,
 179        .c_ospeed       = 9600,
 180};
 181
 182/*
 183 *      Define global stats structures. Not used often, and can be
 184 *      re-used for each stats call.
 185 */
 186static comstats_t       stli_comstats;
 187static combrd_t         stli_brdstats;
 188static struct asystats  stli_cdkstats;
 189
 190/*****************************************************************************/
 191
 192static DEFINE_MUTEX(stli_brdslock);
 193static struct stlibrd   *stli_brds[STL_MAXBRDS];
 194
 195static int              stli_shared;
 196
 197/*
 198 *      Per board state flags. Used with the state field of the board struct.
 199 *      Not really much here... All we need to do is keep track of whether
 200 *      the board has been detected, and whether it is actually running a slave
 201 *      or not.
 202 */
 203#define BST_FOUND       0x1
 204#define BST_STARTED     0x2
 205#define BST_PROBED      0x4
 206
 207/*
 208 *      Define the set of port state flags. These are marked for internal
 209 *      state purposes only, usually to do with the state of communications
 210 *      with the slave. Most of them need to be updated atomically, so always
 211 *      use the bit setting operations (unless protected by cli/sti).
 212 */
 213#define ST_INITIALIZING 1
 214#define ST_OPENING      2
 215#define ST_CLOSING      3
 216#define ST_CMDING       4
 217#define ST_TXBUSY       5
 218#define ST_RXING        6
 219#define ST_DOFLUSHRX    7
 220#define ST_DOFLUSHTX    8
 221#define ST_DOSIGS       9
 222#define ST_RXSTOP       10
 223#define ST_GETSIGS      11
 224
 225/*
 226 *      Define an array of board names as printable strings. Handy for
 227 *      referencing boards when printing trace and stuff.
 228 */
 229static char     *stli_brdnames[] = {
 230        "Unknown",
 231        "Stallion",
 232        "Brumby",
 233        "ONboard-MC",
 234        "ONboard",
 235        "Brumby",
 236        "Brumby",
 237        "ONboard-EI",
 238        NULL,
 239        "ONboard",
 240        "ONboard-MC",
 241        "ONboard-MC",
 242        NULL,
 243        NULL,
 244        NULL,
 245        NULL,
 246        NULL,
 247        NULL,
 248        NULL,
 249        NULL,
 250        "EasyIO",
 251        "EC8/32-AT",
 252        "EC8/32-MC",
 253        "EC8/64-AT",
 254        "EC8/64-EI",
 255        "EC8/64-MC",
 256        "EC8/32-PCI",
 257        "EC8/64-PCI",
 258        "EasyIO-PCI",
 259        "EC/RA-PCI",
 260};
 261
 262/*****************************************************************************/
 263
 264/*
 265 *      Define some string labels for arguments passed from the module
 266 *      load line. These allow for easy board definitions, and easy
 267 *      modification of the io, memory and irq resoucres.
 268 */
 269
 270static char     *board0[8];
 271static char     *board1[8];
 272static char     *board2[8];
 273static char     *board3[8];
 274
 275static char     **stli_brdsp[] = {
 276        (char **) &board0,
 277        (char **) &board1,
 278        (char **) &board2,
 279        (char **) &board3
 280};
 281
 282/*
 283 *      Define a set of common board names, and types. This is used to
 284 *      parse any module arguments.
 285 */
 286
 287static struct stlibrdtype {
 288        char    *name;
 289        int     type;
 290} stli_brdstr[] = {
 291        { "stallion", BRD_STALLION },
 292        { "1", BRD_STALLION },
 293        { "brumby", BRD_BRUMBY },
 294        { "brumby4", BRD_BRUMBY },
 295        { "brumby/4", BRD_BRUMBY },
 296        { "brumby-4", BRD_BRUMBY },
 297        { "brumby8", BRD_BRUMBY },
 298        { "brumby/8", BRD_BRUMBY },
 299        { "brumby-8", BRD_BRUMBY },
 300        { "brumby16", BRD_BRUMBY },
 301        { "brumby/16", BRD_BRUMBY },
 302        { "brumby-16", BRD_BRUMBY },
 303        { "2", BRD_BRUMBY },
 304        { "onboard2", BRD_ONBOARD2 },
 305        { "onboard-2", BRD_ONBOARD2 },
 306        { "onboard/2", BRD_ONBOARD2 },
 307        { "onboard-mc", BRD_ONBOARD2 },
 308        { "onboard/mc", BRD_ONBOARD2 },
 309        { "onboard-mca", BRD_ONBOARD2 },
 310        { "onboard/mca", BRD_ONBOARD2 },
 311        { "3", BRD_ONBOARD2 },
 312        { "onboard", BRD_ONBOARD },
 313        { "onboardat", BRD_ONBOARD },
 314        { "4", BRD_ONBOARD },
 315        { "onboarde", BRD_ONBOARDE },
 316        { "onboard-e", BRD_ONBOARDE },
 317        { "onboard/e", BRD_ONBOARDE },
 318        { "onboard-ei", BRD_ONBOARDE },
 319        { "onboard/ei", BRD_ONBOARDE },
 320        { "7", BRD_ONBOARDE },
 321        { "ecp", BRD_ECP },
 322        { "ecpat", BRD_ECP },
 323        { "ec8/64", BRD_ECP },
 324        { "ec8/64-at", BRD_ECP },
 325        { "ec8/64-isa", BRD_ECP },
 326        { "23", BRD_ECP },
 327        { "ecpe", BRD_ECPE },
 328        { "ecpei", BRD_ECPE },
 329        { "ec8/64-e", BRD_ECPE },
 330        { "ec8/64-ei", BRD_ECPE },
 331        { "24", BRD_ECPE },
 332        { "ecpmc", BRD_ECPMC },
 333        { "ec8/64-mc", BRD_ECPMC },
 334        { "ec8/64-mca", BRD_ECPMC },
 335        { "25", BRD_ECPMC },
 336        { "ecppci", BRD_ECPPCI },
 337        { "ec/ra", BRD_ECPPCI },
 338        { "ec/ra-pc", BRD_ECPPCI },
 339        { "ec/ra-pci", BRD_ECPPCI },
 340        { "29", BRD_ECPPCI },
 341};
 342
 343/*
 344 *      Define the module agruments.
 345 */
 346MODULE_AUTHOR("Greg Ungerer");
 347MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
 348MODULE_LICENSE("GPL");
 349
 350
 351module_param_array(board0, charp, NULL, 0);
 352MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
 353module_param_array(board1, charp, NULL, 0);
 354MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
 355module_param_array(board2, charp, NULL, 0);
 356MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
 357module_param_array(board3, charp, NULL, 0);
 358MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
 359
 360#if STLI_EISAPROBE != 0
 361/*
 362 *      Set up a default memory address table for EISA board probing.
 363 *      The default addresses are all bellow 1Mbyte, which has to be the
 364 *      case anyway. They should be safe, since we only read values from
 365 *      them, and interrupts are disabled while we do it. If the higher
 366 *      memory support is compiled in then we also try probing around
 367 *      the 1Gb, 2Gb and 3Gb areas as well...
 368 */
 369static unsigned long    stli_eisamemprobeaddrs[] = {
 370        0xc0000,    0xd0000,    0xe0000,    0xf0000,
 371        0x80000000, 0x80010000, 0x80020000, 0x80030000,
 372        0x40000000, 0x40010000, 0x40020000, 0x40030000,
 373        0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
 374        0xff000000, 0xff010000, 0xff020000, 0xff030000,
 375};
 376
 377static int      stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
 378#endif
 379
 380/*
 381 *      Define the Stallion PCI vendor and device IDs.
 382 */
 383#ifndef PCI_DEVICE_ID_ECRA
 384#define PCI_DEVICE_ID_ECRA              0x0004
 385#endif
 386
 387static struct pci_device_id istallion_pci_tbl[] = {
 388        { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
 389        { 0 }
 390};
 391MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
 392
 393static struct pci_driver stli_pcidriver;
 394
 395/*****************************************************************************/
 396
 397/*
 398 *      Hardware configuration info for ECP boards. These defines apply
 399 *      to the directly accessible io ports of the ECP. There is a set of
 400 *      defines for each ECP board type, ISA, EISA, MCA and PCI.
 401 */
 402#define ECP_IOSIZE      4
 403
 404#define ECP_MEMSIZE     (128 * 1024)
 405#define ECP_PCIMEMSIZE  (256 * 1024)
 406
 407#define ECP_ATPAGESIZE  (4 * 1024)
 408#define ECP_MCPAGESIZE  (4 * 1024)
 409#define ECP_EIPAGESIZE  (64 * 1024)
 410#define ECP_PCIPAGESIZE (64 * 1024)
 411
 412#define STL_EISAID      0x8c4e
 413
 414/*
 415 *      Important defines for the ISA class of ECP board.
 416 */
 417#define ECP_ATIREG      0
 418#define ECP_ATCONFR     1
 419#define ECP_ATMEMAR     2
 420#define ECP_ATMEMPR     3
 421#define ECP_ATSTOP      0x1
 422#define ECP_ATINTENAB   0x10
 423#define ECP_ATENABLE    0x20
 424#define ECP_ATDISABLE   0x00
 425#define ECP_ATADDRMASK  0x3f000
 426#define ECP_ATADDRSHFT  12
 427
 428/*
 429 *      Important defines for the EISA class of ECP board.
 430 */
 431#define ECP_EIIREG      0
 432#define ECP_EIMEMARL    1
 433#define ECP_EICONFR     2
 434#define ECP_EIMEMARH    3
 435#define ECP_EIENABLE    0x1
 436#define ECP_EIDISABLE   0x0
 437#define ECP_EISTOP      0x4
 438#define ECP_EIEDGE      0x00
 439#define ECP_EILEVEL     0x80
 440#define ECP_EIADDRMASKL 0x00ff0000
 441#define ECP_EIADDRSHFTL 16
 442#define ECP_EIADDRMASKH 0xff000000
 443#define ECP_EIADDRSHFTH 24
 444#define ECP_EIBRDENAB   0xc84
 445
 446#define ECP_EISAID      0x4
 447
 448/*
 449 *      Important defines for the Micro-channel class of ECP board.
 450 *      (It has a lot in common with the ISA boards.)
 451 */
 452#define ECP_MCIREG      0
 453#define ECP_MCCONFR     1
 454#define ECP_MCSTOP      0x20
 455#define ECP_MCENABLE    0x80
 456#define ECP_MCDISABLE   0x00
 457
 458/*
 459 *      Important defines for the PCI class of ECP board.
 460 *      (It has a lot in common with the other ECP boards.)
 461 */
 462#define ECP_PCIIREG     0
 463#define ECP_PCICONFR    1
 464#define ECP_PCISTOP     0x01
 465
 466/*
 467 *      Hardware configuration info for ONboard and Brumby boards. These
 468 *      defines apply to the directly accessible io ports of these boards.
 469 */
 470#define ONB_IOSIZE      16
 471#define ONB_MEMSIZE     (64 * 1024)
 472#define ONB_ATPAGESIZE  (64 * 1024)
 473#define ONB_MCPAGESIZE  (64 * 1024)
 474#define ONB_EIMEMSIZE   (128 * 1024)
 475#define ONB_EIPAGESIZE  (64 * 1024)
 476
 477/*
 478 *      Important defines for the ISA class of ONboard board.
 479 */
 480#define ONB_ATIREG      0
 481#define ONB_ATMEMAR     1
 482#define ONB_ATCONFR     2
 483#define ONB_ATSTOP      0x4
 484#define ONB_ATENABLE    0x01
 485#define ONB_ATDISABLE   0x00
 486#define ONB_ATADDRMASK  0xff0000
 487#define ONB_ATADDRSHFT  16
 488
 489#define ONB_MEMENABLO   0
 490#define ONB_MEMENABHI   0x02
 491
 492/*
 493 *      Important defines for the EISA class of ONboard board.
 494 */
 495#define ONB_EIIREG      0
 496#define ONB_EIMEMARL    1
 497#define ONB_EICONFR     2
 498#define ONB_EIMEMARH    3
 499#define ONB_EIENABLE    0x1
 500#define ONB_EIDISABLE   0x0
 501#define ONB_EISTOP      0x4
 502#define ONB_EIEDGE      0x00
 503#define ONB_EILEVEL     0x80
 504#define ONB_EIADDRMASKL 0x00ff0000
 505#define ONB_EIADDRSHFTL 16
 506#define ONB_EIADDRMASKH 0xff000000
 507#define ONB_EIADDRSHFTH 24
 508#define ONB_EIBRDENAB   0xc84
 509
 510#define ONB_EISAID      0x1
 511
 512/*
 513 *      Important defines for the Brumby boards. They are pretty simple,
 514 *      there is not much that is programmably configurable.
 515 */
 516#define BBY_IOSIZE      16
 517#define BBY_MEMSIZE     (64 * 1024)
 518#define BBY_PAGESIZE    (16 * 1024)
 519
 520#define BBY_ATIREG      0
 521#define BBY_ATCONFR     1
 522#define BBY_ATSTOP      0x4
 523
 524/*
 525 *      Important defines for the Stallion boards. They are pretty simple,
 526 *      there is not much that is programmably configurable.
 527 */
 528#define STAL_IOSIZE     16
 529#define STAL_MEMSIZE    (64 * 1024)
 530#define STAL_PAGESIZE   (64 * 1024)
 531
 532/*
 533 *      Define the set of status register values for EasyConnection panels.
 534 *      The signature will return with the status value for each panel. From
 535 *      this we can determine what is attached to the board - before we have
 536 *      actually down loaded any code to it.
 537 */
 538#define ECH_PNLSTATUS   2
 539#define ECH_PNL16PORT   0x20
 540#define ECH_PNLIDMASK   0x07
 541#define ECH_PNLXPID     0x40
 542#define ECH_PNLINTRPEND 0x80
 543
 544/*
 545 *      Define some macros to do things to the board. Even those these boards
 546 *      are somewhat related there is often significantly different ways of
 547 *      doing some operation on it (like enable, paging, reset, etc). So each
 548 *      board class has a set of functions which do the commonly required
 549 *      operations. The macros below basically just call these functions,
 550 *      generally checking for a NULL function - which means that the board
 551 *      needs nothing done to it to achieve this operation!
 552 */
 553#define EBRDINIT(brdp)                                          \
 554        if (brdp->init != NULL)                                 \
 555                (* brdp->init)(brdp)
 556
 557#define EBRDENABLE(brdp)                                        \
 558        if (brdp->enable != NULL)                               \
 559                (* brdp->enable)(brdp);
 560
 561#define EBRDDISABLE(brdp)                                       \
 562        if (brdp->disable != NULL)                              \
 563                (* brdp->disable)(brdp);
 564
 565#define EBRDINTR(brdp)                                          \
 566        if (brdp->intr != NULL)                                 \
 567                (* brdp->intr)(brdp);
 568
 569#define EBRDRESET(brdp)                                         \
 570        if (brdp->reset != NULL)                                \
 571                (* brdp->reset)(brdp);
 572
 573#define EBRDGETMEMPTR(brdp,offset)                              \
 574        (* brdp->getmemptr)(brdp, offset, __LINE__)
 575
 576/*
 577 *      Define the maximal baud rate, and the default baud base for ports.
 578 */
 579#define STL_MAXBAUD     460800
 580#define STL_BAUDBASE    115200
 581#define STL_CLOSEDELAY  (5 * HZ / 10)
 582
 583/*****************************************************************************/
 584
 585/*
 586 *      Define macros to extract a brd or port number from a minor number.
 587 */
 588#define MINOR2BRD(min)          (((min) & 0xc0) >> 6)
 589#define MINOR2PORT(min)         ((min) & 0x3f)
 590
 591/*****************************************************************************/
 592
 593/*
 594 *      Prototype all functions in this driver!
 595 */
 596
 597static int      stli_parsebrd(struct stlconf *confp, char **argp);
 598static int      stli_open(struct tty_struct *tty, struct file *filp);
 599static void     stli_close(struct tty_struct *tty, struct file *filp);
 600static int      stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
 601static void     stli_putchar(struct tty_struct *tty, unsigned char ch);
 602static void     stli_flushchars(struct tty_struct *tty);
 603static int      stli_writeroom(struct tty_struct *tty);
 604static int      stli_charsinbuffer(struct tty_struct *tty);
 605static int      stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
 606static void     stli_settermios(struct tty_struct *tty, struct ktermios *old);
 607static void     stli_throttle(struct tty_struct *tty);
 608static void     stli_unthrottle(struct tty_struct *tty);
 609static void     stli_stop(struct tty_struct *tty);
 610static void     stli_start(struct tty_struct *tty);
 611static void     stli_flushbuffer(struct tty_struct *tty);
 612static void     stli_breakctl(struct tty_struct *tty, int state);
 613static void     stli_waituntilsent(struct tty_struct *tty, int timeout);
 614static void     stli_sendxchar(struct tty_struct *tty, char ch);
 615static void     stli_hangup(struct tty_struct *tty);
 616static int      stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
 617
 618static int      stli_brdinit(struct stlibrd *brdp);
 619static int      stli_startbrd(struct stlibrd *brdp);
 620static ssize_t  stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
 621static ssize_t  stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
 622static int      stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
 623static void     stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
 624static void     stli_poll(unsigned long arg);
 625static int      stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
 626static int      stli_initopen(struct stlibrd *brdp, struct stliport *portp);
 627static int      stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
 628static int      stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
 629static int      stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp);
 630static void     stli_dohangup(struct work_struct *);
 631static int      stli_setport(struct stliport *portp);
 632static int      stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 633static void     stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 634static void     __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
 635static void     stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
 636static void     stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
 637static void     stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
 638static long     stli_mktiocm(unsigned long sigvalue);
 639static void     stli_read(struct stlibrd *brdp, struct stliport *portp);
 640static int      stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
 641static int      stli_setserial(struct stliport *portp, struct serial_struct __user *sp);
 642static int      stli_getbrdstats(combrd_t __user *bp);
 643static int      stli_getportstats(struct stliport *portp, comstats_t __user *cp);
 644static int      stli_portcmdstats(struct stliport *portp);
 645static int      stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
 646static int      stli_getportstruct(struct stliport __user *arg);
 647static int      stli_getbrdstruct(struct stlibrd __user *arg);
 648static struct stlibrd *stli_allocbrd(void);
 649
 650static void     stli_ecpinit(struct stlibrd *brdp);
 651static void     stli_ecpenable(struct stlibrd *brdp);
 652static void     stli_ecpdisable(struct stlibrd *brdp);
 653static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 654static void     stli_ecpreset(struct stlibrd *brdp);
 655static void     stli_ecpintr(struct stlibrd *brdp);
 656static void     stli_ecpeiinit(struct stlibrd *brdp);
 657static void     stli_ecpeienable(struct stlibrd *brdp);
 658static void     stli_ecpeidisable(struct stlibrd *brdp);
 659static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 660static void     stli_ecpeireset(struct stlibrd *brdp);
 661static void     stli_ecpmcenable(struct stlibrd *brdp);
 662static void     stli_ecpmcdisable(struct stlibrd *brdp);
 663static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 664static void     stli_ecpmcreset(struct stlibrd *brdp);
 665static void     stli_ecppciinit(struct stlibrd *brdp);
 666static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 667static void     stli_ecppcireset(struct stlibrd *brdp);
 668
 669static void     stli_onbinit(struct stlibrd *brdp);
 670static void     stli_onbenable(struct stlibrd *brdp);
 671static void     stli_onbdisable(struct stlibrd *brdp);
 672static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 673static void     stli_onbreset(struct stlibrd *brdp);
 674static void     stli_onbeinit(struct stlibrd *brdp);
 675static void     stli_onbeenable(struct stlibrd *brdp);
 676static void     stli_onbedisable(struct stlibrd *brdp);
 677static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 678static void     stli_onbereset(struct stlibrd *brdp);
 679static void     stli_bbyinit(struct stlibrd *brdp);
 680static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 681static void     stli_bbyreset(struct stlibrd *brdp);
 682static void     stli_stalinit(struct stlibrd *brdp);
 683static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
 684static void     stli_stalreset(struct stlibrd *brdp);
 685
 686static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
 687
 688static int      stli_initecp(struct stlibrd *brdp);
 689static int      stli_initonb(struct stlibrd *brdp);
 690#if STLI_EISAPROBE != 0
 691static int      stli_eisamemprobe(struct stlibrd *brdp);
 692#endif
 693static int      stli_initports(struct stlibrd *brdp);
 694
 695/*****************************************************************************/
 696
 697/*
 698 *      Define the driver info for a user level shared memory device. This
 699 *      device will work sort of like the /dev/kmem device - except that it
 700 *      will give access to the shared memory on the Stallion intelligent
 701 *      board. This is also a very useful debugging tool.
 702 */
 703static const struct file_operations     stli_fsiomem = {
 704        .owner          = THIS_MODULE,
 705        .read           = stli_memread,
 706        .write          = stli_memwrite,
 707        .ioctl          = stli_memioctl,
 708};
 709
 710/*****************************************************************************/
 711
 712/*
 713 *      Define a timer_list entry for our poll routine. The slave board
 714 *      is polled every so often to see if anything needs doing. This is
 715 *      much cheaper on host cpu than using interrupts. It turns out to
 716 *      not increase character latency by much either...
 717 */
 718static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
 719
 720static int      stli_timeron;
 721
 722/*
 723 *      Define the calculation for the timeout routine.
 724 */
 725#define STLI_TIMEOUT    (jiffies + 1)
 726
 727/*****************************************************************************/
 728
 729static struct class *istallion_class;
 730
 731static void stli_cleanup_ports(struct stlibrd *brdp)
 732{
 733        struct stliport *portp;
 734        unsigned int j;
 735
 736        for (j = 0; j < STL_MAXPORTS; j++) {
 737                portp = brdp->ports[j];
 738                if (portp != NULL) {
 739                        if (portp->tty != NULL)
 740                                tty_hangup(portp->tty);
 741                        kfree(portp);
 742                }
 743        }
 744}
 745
 746/*****************************************************************************/
 747
 748/*
 749 *      Parse the supplied argument string, into the board conf struct.
 750 */
 751
 752static int stli_parsebrd(struct stlconf *confp, char **argp)
 753{
 754        unsigned int i;
 755        char *sp;
 756
 757        if (argp[0] == NULL || *argp[0] == 0)
 758                return 0;
 759
 760        for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
 761                *sp = tolower(*sp);
 762
 763        for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
 764                if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
 765                        break;
 766        }
 767        if (i == ARRAY_SIZE(stli_brdstr)) {
 768                printk("STALLION: unknown board name, %s?\n", argp[0]);
 769                return 0;
 770        }
 771
 772        confp->brdtype = stli_brdstr[i].type;
 773        if (argp[1] != NULL && *argp[1] != 0)
 774                confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
 775        if (argp[2] !=  NULL && *argp[2] != 0)
 776                confp->memaddr = simple_strtoul(argp[2], NULL, 0);
 777        return(1);
 778}
 779
 780/*****************************************************************************/
 781
 782static int stli_open(struct tty_struct *tty, struct file *filp)
 783{
 784        struct stlibrd *brdp;
 785        struct stliport *portp;
 786        unsigned int minordev, brdnr, portnr;
 787        int rc;
 788
 789        minordev = tty->index;
 790        brdnr = MINOR2BRD(minordev);
 791        if (brdnr >= stli_nrbrds)
 792                return -ENODEV;
 793        brdp = stli_brds[brdnr];
 794        if (brdp == NULL)
 795                return -ENODEV;
 796        if ((brdp->state & BST_STARTED) == 0)
 797                return -ENODEV;
 798        portnr = MINOR2PORT(minordev);
 799        if (portnr > brdp->nrports)
 800                return -ENODEV;
 801
 802        portp = brdp->ports[portnr];
 803        if (portp == NULL)
 804                return -ENODEV;
 805        if (portp->devnr < 1)
 806                return -ENODEV;
 807
 808
 809/*
 810 *      Check if this port is in the middle of closing. If so then wait
 811 *      until it is closed then return error status based on flag settings.
 812 *      The sleep here does not need interrupt protection since the wakeup
 813 *      for it is done with the same context.
 814 */
 815        if (portp->flags & ASYNC_CLOSING) {
 816                interruptible_sleep_on(&portp->close_wait);
 817                if (portp->flags & ASYNC_HUP_NOTIFY)
 818                        return -EAGAIN;
 819                return -ERESTARTSYS;
 820        }
 821
 822/*
 823 *      On the first open of the device setup the port hardware, and
 824 *      initialize the per port data structure. Since initializing the port
 825 *      requires several commands to the board we will need to wait for any
 826 *      other open that is already initializing the port.
 827 */
 828        portp->tty = tty;
 829        tty->driver_data = portp;
 830        portp->refcount++;
 831
 832        wait_event_interruptible(portp->raw_wait,
 833                        !test_bit(ST_INITIALIZING, &portp->state));
 834        if (signal_pending(current))
 835                return -ERESTARTSYS;
 836
 837        if ((portp->flags & ASYNC_INITIALIZED) == 0) {
 838                set_bit(ST_INITIALIZING, &portp->state);
 839                if ((rc = stli_initopen(brdp, portp)) >= 0) {
 840                        portp->flags |= ASYNC_INITIALIZED;
 841                        clear_bit(TTY_IO_ERROR, &tty->flags);
 842                }
 843                clear_bit(ST_INITIALIZING, &portp->state);
 844                wake_up_interruptible(&portp->raw_wait);
 845                if (rc < 0)
 846                        return rc;
 847        }
 848
 849/*
 850 *      Check if this port is in the middle of closing. If so then wait
 851 *      until it is closed then return error status, based on flag settings.
 852 *      The sleep here does not need interrupt protection since the wakeup
 853 *      for it is done with the same context.
 854 */
 855        if (portp->flags & ASYNC_CLOSING) {
 856                interruptible_sleep_on(&portp->close_wait);
 857                if (portp->flags & ASYNC_HUP_NOTIFY)
 858                        return -EAGAIN;
 859                return -ERESTARTSYS;
 860        }
 861
 862/*
 863 *      Based on type of open being done check if it can overlap with any
 864 *      previous opens still in effect. If we are a normal serial device
 865 *      then also we might have to wait for carrier.
 866 */
 867        if (!(filp->f_flags & O_NONBLOCK)) {
 868                if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
 869                        return rc;
 870        }
 871        portp->flags |= ASYNC_NORMAL_ACTIVE;
 872        return 0;
 873}
 874
 875/*****************************************************************************/
 876
 877static void stli_close(struct tty_struct *tty, struct file *filp)
 878{
 879        struct stlibrd *brdp;
 880        struct stliport *portp;
 881        unsigned long flags;
 882
 883        portp = tty->driver_data;
 884        if (portp == NULL)
 885                return;
 886
 887        spin_lock_irqsave(&stli_lock, flags);
 888        if (tty_hung_up_p(filp)) {
 889                spin_unlock_irqrestore(&stli_lock, flags);
 890                return;
 891        }
 892        if ((tty->count == 1) && (portp->refcount != 1))
 893                portp->refcount = 1;
 894        if (portp->refcount-- > 1) {
 895                spin_unlock_irqrestore(&stli_lock, flags);
 896                return;
 897        }
 898
 899        portp->flags |= ASYNC_CLOSING;
 900
 901/*
 902 *      May want to wait for data to drain before closing. The BUSY flag
 903 *      keeps track of whether we are still transmitting or not. It is
 904 *      updated by messages from the slave - indicating when all chars
 905 *      really have drained.
 906 */
 907        if (tty == stli_txcooktty)
 908                stli_flushchars(tty);
 909        tty->closing = 1;
 910        spin_unlock_irqrestore(&stli_lock, flags);
 911
 912        if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
 913                tty_wait_until_sent(tty, portp->closing_wait);
 914
 915        portp->flags &= ~ASYNC_INITIALIZED;
 916        brdp = stli_brds[portp->brdnr];
 917        stli_rawclose(brdp, portp, 0, 0);
 918        if (tty->termios->c_cflag & HUPCL) {
 919                stli_mkasysigs(&portp->asig, 0, 0);
 920                if (test_bit(ST_CMDING, &portp->state))
 921                        set_bit(ST_DOSIGS, &portp->state);
 922                else
 923                        stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
 924                                sizeof(asysigs_t), 0);
 925        }
 926        clear_bit(ST_TXBUSY, &portp->state);
 927        clear_bit(ST_RXSTOP, &portp->state);
 928        set_bit(TTY_IO_ERROR, &tty->flags);
 929        if (tty->ldisc.flush_buffer)
 930                (tty->ldisc.flush_buffer)(tty);
 931        set_bit(ST_DOFLUSHRX, &portp->state);
 932        stli_flushbuffer(tty);
 933
 934        tty->closing = 0;
 935        portp->tty = NULL;
 936
 937        if (portp->openwaitcnt) {
 938                if (portp->close_delay)
 939                        msleep_interruptible(jiffies_to_msecs(portp->close_delay));
 940                wake_up_interruptible(&portp->open_wait);
 941        }
 942
 943        portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
 944        wake_up_interruptible(&portp->close_wait);
 945}
 946
 947/*****************************************************************************/
 948
 949/*
 950 *      Carry out first open operations on a port. This involves a number of
 951 *      commands to be sent to the slave. We need to open the port, set the
 952 *      notification events, set the initial port settings, get and set the
 953 *      initial signal values. We sleep and wait in between each one. But
 954 *      this still all happens pretty quickly.
 955 */
 956
 957static int stli_initopen(struct stlibrd *brdp, struct stliport *portp)
 958{
 959        struct tty_struct *tty;
 960        asynotify_t nt;
 961        asyport_t aport;
 962        int rc;
 963
 964        if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
 965                return rc;
 966
 967        memset(&nt, 0, sizeof(asynotify_t));
 968        nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
 969        nt.signal = SG_DCD;
 970        if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
 971            sizeof(asynotify_t), 0)) < 0)
 972                return rc;
 973
 974        tty = portp->tty;
 975        if (tty == NULL)
 976                return -ENODEV;
 977        stli_mkasyport(portp, &aport, tty->termios);
 978        if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
 979            sizeof(asyport_t), 0)) < 0)
 980                return rc;
 981
 982        set_bit(ST_GETSIGS, &portp->state);
 983        if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
 984            sizeof(asysigs_t), 1)) < 0)
 985                return rc;
 986        if (test_and_clear_bit(ST_GETSIGS, &portp->state))
 987                portp->sigs = stli_mktiocm(portp->asig.sigvalue);
 988        stli_mkasysigs(&portp->asig, 1, 1);
 989        if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
 990            sizeof(asysigs_t), 0)) < 0)
 991                return rc;
 992
 993        return 0;
 994}
 995
 996/*****************************************************************************/
 997
 998/*
 999 *      Send an open message to the slave. This will sleep waiting for the
1000 *      acknowledgement, so must have user context. We need to co-ordinate
1001 *      with close events here, since we don't want open and close events
1002 *      to overlap.
1003 */
1004
1005static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1006{
1007        cdkhdr_t __iomem *hdrp;
1008        cdkctrl_t __iomem *cp;
1009        unsigned char __iomem *bits;
1010        unsigned long flags;
1011        int rc;
1012
1013/*
1014 *      Send a message to the slave to open this port.
1015 */
1016
1017/*
1018 *      Slave is already closing this port. This can happen if a hangup
1019 *      occurs on this port. So we must wait until it is complete. The
1020 *      order of opens and closes may not be preserved across shared
1021 *      memory, so we must wait until it is complete.
1022 */
1023        wait_event_interruptible(portp->raw_wait,
1024                        !test_bit(ST_CLOSING, &portp->state));
1025        if (signal_pending(current)) {
1026                return -ERESTARTSYS;
1027        }
1028
1029/*
1030 *      Everything is ready now, so write the open message into shared
1031 *      memory. Once the message is in set the service bits to say that
1032 *      this port wants service.
1033 */
1034        spin_lock_irqsave(&brd_lock, flags);
1035        EBRDENABLE(brdp);
1036        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1037        writel(arg, &cp->openarg);
1038        writeb(1, &cp->open);
1039        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1040        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1041                portp->portidx;
1042        writeb(readb(bits) | portp->portbit, bits);
1043        EBRDDISABLE(brdp);
1044
1045        if (wait == 0) {
1046                spin_unlock_irqrestore(&brd_lock, flags);
1047                return 0;
1048        }
1049
1050/*
1051 *      Slave is in action, so now we must wait for the open acknowledgment
1052 *      to come back.
1053 */
1054        rc = 0;
1055        set_bit(ST_OPENING, &portp->state);
1056        spin_unlock_irqrestore(&brd_lock, flags);
1057
1058        wait_event_interruptible(portp->raw_wait,
1059                        !test_bit(ST_OPENING, &portp->state));
1060        if (signal_pending(current))
1061                rc = -ERESTARTSYS;
1062
1063        if ((rc == 0) && (portp->rc != 0))
1064                rc = -EIO;
1065        return rc;
1066}
1067
1068/*****************************************************************************/
1069
1070/*
1071 *      Send a close message to the slave. Normally this will sleep waiting
1072 *      for the acknowledgement, but if wait parameter is 0 it will not. If
1073 *      wait is true then must have user context (to sleep).
1074 */
1075
1076static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1077{
1078        cdkhdr_t __iomem *hdrp;
1079        cdkctrl_t __iomem *cp;
1080        unsigned char __iomem *bits;
1081        unsigned long flags;
1082        int rc;
1083
1084/*
1085 *      Slave is already closing this port. This can happen if a hangup
1086 *      occurs on this port.
1087 */
1088        if (wait) {
1089                wait_event_interruptible(portp->raw_wait,
1090                                !test_bit(ST_CLOSING, &portp->state));
1091                if (signal_pending(current)) {
1092                        return -ERESTARTSYS;
1093                }
1094        }
1095
1096/*
1097 *      Write the close command into shared memory.
1098 */
1099        spin_lock_irqsave(&brd_lock, flags);
1100        EBRDENABLE(brdp);
1101        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1102        writel(arg, &cp->closearg);
1103        writeb(1, &cp->close);
1104        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1105        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1106                portp->portidx;
1107        writeb(readb(bits) |portp->portbit, bits);
1108        EBRDDISABLE(brdp);
1109
1110        set_bit(ST_CLOSING, &portp->state);
1111        spin_unlock_irqrestore(&brd_lock, flags);
1112
1113        if (wait == 0)
1114                return 0;
1115
1116/*
1117 *      Slave is in action, so now we must wait for the open acknowledgment
1118 *      to come back.
1119 */
1120        rc = 0;
1121        wait_event_interruptible(portp->raw_wait,
1122                        !test_bit(ST_CLOSING, &portp->state));
1123        if (signal_pending(current))
1124                rc = -ERESTARTSYS;
1125
1126        if ((rc == 0) && (portp->rc != 0))
1127                rc = -EIO;
1128        return rc;
1129}
1130
1131/*****************************************************************************/
1132
1133/*
1134 *      Send a command to the slave and wait for the response. This must
1135 *      have user context (it sleeps). This routine is generic in that it
1136 *      can send any type of command. Its purpose is to wait for that command
1137 *      to complete (as opposed to initiating the command then returning).
1138 */
1139
1140static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1141{
1142        wait_event_interruptible(portp->raw_wait,
1143                        !test_bit(ST_CMDING, &portp->state));
1144        if (signal_pending(current))
1145                return -ERESTARTSYS;
1146
1147        stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1148
1149        wait_event_interruptible(portp->raw_wait,
1150                        !test_bit(ST_CMDING, &portp->state));
1151        if (signal_pending(current))
1152                return -ERESTARTSYS;
1153
1154        if (portp->rc != 0)
1155                return -EIO;
1156        return 0;
1157}
1158
1159/*****************************************************************************/
1160
1161/*
1162 *      Send the termios settings for this port to the slave. This sleeps
1163 *      waiting for the command to complete - so must have user context.
1164 */
1165
1166static int stli_setport(struct stliport *portp)
1167{
1168        struct stlibrd *brdp;
1169        asyport_t aport;
1170
1171        if (portp == NULL)
1172                return -ENODEV;
1173        if (portp->tty == NULL)
1174                return -ENODEV;
1175        if (portp->brdnr >= stli_nrbrds)
1176                return -ENODEV;
1177        brdp = stli_brds[portp->brdnr];
1178        if (brdp == NULL)
1179                return -ENODEV;
1180
1181        stli_mkasyport(portp, &aport, portp->tty->termios);
1182        return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1183}
1184
1185/*****************************************************************************/
1186
1187/*
1188 *      Possibly need to wait for carrier (DCD signal) to come high. Say
1189 *      maybe because if we are clocal then we don't need to wait...
1190 */
1191
1192static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp)
1193{
1194        unsigned long flags;
1195        int rc, doclocal;
1196
1197        rc = 0;
1198        doclocal = 0;
1199
1200        if (portp->tty->termios->c_cflag & CLOCAL)
1201                doclocal++;
1202
1203        spin_lock_irqsave(&stli_lock, flags);
1204        portp->openwaitcnt++;
1205        if (! tty_hung_up_p(filp))
1206                portp->refcount--;
1207        spin_unlock_irqrestore(&stli_lock, flags);
1208
1209        for (;;) {
1210                stli_mkasysigs(&portp->asig, 1, 1);
1211                if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1212                    &portp->asig, sizeof(asysigs_t), 0)) < 0)
1213                        break;
1214                if (tty_hung_up_p(filp) ||
1215                    ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1216                        if (portp->flags & ASYNC_HUP_NOTIFY)
1217                                rc = -EBUSY;
1218                        else
1219                                rc = -ERESTARTSYS;
1220                        break;
1221                }
1222                if (((portp->flags & ASYNC_CLOSING) == 0) &&
1223                    (doclocal || (portp->sigs & TIOCM_CD))) {
1224                        break;
1225                }
1226                if (signal_pending(current)) {
1227                        rc = -ERESTARTSYS;
1228                        break;
1229                }
1230                interruptible_sleep_on(&portp->open_wait);
1231        }
1232
1233        spin_lock_irqsave(&stli_lock, flags);
1234        if (! tty_hung_up_p(filp))
1235                portp->refcount++;
1236        portp->openwaitcnt--;
1237        spin_unlock_irqrestore(&stli_lock, flags);
1238
1239        return rc;
1240}
1241
1242/*****************************************************************************/
1243
1244/*
1245 *      Write routine. Take the data and put it in the shared memory ring
1246 *      queue. If port is not already sending chars then need to mark the
1247 *      service bits for this port.
1248 */
1249
1250static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1251{
1252        cdkasy_t __iomem *ap;
1253        cdkhdr_t __iomem *hdrp;
1254        unsigned char __iomem *bits;
1255        unsigned char __iomem *shbuf;
1256        unsigned char *chbuf;
1257        struct stliport *portp;
1258        struct stlibrd *brdp;
1259        unsigned int len, stlen, head, tail, size;
1260        unsigned long flags;
1261
1262        if (tty == stli_txcooktty)
1263                stli_flushchars(tty);
1264        portp = tty->driver_data;
1265        if (portp == NULL)
1266                return 0;
1267        if (portp->brdnr >= stli_nrbrds)
1268                return 0;
1269        brdp = stli_brds[portp->brdnr];
1270        if (brdp == NULL)
1271                return 0;
1272        chbuf = (unsigned char *) buf;
1273
1274/*
1275 *      All data is now local, shove as much as possible into shared memory.
1276 */
1277        spin_lock_irqsave(&brd_lock, flags);
1278        EBRDENABLE(brdp);
1279        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1280        head = (unsigned int) readw(&ap->txq.head);
1281        tail = (unsigned int) readw(&ap->txq.tail);
1282        if (tail != ((unsigned int) readw(&ap->txq.tail)))
1283                tail = (unsigned int) readw(&ap->txq.tail);
1284        size = portp->txsize;
1285        if (head >= tail) {
1286                len = size - (head - tail) - 1;
1287                stlen = size - head;
1288        } else {
1289                len = tail - head - 1;
1290                stlen = len;
1291        }
1292
1293        len = min(len, (unsigned int)count);
1294        count = 0;
1295        shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1296
1297        while (len > 0) {
1298                stlen = min(len, stlen);
1299                memcpy_toio(shbuf + head, chbuf, stlen);
1300                chbuf += stlen;
1301                len -= stlen;
1302                count += stlen;
1303                head += stlen;
1304                if (head >= size) {
1305                        head = 0;
1306                        stlen = tail;
1307                }
1308        }
1309
1310        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1311        writew(head, &ap->txq.head);
1312        if (test_bit(ST_TXBUSY, &portp->state)) {
1313                if (readl(&ap->changed.data) & DT_TXEMPTY)
1314                        writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1315        }
1316        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1317        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1318                portp->portidx;
1319        writeb(readb(bits) | portp->portbit, bits);
1320        set_bit(ST_TXBUSY, &portp->state);
1321        EBRDDISABLE(brdp);
1322        spin_unlock_irqrestore(&brd_lock, flags);
1323
1324        return(count);
1325}
1326
1327/*****************************************************************************/
1328
1329/*
1330 *      Output a single character. We put it into a temporary local buffer
1331 *      (for speed) then write out that buffer when the flushchars routine
1332 *      is called. There is a safety catch here so that if some other port
1333 *      writes chars before the current buffer has been, then we write them
1334 *      first them do the new ports.
1335 */
1336
1337static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1338{
1339        if (tty != stli_txcooktty) {
1340                if (stli_txcooktty != NULL)
1341                        stli_flushchars(stli_txcooktty);
1342                stli_txcooktty = tty;
1343        }
1344
1345        stli_txcookbuf[stli_txcooksize++] = ch;
1346}
1347
1348/*****************************************************************************/
1349
1350/*
1351 *      Transfer characters from the local TX cooking buffer to the board.
1352 *      We sort of ignore the tty that gets passed in here. We rely on the
1353 *      info stored with the TX cook buffer to tell us which port to flush
1354 *      the data on. In any case we clean out the TX cook buffer, for re-use
1355 *      by someone else.
1356 */
1357
1358static void stli_flushchars(struct tty_struct *tty)
1359{
1360        cdkhdr_t __iomem *hdrp;
1361        unsigned char __iomem *bits;
1362        cdkasy_t __iomem *ap;
1363        struct tty_struct *cooktty;
1364        struct stliport *portp;
1365        struct stlibrd *brdp;
1366        unsigned int len, stlen, head, tail, size, count, cooksize;
1367        unsigned char *buf;
1368        unsigned char __iomem *shbuf;
1369        unsigned long flags;
1370
1371        cooksize = stli_txcooksize;
1372        cooktty = stli_txcooktty;
1373        stli_txcooksize = 0;
1374        stli_txcookrealsize = 0;
1375        stli_txcooktty = NULL;
1376
1377        if (tty == NULL)
1378                return;
1379        if (cooktty == NULL)
1380                return;
1381        if (tty != cooktty)
1382                tty = cooktty;
1383        if (cooksize == 0)
1384                return;
1385
1386        portp = tty->driver_data;
1387        if (portp == NULL)
1388                return;
1389        if (portp->brdnr >= stli_nrbrds)
1390                return;
1391        brdp = stli_brds[portp->brdnr];
1392        if (brdp == NULL)
1393                return;
1394
1395        spin_lock_irqsave(&brd_lock, flags);
1396        EBRDENABLE(brdp);
1397
1398        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1399        head = (unsigned int) readw(&ap->txq.head);
1400        tail = (unsigned int) readw(&ap->txq.tail);
1401        if (tail != ((unsigned int) readw(&ap->txq.tail)))
1402                tail = (unsigned int) readw(&ap->txq.tail);
1403        size = portp->txsize;
1404        if (head >= tail) {
1405                len = size - (head - tail) - 1;
1406                stlen = size - head;
1407        } else {
1408                len = tail - head - 1;
1409                stlen = len;
1410        }
1411
1412        len = min(len, cooksize);
1413        count = 0;
1414        shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1415        buf = stli_txcookbuf;
1416
1417        while (len > 0) {
1418                stlen = min(len, stlen);
1419                memcpy_toio(shbuf + head, buf, stlen);
1420                buf += stlen;
1421                len -= stlen;
1422                count += stlen;
1423                head += stlen;
1424                if (head >= size) {
1425                        head = 0;
1426                        stlen = tail;
1427                }
1428        }
1429
1430        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1431        writew(head, &ap->txq.head);
1432
1433        if (test_bit(ST_TXBUSY, &portp->state)) {
1434                if (readl(&ap->changed.data) & DT_TXEMPTY)
1435                        writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1436        }
1437        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1438        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1439                portp->portidx;
1440        writeb(readb(bits) | portp->portbit, bits);
1441        set_bit(ST_TXBUSY, &portp->state);
1442
1443        EBRDDISABLE(brdp);
1444        spin_unlock_irqrestore(&brd_lock, flags);
1445}
1446
1447/*****************************************************************************/
1448
1449static int stli_writeroom(struct tty_struct *tty)
1450{
1451        cdkasyrq_t __iomem *rp;
1452        struct stliport *portp;
1453        struct stlibrd *brdp;
1454        unsigned int head, tail, len;
1455        unsigned long flags;
1456
1457        if (tty == stli_txcooktty) {
1458                if (stli_txcookrealsize != 0) {
1459                        len = stli_txcookrealsize - stli_txcooksize;
1460                        return len;
1461                }
1462        }
1463
1464        portp = tty->driver_data;
1465        if (portp == NULL)
1466                return 0;
1467        if (portp->brdnr >= stli_nrbrds)
1468                return 0;
1469        brdp = stli_brds[portp->brdnr];
1470        if (brdp == NULL)
1471                return 0;
1472
1473        spin_lock_irqsave(&brd_lock, flags);
1474        EBRDENABLE(brdp);
1475        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1476        head = (unsigned int) readw(&rp->head);
1477        tail = (unsigned int) readw(&rp->tail);
1478        if (tail != ((unsigned int) readw(&rp->tail)))
1479                tail = (unsigned int) readw(&rp->tail);
1480        len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1481        len--;
1482        EBRDDISABLE(brdp);
1483        spin_unlock_irqrestore(&brd_lock, flags);
1484
1485        if (tty == stli_txcooktty) {
1486                stli_txcookrealsize = len;
1487                len -= stli_txcooksize;
1488        }
1489        return len;
1490}
1491
1492/*****************************************************************************/
1493
1494/*
1495 *      Return the number of characters in the transmit buffer. Normally we
1496 *      will return the number of chars in the shared memory ring queue.
1497 *      We need to kludge around the case where the shared memory buffer is
1498 *      empty but not all characters have drained yet, for this case just
1499 *      return that there is 1 character in the buffer!
1500 */
1501
1502static int stli_charsinbuffer(struct tty_struct *tty)
1503{
1504        cdkasyrq_t __iomem *rp;
1505        struct stliport *portp;
1506        struct stlibrd *brdp;
1507        unsigned int head, tail, len;
1508        unsigned long flags;
1509
1510        if (tty == stli_txcooktty)
1511                stli_flushchars(tty);
1512        portp = tty->driver_data;
1513        if (portp == NULL)
1514                return 0;
1515        if (portp->brdnr >= stli_nrbrds)
1516                return 0;
1517        brdp = stli_brds[portp->brdnr];
1518        if (brdp == NULL)
1519                return 0;
1520
1521        spin_lock_irqsave(&brd_lock, flags);
1522        EBRDENABLE(brdp);
1523        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1524        head = (unsigned int) readw(&rp->head);
1525        tail = (unsigned int) readw(&rp->tail);
1526        if (tail != ((unsigned int) readw(&rp->tail)))
1527                tail = (unsigned int) readw(&rp->tail);
1528        len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1529        if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1530                len = 1;
1531        EBRDDISABLE(brdp);
1532        spin_unlock_irqrestore(&brd_lock, flags);
1533
1534        return len;
1535}
1536
1537/*****************************************************************************/
1538
1539/*
1540 *      Generate the serial struct info.
1541 */
1542
1543static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1544{
1545        struct serial_struct sio;
1546        struct stlibrd *brdp;
1547
1548        memset(&sio, 0, sizeof(struct serial_struct));
1549        sio.type = PORT_UNKNOWN;
1550        sio.line = portp->portnr;
1551        sio.irq = 0;
1552        sio.flags = portp->flags;
1553        sio.baud_base = portp->baud_base;
1554        sio.close_delay = portp->close_delay;
1555        sio.closing_wait = portp->closing_wait;
1556        sio.custom_divisor = portp->custom_divisor;
1557        sio.xmit_fifo_size = 0;
1558        sio.hub6 = 0;
1559
1560        brdp = stli_brds[portp->brdnr];
1561        if (brdp != NULL)
1562                sio.port = brdp->iobase;
1563                
1564        return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1565                        -EFAULT : 0;
1566}
1567
1568/*****************************************************************************/
1569
1570/*
1571 *      Set port according to the serial struct info.
1572 *      At this point we do not do any auto-configure stuff, so we will
1573 *      just quietly ignore any requests to change irq, etc.
1574 */
1575
1576static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp)
1577{
1578        struct serial_struct sio;
1579        int rc;
1580
1581        if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1582                return -EFAULT;
1583        if (!capable(CAP_SYS_ADMIN)) {
1584                if ((sio.baud_base != portp->baud_base) ||
1585                    (sio.close_delay != portp->close_delay) ||
1586                    ((sio.flags & ~ASYNC_USR_MASK) !=
1587                    (portp->flags & ~ASYNC_USR_MASK)))
1588                        return -EPERM;
1589        } 
1590
1591        portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1592                (sio.flags & ASYNC_USR_MASK);
1593        portp->baud_base = sio.baud_base;
1594        portp->close_delay = sio.close_delay;
1595        portp->closing_wait = sio.closing_wait;
1596        portp->custom_divisor = sio.custom_divisor;
1597
1598        if ((rc = stli_setport(portp)) < 0)
1599                return rc;
1600        return 0;
1601}
1602
1603/*****************************************************************************/
1604
1605static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1606{
1607        struct stliport *portp = tty->driver_data;
1608        struct stlibrd *brdp;
1609        int rc;
1610
1611        if (portp == NULL)
1612                return -ENODEV;
1613        if (portp->brdnr >= stli_nrbrds)
1614                return 0;
1615        brdp = stli_brds[portp->brdnr];
1616        if (brdp == NULL)
1617                return 0;
1618        if (tty->flags & (1 << TTY_IO_ERROR))
1619                return -EIO;
1620
1621        if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1622                               &portp->asig, sizeof(asysigs_t), 1)) < 0)
1623                return rc;
1624
1625        return stli_mktiocm(portp->asig.sigvalue);
1626}
1627
1628static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1629                         unsigned int set, unsigned int clear)
1630{
1631        struct stliport *portp = tty->driver_data;
1632        struct stlibrd *brdp;
1633        int rts = -1, dtr = -1;
1634
1635        if (portp == NULL)
1636                return -ENODEV;
1637        if (portp->brdnr >= stli_nrbrds)
1638                return 0;
1639        brdp = stli_brds[portp->brdnr];
1640        if (brdp == NULL)
1641                return 0;
1642        if (tty->flags & (1 << TTY_IO_ERROR))
1643                return -EIO;
1644
1645        if (set & TIOCM_RTS)
1646                rts = 1;
1647        if (set & TIOCM_DTR)
1648                dtr = 1;
1649        if (clear & TIOCM_RTS)
1650                rts = 0;
1651        if (clear & TIOCM_DTR)
1652                dtr = 0;
1653
1654        stli_mkasysigs(&portp->asig, dtr, rts);
1655
1656        return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1657                            sizeof(asysigs_t), 0);
1658}
1659
1660static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1661{
1662        struct stliport *portp;
1663        struct stlibrd *brdp;
1664        unsigned int ival;
1665        int rc;
1666        void __user *argp = (void __user *)arg;
1667
1668        portp = tty->driver_data;
1669        if (portp == NULL)
1670                return -ENODEV;
1671        if (portp->brdnr >= stli_nrbrds)
1672                return 0;
1673        brdp = stli_brds[portp->brdnr];
1674        if (brdp == NULL)
1675                return 0;
1676
1677        if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1678            (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1679                if (tty->flags & (1 << TTY_IO_ERROR))
1680                        return -EIO;
1681        }
1682
1683        rc = 0;
1684
1685        switch (cmd) {
1686        case TIOCGSOFTCAR:
1687                rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1688                        (unsigned __user *) arg);
1689                break;
1690        case TIOCSSOFTCAR:
1691                if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
1692                        tty->termios->c_cflag =
1693                                (tty->termios->c_cflag & ~CLOCAL) |
1694                                (ival ? CLOCAL : 0);
1695                break;
1696        case TIOCGSERIAL:
1697                rc = stli_getserial(portp, argp);
1698                break;
1699        case TIOCSSERIAL:
1700                rc = stli_setserial(portp, argp);
1701                break;
1702        case STL_GETPFLAG:
1703                rc = put_user(portp->pflag, (unsigned __user *)argp);
1704                break;
1705        case STL_SETPFLAG:
1706                if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1707                        stli_setport(portp);
1708                break;
1709        case COM_GETPORTSTATS:
1710                rc = stli_getportstats(portp, argp);
1711                break;
1712        case COM_CLRPORTSTATS:
1713                rc = stli_clrportstats(portp, argp);
1714                break;
1715        case TIOCSERCONFIG:
1716        case TIOCSERGWILD:
1717        case TIOCSERSWILD:
1718        case TIOCSERGETLSR:
1719        case TIOCSERGSTRUCT:
1720        case TIOCSERGETMULTI:
1721        case TIOCSERSETMULTI:
1722        default:
1723                rc = -ENOIOCTLCMD;
1724                break;
1725        }
1726
1727        return rc;
1728}
1729
1730/*****************************************************************************/
1731
1732/*
1733 *      This routine assumes that we have user context and can sleep.
1734 *      Looks like it is true for the current ttys implementation..!!
1735 */
1736
1737static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1738{
1739        struct stliport *portp;
1740        struct stlibrd *brdp;
1741        struct ktermios *tiosp;
1742        asyport_t aport;
1743
1744        if (tty == NULL)
1745                return;
1746        portp = tty->driver_data;
1747        if (portp == NULL)
1748                return;
1749        if (portp->brdnr >= stli_nrbrds)
1750                return;
1751        brdp = stli_brds[portp->brdnr];
1752        if (brdp == NULL)
1753                return;
1754
1755        tiosp = tty->termios;
1756
1757        stli_mkasyport(portp, &aport, tiosp);
1758        stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1759        stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1760        stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1761                sizeof(asysigs_t), 0);
1762        if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1763                tty->hw_stopped = 0;
1764        if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1765                wake_up_interruptible(&portp->open_wait);
1766}
1767
1768/*****************************************************************************/
1769
1770/*
1771 *      Attempt to flow control who ever is sending us data. We won't really
1772 *      do any flow control action here. We can't directly, and even if we
1773 *      wanted to we would have to send a command to the slave. The slave
1774 *      knows how to flow control, and will do so when its buffers reach its
1775 *      internal high water marks. So what we will do is set a local state
1776 *      bit that will stop us sending any RX data up from the poll routine
1777 *      (which is the place where RX data from the slave is handled).
1778 */
1779
1780static void stli_throttle(struct tty_struct *tty)
1781{
1782        struct stliport *portp = tty->driver_data;
1783        if (portp == NULL)
1784                return;
1785        set_bit(ST_RXSTOP, &portp->state);
1786}
1787
1788/*****************************************************************************/
1789
1790/*
1791 *      Unflow control the device sending us data... That means that all
1792 *      we have to do is clear the RXSTOP state bit. The next poll call
1793 *      will then be able to pass the RX data back up.
1794 */
1795
1796static void stli_unthrottle(struct tty_struct *tty)
1797{
1798        struct stliport *portp = tty->driver_data;
1799        if (portp == NULL)
1800                return;
1801        clear_bit(ST_RXSTOP, &portp->state);
1802}
1803
1804/*****************************************************************************/
1805
1806/*
1807 *      Stop the transmitter.
1808 */
1809
1810static void stli_stop(struct tty_struct *tty)
1811{
1812}
1813
1814/*****************************************************************************/
1815
1816/*
1817 *      Start the transmitter again.
1818 */
1819
1820static void stli_start(struct tty_struct *tty)
1821{
1822}
1823
1824/*****************************************************************************/
1825
1826/*
1827 *      Scheduler called hang up routine. This is called from the scheduler,
1828 *      not direct from the driver "poll" routine. We can't call it there
1829 *      since the real local hangup code will enable/disable the board and
1830 *      other things that we can't do while handling the poll. Much easier
1831 *      to deal with it some time later (don't really care when, hangups
1832 *      aren't that time critical).
1833 */
1834
1835static void stli_dohangup(struct work_struct *ugly_api)
1836{
1837        struct stliport *portp = container_of(ugly_api, struct stliport, tqhangup);
1838        if (portp->tty != NULL) {
1839                tty_hangup(portp->tty);
1840        }
1841}
1842
1843/*****************************************************************************/
1844
1845/*
1846 *      Hangup this port. This is pretty much like closing the port, only
1847 *      a little more brutal. No waiting for data to drain. Shutdown the
1848 *      port and maybe drop signals. This is rather tricky really. We want
1849 *      to close the port as well.
1850 */
1851
1852static void stli_hangup(struct tty_struct *tty)
1853{
1854        struct stliport *portp;
1855        struct stlibrd *brdp;
1856        unsigned long flags;
1857
1858        portp = tty->driver_data;
1859        if (portp == NULL)
1860                return;
1861        if (portp->brdnr >= stli_nrbrds)
1862                return;
1863        brdp = stli_brds[portp->brdnr];
1864        if (brdp == NULL)
1865                return;
1866
1867        portp->flags &= ~ASYNC_INITIALIZED;
1868
1869        if (!test_bit(ST_CLOSING, &portp->state))
1870                stli_rawclose(brdp, portp, 0, 0);
1871
1872        spin_lock_irqsave(&stli_lock, flags);
1873        if (tty->termios->c_cflag & HUPCL) {
1874                stli_mkasysigs(&portp->asig, 0, 0);
1875                if (test_bit(ST_CMDING, &portp->state)) {
1876                        set_bit(ST_DOSIGS, &portp->state);
1877                        set_bit(ST_DOFLUSHTX, &portp->state);
1878                        set_bit(ST_DOFLUSHRX, &portp->state);
1879                } else {
1880                        stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1881                                &portp->asig, sizeof(asysigs_t), 0);
1882                }
1883        }
1884
1885        clear_bit(ST_TXBUSY, &portp->state);
1886        clear_bit(ST_RXSTOP, &portp->state);
1887        set_bit(TTY_IO_ERROR, &tty->flags);
1888        portp->tty = NULL;
1889        portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1890        portp->refcount = 0;
1891        spin_unlock_irqrestore(&stli_lock, flags);
1892
1893        wake_up_interruptible(&portp->open_wait);
1894}
1895
1896/*****************************************************************************/
1897
1898/*
1899 *      Flush characters from the lower buffer. We may not have user context
1900 *      so we cannot sleep waiting for it to complete. Also we need to check
1901 *      if there is chars for this port in the TX cook buffer, and flush them
1902 *      as well.
1903 */
1904
1905static void stli_flushbuffer(struct tty_struct *tty)
1906{
1907        struct stliport *portp;
1908        struct stlibrd *brdp;
1909        unsigned long ftype, flags;
1910
1911        portp = tty->driver_data;
1912        if (portp == NULL)
1913                return;
1914        if (portp->brdnr >= stli_nrbrds)
1915                return;
1916        brdp = stli_brds[portp->brdnr];
1917        if (brdp == NULL)
1918                return;
1919
1920        spin_lock_irqsave(&brd_lock, flags);
1921        if (tty == stli_txcooktty) {
1922                stli_txcooktty = NULL;
1923                stli_txcooksize = 0;
1924                stli_txcookrealsize = 0;
1925        }
1926        if (test_bit(ST_CMDING, &portp->state)) {
1927                set_bit(ST_DOFLUSHTX, &portp->state);
1928        } else {
1929                ftype = FLUSHTX;
1930                if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1931                        ftype |= FLUSHRX;
1932                        clear_bit(ST_DOFLUSHRX, &portp->state);
1933                }
1934                __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1935        }
1936        spin_unlock_irqrestore(&brd_lock, flags);
1937        tty_wakeup(tty);
1938}
1939
1940/*****************************************************************************/
1941
1942static void stli_breakctl(struct tty_struct *tty, int state)
1943{
1944        struct stlibrd  *brdp;
1945        struct stliport *portp;
1946        long            arg;
1947
1948        portp = tty->driver_data;
1949        if (portp == NULL)
1950                return;
1951        if (portp->brdnr >= stli_nrbrds)
1952                return;
1953        brdp = stli_brds[portp->brdnr];
1954        if (brdp == NULL)
1955                return;
1956
1957        arg = (state == -1) ? BREAKON : BREAKOFF;
1958        stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1959}
1960
1961/*****************************************************************************/
1962
1963static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1964{
1965        struct stliport *portp;
1966        unsigned long tend;
1967
1968        if (tty == NULL)
1969                return;
1970        portp = tty->driver_data;
1971        if (portp == NULL)
1972                return;
1973
1974        if (timeout == 0)
1975                timeout = HZ;
1976        tend = jiffies + timeout;
1977
1978        while (test_bit(ST_TXBUSY, &portp->state)) {
1979                if (signal_pending(current))
1980                        break;
1981                msleep_interruptible(20);
1982                if (time_after_eq(jiffies, tend))
1983                        break;
1984        }
1985}
1986
1987/*****************************************************************************/
1988
1989static void stli_sendxchar(struct tty_struct *tty, char ch)
1990{
1991        struct stlibrd  *brdp;
1992        struct stliport *portp;
1993        asyctrl_t       actrl;
1994
1995        portp = tty->driver_data;
1996        if (portp == NULL)
1997                return;
1998        if (portp->brdnr >= stli_nrbrds)
1999                return;
2000        brdp = stli_brds[portp->brdnr];
2001        if (brdp == NULL)
2002                return;
2003
2004        memset(&actrl, 0, sizeof(asyctrl_t));
2005        if (ch == STOP_CHAR(tty)) {
2006                actrl.rxctrl = CT_STOPFLOW;
2007        } else if (ch == START_CHAR(tty)) {
2008                actrl.rxctrl = CT_STARTFLOW;
2009        } else {
2010                actrl.txctrl = CT_SENDCHR;
2011                actrl.tximdch = ch;
2012        }
2013        stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2014}
2015
2016/*****************************************************************************/
2017
2018#define MAXLINE         80
2019
2020/*
2021 *      Format info for a specified port. The line is deliberately limited
2022 *      to 80 characters. (If it is too long it will be truncated, if too
2023 *      short then padded with spaces).
2024 */
2025
2026static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
2027{
2028        char *sp, *uart;
2029        int rc, cnt;
2030
2031        rc = stli_portcmdstats(portp);
2032
2033        uart = "UNKNOWN";
2034        if (brdp->state & BST_STARTED) {
2035                switch (stli_comstats.hwid) {
2036                case 0: uart = "2681"; break;
2037                case 1: uart = "SC26198"; break;
2038                default:uart = "CD1400"; break;
2039                }
2040        }
2041
2042        sp = pos;
2043        sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2044
2045        if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2046                sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2047                        (int) stli_comstats.rxtotal);
2048
2049                if (stli_comstats.rxframing)
2050                        sp += sprintf(sp, " fe:%d",
2051                                (int) stli_comstats.rxframing);
2052                if (stli_comstats.rxparity)
2053                        sp += sprintf(sp, " pe:%d",
2054                                (int) stli_comstats.rxparity);
2055                if (stli_comstats.rxbreaks)
2056                        sp += sprintf(sp, " brk:%d",
2057                                (int) stli_comstats.rxbreaks);
2058                if (stli_comstats.rxoverrun)
2059                        sp += sprintf(sp, " oe:%d",
2060                                (int) stli_comstats.rxoverrun);
2061
2062                cnt = sprintf(sp, "%s%s%s%s%s ",
2063                        (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2064                        (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2065                        (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2066                        (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2067                        (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2068                *sp = ' ';
2069                sp += cnt;
2070        }
2071
2072        for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2073                *sp++ = ' ';
2074        if (cnt >= MAXLINE)
2075                pos[(MAXLINE - 2)] = '+';
2076        pos[(MAXLINE - 1)] = '\n';
2077
2078        return(MAXLINE);
2079}
2080
2081/*****************************************************************************/
2082
2083/*
2084 *      Port info, read from the /proc file system.
2085 */
2086
2087static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2088{
2089        struct stlibrd *brdp;
2090        struct stliport *portp;
2091        unsigned int brdnr, portnr, totalport;
2092        int curoff, maxoff;
2093        char *pos;
2094
2095        pos = page;
2096        totalport = 0;
2097        curoff = 0;
2098
2099        if (off == 0) {
2100                pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2101                        stli_drvversion);
2102                while (pos < (page + MAXLINE - 1))
2103                        *pos++ = ' ';
2104                *pos++ = '\n';
2105        }
2106        curoff =  MAXLINE;
2107
2108/*
2109 *      We scan through for each board, panel and port. The offset is
2110 *      calculated on the fly, and irrelevant ports are skipped.
2111 */
2112        for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2113                brdp = stli_brds[brdnr];
2114                if (brdp == NULL)
2115                        continue;
2116                if (brdp->state == 0)
2117                        continue;
2118
2119                maxoff = curoff + (brdp->nrports * MAXLINE);
2120                if (off >= maxoff) {
2121                        curoff = maxoff;
2122                        continue;
2123                }
2124
2125                totalport = brdnr * STL_MAXPORTS;
2126                for (portnr = 0; (portnr < brdp->nrports); portnr++,
2127                    totalport++) {
2128                        portp = brdp->ports[portnr];
2129                        if (portp == NULL)
2130                                continue;
2131                        if (off >= (curoff += MAXLINE))
2132                                continue;
2133                        if ((pos - page + MAXLINE) > count)
2134                                goto stli_readdone;
2135                        pos += stli_portinfo(brdp, portp, totalport, pos);
2136                }
2137        }
2138
2139        *eof = 1;
2140
2141stli_readdone:
2142        *start = page;
2143        return(pos - page);
2144}
2145
2146/*****************************************************************************/
2147
2148/*
2149 *      Generic send command routine. This will send a message to the slave,
2150 *      of the specified type with the specified argument. Must be very
2151 *      careful of data that will be copied out from shared memory -
2152 *      containing command results. The command completion is all done from
2153 *      a poll routine that does not have user context. Therefore you cannot
2154 *      copy back directly into user space, or to the kernel stack of a
2155 *      process. This routine does not sleep, so can be called from anywhere.
2156 *
2157 *      The caller must hold the brd_lock (see also stli_sendcmd the usual
2158 *      entry point)
2159 */
2160
2161static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2162{
2163        cdkhdr_t __iomem *hdrp;
2164        cdkctrl_t __iomem *cp;
2165        unsigned char __iomem *bits;
2166
2167        if (test_bit(ST_CMDING, &portp->state)) {
2168                printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2169                                (int) cmd);
2170                return;
2171        }
2172
2173        EBRDENABLE(brdp);
2174        cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2175        if (size > 0) {
2176                memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2177                if (copyback) {
2178                        portp->argp = arg;
2179                        portp->argsize = size;
2180                }
2181        }
2182        writel(0, &cp->status);
2183        writel(cmd, &cp->cmd);
2184        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2185        bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2186                portp->portidx;
2187        writeb(readb(bits) | portp->portbit, bits);
2188        set_bit(ST_CMDING, &portp->state);
2189        EBRDDISABLE(brdp);
2190}
2191
2192static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2193{
2194        unsigned long           flags;
2195
2196        spin_lock_irqsave(&brd_lock, flags);
2197        __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2198        spin_unlock_irqrestore(&brd_lock, flags);
2199}
2200
2201/*****************************************************************************/
2202
2203/*
2204 *      Read data from shared memory. This assumes that the shared memory
2205 *      is enabled and that interrupts are off. Basically we just empty out
2206 *      the shared memory buffer into the tty buffer. Must be careful to
2207 *      handle the case where we fill up the tty buffer, but still have
2208 *      more chars to unload.
2209 */
2210
2211static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2212{
2213        cdkasyrq_t __iomem *rp;
2214        char __iomem *shbuf;
2215        struct tty_struct       *tty;
2216        unsigned int head, tail, size;
2217        unsigned int len, stlen;
2218
2219        if (test_bit(ST_RXSTOP, &portp->state))
2220                return;
2221        tty = portp->tty;
2222        if (tty == NULL)
2223                return;
2224
2225        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2226        head = (unsigned int) readw(&rp->head);
2227        if (head != ((unsigned int) readw(&rp->head)))
2228                head = (unsigned int) readw(&rp->head);
2229        tail = (unsigned int) readw(&rp->tail);
2230        size = portp->rxsize;
2231        if (head >= tail) {
2232                len = head - tail;
2233                stlen = len;
2234        } else {
2235                len = size - (tail - head);
2236                stlen = size - tail;
2237        }
2238
2239        len = tty_buffer_request_room(tty, len);
2240
2241        shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2242
2243        while (len > 0) {
2244                unsigned char *cptr;
2245
2246                stlen = min(len, stlen);
2247                tty_prepare_flip_string(tty, &cptr, stlen);
2248                memcpy_fromio(cptr, shbuf + tail, stlen);
2249                len -= stlen;
2250                tail += stlen;
2251                if (tail >= size) {
2252                        tail = 0;
2253                        stlen = head;
2254                }
2255        }
2256        rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2257        writew(tail, &rp->tail);
2258
2259        if (head != tail)
2260                set_bit(ST_RXING, &portp->state);
2261
2262        tty_schedule_flip(tty);
2263}
2264
2265/*****************************************************************************/
2266
2267/*
2268 *      Set up and carry out any delayed commands. There is only a small set
2269 *      of slave commands that can be done "off-level". So it is not too
2270 *      difficult to deal with them here.
2271 */
2272
2273static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2274{
2275        int cmd;
2276
2277        if (test_bit(ST_DOSIGS, &portp->state)) {
2278                if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2279                    test_bit(ST_DOFLUSHRX, &portp->state))
2280                        cmd = A_SETSIGNALSF;
2281                else if (test_bit(ST_DOFLUSHTX, &portp->state))
2282                        cmd = A_SETSIGNALSFTX;
2283                else if (test_bit(ST_DOFLUSHRX, &portp->state))
2284                        cmd = A_SETSIGNALSFRX;
2285                else
2286                        cmd = A_SETSIGNALS;
2287                clear_bit(ST_DOFLUSHTX, &portp->state);
2288                clear_bit(ST_DOFLUSHRX, &portp->state);
2289                clear_bit(ST_DOSIGS, &portp->state);
2290                memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2291                        sizeof(asysigs_t));
2292                writel(0, &cp->status);
2293                writel(cmd, &cp->cmd);
2294                set_bit(ST_CMDING, &portp->state);
2295        } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2296            test_bit(ST_DOFLUSHRX, &portp->state)) {
2297                cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2298                cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2299                clear_bit(ST_DOFLUSHTX, &portp->state);
2300                clear_bit(ST_DOFLUSHRX, &portp->state);
2301                memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2302                writel(0, &cp->status);
2303                writel(A_FLUSH, &cp->cmd);
2304                set_bit(ST_CMDING, &portp->state);
2305        }
2306}
2307
2308/*****************************************************************************/
2309
2310/*
2311 *      Host command service checking. This handles commands or messages
2312 *      coming from the slave to the host. Must have board shared memory
2313 *      enabled and interrupts off when called. Notice that by servicing the
2314 *      read data last we don't need to change the shared memory pointer
2315 *      during processing (which is a slow IO operation).
2316 *      Return value indicates if this port is still awaiting actions from
2317 *      the slave (like open, command, or even TX data being sent). If 0
2318 *      then port is still busy, otherwise no longer busy.
2319 */
2320
2321static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2322{
2323        cdkasy_t __iomem *ap;
2324        cdkctrl_t __iomem *cp;
2325        struct tty_struct *tty;
2326        asynotify_t nt;
2327        unsigned long oldsigs;
2328        int rc, donerx;
2329
2330        ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2331        cp = &ap->ctrl;
2332
2333/*
2334 *      Check if we are waiting for an open completion message.
2335 */
2336        if (test_bit(ST_OPENING, &portp->state)) {
2337                rc = readl(&cp->openarg);
2338                if (readb(&cp->open) == 0 && rc != 0) {
2339                        if (rc > 0)
2340                                rc--;
2341                        writel(0, &cp->openarg);
2342                        portp->rc = rc;
2343                        clear_bit(ST_OPENING, &portp->state);
2344                        wake_up_interruptible(&portp->raw_wait);
2345                }
2346        }
2347
2348/*
2349 *      Check if we are waiting for a close completion message.
2350 */
2351        if (test_bit(ST_CLOSING, &portp->state)) {
2352                rc = (int) readl(&cp->closearg);
2353                if (readb(&cp->close) == 0 && rc != 0) {
2354                        if (rc > 0)
2355                                rc--;
2356                        writel(0, &cp->closearg);
2357                        portp->rc = rc;
2358                        clear_bit(ST_CLOSING, &portp->state);
2359                        wake_up_interruptible(&portp->raw_wait);
2360                }
2361        }
2362
2363/*
2364 *      Check if we are waiting for a command completion message. We may
2365 *      need to copy out the command results associated with this command.
2366 */
2367        if (test_bit(ST_CMDING, &portp->state)) {
2368                rc = readl(&cp->status);
2369                if (readl(&cp->cmd) == 0 && rc != 0) {
2370                        if (rc > 0)
2371                                rc--;
2372                        if (portp->argp != NULL) {
2373                                memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2374                                        portp->argsize);
2375                                portp->argp = NULL;
2376                        }
2377                        writel(0, &cp->status);
2378                        portp->rc = rc;
2379                        clear_bit(ST_CMDING, &portp->state);
2380                        stli_dodelaycmd(portp, cp);
2381                        wake_up_interruptible(&portp->raw_wait);
2382                }
2383        }
2384
2385/*
2386 *      Check for any notification messages ready. This includes lots of
2387 *      different types of events - RX chars ready, RX break received,
2388 *      TX data low or empty in the slave, modem signals changed state.
2389 */
2390        donerx = 0;
2391
2392        if (ap->notify) {
2393                nt = ap->changed;
2394                ap->notify = 0;
2395                tty = portp->tty;
2396
2397                if (nt.signal & SG_DCD) {
2398                        oldsigs = portp->sigs;
2399                        portp->sigs = stli_mktiocm(nt.sigvalue);
2400                        clear_bit(ST_GETSIGS, &portp->state);
2401                        if ((portp->sigs & TIOCM_CD) &&
2402                            ((oldsigs & TIOCM_CD) == 0))
2403                                wake_up_interruptible(&portp->open_wait);
2404                        if ((oldsigs & TIOCM_CD) &&
2405                            ((portp->sigs & TIOCM_CD) == 0)) {
2406                                if (portp->flags & ASYNC_CHECK_CD) {
2407                                        if (tty)
2408                                                schedule_work(&portp->tqhangup);
2409                                }
2410                        }
2411                }
2412
2413                if (nt.data & DT_TXEMPTY)
2414                        clear_bit(ST_TXBUSY, &portp->state);
2415                if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2416                        if (tty != NULL) {
2417                                tty_wakeup(tty);
2418                                EBRDENABLE(brdp);
2419                        }
2420                }
2421
2422                if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2423                        if (tty != NULL) {
2424                                tty_insert_flip_char(tty, 0, TTY_BREAK);
2425                                if (portp->flags & ASYNC_SAK) {
2426                                        do_SAK(tty);
2427                                        EBRDENABLE(brdp);
2428                                }
2429                                tty_schedule_flip(tty);
2430                        }
2431                }
2432
2433                if (nt.data & DT_RXBUSY) {
2434                        donerx++;
2435                        stli_read(brdp, portp);
2436                }
2437        }
2438
2439/*
2440 *      It might seem odd that we are checking for more RX chars here.
2441 *      But, we need to handle the case where the tty buffer was previously
2442 *      filled, but we had more characters to pass up. The slave will not
2443 *      send any more RX notify messages until the RX buffer has been emptied.
2444 *      But it will leave the service bits on (since the buffer is not empty).
2445 *      So from here we can try to process more RX chars.
2446 */
2447        if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2448                clear_bit(ST_RXING, &portp->state);
2449                stli_read(brdp, portp);
2450        }
2451
2452        return((test_bit(ST_OPENING, &portp->state) ||
2453                test_bit(ST_CLOSING, &portp->state) ||
2454                test_bit(ST_CMDING, &portp->state) ||
2455                test_bit(ST_TXBUSY, &portp->state) ||
2456                test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2457}
2458
2459/*****************************************************************************/
2460
2461/*
2462 *      Service all ports on a particular board. Assumes that the boards
2463 *      shared memory is enabled, and that the page pointer is pointed
2464 *      at the cdk header structure.
2465 */
2466
2467static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2468{
2469        struct stliport *portp;
2470        unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2471        unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2472        unsigned char __iomem *slavep;
2473        int bitpos, bitat, bitsize;
2474        int channr, nrdevs, slavebitchange;
2475
2476        bitsize = brdp->bitsize;
2477        nrdevs = brdp->nrdevs;
2478
2479/*
2480 *      Check if slave wants any service. Basically we try to do as
2481 *      little work as possible here. There are 2 levels of service
2482 *      bits. So if there is nothing to do we bail early. We check
2483 *      8 service bits at a time in the inner loop, so we can bypass
2484 *      the lot if none of them want service.
2485 */
2486        memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2487                bitsize);
2488
2489        memset(&slavebits[0], 0, bitsize);
2490        slavebitchange = 0;
2491
2492        for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2493                if (hostbits[bitpos] == 0)
2494                        continue;
2495                channr = bitpos * 8;
2496                for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2497                        if (hostbits[bitpos] & bitat) {
2498                                portp = brdp->ports[(channr - 1)];
2499                                if (stli_hostcmd(brdp, portp)) {
2500                                        slavebitchange++;
2501                                        slavebits[bitpos] |= bitat;
2502                                }
2503                        }
2504                }
2505        }
2506
2507/*
2508 *      If any of the ports are no longer busy then update them in the
2509 *      slave request bits. We need to do this after, since a host port
2510 *      service may initiate more slave requests.
2511 */
2512        if (slavebitchange) {
2513                hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2514                slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2515                for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2516                        if (readb(slavebits + bitpos))
2517                                writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2518                }
2519        }
2520}
2521
2522/*****************************************************************************/
2523
2524/*
2525 *      Driver poll routine. This routine polls the boards in use and passes
2526 *      messages back up to host when necessary. This is actually very
2527 *      CPU efficient, since we will always have the kernel poll clock, it
2528 *      adds only a few cycles when idle (since board service can be
2529 *      determined very easily), but when loaded generates no interrupts
2530 *      (with their expensive associated context change).
2531 */
2532
2533static void stli_poll(unsigned long arg)
2534{
2535        cdkhdr_t __iomem *hdrp;
2536        struct stlibrd *brdp;
2537        unsigned int brdnr;
2538
2539        mod_timer(&stli_timerlist, STLI_TIMEOUT);
2540
2541/*
2542 *      Check each board and do any servicing required.
2543 */
2544        for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2545                brdp = stli_brds[brdnr];
2546                if (brdp == NULL)
2547                        continue;
2548                if ((brdp->state & BST_STARTED) == 0)
2549                        continue;
2550
2551                spin_lock(&brd_lock);
2552                EBRDENABLE(brdp);
2553                hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2554                if (readb(&hdrp->hostreq))
2555                        stli_brdpoll(brdp, hdrp);
2556                EBRDDISABLE(brdp);
2557                spin_unlock(&brd_lock);
2558        }
2559}
2560
2561/*****************************************************************************/
2562
2563/*
2564 *      Translate the termios settings into the port setting structure of
2565 *      the slave.
2566 */
2567
2568static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp)
2569{
2570        memset(pp, 0, sizeof(asyport_t));
2571
2572/*
2573 *      Start of by setting the baud, char size, parity and stop bit info.
2574 */
2575        pp->baudout = tty_get_baud_rate(portp->tty);
2576        if ((tiosp->c_cflag & CBAUD) == B38400) {
2577                if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2578                        pp->baudout = 57600;
2579                else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2580                        pp->baudout = 115200;
2581                else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2582                        pp->baudout = 230400;
2583                else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2584                        pp->baudout = 460800;
2585                else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2586                        pp->baudout = (portp->baud_base / portp->custom_divisor);
2587        }
2588        if (pp->baudout > STL_MAXBAUD)
2589                pp->baudout = STL_MAXBAUD;
2590        pp->baudin = pp->baudout;
2591
2592        switch (tiosp->c_cflag & CSIZE) {
2593        case CS5:
2594                pp->csize = 5;
2595                break;
2596        case CS6:
2597                pp->csize = 6;
2598                break;
2599        case CS7:
2600                pp->csize = 7;
2601                break;
2602        default:
2603                pp->csize = 8;
2604                break;
2605        }
2606
2607        if (tiosp->c_cflag & CSTOPB)
2608                pp->stopbs = PT_STOP2;
2609        else
2610                pp->stopbs = PT_STOP1;
2611
2612        if (tiosp->c_cflag & PARENB) {
2613                if (tiosp->c_cflag & PARODD)
2614                        pp->parity = PT_ODDPARITY;
2615                else
2616                        pp->parity = PT_EVENPARITY;
2617        } else {
2618                pp->parity = PT_NOPARITY;
2619        }
2620
2621/*
2622 *      Set up any flow control options enabled.
2623 */
2624        if (tiosp->c_iflag & IXON) {
2625                pp->flow |= F_IXON;
2626                if (tiosp->c_iflag & IXANY)
2627                        pp->flow |= F_IXANY;
2628        }
2629        if (tiosp->c_cflag & CRTSCTS)
2630                pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2631
2632        pp->startin = tiosp->c_cc[VSTART];
2633        pp->stopin = tiosp->c_cc[VSTOP];
2634        pp->startout = tiosp->c_cc[VSTART];
2635        pp->stopout = tiosp->c_cc[VSTOP];
2636
2637/*
2638 *      Set up the RX char marking mask with those RX error types we must
2639 *      catch. We can get the slave to help us out a little here, it will
2640 *      ignore parity errors and breaks for us, and mark parity errors in
2641 *      the data stream.
2642 */
2643        if (tiosp->c_iflag & IGNPAR)
2644                pp->iflag |= FI_IGNRXERRS;
2645        if (tiosp->c_iflag & IGNBRK)
2646                pp->iflag |= FI_IGNBREAK;
2647
2648        portp->rxmarkmsk = 0;
2649        if (tiosp->c_iflag & (INPCK | PARMRK))
2650                pp->iflag |= FI_1MARKRXERRS;
2651        if (tiosp->c_iflag & BRKINT)
2652                portp->rxmarkmsk |= BRKINT;
2653
2654/*
2655 *      Set up clocal processing as required.
2656 */
2657        if (tiosp->c_cflag & CLOCAL)
2658                portp->flags &= ~ASYNC_CHECK_CD;
2659        else
2660                portp->flags |= ASYNC_CHECK_CD;
2661
2662/*
2663 *      Transfer any persistent flags into the asyport structure.
2664 */
2665        pp->pflag = (portp->pflag & 0xffff);
2666        pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2667        pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2668        pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2669}
2670
2671/*****************************************************************************/
2672
2673/*
2674 *      Construct a slave signals structure for setting the DTR and RTS
2675 *      signals as specified.
2676 */
2677
2678static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2679{
2680        memset(sp, 0, sizeof(asysigs_t));
2681        if (dtr >= 0) {
2682                sp->signal |= SG_DTR;
2683                sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2684        }
2685        if (rts >= 0) {
2686                sp->signal |= SG_RTS;
2687                sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2688        }
2689}
2690
2691/*****************************************************************************/
2692
2693/*
2694 *      Convert the signals returned from the slave into a local TIOCM type
2695 *      signals value. We keep them locally in TIOCM format.
2696 */
2697
2698static long stli_mktiocm(unsigned long sigvalue)
2699{
2700        long    tiocm = 0;
2701        tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2702        tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2703        tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2704        tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2705        tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2706        tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2707        return(tiocm);
2708}
2709
2710/*****************************************************************************/
2711
2712/*
2713 *      All panels and ports actually attached have been worked out. All
2714 *      we need to do here is set up the appropriate per port data structures.
2715 */
2716
2717static int stli_initports(struct stlibrd *brdp)
2718{
2719        struct stliport *portp;
2720        unsigned int i, panelnr, panelport;
2721
2722        for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2723                portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2724                if (!portp) {
2725                        printk("STALLION: failed to allocate port structure\n");
2726                        continue;
2727                }
2728
2729                portp->magic = STLI_PORTMAGIC;
2730                portp->portnr = i;
2731                portp->brdnr = brdp->brdnr;
2732                portp->panelnr = panelnr;
2733                portp->baud_base = STL_BAUDBASE;
2734                portp->close_delay = STL_CLOSEDELAY;
2735                portp->closing_wait = 30 * HZ;
2736                INIT_WORK(&portp->tqhangup, stli_dohangup);
2737                init_waitqueue_head(&portp->open_wait);
2738                init_waitqueue_head(&portp->close_wait);
2739                init_waitqueue_head(&portp->raw_wait);
2740                panelport++;
2741                if (panelport >= brdp->panels[panelnr]) {
2742                        panelport = 0;
2743                        panelnr++;
2744                }
2745                brdp->ports[i] = portp;
2746        }
2747
2748        return 0;
2749}
2750
2751/*****************************************************************************/
2752
2753/*
2754 *      All the following routines are board specific hardware operations.
2755 */
2756
2757static void stli_ecpinit(struct stlibrd *brdp)
2758{
2759        unsigned long   memconf;
2760
2761        outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2762        udelay(10);
2763        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2764        udelay(100);
2765
2766        memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2767        outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2768}
2769
2770/*****************************************************************************/
2771
2772static void stli_ecpenable(struct stlibrd *brdp)
2773{       
2774        outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2775}
2776
2777/*****************************************************************************/
2778
2779static void stli_ecpdisable(struct stlibrd *brdp)
2780{       
2781        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2782}
2783
2784/*****************************************************************************/
2785
2786static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2787{       
2788        void __iomem *ptr;
2789        unsigned char val;
2790
2791        if (offset > brdp->memsize) {
2792                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2793                                "range at line=%d(%d), brd=%d\n",
2794                        (int) offset, line, __LINE__, brdp->brdnr);
2795                ptr = NULL;
2796                val = 0;
2797        } else {
2798                ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2799                val = (unsigned char) (offset / ECP_ATPAGESIZE);
2800        }
2801        outb(val, (brdp->iobase + ECP_ATMEMPR));
2802        return(ptr);
2803}
2804
2805/*****************************************************************************/
2806
2807static void stli_ecpreset(struct stlibrd *brdp)
2808{       
2809        outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2810        udelay(10);
2811        outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2812        udelay(500);
2813}
2814
2815/*****************************************************************************/
2816
2817static void stli_ecpintr(struct stlibrd *brdp)
2818{       
2819        outb(0x1, brdp->iobase);
2820}
2821
2822/*****************************************************************************/
2823
2824/*
2825 *      The following set of functions act on ECP EISA boards.
2826 */
2827
2828static void stli_ecpeiinit(struct stlibrd *brdp)
2829{
2830        unsigned long   memconf;
2831
2832        outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2833        outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2834        udelay(10);
2835        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2836        udelay(500);
2837
2838        memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2839        outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2840        memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2841        outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2842}
2843
2844/*****************************************************************************/
2845
2846static void stli_ecpeienable(struct stlibrd *brdp)
2847{       
2848        outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2849}
2850
2851/*****************************************************************************/
2852
2853static void stli_ecpeidisable(struct stlibrd *brdp)
2854{       
2855        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2856}
2857
2858/*****************************************************************************/
2859
2860static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2861{       
2862        void __iomem *ptr;
2863        unsigned char   val;
2864
2865        if (offset > brdp->memsize) {
2866                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2867                                "range at line=%d(%d), brd=%d\n",
2868                        (int) offset, line, __LINE__, brdp->brdnr);
2869                ptr = NULL;
2870                val = 0;
2871        } else {
2872                ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2873                if (offset < ECP_EIPAGESIZE)
2874                        val = ECP_EIENABLE;
2875                else
2876                        val = ECP_EIENABLE | 0x40;
2877        }
2878        outb(val, (brdp->iobase + ECP_EICONFR));
2879        return(ptr);
2880}
2881
2882/*****************************************************************************/
2883
2884static void stli_ecpeireset(struct stlibrd *brdp)
2885{       
2886        outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2887        udelay(10);
2888        outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2889        udelay(500);
2890}
2891
2892/*****************************************************************************/
2893
2894/*
2895 *      The following set of functions act on ECP MCA boards.
2896 */
2897
2898static void stli_ecpmcenable(struct stlibrd *brdp)
2899{       
2900        outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2901}
2902
2903/*****************************************************************************/
2904
2905static void stli_ecpmcdisable(struct stlibrd *brdp)
2906{       
2907        outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2908}
2909
2910/*****************************************************************************/
2911
2912static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2913{       
2914        void __iomem *ptr;
2915        unsigned char val;
2916
2917        if (offset > brdp->memsize) {
2918                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2919                                "range at line=%d(%d), brd=%d\n",
2920                        (int) offset, line, __LINE__, brdp->brdnr);
2921                ptr = NULL;
2922                val = 0;
2923        } else {
2924                ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2925                val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2926        }
2927        outb(val, (brdp->iobase + ECP_MCCONFR));
2928        return(ptr);
2929}
2930
2931/*****************************************************************************/
2932
2933static void stli_ecpmcreset(struct stlibrd *brdp)
2934{       
2935        outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2936        udelay(10);
2937        outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2938        udelay(500);
2939}
2940
2941/*****************************************************************************/
2942
2943/*
2944 *      The following set of functions act on ECP PCI boards.
2945 */
2946
2947static void stli_ecppciinit(struct stlibrd *brdp)
2948{
2949        outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2950        udelay(10);
2951        outb(0, (brdp->iobase + ECP_PCICONFR));
2952        udelay(500);
2953}
2954
2955/*****************************************************************************/
2956
2957static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2958{       
2959        void __iomem *ptr;
2960        unsigned char   val;
2961
2962        if (offset > brdp->memsize) {
2963                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2964                                "range at line=%d(%d), board=%d\n",
2965                                (int) offset, line, __LINE__, brdp->brdnr);
2966                ptr = NULL;
2967                val = 0;
2968        } else {
2969                ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2970                val = (offset / ECP_PCIPAGESIZE) << 1;
2971        }
2972        outb(val, (brdp->iobase + ECP_PCICONFR));
2973        return(ptr);
2974}
2975
2976/*****************************************************************************/
2977
2978static void stli_ecppcireset(struct stlibrd *brdp)
2979{       
2980        outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2981        udelay(10);
2982        outb(0, (brdp->iobase + ECP_PCICONFR));
2983        udelay(500);
2984}
2985
2986/*****************************************************************************/
2987
2988/*
2989 *      The following routines act on ONboards.
2990 */
2991
2992static void stli_onbinit(struct stlibrd *brdp)
2993{
2994        unsigned long   memconf;
2995
2996        outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2997        udelay(10);
2998        outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2999        mdelay(1000);
3000
3001        memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3002        outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3003        outb(0x1, brdp->iobase);
3004        mdelay(1);
3005}
3006
3007/*****************************************************************************/
3008
3009static void stli_onbenable(struct stlibrd *brdp)
3010{       
3011        outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3012}
3013
3014/*****************************************************************************/
3015
3016static void stli_onbdisable(struct stlibrd *brdp)
3017{       
3018        outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3019}
3020
3021/*****************************************************************************/
3022
3023static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3024{       
3025        void __iomem *ptr;
3026
3027        if (offset > brdp->memsize) {
3028                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3029                                "range at line=%d(%d), brd=%d\n",
3030                                (int) offset, line, __LINE__, brdp->brdnr);
3031                ptr = NULL;
3032        } else {
3033                ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3034        }
3035        return(ptr);
3036}
3037
3038/*****************************************************************************/
3039
3040static void stli_onbreset(struct stlibrd *brdp)
3041{       
3042        outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3043        udelay(10);
3044        outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3045        mdelay(1000);
3046}
3047
3048/*****************************************************************************/
3049
3050/*
3051 *      The following routines act on ONboard EISA.
3052 */
3053
3054static void stli_onbeinit(struct stlibrd *brdp)
3055{
3056        unsigned long   memconf;
3057
3058        outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3059        outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3060        udelay(10);
3061        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3062        mdelay(1000);
3063
3064        memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3065        outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3066        memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3067        outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3068        outb(0x1, brdp->iobase);
3069        mdelay(1);
3070}
3071
3072/*****************************************************************************/
3073
3074static void stli_onbeenable(struct stlibrd *brdp)
3075{       
3076        outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3077}
3078
3079/*****************************************************************************/
3080
3081static void stli_onbedisable(struct stlibrd *brdp)
3082{       
3083        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3084}
3085
3086/*****************************************************************************/
3087
3088static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3089{       
3090        void __iomem *ptr;
3091        unsigned char val;
3092
3093        if (offset > brdp->memsize) {
3094                printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3095                                "range at line=%d(%d), brd=%d\n",
3096                        (int) offset, line, __LINE__, brdp->brdnr);
3097                ptr = NULL;
3098                val = 0;
3099        } else {
3100                ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3101                if (offset < ONB_EIPAGESIZE)
3102                        val = ONB_EIENABLE;
3103                else
3104                        val = ONB_EIENABLE | 0x40;
3105        }
3106        outb(val, (brdp->iobase + ONB_EICONFR));
3107        return(ptr);
3108}
3109
3110/*****************************************************************************/
3111
3112static void stli_onbereset(struct stlibrd *brdp)
3113{       
3114        outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3115        udelay(10);
3116        outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3117        mdelay(1000);
3118}
3119
3120/*****************************************************************************/
3121
3122/*
3123 *      The following routines act on Brumby boards.
3124 */
3125
3126static void stli_bbyinit(struct stlibrd *brdp)
3127{
3128        outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3129        udelay(10);
3130        outb(0, (brdp->iobase + BBY_ATCONFR));
3131        mdelay(1000);
3132        outb(0x1, brdp->iobase);
3133        mdelay(1);
3134}
3135
3136/*****************************************************************************/
3137
3138static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3139{       
3140        void __iomem *ptr;
3141        unsigned char val;
3142
3143        BUG_ON(offset > brdp->memsize);
3144
3145        ptr = brdp->membase + (offset % BBY_PAGESIZE);
3146        val = (unsigned char) (offset / BBY_PAGESIZE);
3147        outb(val, (brdp->iobase + BBY_ATCONFR));
3148        return(ptr);
3149}
3150
3151/*****************************************************************************/
3152
3153static void stli_bbyreset(struct stlibrd *brdp)
3154{       
3155        outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3156        udelay(10);
3157        outb(0, (brdp->iobase + BBY_ATCONFR));
3158        mdelay(1000);
3159}
3160
3161/*****************************************************************************/
3162
3163/*
3164 *      The following routines act on original old Stallion boards.
3165 */
3166
3167static void stli_stalinit(struct stlibrd *brdp)
3168{
3169        outb(0x1, brdp->iobase);
3170        mdelay(1000);
3171}
3172
3173/*****************************************************************************/
3174
3175static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3176{       
3177        BUG_ON(offset > brdp->memsize);
3178        return brdp->membase + (offset % STAL_PAGESIZE);
3179}
3180
3181/*****************************************************************************/
3182
3183static void stli_stalreset(struct stlibrd *brdp)
3184{       
3185        u32 __iomem *vecp;
3186
3187        vecp = (u32 __iomem *) (brdp->membase + 0x30);
3188        writel(0xffff0000, vecp);
3189        outb(0, brdp->iobase);
3190        mdelay(1000);
3191}
3192
3193/*****************************************************************************/
3194
3195/*
3196 *      Try to find an ECP board and initialize it. This handles only ECP
3197 *      board types.
3198 */
3199
3200static int stli_initecp(struct stlibrd *brdp)
3201{
3202        cdkecpsig_t sig;
3203        cdkecpsig_t __iomem *sigsp;
3204        unsigned int status, nxtid;
3205        char *name;
3206        int retval, panelnr, nrports;
3207
3208        if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3209                retval = -ENODEV;
3210                goto err;
3211        }
3212
3213        brdp->iosize = ECP_IOSIZE;
3214
3215        if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3216                retval = -EIO;
3217                goto err;
3218        }
3219
3220/*
3221 *      Based on the specific board type setup the common vars to access
3222 *      and enable shared memory. Set all board specific information now
3223 *      as well.
3224 */
3225        switch (brdp->brdtype) {
3226        case BRD_ECP:
3227                brdp->memsize = ECP_MEMSIZE;
3228                brdp->pagesize = ECP_ATPAGESIZE;
3229                brdp->init = stli_ecpinit;
3230                brdp->enable = stli_ecpenable;
3231                brdp->reenable = stli_ecpenable;
3232                brdp->disable = stli_ecpdisable;
3233                brdp->getmemptr = stli_ecpgetmemptr;
3234                brdp->intr = stli_ecpintr;
3235                brdp->reset = stli_ecpreset;
3236                name = "serial(EC8/64)";
3237                break;
3238
3239        case BRD_ECPE:
3240                brdp->memsize = ECP_MEMSIZE;
3241                brdp->pagesize = ECP_EIPAGESIZE;
3242                brdp->init = stli_ecpeiinit;
3243                brdp->enable = stli_ecpeienable;
3244                brdp->reenable = stli_ecpeienable;
3245                brdp->disable = stli_ecpeidisable;
3246                brdp->getmemptr = stli_ecpeigetmemptr;
3247                brdp->intr = stli_ecpintr;
3248                brdp->reset = stli_ecpeireset;
3249                name = "serial(EC8/64-EI)";
3250                break;
3251
3252        case BRD_ECPMC:
3253                brdp->memsize = ECP_MEMSIZE;
3254                brdp->pagesize = ECP_MCPAGESIZE;
3255                brdp->init = NULL;
3256                brdp->enable = stli_ecpmcenable;
3257                brdp->reenable = stli_ecpmcenable;
3258                brdp->disable = stli_ecpmcdisable;
3259                brdp->getmemptr = stli_ecpmcgetmemptr;
3260                brdp->intr = stli_ecpintr;
3261                brdp->reset = stli_ecpmcreset;
3262                name = "serial(EC8/64-MCA)";
3263                break;
3264
3265        case BRD_ECPPCI:
3266                brdp->memsize = ECP_PCIMEMSIZE;
3267                brdp->pagesize = ECP_PCIPAGESIZE;
3268                brdp->init = stli_ecppciinit;
3269                brdp->enable = NULL;
3270                brdp->reenable = NULL;
3271                brdp->disable = NULL;
3272                brdp->getmemptr = stli_ecppcigetmemptr;
3273                brdp->intr = stli_ecpintr;
3274                brdp->reset = stli_ecppcireset;
3275                name = "serial(EC/RA-PCI)";
3276                break;
3277
3278        default:
3279                retval = -EINVAL;
3280                goto err_reg;
3281        }
3282
3283/*
3284 *      The per-board operations structure is all set up, so now let's go
3285 *      and get the board operational. Firstly initialize board configuration
3286 *      registers. Set the memory mapping info so we can get at the boards
3287 *      shared memory.
3288 */
3289        EBRDINIT(brdp);
3290
3291        brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3292        if (brdp->membase == NULL) {
3293                retval = -ENOMEM;
3294                goto err_reg;
3295        }
3296
3297/*
3298 *      Now that all specific code is set up, enable the shared memory and
3299 *      look for the a signature area that will tell us exactly what board
3300 *      this is, and what it is connected to it.
3301 */
3302        EBRDENABLE(brdp);
3303        sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3304        memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3305        EBRDDISABLE(brdp);
3306
3307        if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3308                retval = -ENODEV;
3309                goto err_unmap;
3310        }
3311
3312/*
3313 *      Scan through the signature looking at the panels connected to the
3314 *      board. Calculate the total number of ports as we go.
3315 */
3316        for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3317                status = sig.panelid[nxtid];
3318                if ((status & ECH_PNLIDMASK) != nxtid)
3319                        break;
3320
3321                brdp->panelids[panelnr] = status;
3322                nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3323                if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3324                        nxtid++;
3325                brdp->panels[panelnr] = nrports;
3326                brdp->nrports += nrports;
3327                nxtid++;
3328                brdp->nrpanels++;
3329        }
3330
3331
3332        brdp->state |= BST_FOUND;
3333        return 0;
3334err_unmap:
3335        iounmap(brdp->membase);
3336        brdp->membase = NULL;
3337err_reg:
3338        release_region(brdp->iobase, brdp->iosize);
3339err:
3340        return retval;
3341}
3342
3343/*****************************************************************************/
3344
3345/*
3346 *      Try to find an ONboard, Brumby or Stallion board and initialize it.
3347 *      This handles only these board types.
3348 */
3349
3350static int stli_initonb(struct stlibrd *brdp)
3351{
3352        cdkonbsig_t sig;
3353        cdkonbsig_t __iomem *sigsp;
3354        char *name;
3355        int i, retval;
3356
3357/*
3358 *      Do a basic sanity check on the IO and memory addresses.
3359 */
3360        if (brdp->iobase == 0 || brdp->memaddr == 0) {
3361                retval = -ENODEV;
3362                goto err;
3363        }
3364
3365        brdp->iosize = ONB_IOSIZE;
3366        
3367        if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3368                retval = -EIO;
3369                goto err;
3370        }
3371
3372/*
3373 *      Based on the specific board type setup the common vars to access
3374 *      and enable shared memory. Set all board specific information now
3375 *      as well.
3376 */
3377        switch (brdp->brdtype) {
3378        case BRD_ONBOARD:
3379        case BRD_ONBOARD2:
3380                brdp->memsize = ONB_MEMSIZE;
3381                brdp->pagesize = ONB_ATPAGESIZE;
3382                brdp->init = stli_onbinit;
3383                brdp->enable = stli_onbenable;
3384                brdp->reenable = stli_onbenable;
3385                brdp->disable = stli_onbdisable;
3386                brdp->getmemptr = stli_onbgetmemptr;
3387                brdp->intr = stli_ecpintr;
3388                brdp->reset = stli_onbreset;
3389                if (brdp->memaddr > 0x100000)
3390                        brdp->enabval = ONB_MEMENABHI;
3391                else
3392                        brdp->enabval = ONB_MEMENABLO;
3393                name = "serial(ONBoard)";
3394                break;
3395
3396        case BRD_ONBOARDE:
3397                brdp->memsize = ONB_EIMEMSIZE;
3398                brdp->pagesize = ONB_EIPAGESIZE;
3399                brdp->init = stli_onbeinit;
3400                brdp->enable = stli_onbeenable;
3401                brdp->reenable = stli_onbeenable;
3402                brdp->disable = stli_onbedisable;
3403                brdp->getmemptr = stli_onbegetmemptr;
3404                brdp->intr = stli_ecpintr;
3405                brdp->reset = stli_onbereset;
3406                name = "serial(ONBoard/E)";
3407                break;
3408
3409        case BRD_BRUMBY4:
3410                brdp->memsize = BBY_MEMSIZE;
3411                brdp->pagesize = BBY_PAGESIZE;
3412                brdp->init = stli_bbyinit;
3413                brdp->enable = NULL;
3414                brdp->reenable = NULL;
3415                brdp->disable = NULL;
3416                brdp->getmemptr = stli_bbygetmemptr;
3417                brdp->intr = stli_ecpintr;
3418                brdp->reset = stli_bbyreset;
3419                name = "serial(Brumby)";
3420                break;
3421
3422        case BRD_STALLION:
3423                brdp->memsize = STAL_MEMSIZE;
3424                brdp->pagesize = STAL_PAGESIZE;
3425                brdp->init = stli_stalinit;
3426                brdp->enable = NULL;
3427                brdp->reenable = NULL;
3428                brdp->disable = NULL;
3429                brdp->getmemptr = stli_stalgetmemptr;
3430                brdp->intr = stli_ecpintr;
3431                brdp->reset = stli_stalreset;
3432                name = "serial(Stallion)";
3433                break;
3434
3435        default:
3436                retval = -EINVAL;
3437                goto err_reg;
3438        }
3439
3440/*
3441 *      The per-board operations structure is all set up, so now let's go
3442 *      and get the board operational. Firstly initialize board configuration
3443 *      registers. Set the memory mapping info so we can get at the boards
3444 *      shared memory.
3445 */
3446        EBRDINIT(brdp);
3447
3448        brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3449        if (brdp->membase == NULL) {
3450                retval = -ENOMEM;
3451                goto err_reg;
3452        }
3453
3454/*
3455 *      Now that all specific code is set up, enable the shared memory and
3456 *      look for the a signature area that will tell us exactly what board
3457 *      this is, and how many ports.
3458 */
3459        EBRDENABLE(brdp);
3460        sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3461        memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3462        EBRDDISABLE(brdp);
3463
3464        if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3465            sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3466            sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3467            sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3468                retval = -ENODEV;
3469                goto err_unmap;
3470        }
3471
3472/*
3473 *      Scan through the signature alive mask and calculate how many ports
3474 *      there are on this board.
3475 */
3476        brdp->nrpanels = 1;
3477        if (sig.amask1) {
3478                brdp->nrports = 32;
3479        } else {
3480                for (i = 0; (i < 16); i++) {
3481                        if (((sig.amask0 << i) & 0x8000) == 0)
3482                                break;
3483                }
3484                brdp->nrports = i;
3485        }
3486        brdp->panels[0] = brdp->nrports;
3487
3488
3489        brdp->state |= BST_FOUND;
3490        return 0;
3491err_unmap:
3492        iounmap(brdp->membase);
3493        brdp->membase = NULL;
3494err_reg:
3495        release_region(brdp->iobase, brdp->iosize);
3496err:
3497        return retval;
3498}
3499
3500/*****************************************************************************/
3501
3502/*
3503 *      Start up a running board. This routine is only called after the
3504 *      code has been down loaded to the board and is operational. It will
3505 *      read in the memory map, and get the show on the road...
3506 */
3507
3508static int stli_startbrd(struct stlibrd *brdp)
3509{
3510        cdkhdr_t __iomem *hdrp;
3511        cdkmem_t __iomem *memp;
3512        cdkasy_t __iomem *ap;
3513        unsigned long flags;
3514        unsigned int portnr, nrdevs, i;
3515        struct stliport *portp;
3516        int rc = 0;
3517        u32 memoff;
3518
3519        spin_lock_irqsave(&brd_lock, flags);
3520        EBRDENABLE(brdp);
3521        hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3522        nrdevs = hdrp->nrdevs;
3523
3524#if 0
3525        printk("%s(%d): CDK version %d.%d.%d --> "
3526                "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3527                 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3528                 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3529                 readl(&hdrp->slavep));
3530#endif
3531
3532        if (nrdevs < (brdp->nrports + 1)) {
3533                printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3534                                "all devices, devices=%d\n", nrdevs);
3535                brdp->nrports = nrdevs - 1;
3536        }
3537        brdp->nrdevs = nrdevs;
3538        brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3539        brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3540        brdp->bitsize = (nrdevs + 7) / 8;
3541        memoff = readl(&hdrp->memp);
3542        if (memoff > brdp->memsize) {
3543                printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3544                rc = -EIO;
3545                goto stli_donestartup;
3546        }
3547        memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3548        if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3549                printk(KERN_ERR "STALLION: no slave control device found\n");
3550                goto stli_donestartup;
3551        }
3552        memp++;
3553
3554/*
3555 *      Cycle through memory allocation of each port. We are guaranteed to
3556 *      have all ports inside the first page of slave window, so no need to
3557 *      change pages while reading memory map.
3558 */
3559        for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3560                if (readw(&memp->dtype) != TYP_ASYNC)
3561                        break;
3562                portp = brdp->ports[portnr];
3563                if (portp == NULL)
3564                        break;
3565                portp->devnr = i;
3566                portp->addr = readl(&memp->offset);
3567                portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3568                portp->portidx = (unsigned char) (i / 8);
3569                portp->portbit = (unsigned char) (0x1 << (i % 8));
3570        }
3571
3572        writeb(0xff, &hdrp->slavereq);
3573
3574/*
3575 *      For each port setup a local copy of the RX and TX buffer offsets
3576 *      and sizes. We do this separate from the above, because we need to
3577 *      move the shared memory page...
3578 */
3579        for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3580                portp = brdp->ports[portnr];
3581                if (portp == NULL)
3582                        break;
3583                if (portp->addr == 0)
3584                        break;
3585                ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3586                if (ap != NULL) {
3587                        portp->rxsize = readw(&ap->rxq.size);
3588                        portp->txsize = readw(&ap->txq.size);
3589                        portp->rxoffset = readl(&ap->rxq.offset);
3590                        portp->txoffset = readl(&ap->txq.offset);
3591                }
3592        }
3593
3594stli_donestartup:
3595        EBRDDISABLE(brdp);
3596        spin_unlock_irqrestore(&brd_lock, flags);
3597
3598        if (rc == 0)
3599                brdp->state |= BST_STARTED;
3600
3601        if (! stli_timeron) {
3602                stli_timeron++;
3603                mod_timer(&stli_timerlist, STLI_TIMEOUT);
3604        }
3605
3606        return rc;
3607}
3608
3609/*****************************************************************************/
3610
3611/*
3612 *      Probe and initialize the specified board.
3613 */
3614
3615static int __devinit stli_brdinit(struct stlibrd *brdp)
3616{
3617        int retval;
3618
3619        switch (brdp->brdtype) {
3620        case BRD_ECP:
3621        case BRD_ECPE:
3622        case BRD_ECPMC:
3623        case BRD_ECPPCI:
3624                retval = stli_initecp(brdp);
3625                break;
3626        case BRD_ONBOARD:
3627        case BRD_ONBOARDE:
3628        case BRD_ONBOARD2:
3629        case BRD_BRUMBY4:
3630        case BRD_STALLION:
3631                retval = stli_initonb(brdp);
3632                break;
3633        default:
3634                printk(KERN_ERR "STALLION: board=%d is unknown board "
3635                                "type=%d\n", brdp->brdnr, brdp->brdtype);
3636                retval = -ENODEV;
3637        }
3638
3639        if (retval)
3640                return retval;
3641
3642        stli_initports(brdp);
3643        printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3644                "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3645                brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3646                brdp->nrpanels, brdp->nrports);
3647        return 0;
3648}
3649
3650#if STLI_EISAPROBE != 0
3651/*****************************************************************************/
3652
3653/*
3654 *      Probe around trying to find where the EISA boards shared memory
3655 *      might be. This is a bit if hack, but it is the best we can do.
3656 */
3657
3658static int stli_eisamemprobe(struct stlibrd *brdp)
3659{
3660        cdkecpsig_t     ecpsig, __iomem *ecpsigp;
3661        cdkonbsig_t     onbsig, __iomem *onbsigp;
3662        int             i, foundit;
3663
3664/*
3665 *      First up we reset the board, to get it into a known state. There
3666 *      is only 2 board types here we need to worry about. Don;t use the
3667 *      standard board init routine here, it programs up the shared
3668 *      memory address, and we don't know it yet...
3669 */
3670        if (brdp->brdtype == BRD_ECPE) {
3671                outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3672                outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3673                udelay(10);
3674                outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3675                udelay(500);
3676                stli_ecpeienable(brdp);
3677        } else if (brdp->brdtype == BRD_ONBOARDE) {
3678                outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3679                outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3680                udelay(10);
3681                outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3682                mdelay(100);
3683                outb(0x1, brdp->iobase);
3684                mdelay(1);
3685                stli_onbeenable(brdp);
3686        } else {
3687                return -ENODEV;
3688        }
3689
3690        foundit = 0;
3691        brdp->memsize = ECP_MEMSIZE;
3692
3693/*
3694 *      Board shared memory is enabled, so now we have a poke around and
3695 *      see if we can find it.
3696 */
3697        for (i = 0; (i < stli_eisamempsize); i++) {
3698                brdp->memaddr = stli_eisamemprobeaddrs[i];
3699                brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3700                if (brdp->membase == NULL)
3701                        continue;
3702
3703                if (brdp->brdtype == BRD_ECPE) {
3704                        ecpsigp = stli_ecpeigetmemptr(brdp,
3705                                CDK_SIGADDR, __LINE__);
3706                        memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3707                        if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3708                                foundit = 1;
3709                } else {
3710                        onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3711                                CDK_SIGADDR, __LINE__);
3712                        memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3713                        if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3714                            (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3715                            (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3716                            (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3717                                foundit = 1;
3718                }
3719
3720                iounmap(brdp->membase);
3721                if (foundit)
3722                        break;
3723        }
3724
3725/*
3726 *      Regardless of whether we found the shared memory or not we must
3727 *      disable the region. After that return success or failure.
3728 */
3729        if (brdp->brdtype == BRD_ECPE)
3730                stli_ecpeidisable(brdp);
3731        else
3732                stli_onbedisable(brdp);
3733
3734        if (! foundit) {
3735                brdp->memaddr = 0;
3736                brdp->membase = NULL;
3737                printk(KERN_ERR "STALLION: failed to probe shared memory "
3738                                "region for %s in EISA slot=%d\n",
3739                        stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3740                return -ENODEV;
3741        }
3742        return 0;
3743}
3744#endif
3745
3746static int stli_getbrdnr(void)
3747{
3748        unsigned int i;
3749
3750        for (i = 0; i < STL_MAXBRDS; i++) {
3751                if (!stli_brds[i]) {
3752                        if (i >= stli_nrbrds)
3753                                stli_nrbrds = i + 1;
3754                        return i;
3755                }
3756        }
3757        return -1;
3758}
3759
3760#if STLI_EISAPROBE != 0
3761/*****************************************************************************/
3762
3763/*
3764 *      Probe around and try to find any EISA boards in system. The biggest
3765 *      problem here is finding out what memory address is associated with
3766 *      an EISA board after it is found. The registers of the ECPE and
3767 *      ONboardE are not readable - so we can't read them from there. We
3768 *      don't have access to the EISA CMOS (or EISA BIOS) so we don't
3769 *      actually have any way to find out the real value. The best we can
3770 *      do is go probing around in the usual places hoping we can find it.
3771 */
3772
3773static int stli_findeisabrds(void)
3774{
3775        struct stlibrd *brdp;
3776        unsigned int iobase, eid, i;
3777        int brdnr, found = 0;
3778
3779/*
3780 *      Firstly check if this is an EISA system.  If this is not an EISA system then
3781 *      don't bother going any further!
3782 */
3783        if (EISA_bus)
3784                return 0;
3785
3786/*
3787 *      Looks like an EISA system, so go searching for EISA boards.
3788 */
3789        for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3790                outb(0xff, (iobase + 0xc80));
3791                eid = inb(iobase + 0xc80);
3792                eid |= inb(iobase + 0xc81) << 8;
3793                if (eid != STL_EISAID)
3794                        continue;
3795
3796/*
3797 *              We have found a board. Need to check if this board was
3798 *              statically configured already (just in case!).
3799 */
3800                for (i = 0; (i < STL_MAXBRDS); i++) {
3801                        brdp = stli_brds[i];
3802                        if (brdp == NULL)
3803                                continue;
3804                        if (brdp->iobase == iobase)
3805                                break;
3806                }
3807                if (i < STL_MAXBRDS)
3808                        continue;
3809
3810/*
3811 *              We have found a Stallion board and it is not configured already.
3812 *              Allocate a board structure and initialize it.
3813 */
3814                if ((brdp = stli_allocbrd()) == NULL)
3815                        return found ? : -ENOMEM;
3816                brdnr = stli_getbrdnr();
3817                if (brdnr < 0)
3818                        return found ? : -ENOMEM;
3819                brdp->brdnr = (unsigned int)brdnr;
3820                eid = inb(iobase + 0xc82);
3821                if (eid == ECP_EISAID)
3822                        brdp->brdtype = BRD_ECPE;
3823                else if (eid == ONB_EISAID)
3824                        brdp->brdtype = BRD_ONBOARDE;
3825                else
3826                        brdp->brdtype = BRD_UNKNOWN;
3827                brdp->iobase = iobase;
3828                outb(0x1, (iobase + 0xc84));
3829                if (stli_eisamemprobe(brdp))
3830                        outb(0, (iobase + 0xc84));
3831                if (stli_brdinit(brdp) < 0) {
3832                        kfree(brdp);
3833                        continue;
3834                }
3835
3836                stli_brds[brdp->brdnr] = brdp;
3837                found++;
3838
3839                for (i = 0; i < brdp->nrports; i++)
3840                        tty_register_device(stli_serial,
3841                                        brdp->brdnr * STL_MAXPORTS + i, NULL);
3842        }
3843
3844        return found;
3845}
3846#else
3847static inline int stli_findeisabrds(void) { return 0; }
3848#endif
3849
3850/*****************************************************************************/
3851
3852/*
3853 *      Find the next available board number that is free.
3854 */
3855
3856/*****************************************************************************/
3857
3858/*
3859 *      We have a Stallion board. Allocate a board structure and
3860 *      initialize it. Read its IO and MEMORY resources from PCI
3861 *      configuration space.
3862 */
3863
3864static int __devinit stli_pciprobe(struct pci_dev *pdev,
3865                const struct pci_device_id *ent)
3866{
3867        struct stlibrd *brdp;
3868        unsigned int i;
3869        int brdnr, retval = -EIO;
3870
3871        retval = pci_enable_device(pdev);
3872        if (retval)
3873                goto err;
3874        brdp = stli_allocbrd();
3875        if (brdp == NULL) {
3876                retval = -ENOMEM;
3877                goto err;
3878        }
3879        mutex_lock(&stli_brdslock);
3880        brdnr = stli_getbrdnr();
3881        if (brdnr < 0) {
3882                printk(KERN_INFO "STALLION: too many boards found, "
3883                        "maximum supported %d\n", STL_MAXBRDS);
3884                mutex_unlock(&stli_brdslock);
3885                retval = -EIO;
3886                goto err_fr;
3887        }
3888        brdp->brdnr = (unsigned int)brdnr;
3889        stli_brds[brdp->brdnr] = brdp;
3890        mutex_unlock(&stli_brdslock);
3891        brdp->brdtype = BRD_ECPPCI;
3892/*
3893 *      We have all resources from the board, so lets setup the actual
3894 *      board structure now.
3895 */
3896        brdp->iobase = pci_resource_start(pdev, 3);
3897        brdp->memaddr = pci_resource_start(pdev, 2);
3898        retval = stli_brdinit(brdp);
3899        if (retval)
3900                goto err_null;
3901
3902        brdp->state |= BST_PROBED;
3903        pci_set_drvdata(pdev, brdp);
3904
3905        EBRDENABLE(brdp);
3906        brdp->enable = NULL;
3907        brdp->disable = NULL;
3908
3909        for (i = 0; i < brdp->nrports; i++)
3910                tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3911                                &pdev->dev);
3912
3913        return 0;
3914err_null:
3915        stli_brds[brdp->brdnr] = NULL;
3916err_fr:
3917        kfree(brdp);
3918err:
3919        return retval;
3920}
3921
3922static void stli_pciremove(struct pci_dev *pdev)
3923{
3924        struct stlibrd *brdp = pci_get_drvdata(pdev);
3925
3926        stli_cleanup_ports(brdp);
3927
3928        iounmap(brdp->membase);
3929        if (brdp->iosize > 0)
3930                release_region(brdp->iobase, brdp->iosize);
3931
3932        stli_brds[brdp->brdnr] = NULL;
3933        kfree(brdp);
3934}
3935
3936static struct pci_driver stli_pcidriver = {
3937        .name = "istallion",
3938        .id_table = istallion_pci_tbl,
3939        .probe = stli_pciprobe,
3940        .remove = __devexit_p(stli_pciremove)
3941};
3942/*****************************************************************************/
3943
3944/*
3945 *      Allocate a new board structure. Fill out the basic info in it.
3946 */
3947
3948static struct stlibrd *stli_allocbrd(void)
3949{
3950        struct stlibrd *brdp;
3951
3952        brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3953        if (!brdp) {
3954                printk(KERN_ERR "STALLION: failed to allocate memory "
3955                                "(size=%Zd)\n", sizeof(struct stlibrd));
3956                return NULL;
3957        }
3958        brdp->magic = STLI_BOARDMAGIC;
3959        return brdp;
3960}
3961
3962/*****************************************************************************/
3963
3964/*
3965 *      Scan through all the boards in the configuration and see what we
3966 *      can find.
3967 */
3968
3969static int stli_initbrds(void)
3970{
3971        struct stlibrd *brdp, *nxtbrdp;
3972        struct stlconf conf;
3973        unsigned int i, j, found = 0;
3974        int retval;
3975
3976        for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3977                        stli_nrbrds++) {
3978                memset(&conf, 0, sizeof(conf));
3979                if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3980                        continue;
3981                if ((brdp = stli_allocbrd()) == NULL)
3982                        continue;
3983                brdp->brdnr = stli_nrbrds;
3984                brdp->brdtype = conf.brdtype;
3985                brdp->iobase = conf.ioaddr1;
3986                brdp->memaddr = conf.memaddr;
3987                if (stli_brdinit(brdp) < 0) {
3988                        kfree(brdp);
3989                        continue;
3990                }
3991                stli_brds[brdp->brdnr] = brdp;
3992                found++;
3993
3994                for (i = 0; i < brdp->nrports; i++)
3995                        tty_register_device(stli_serial,
3996                                        brdp->brdnr * STL_MAXPORTS + i, NULL);
3997        }
3998
3999        retval = stli_findeisabrds();
4000        if (retval > 0)
4001                found += retval;
4002
4003/*
4004 *      All found boards are initialized. Now for a little optimization, if
4005 *      no boards are sharing the "shared memory" regions then we can just
4006 *      leave them all enabled. This is in fact the usual case.
4007 */
4008        stli_shared = 0;
4009        if (stli_nrbrds > 1) {
4010                for (i = 0; (i < stli_nrbrds); i++) {
4011                        brdp = stli_brds[i];
4012                        if (brdp == NULL)
4013                                continue;
4014                        for (j = i + 1; (j < stli_nrbrds); j++) {
4015                                nxtbrdp = stli_brds[j];
4016                                if (nxtbrdp == NULL)
4017                                        continue;
4018                                if ((brdp->membase >= nxtbrdp->membase) &&
4019                                    (brdp->membase <= (nxtbrdp->membase +
4020                                    nxtbrdp->memsize - 1))) {
4021                                        stli_shared++;
4022                                        break;
4023                                }
4024                        }
4025                }
4026        }
4027
4028        if (stli_shared == 0) {
4029                for (i = 0; (i < stli_nrbrds); i++) {
4030                        brdp = stli_brds[i];
4031                        if (brdp == NULL)
4032                                continue;
4033                        if (brdp->state & BST_FOUND) {
4034                                EBRDENABLE(brdp);
4035                                brdp->enable = NULL;
4036                                brdp->disable = NULL;
4037                        }
4038                }
4039        }
4040
4041        retval = pci_register_driver(&stli_pcidriver);
4042        if (retval && found == 0) {
4043                printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
4044                                "driver can be registered!\n");
4045                goto err;
4046        }
4047
4048        return 0;
4049err:
4050        return retval;
4051}
4052
4053/*****************************************************************************/
4054
4055/*
4056 *      Code to handle an "staliomem" read operation. This device is the 
4057 *      contents of the board shared memory. It is used for down loading
4058 *      the slave image (and debugging :-)
4059 */
4060
4061static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4062{
4063        unsigned long flags;
4064        void __iomem *memptr;
4065        struct stlibrd *brdp;
4066        unsigned int brdnr;
4067        int size, n;
4068        void *p;
4069        loff_t off = *offp;
4070
4071        brdnr = iminor(fp->f_path.dentry->d_inode);
4072        if (brdnr >= stli_nrbrds)
4073                return -ENODEV;
4074        brdp = stli_brds[brdnr];
4075        if (brdp == NULL)
4076                return -ENODEV;
4077        if (brdp->state == 0)
4078                return -ENODEV;
4079        if (off >= brdp->memsize || off + count < off)
4080                return 0;
4081
4082        size = min(count, (size_t)(brdp->memsize - off));
4083
4084        /*
4085         *      Copy the data a page at a time
4086         */
4087
4088        p = (void *)__get_free_page(GFP_KERNEL);
4089        if(p == NULL)
4090                return -ENOMEM;
4091
4092        while (size > 0) {
4093                spin_lock_irqsave(&brd_lock, flags);
4094                EBRDENABLE(brdp);
4095                memptr = EBRDGETMEMPTR(brdp, off);
4096                n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4097                n = min(n, (int)PAGE_SIZE);
4098                memcpy_fromio(p, memptr, n);
4099                EBRDDISABLE(brdp);
4100                spin_unlock_irqrestore(&brd_lock, flags);
4101                if (copy_to_user(buf, p, n)) {
4102                        count = -EFAULT;
4103                        goto out;
4104                }
4105                off += n;
4106                buf += n;
4107                size -= n;
4108        }
4109out:
4110        *offp = off;
4111        free_page((unsigned long)p);
4112        return count;
4113}
4114
4115/*****************************************************************************/
4116
4117/*
4118 *      Code to handle an "staliomem" write operation. This device is the 
4119 *      contents of the board shared memory. It is used for down loading
4120 *      the slave image (and debugging :-)
4121 *
4122 *      FIXME: copy under lock
4123 */
4124
4125static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4126{
4127        unsigned long flags;
4128        void __iomem *memptr;
4129        struct stlibrd *brdp;
4130        char __user *chbuf;
4131        unsigned int brdnr;
4132        int size, n;
4133        void *p;
4134        loff_t off = *offp;
4135
4136        brdnr = iminor(fp->f_path.dentry->d_inode);
4137
4138        if (brdnr >= stli_nrbrds)
4139                return -ENODEV;
4140        brdp = stli_brds[brdnr];
4141        if (brdp == NULL)
4142                return -ENODEV;
4143        if (brdp->state == 0)
4144                return -ENODEV;
4145        if (off >= brdp->memsize || off + count < off)
4146                return 0;
4147
4148        chbuf = (char __user *) buf;
4149        size = min(count, (size_t)(brdp->memsize - off));
4150
4151        /*
4152         *      Copy the data a page at a time
4153         */
4154
4155        p = (void *)__get_free_page(GFP_KERNEL);
4156        if(p == NULL)
4157                return -ENOMEM;
4158
4159        while (size > 0) {
4160                n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4161                n = min(n, (int)PAGE_SIZE);
4162                if (copy_from_user(p, chbuf, n)) {
4163                        if (count == 0)
4164                                count = -EFAULT;
4165                        goto out;
4166                }
4167                spin_lock_irqsave(&brd_lock, flags);
4168                EBRDENABLE(brdp);
4169                memptr = EBRDGETMEMPTR(brdp, off);
4170                memcpy_toio(memptr, p, n);
4171                EBRDDISABLE(brdp);
4172                spin_unlock_irqrestore(&brd_lock, flags);
4173                off += n;
4174                chbuf += n;
4175                size -= n;
4176        }
4177out:
4178        free_page((unsigned long) p);
4179        *offp = off;
4180        return count;
4181}
4182
4183/*****************************************************************************/
4184
4185/*
4186 *      Return the board stats structure to user app.
4187 */
4188
4189static int stli_getbrdstats(combrd_t __user *bp)
4190{
4191        struct stlibrd *brdp;
4192        unsigned int i;
4193
4194        if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4195                return -EFAULT;
4196        if (stli_brdstats.brd >= STL_MAXBRDS)
4197                return -ENODEV;
4198        brdp = stli_brds[stli_brdstats.brd];
4199        if (brdp == NULL)
4200                return -ENODEV;
4201
4202        memset(&stli_brdstats, 0, sizeof(combrd_t));
4203        stli_brdstats.brd = brdp->brdnr;
4204        stli_brdstats.type = brdp->brdtype;
4205        stli_brdstats.hwid = 0;
4206        stli_brdstats.state = brdp->state;
4207        stli_brdstats.ioaddr = brdp->iobase;
4208        stli_brdstats.memaddr = brdp->memaddr;
4209        stli_brdstats.nrpanels = brdp->nrpanels;
4210        stli_brdstats.nrports = brdp->nrports;
4211        for (i = 0; (i < brdp->nrpanels); i++) {
4212                stli_brdstats.panels[i].panel = i;
4213                stli_brdstats.panels[i].hwid = brdp->panelids[i];
4214                stli_brdstats.panels[i].nrports = brdp->panels[i];
4215        }
4216
4217        if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4218                return -EFAULT;
4219        return 0;
4220}
4221
4222/*****************************************************************************/
4223
4224/*
4225 *      Resolve the referenced port number into a port struct pointer.
4226 */
4227
4228static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4229                unsigned int portnr)
4230{
4231        struct stlibrd *brdp;
4232        unsigned int i;
4233
4234        if (brdnr >= STL_MAXBRDS)
4235                return NULL;
4236        brdp = stli_brds[brdnr];
4237        if (brdp == NULL)
4238                return NULL;
4239        for (i = 0; (i < panelnr); i++)
4240                portnr += brdp->panels[i];
4241        if (portnr >= brdp->nrports)
4242                return NULL;
4243        return brdp->ports[portnr];
4244}
4245
4246/*****************************************************************************/
4247
4248/*
4249 *      Return the port stats structure to user app. A NULL port struct
4250 *      pointer passed in means that we need to find out from the app
4251 *      what port to get stats for (used through board control device).
4252 */
4253
4254static int stli_portcmdstats(struct stliport *portp)
4255{
4256        unsigned long   flags;
4257        struct stlibrd  *brdp;
4258        int             rc;
4259
4260        memset(&stli_comstats, 0, sizeof(comstats_t));
4261
4262        if (portp == NULL)
4263                return -ENODEV;
4264        brdp = stli_brds[portp->brdnr];
4265        if (brdp == NULL)
4266                return -ENODEV;
4267
4268        if (brdp->state & BST_STARTED) {
4269                if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4270                    &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4271                        return rc;
4272        } else {
4273                memset(&stli_cdkstats, 0, sizeof(asystats_t));
4274        }
4275
4276        stli_comstats.brd = portp->brdnr;
4277        stli_comstats.panel = portp->panelnr;
4278        stli_comstats.port = portp->portnr;
4279        stli_comstats.state = portp->state;
4280        stli_comstats.flags = portp->flags;
4281
4282        spin_lock_irqsave(&brd_lock, flags);
4283        if (portp->tty != NULL) {
4284                if (portp->tty->driver_data == portp) {
4285                        stli_comstats.ttystate = portp->tty->flags;
4286                        stli_comstats.rxbuffered = -1;
4287                        if (portp->tty->termios != NULL) {
4288                                stli_comstats.cflags = portp->tty->termios->c_cflag;
4289                                stli_comstats.iflags = portp->tty->termios->c_iflag;
4290                                stli_comstats.oflags = portp->tty->termios->c_oflag;
4291                                stli_comstats.lflags = portp->tty->termios->c_lflag;
4292                        }
4293                }
4294        }
4295        spin_unlock_irqrestore(&brd_lock, flags);
4296
4297        stli_comstats.txtotal = stli_cdkstats.txchars;
4298        stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4299        stli_comstats.txbuffered = stli_cdkstats.txringq;
4300        stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4301        stli_comstats.rxoverrun = stli_cdkstats.overruns;
4302        stli_comstats.rxparity = stli_cdkstats.parity;
4303        stli_comstats.rxframing = stli_cdkstats.framing;
4304        stli_comstats.rxlost = stli_cdkstats.ringover;
4305        stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4306        stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4307        stli_comstats.txxon = stli_cdkstats.txstart;
4308        stli_comstats.txxoff = stli_cdkstats.txstop;
4309        stli_comstats.rxxon = stli_cdkstats.rxstart;
4310        stli_comstats.rxxoff = stli_cdkstats.rxstop;
4311        stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4312        stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4313        stli_comstats.modem = stli_cdkstats.dcdcnt;
4314        stli_comstats.hwid = stli_cdkstats.hwid;
4315        stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4316
4317        return 0;
4318}
4319
4320/*****************************************************************************/
4321
4322/*
4323 *      Return the port stats structure to user app. A NULL port struct
4324 *      pointer passed in means that we need to find out from the app
4325 *      what port to get stats for (used through board control device).
4326 */
4327
4328static int stli_getportstats(struct stliport *portp, comstats_t __user *cp)
4329{
4330        struct stlibrd *brdp;
4331        int rc;
4332
4333        if (!portp) {
4334                if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4335                        return -EFAULT;
4336                portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4337                        stli_comstats.port);
4338                if (!portp)
4339                        return -ENODEV;
4340        }
4341
4342        brdp = stli_brds[portp->brdnr];
4343        if (!brdp)
4344                return -ENODEV;
4345
4346        if ((rc = stli_portcmdstats(portp)) < 0)
4347                return rc;
4348
4349        return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4350                        -EFAULT : 0;
4351}
4352
4353/*****************************************************************************/
4354
4355/*
4356 *      Clear the port stats structure. We also return it zeroed out...
4357 */
4358
4359static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4360{
4361        struct stlibrd *brdp;
4362        int rc;
4363
4364        if (!portp) {
4365                if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4366                        return -EFAULT;
4367                portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4368                        stli_comstats.port);
4369                if (!portp)
4370                        return -ENODEV;
4371        }
4372
4373        brdp = stli_brds[portp->brdnr];
4374        if (!brdp)
4375                return -ENODEV;
4376
4377        if (brdp->state & BST_STARTED) {
4378                if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4379                        return rc;
4380        }
4381
4382        memset(&stli_comstats, 0, sizeof(comstats_t));
4383        stli_comstats.brd = portp->brdnr;
4384        stli_comstats.panel = portp->panelnr;
4385        stli_comstats.port = portp->portnr;
4386
4387        if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4388                return -EFAULT;
4389        return 0;
4390}
4391
4392/*****************************************************************************/
4393
4394/*
4395 *      Return the entire driver ports structure to a user app.
4396 */
4397
4398static int stli_getportstruct(struct stliport __user *arg)
4399{
4400        struct stliport stli_dummyport;
4401        struct stliport *portp;
4402
4403        if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4404                return -EFAULT;
4405        portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4406                 stli_dummyport.portnr);
4407        if (!portp)
4408                return -ENODEV;
4409        if (copy_to_user(arg, portp, sizeof(struct stliport)))
4410                return -EFAULT;
4411        return 0;
4412}
4413
4414/*****************************************************************************/
4415
4416/*
4417 *      Return the entire driver board structure to a user app.
4418 */
4419
4420static int stli_getbrdstruct(struct stlibrd __user *arg)
4421{
4422        struct stlibrd stli_dummybrd;
4423        struct stlibrd *brdp;
4424
4425        if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4426                return -EFAULT;
4427        if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4428                return -ENODEV;
4429        brdp = stli_brds[stli_dummybrd.brdnr];
4430        if (!brdp)
4431                return -ENODEV;
4432        if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4433                return -EFAULT;
4434        return 0;
4435}
4436
4437/*****************************************************************************/
4438
4439/*
4440 *      The "staliomem" device is also required to do some special operations on
4441 *      the board. We need to be able to send an interrupt to the board,
4442 *      reset it, and start/stop it.
4443 */
4444
4445static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4446{
4447        struct stlibrd *brdp;
4448        int brdnr, rc, done;
4449        void __user *argp = (void __user *)arg;
4450
4451/*
4452 *      First up handle the board independent ioctls.
4453 */
4454        done = 0;
4455        rc = 0;
4456
4457        switch (cmd) {
4458        case COM_GETPORTSTATS:
4459                rc = stli_getportstats(NULL, argp);
4460                done++;
4461                break;
4462        case COM_CLRPORTSTATS:
4463                rc = stli_clrportstats(NULL, argp);
4464                done++;
4465                break;
4466        case COM_GETBRDSTATS:
4467                rc = stli_getbrdstats(argp);
4468                done++;
4469                break;
4470        case COM_READPORT:
4471                rc = stli_getportstruct(argp);
4472                done++;
4473                break;
4474        case COM_READBOARD:
4475                rc = stli_getbrdstruct(argp);
4476                done++;
4477                break;
4478        }
4479
4480        if (done)
4481                return rc;
4482
4483/*
4484 *      Now handle the board specific ioctls. These all depend on the
4485 *      minor number of the device they were called from.
4486 */
4487        brdnr = iminor(ip);
4488        if (brdnr >= STL_MAXBRDS)
4489                return -ENODEV;
4490        brdp = stli_brds[brdnr];
4491        if (!brdp)
4492                return -ENODEV;
4493        if (brdp->state == 0)
4494                return -ENODEV;
4495
4496        switch (cmd) {
4497        case STL_BINTR:
4498                EBRDINTR(brdp);
4499                break;
4500        case STL_BSTART:
4501                rc = stli_startbrd(brdp);
4502                break;
4503        case STL_BSTOP:
4504                brdp->state &= ~BST_STARTED;
4505                break;
4506        case STL_BRESET:
4507                brdp->state &= ~BST_STARTED;
4508                EBRDRESET(brdp);
4509                if (stli_shared == 0) {
4510                        if (brdp->reenable != NULL)
4511                                (* brdp->reenable)(brdp);
4512                }
4513                break;
4514        default:
4515                rc = -ENOIOCTLCMD;
4516                break;
4517        }
4518        return rc;
4519}
4520
4521static const struct tty_operations stli_ops = {
4522        .open = stli_open,
4523        .close = stli_close,
4524        .write = stli_write,
4525        .put_char = stli_putchar,
4526        .flush_chars = stli_flushchars,
4527        .write_room = stli_writeroom,
4528        .chars_in_buffer = stli_charsinbuffer,
4529        .ioctl = stli_ioctl,
4530        .set_termios = stli_settermios,
4531        .throttle = stli_throttle,
4532        .unthrottle = stli_unthrottle,
4533        .stop = stli_stop,
4534        .start = stli_start,
4535        .hangup = stli_hangup,
4536        .flush_buffer = stli_flushbuffer,
4537        .break_ctl = stli_breakctl,
4538        .wait_until_sent = stli_waituntilsent,
4539        .send_xchar = stli_sendxchar,
4540        .read_proc = stli_readproc,
4541        .tiocmget = stli_tiocmget,
4542        .tiocmset = stli_tiocmset,
4543};
4544
4545/*****************************************************************************/
4546/*
4547 *      Loadable module initialization stuff.
4548 */
4549
4550static void istallion_cleanup_isa(void)
4551{
4552        struct stlibrd  *brdp;
4553        unsigned int j;
4554
4555        for (j = 0; (j < stli_nrbrds); j++) {
4556                if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4557                        continue;
4558
4559                stli_cleanup_ports(brdp);
4560
4561                iounmap(brdp->membase);
4562                if (brdp->iosize > 0)
4563                        release_region(brdp->iobase, brdp->iosize);
4564                kfree(brdp);
4565                stli_brds[j] = NULL;
4566        }
4567}
4568
4569static int __init istallion_module_init(void)
4570{
4571        unsigned int i;
4572        int retval;
4573
4574        printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4575
4576        spin_lock_init(&stli_lock);
4577        spin_lock_init(&brd_lock);
4578
4579        stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4580        if (!stli_txcookbuf) {
4581                printk(KERN_ERR "STALLION: failed to allocate memory "
4582                                "(size=%d)\n", STLI_TXBUFSIZE);
4583                retval = -ENOMEM;
4584                goto err;
4585        }
4586
4587        stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4588        if (!stli_serial) {
4589                retval = -ENOMEM;
4590                goto err_free;
4591        }
4592
4593        stli_serial->owner = THIS_MODULE;
4594        stli_serial->driver_name = stli_drvname;
4595        stli_serial->name = stli_serialname;
4596        stli_serial->major = STL_SERIALMAJOR;
4597        stli_serial->minor_start = 0;
4598        stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4599        stli_serial->subtype = SERIAL_TYPE_NORMAL;
4600        stli_serial->init_termios = stli_deftermios;
4601        stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4602        tty_set_operations(stli_serial, &stli_ops);
4603
4604        retval = tty_register_driver(stli_serial);
4605        if (retval) {
4606                printk(KERN_ERR "STALLION: failed to register serial driver\n");
4607                goto err_ttyput;
4608        }
4609
4610        retval = stli_initbrds();
4611        if (retval)
4612                goto err_ttyunr;
4613
4614/*
4615 *      Set up a character driver for the shared memory region. We need this
4616 *      to down load the slave code image. Also it is a useful debugging tool.
4617 */
4618        retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4619        if (retval) {
4620                printk(KERN_ERR "STALLION: failed to register serial memory "
4621                                "device\n");
4622                goto err_deinit;
4623        }
4624
4625        istallion_class = class_create(THIS_MODULE, "staliomem");
4626        for (i = 0; i < 4; i++)
4627                device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4628                              "staliomem%d", i);
4629
4630        return 0;
4631err_deinit:
4632        pci_unregister_driver(&stli_pcidriver);
4633        istallion_cleanup_isa();
4634err_ttyunr:
4635        tty_unregister_driver(stli_serial);
4636err_ttyput:
4637        put_tty_driver(stli_serial);
4638err_free:
4639        kfree(stli_txcookbuf);
4640err:
4641        return retval;
4642}
4643
4644/*****************************************************************************/
4645
4646static void __exit istallion_module_exit(void)
4647{
4648        unsigned int j;
4649
4650        printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4651                stli_drvversion);
4652
4653        if (stli_timeron) {
4654                stli_timeron = 0;
4655                del_timer_sync(&stli_timerlist);
4656        }
4657
4658        unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4659
4660        for (j = 0; j < 4; j++)
4661                device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4662        class_destroy(istallion_class);
4663
4664        pci_unregister_driver(&stli_pcidriver);
4665        istallion_cleanup_isa();
4666
4667        tty_unregister_driver(stli_serial);
4668        put_tty_driver(stli_serial);
4669
4670        kfree(stli_txcookbuf);
4671}
4672
4673module_init(istallion_module_init);
4674module_exit(istallion_module_exit);
4675