linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 *      void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *      void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 *      void add_interrupt_randomness(int irq);
 131 *
 132 * add_input_randomness() uses the input layer interrupt timing, as well as
 133 * the event type information from the hardware.
 134 *
 135 * add_interrupt_randomness() uses the inter-interrupt timing as random
 136 * inputs to the entropy pool.  Note that not all interrupts are good
 137 * sources of randomness!  For example, the timer interrupts is not a
 138 * good choice, because the periodicity of the interrupts is too
 139 * regular, and hence predictable to an attacker.  Disk interrupts are
 140 * a better measure, since the timing of the disk interrupts are more
 141 * unpredictable.
 142 *
 143 * All of these routines try to estimate how many bits of randomness a
 144 * particular randomness source.  They do this by keeping track of the
 145 * first and second order deltas of the event timings.
 146 *
 147 * Ensuring unpredictability at system startup
 148 * ============================================
 149 *
 150 * When any operating system starts up, it will go through a sequence
 151 * of actions that are fairly predictable by an adversary, especially
 152 * if the start-up does not involve interaction with a human operator.
 153 * This reduces the actual number of bits of unpredictability in the
 154 * entropy pool below the value in entropy_count.  In order to
 155 * counteract this effect, it helps to carry information in the
 156 * entropy pool across shut-downs and start-ups.  To do this, put the
 157 * following lines an appropriate script which is run during the boot
 158 * sequence:
 159 *
 160 *      echo "Initializing random number generator..."
 161 *      random_seed=/var/run/random-seed
 162 *      # Carry a random seed from start-up to start-up
 163 *      # Load and then save the whole entropy pool
 164 *      if [ -f $random_seed ]; then
 165 *              cat $random_seed >/dev/urandom
 166 *      else
 167 *              touch $random_seed
 168 *      fi
 169 *      chmod 600 $random_seed
 170 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 171 *
 172 * and the following lines in an appropriate script which is run as
 173 * the system is shutdown:
 174 *
 175 *      # Carry a random seed from shut-down to start-up
 176 *      # Save the whole entropy pool
 177 *      echo "Saving random seed..."
 178 *      random_seed=/var/run/random-seed
 179 *      touch $random_seed
 180 *      chmod 600 $random_seed
 181 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 182 *
 183 * For example, on most modern systems using the System V init
 184 * scripts, such code fragments would be found in
 185 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 187 *
 188 * Effectively, these commands cause the contents of the entropy pool
 189 * to be saved at shut-down time and reloaded into the entropy pool at
 190 * start-up.  (The 'dd' in the addition to the bootup script is to
 191 * make sure that /etc/random-seed is different for every start-up,
 192 * even if the system crashes without executing rc.0.)  Even with
 193 * complete knowledge of the start-up activities, predicting the state
 194 * of the entropy pool requires knowledge of the previous history of
 195 * the system.
 196 *
 197 * Configuring the /dev/random driver under Linux
 198 * ==============================================
 199 *
 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 201 * the /dev/mem major number (#1).  So if your system does not have
 202 * /dev/random and /dev/urandom created already, they can be created
 203 * by using the commands:
 204 *
 205 *      mknod /dev/random c 1 8
 206 *      mknod /dev/urandom c 1 9
 207 *
 208 * Acknowledgements:
 209 * =================
 210 *
 211 * Ideas for constructing this random number generator were derived
 212 * from Pretty Good Privacy's random number generator, and from private
 213 * discussions with Phil Karn.  Colin Plumb provided a faster random
 214 * number generator, which speed up the mixing function of the entropy
 215 * pool, taken from PGPfone.  Dale Worley has also contributed many
 216 * useful ideas and suggestions to improve this driver.
 217 *
 218 * Any flaws in the design are solely my responsibility, and should
 219 * not be attributed to the Phil, Colin, or any of authors of PGP.
 220 *
 221 * Further background information on this topic may be obtained from
 222 * RFC 1750, "Randomness Recommendations for Security", by Donald
 223 * Eastlake, Steve Crocker, and Jeff Schiller.
 224 */
 225
 226#include <linux/utsname.h>
 227#include <linux/module.h>
 228#include <linux/kernel.h>
 229#include <linux/major.h>
 230#include <linux/string.h>
 231#include <linux/fcntl.h>
 232#include <linux/slab.h>
 233#include <linux/random.h>
 234#include <linux/poll.h>
 235#include <linux/init.h>
 236#include <linux/fs.h>
 237#include <linux/genhd.h>
 238#include <linux/interrupt.h>
 239#include <linux/spinlock.h>
 240#include <linux/percpu.h>
 241#include <linux/cryptohash.h>
 242
 243#include <asm/processor.h>
 244#include <asm/uaccess.h>
 245#include <asm/irq.h>
 246#include <asm/io.h>
 247
 248/*
 249 * Configuration information
 250 */
 251#define INPUT_POOL_WORDS 128
 252#define OUTPUT_POOL_WORDS 32
 253#define SEC_XFER_SIZE 512
 254
 255/*
 256 * The minimum number of bits of entropy before we wake up a read on
 257 * /dev/random.  Should be enough to do a significant reseed.
 258 */
 259static int random_read_wakeup_thresh = 64;
 260
 261/*
 262 * If the entropy count falls under this number of bits, then we
 263 * should wake up processes which are selecting or polling on write
 264 * access to /dev/random.
 265 */
 266static int random_write_wakeup_thresh = 128;
 267
 268/*
 269 * When the input pool goes over trickle_thresh, start dropping most
 270 * samples to avoid wasting CPU time and reduce lock contention.
 271 */
 272
 273static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 274
 275static DEFINE_PER_CPU(int, trickle_count) = 0;
 276
 277/*
 278 * A pool of size .poolwords is stirred with a primitive polynomial
 279 * of degree .poolwords over GF(2).  The taps for various sizes are
 280 * defined below.  They are chosen to be evenly spaced (minimum RMS
 281 * distance from evenly spaced; the numbers in the comments are a
 282 * scaled squared error sum) except for the last tap, which is 1 to
 283 * get the twisting happening as fast as possible.
 284 */
 285static struct poolinfo {
 286        int poolwords;
 287        int tap1, tap2, tap3, tap4, tap5;
 288} poolinfo_table[] = {
 289        /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 290        { 128,  103,    76,     51,     25,     1 },
 291        /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 292        { 32,   26,     20,     14,     7,      1 },
 293#if 0
 294        /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 295        { 2048, 1638,   1231,   819,    411,    1 },
 296
 297        /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 298        { 1024, 817,    615,    412,    204,    1 },
 299
 300        /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 301        { 1024, 819,    616,    410,    207,    2 },
 302
 303        /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 304        { 512,  411,    308,    208,    104,    1 },
 305
 306        /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 307        { 512,  409,    307,    206,    102,    2 },
 308        /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 309        { 512,  409,    309,    205,    103,    2 },
 310
 311        /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 312        { 256,  205,    155,    101,    52,     1 },
 313
 314        /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 315        { 128,  103,    78,     51,     27,     2 },
 316
 317        /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 318        { 64,   52,     39,     26,     14,     1 },
 319#endif
 320};
 321
 322#define POOLBITS        poolwords*32
 323#define POOLBYTES       poolwords*4
 324
 325/*
 326 * For the purposes of better mixing, we use the CRC-32 polynomial as
 327 * well to make a twisted Generalized Feedback Shift Reigster
 328 *
 329 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 330 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 331 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 332 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 333 *
 334 * Thanks to Colin Plumb for suggesting this.
 335 *
 336 * We have not analyzed the resultant polynomial to prove it primitive;
 337 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 338 * of a random large-degree polynomial over GF(2) are more than large enough
 339 * that periodicity is not a concern.
 340 *
 341 * The input hash is much less sensitive than the output hash.  All
 342 * that we want of it is that it be a good non-cryptographic hash;
 343 * i.e. it not produce collisions when fed "random" data of the sort
 344 * we expect to see.  As long as the pool state differs for different
 345 * inputs, we have preserved the input entropy and done a good job.
 346 * The fact that an intelligent attacker can construct inputs that
 347 * will produce controlled alterations to the pool's state is not
 348 * important because we don't consider such inputs to contribute any
 349 * randomness.  The only property we need with respect to them is that
 350 * the attacker can't increase his/her knowledge of the pool's state.
 351 * Since all additions are reversible (knowing the final state and the
 352 * input, you can reconstruct the initial state), if an attacker has
 353 * any uncertainty about the initial state, he/she can only shuffle
 354 * that uncertainty about, but never cause any collisions (which would
 355 * decrease the uncertainty).
 356 *
 357 * The chosen system lets the state of the pool be (essentially) the input
 358 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 359 * this is a universal class of hash functions, meaning that the chance
 360 * of a collision is limited by the attacker's knowledge of the generator
 361 * polynomail, so if it is chosen at random, an attacker can never force
 362 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 363 * ###--> it is unknown to the processes generating the input entropy. <-###
 364 * Because of this important property, this is a good, collision-resistant
 365 * hash; hash collisions will occur no more often than chance.
 366 */
 367
 368/*
 369 * Static global variables
 370 */
 371static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 372static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 373
 374#if 0
 375static int debug = 0;
 376module_param(debug, bool, 0644);
 377#define DEBUG_ENT(fmt, arg...) do { if (debug) \
 378        printk(KERN_DEBUG "random %04d %04d %04d: " \
 379        fmt,\
 380        input_pool.entropy_count,\
 381        blocking_pool.entropy_count,\
 382        nonblocking_pool.entropy_count,\
 383        ## arg); } while (0)
 384#else
 385#define DEBUG_ENT(fmt, arg...) do {} while (0)
 386#endif
 387
 388/**********************************************************************
 389 *
 390 * OS independent entropy store.   Here are the functions which handle
 391 * storing entropy in an entropy pool.
 392 *
 393 **********************************************************************/
 394
 395struct entropy_store;
 396struct entropy_store {
 397        /* mostly-read data: */
 398        struct poolinfo *poolinfo;
 399        __u32 *pool;
 400        const char *name;
 401        int limit;
 402        struct entropy_store *pull;
 403
 404        /* read-write data: */
 405        spinlock_t lock ____cacheline_aligned_in_smp;
 406        unsigned add_ptr;
 407        int entropy_count;
 408        int input_rotate;
 409};
 410
 411static __u32 input_pool_data[INPUT_POOL_WORDS];
 412static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 413static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 414
 415static struct entropy_store input_pool = {
 416        .poolinfo = &poolinfo_table[0],
 417        .name = "input",
 418        .limit = 1,
 419        .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 420        .pool = input_pool_data
 421};
 422
 423static struct entropy_store blocking_pool = {
 424        .poolinfo = &poolinfo_table[1],
 425        .name = "blocking",
 426        .limit = 1,
 427        .pull = &input_pool,
 428        .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 429        .pool = blocking_pool_data
 430};
 431
 432static struct entropy_store nonblocking_pool = {
 433        .poolinfo = &poolinfo_table[1],
 434        .name = "nonblocking",
 435        .pull = &input_pool,
 436        .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 437        .pool = nonblocking_pool_data
 438};
 439
 440/*
 441 * This function adds a byte into the entropy "pool".  It does not
 442 * update the entropy estimate.  The caller should call
 443 * credit_entropy_store if this is appropriate.
 444 *
 445 * The pool is stirred with a primitive polynomial of the appropriate
 446 * degree, and then twisted.  We twist by three bits at a time because
 447 * it's cheap to do so and helps slightly in the expected case where
 448 * the entropy is concentrated in the low-order bits.
 449 */
 450static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
 451                                int nwords, __u32 out[16])
 452{
 453        static __u32 const twist_table[8] = {
 454                0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 455                0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 456        unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
 457        int new_rotate, input_rotate;
 458        int wordmask = r->poolinfo->poolwords - 1;
 459        __u32 w, next_w;
 460        unsigned long flags;
 461
 462        /* Taps are constant, so we can load them without holding r->lock.  */
 463        tap1 = r->poolinfo->tap1;
 464        tap2 = r->poolinfo->tap2;
 465        tap3 = r->poolinfo->tap3;
 466        tap4 = r->poolinfo->tap4;
 467        tap5 = r->poolinfo->tap5;
 468        next_w = *in++;
 469
 470        spin_lock_irqsave(&r->lock, flags);
 471        prefetch_range(r->pool, wordmask);
 472        input_rotate = r->input_rotate;
 473        add_ptr = r->add_ptr;
 474
 475        while (nwords--) {
 476                w = rol32(next_w, input_rotate);
 477                if (nwords > 0)
 478                        next_w = *in++;
 479                i = add_ptr = (add_ptr - 1) & wordmask;
 480                /*
 481                 * Normally, we add 7 bits of rotation to the pool.
 482                 * At the beginning of the pool, add an extra 7 bits
 483                 * rotation, so that successive passes spread the
 484                 * input bits across the pool evenly.
 485                 */
 486                new_rotate = input_rotate + 14;
 487                if (i)
 488                        new_rotate = input_rotate + 7;
 489                input_rotate = new_rotate & 31;
 490
 491                /* XOR in the various taps */
 492                w ^= r->pool[(i + tap1) & wordmask];
 493                w ^= r->pool[(i + tap2) & wordmask];
 494                w ^= r->pool[(i + tap3) & wordmask];
 495                w ^= r->pool[(i + tap4) & wordmask];
 496                w ^= r->pool[(i + tap5) & wordmask];
 497                w ^= r->pool[i];
 498                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 499        }
 500
 501        r->input_rotate = input_rotate;
 502        r->add_ptr = add_ptr;
 503
 504        if (out) {
 505                for (i = 0; i < 16; i++) {
 506                        out[i] = r->pool[add_ptr];
 507                        add_ptr = (add_ptr - 1) & wordmask;
 508                }
 509        }
 510
 511        spin_unlock_irqrestore(&r->lock, flags);
 512}
 513
 514static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
 515                                     int nwords)
 516{
 517        __add_entropy_words(r, in, nwords, NULL);
 518}
 519
 520/*
 521 * Credit (or debit) the entropy store with n bits of entropy
 522 */
 523static void credit_entropy_store(struct entropy_store *r, int nbits)
 524{
 525        unsigned long flags;
 526
 527        spin_lock_irqsave(&r->lock, flags);
 528
 529        if (r->entropy_count + nbits < 0) {
 530                DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
 531                          r->entropy_count, nbits);
 532                r->entropy_count = 0;
 533        } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
 534                r->entropy_count = r->poolinfo->POOLBITS;
 535        } else {
 536                r->entropy_count += nbits;
 537                if (nbits)
 538                        DEBUG_ENT("added %d entropy credits to %s\n",
 539                                  nbits, r->name);
 540        }
 541
 542        spin_unlock_irqrestore(&r->lock, flags);
 543}
 544
 545/*********************************************************************
 546 *
 547 * Entropy input management
 548 *
 549 *********************************************************************/
 550
 551/* There is one of these per entropy source */
 552struct timer_rand_state {
 553        cycles_t last_time;
 554        long last_delta,last_delta2;
 555        unsigned dont_count_entropy:1;
 556};
 557
 558static struct timer_rand_state input_timer_state;
 559static struct timer_rand_state *irq_timer_state[NR_IRQS];
 560
 561/*
 562 * This function adds entropy to the entropy "pool" by using timing
 563 * delays.  It uses the timer_rand_state structure to make an estimate
 564 * of how many bits of entropy this call has added to the pool.
 565 *
 566 * The number "num" is also added to the pool - it should somehow describe
 567 * the type of event which just happened.  This is currently 0-255 for
 568 * keyboard scan codes, and 256 upwards for interrupts.
 569 *
 570 */
 571static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 572{
 573        struct {
 574                cycles_t cycles;
 575                long jiffies;
 576                unsigned num;
 577        } sample;
 578        long delta, delta2, delta3;
 579
 580        preempt_disable();
 581        /* if over the trickle threshold, use only 1 in 4096 samples */
 582        if (input_pool.entropy_count > trickle_thresh &&
 583            (__get_cpu_var(trickle_count)++ & 0xfff))
 584                goto out;
 585
 586        sample.jiffies = jiffies;
 587        sample.cycles = get_cycles();
 588        sample.num = num;
 589        add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
 590
 591        /*
 592         * Calculate number of bits of randomness we probably added.
 593         * We take into account the first, second and third-order deltas
 594         * in order to make our estimate.
 595         */
 596
 597        if (!state->dont_count_entropy) {
 598                delta = sample.jiffies - state->last_time;
 599                state->last_time = sample.jiffies;
 600
 601                delta2 = delta - state->last_delta;
 602                state->last_delta = delta;
 603
 604                delta3 = delta2 - state->last_delta2;
 605                state->last_delta2 = delta2;
 606
 607                if (delta < 0)
 608                        delta = -delta;
 609                if (delta2 < 0)
 610                        delta2 = -delta2;
 611                if (delta3 < 0)
 612                        delta3 = -delta3;
 613                if (delta > delta2)
 614                        delta = delta2;
 615                if (delta > delta3)
 616                        delta = delta3;
 617
 618                /*
 619                 * delta is now minimum absolute delta.
 620                 * Round down by 1 bit on general principles,
 621                 * and limit entropy entimate to 12 bits.
 622                 */
 623                credit_entropy_store(&input_pool,
 624                                     min_t(int, fls(delta>>1), 11));
 625        }
 626
 627        if(input_pool.entropy_count >= random_read_wakeup_thresh)
 628                wake_up_interruptible(&random_read_wait);
 629
 630out:
 631        preempt_enable();
 632}
 633
 634void add_input_randomness(unsigned int type, unsigned int code,
 635                                 unsigned int value)
 636{
 637        static unsigned char last_value;
 638
 639        /* ignore autorepeat and the like */
 640        if (value == last_value)
 641                return;
 642
 643        DEBUG_ENT("input event\n");
 644        last_value = value;
 645        add_timer_randomness(&input_timer_state,
 646                             (type << 4) ^ code ^ (code >> 4) ^ value);
 647}
 648EXPORT_SYMBOL_GPL(add_input_randomness);
 649
 650void add_interrupt_randomness(int irq)
 651{
 652        if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
 653                return;
 654
 655        DEBUG_ENT("irq event %d\n", irq);
 656        add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
 657}
 658
 659#ifdef CONFIG_BLOCK
 660void add_disk_randomness(struct gendisk *disk)
 661{
 662        if (!disk || !disk->random)
 663                return;
 664        /* first major is 1, so we get >= 0x200 here */
 665        DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
 666
 667        add_timer_randomness(disk->random,
 668                             0x100 + MKDEV(disk->major, disk->first_minor));
 669}
 670
 671EXPORT_SYMBOL(add_disk_randomness);
 672#endif
 673
 674#define EXTRACT_SIZE 10
 675
 676/*********************************************************************
 677 *
 678 * Entropy extraction routines
 679 *
 680 *********************************************************************/
 681
 682static ssize_t extract_entropy(struct entropy_store *r, void * buf,
 683                               size_t nbytes, int min, int rsvd);
 684
 685/*
 686 * This utility inline function is responsible for transfering entropy
 687 * from the primary pool to the secondary extraction pool. We make
 688 * sure we pull enough for a 'catastrophic reseed'.
 689 */
 690static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 691{
 692        __u32 tmp[OUTPUT_POOL_WORDS];
 693
 694        if (r->pull && r->entropy_count < nbytes * 8 &&
 695            r->entropy_count < r->poolinfo->POOLBITS) {
 696                /* If we're limited, always leave two wakeup worth's BITS */
 697                int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 698                int bytes = nbytes;
 699
 700                /* pull at least as many as BYTES as wakeup BITS */
 701                bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 702                /* but never more than the buffer size */
 703                bytes = min_t(int, bytes, sizeof(tmp));
 704
 705                DEBUG_ENT("going to reseed %s with %d bits "
 706                          "(%d of %d requested)\n",
 707                          r->name, bytes * 8, nbytes * 8, r->entropy_count);
 708
 709                bytes=extract_entropy(r->pull, tmp, bytes,
 710                                      random_read_wakeup_thresh / 8, rsvd);
 711                add_entropy_words(r, tmp, (bytes + 3) / 4);
 712                credit_entropy_store(r, bytes*8);
 713        }
 714}
 715
 716/*
 717 * These functions extracts randomness from the "entropy pool", and
 718 * returns it in a buffer.
 719 *
 720 * The min parameter specifies the minimum amount we can pull before
 721 * failing to avoid races that defeat catastrophic reseeding while the
 722 * reserved parameter indicates how much entropy we must leave in the
 723 * pool after each pull to avoid starving other readers.
 724 *
 725 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 726 */
 727
 728static size_t account(struct entropy_store *r, size_t nbytes, int min,
 729                      int reserved)
 730{
 731        unsigned long flags;
 732
 733        BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 734
 735        /* Hold lock while accounting */
 736        spin_lock_irqsave(&r->lock, flags);
 737
 738        DEBUG_ENT("trying to extract %d bits from %s\n",
 739                  nbytes * 8, r->name);
 740
 741        /* Can we pull enough? */
 742        if (r->entropy_count / 8 < min + reserved) {
 743                nbytes = 0;
 744        } else {
 745                /* If limited, never pull more than available */
 746                if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 747                        nbytes = r->entropy_count/8 - reserved;
 748
 749                if(r->entropy_count / 8 >= nbytes + reserved)
 750                        r->entropy_count -= nbytes*8;
 751                else
 752                        r->entropy_count = reserved;
 753
 754                if (r->entropy_count < random_write_wakeup_thresh)
 755                        wake_up_interruptible(&random_write_wait);
 756        }
 757
 758        DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 759                  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 760
 761        spin_unlock_irqrestore(&r->lock, flags);
 762
 763        return nbytes;
 764}
 765
 766static void extract_buf(struct entropy_store *r, __u8 *out)
 767{
 768        int i;
 769        __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
 770
 771        sha_init(buf);
 772        /*
 773         * As we hash the pool, we mix intermediate values of
 774         * the hash back into the pool.  This eliminates
 775         * backtracking attacks (where the attacker knows
 776         * the state of the pool plus the current outputs, and
 777         * attempts to find previous ouputs), unless the hash
 778         * function can be inverted.
 779         */
 780        for (i = 0; i < r->poolinfo->poolwords; i += 16) {
 781                /* hash blocks of 16 words = 512 bits */
 782                sha_transform(buf, (__u8 *)(r->pool + i), buf + 5);
 783                /* feed back portion of the resulting hash */
 784                add_entropy_words(r, &buf[i % 5], 1);
 785        }
 786
 787        /*
 788         * To avoid duplicates, we atomically extract a
 789         * portion of the pool while mixing, and hash one
 790         * final time.
 791         */
 792        __add_entropy_words(r, &buf[i % 5], 1, data);
 793        sha_transform(buf, (__u8 *)data, buf + 5);
 794
 795        /*
 796         * In case the hash function has some recognizable
 797         * output pattern, we fold it in half.
 798         */
 799
 800        buf[0] ^= buf[3];
 801        buf[1] ^= buf[4];
 802        buf[2] ^= rol32(buf[2], 16);
 803        memcpy(out, buf, EXTRACT_SIZE);
 804        memset(buf, 0, sizeof(buf));
 805}
 806
 807static ssize_t extract_entropy(struct entropy_store *r, void * buf,
 808                               size_t nbytes, int min, int reserved)
 809{
 810        ssize_t ret = 0, i;
 811        __u8 tmp[EXTRACT_SIZE];
 812
 813        xfer_secondary_pool(r, nbytes);
 814        nbytes = account(r, nbytes, min, reserved);
 815
 816        while (nbytes) {
 817                extract_buf(r, tmp);
 818                i = min_t(int, nbytes, EXTRACT_SIZE);
 819                memcpy(buf, tmp, i);
 820                nbytes -= i;
 821                buf += i;
 822                ret += i;
 823        }
 824
 825        /* Wipe data just returned from memory */
 826        memset(tmp, 0, sizeof(tmp));
 827
 828        return ret;
 829}
 830
 831static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 832                                    size_t nbytes)
 833{
 834        ssize_t ret = 0, i;
 835        __u8 tmp[EXTRACT_SIZE];
 836
 837        xfer_secondary_pool(r, nbytes);
 838        nbytes = account(r, nbytes, 0, 0);
 839
 840        while (nbytes) {
 841                if (need_resched()) {
 842                        if (signal_pending(current)) {
 843                                if (ret == 0)
 844                                        ret = -ERESTARTSYS;
 845                                break;
 846                        }
 847                        schedule();
 848                }
 849
 850                extract_buf(r, tmp);
 851                i = min_t(int, nbytes, EXTRACT_SIZE);
 852                if (copy_to_user(buf, tmp, i)) {
 853                        ret = -EFAULT;
 854                        break;
 855                }
 856
 857                nbytes -= i;
 858                buf += i;
 859                ret += i;
 860        }
 861
 862        /* Wipe data just returned from memory */
 863        memset(tmp, 0, sizeof(tmp));
 864
 865        return ret;
 866}
 867
 868/*
 869 * This function is the exported kernel interface.  It returns some
 870 * number of good random numbers, suitable for seeding TCP sequence
 871 * numbers, etc.
 872 */
 873void get_random_bytes(void *buf, int nbytes)
 874{
 875        extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 876}
 877
 878EXPORT_SYMBOL(get_random_bytes);
 879
 880/*
 881 * init_std_data - initialize pool with system data
 882 *
 883 * @r: pool to initialize
 884 *
 885 * This function clears the pool's entropy count and mixes some system
 886 * data into the pool to prepare it for use. The pool is not cleared
 887 * as that can only decrease the entropy in the pool.
 888 */
 889static void init_std_data(struct entropy_store *r)
 890{
 891        ktime_t now;
 892        unsigned long flags;
 893
 894        spin_lock_irqsave(&r->lock, flags);
 895        r->entropy_count = 0;
 896        spin_unlock_irqrestore(&r->lock, flags);
 897
 898        now = ktime_get_real();
 899        add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
 900        add_entropy_words(r, (__u32 *)utsname(),
 901                          sizeof(*(utsname()))/4);
 902}
 903
 904static int __init rand_initialize(void)
 905{
 906        init_std_data(&input_pool);
 907        init_std_data(&blocking_pool);
 908        init_std_data(&nonblocking_pool);
 909        return 0;
 910}
 911module_init(rand_initialize);
 912
 913void rand_initialize_irq(int irq)
 914{
 915        struct timer_rand_state *state;
 916
 917        if (irq >= NR_IRQS || irq_timer_state[irq])
 918                return;
 919
 920        /*
 921         * If kzalloc returns null, we just won't use that entropy
 922         * source.
 923         */
 924        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 925        if (state)
 926                irq_timer_state[irq] = state;
 927}
 928
 929#ifdef CONFIG_BLOCK
 930void rand_initialize_disk(struct gendisk *disk)
 931{
 932        struct timer_rand_state *state;
 933
 934        /*
 935         * If kzalloc returns null, we just won't use that entropy
 936         * source.
 937         */
 938        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 939        if (state)
 940                disk->random = state;
 941}
 942#endif
 943
 944static ssize_t
 945random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
 946{
 947        ssize_t n, retval = 0, count = 0;
 948
 949        if (nbytes == 0)
 950                return 0;
 951
 952        while (nbytes > 0) {
 953                n = nbytes;
 954                if (n > SEC_XFER_SIZE)
 955                        n = SEC_XFER_SIZE;
 956
 957                DEBUG_ENT("reading %d bits\n", n*8);
 958
 959                n = extract_entropy_user(&blocking_pool, buf, n);
 960
 961                DEBUG_ENT("read got %d bits (%d still needed)\n",
 962                          n*8, (nbytes-n)*8);
 963
 964                if (n == 0) {
 965                        if (file->f_flags & O_NONBLOCK) {
 966                                retval = -EAGAIN;
 967                                break;
 968                        }
 969
 970                        DEBUG_ENT("sleeping?\n");
 971
 972                        wait_event_interruptible(random_read_wait,
 973                                input_pool.entropy_count >=
 974                                                 random_read_wakeup_thresh);
 975
 976                        DEBUG_ENT("awake\n");
 977
 978                        if (signal_pending(current)) {
 979                                retval = -ERESTARTSYS;
 980                                break;
 981                        }
 982
 983                        continue;
 984                }
 985
 986                if (n < 0) {
 987                        retval = n;
 988                        break;
 989                }
 990                count += n;
 991                buf += n;
 992                nbytes -= n;
 993                break;          /* This break makes the device work */
 994                                /* like a named pipe */
 995        }
 996
 997        /*
 998         * If we gave the user some bytes, update the access time.
 999         */
1000        if (count)
1001                file_accessed(file);
1002
1003        return (count ? count : retval);
1004}
1005
1006static ssize_t
1007urandom_read(struct file * file, char __user * buf,
1008                      size_t nbytes, loff_t *ppos)
1009{
1010        return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1011}
1012
1013static unsigned int
1014random_poll(struct file *file, poll_table * wait)
1015{
1016        unsigned int mask;
1017
1018        poll_wait(file, &random_read_wait, wait);
1019        poll_wait(file, &random_write_wait, wait);
1020        mask = 0;
1021        if (input_pool.entropy_count >= random_read_wakeup_thresh)
1022                mask |= POLLIN | POLLRDNORM;
1023        if (input_pool.entropy_count < random_write_wakeup_thresh)
1024                mask |= POLLOUT | POLLWRNORM;
1025        return mask;
1026}
1027
1028static int
1029write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1030{
1031        size_t bytes;
1032        __u32 buf[16];
1033        const char __user *p = buffer;
1034
1035        while (count > 0) {
1036                bytes = min(count, sizeof(buf));
1037                if (copy_from_user(&buf, p, bytes))
1038                        return -EFAULT;
1039
1040                count -= bytes;
1041                p += bytes;
1042
1043                add_entropy_words(r, buf, (bytes + 3) / 4);
1044        }
1045
1046        return 0;
1047}
1048
1049static ssize_t
1050random_write(struct file * file, const char __user * buffer,
1051             size_t count, loff_t *ppos)
1052{
1053        size_t ret;
1054        struct inode *inode = file->f_path.dentry->d_inode;
1055
1056        ret = write_pool(&blocking_pool, buffer, count);
1057        if (ret)
1058                return ret;
1059        ret = write_pool(&nonblocking_pool, buffer, count);
1060        if (ret)
1061                return ret;
1062
1063        inode->i_mtime = current_fs_time(inode->i_sb);
1064        mark_inode_dirty(inode);
1065        return (ssize_t)count;
1066}
1067
1068static int
1069random_ioctl(struct inode * inode, struct file * file,
1070             unsigned int cmd, unsigned long arg)
1071{
1072        int size, ent_count;
1073        int __user *p = (int __user *)arg;
1074        int retval;
1075
1076        switch (cmd) {
1077        case RNDGETENTCNT:
1078                ent_count = input_pool.entropy_count;
1079                if (put_user(ent_count, p))
1080                        return -EFAULT;
1081                return 0;
1082        case RNDADDTOENTCNT:
1083                if (!capable(CAP_SYS_ADMIN))
1084                        return -EPERM;
1085                if (get_user(ent_count, p))
1086                        return -EFAULT;
1087                credit_entropy_store(&input_pool, ent_count);
1088                /*
1089                 * Wake up waiting processes if we have enough
1090                 * entropy.
1091                 */
1092                if (input_pool.entropy_count >= random_read_wakeup_thresh)
1093                        wake_up_interruptible(&random_read_wait);
1094                return 0;
1095        case RNDADDENTROPY:
1096                if (!capable(CAP_SYS_ADMIN))
1097                        return -EPERM;
1098                if (get_user(ent_count, p++))
1099                        return -EFAULT;
1100                if (ent_count < 0)
1101                        return -EINVAL;
1102                if (get_user(size, p++))
1103                        return -EFAULT;
1104                retval = write_pool(&input_pool, (const char __user *)p,
1105                                    size);
1106                if (retval < 0)
1107                        return retval;
1108                credit_entropy_store(&input_pool, ent_count);
1109                /*
1110                 * Wake up waiting processes if we have enough
1111                 * entropy.
1112                 */
1113                if (input_pool.entropy_count >= random_read_wakeup_thresh)
1114                        wake_up_interruptible(&random_read_wait);
1115                return 0;
1116        case RNDZAPENTCNT:
1117        case RNDCLEARPOOL:
1118                /* Clear the entropy pool counters. */
1119                if (!capable(CAP_SYS_ADMIN))
1120                        return -EPERM;
1121                init_std_data(&input_pool);
1122                init_std_data(&blocking_pool);
1123                init_std_data(&nonblocking_pool);
1124                return 0;
1125        default:
1126                return -EINVAL;
1127        }
1128}
1129
1130const struct file_operations random_fops = {
1131        .read  = random_read,
1132        .write = random_write,
1133        .poll  = random_poll,
1134        .ioctl = random_ioctl,
1135};
1136
1137const struct file_operations urandom_fops = {
1138        .read  = urandom_read,
1139        .write = random_write,
1140        .ioctl = random_ioctl,
1141};
1142
1143/***************************************************************
1144 * Random UUID interface
1145 *
1146 * Used here for a Boot ID, but can be useful for other kernel
1147 * drivers.
1148 ***************************************************************/
1149
1150/*
1151 * Generate random UUID
1152 */
1153void generate_random_uuid(unsigned char uuid_out[16])
1154{
1155        get_random_bytes(uuid_out, 16);
1156        /* Set UUID version to 4 --- truely random generation */
1157        uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1158        /* Set the UUID variant to DCE */
1159        uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1160}
1161
1162EXPORT_SYMBOL(generate_random_uuid);
1163
1164/********************************************************************
1165 *
1166 * Sysctl interface
1167 *
1168 ********************************************************************/
1169
1170#ifdef CONFIG_SYSCTL
1171
1172#include <linux/sysctl.h>
1173
1174static int min_read_thresh = 8, min_write_thresh;
1175static int max_read_thresh = INPUT_POOL_WORDS * 32;
1176static int max_write_thresh = INPUT_POOL_WORDS * 32;
1177static char sysctl_bootid[16];
1178
1179/*
1180 * These functions is used to return both the bootid UUID, and random
1181 * UUID.  The difference is in whether table->data is NULL; if it is,
1182 * then a new UUID is generated and returned to the user.
1183 *
1184 * If the user accesses this via the proc interface, it will be returned
1185 * as an ASCII string in the standard UUID format.  If accesses via the
1186 * sysctl system call, it is returned as 16 bytes of binary data.
1187 */
1188static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1189                        void __user *buffer, size_t *lenp, loff_t *ppos)
1190{
1191        ctl_table fake_table;
1192        unsigned char buf[64], tmp_uuid[16], *uuid;
1193
1194        uuid = table->data;
1195        if (!uuid) {
1196                uuid = tmp_uuid;
1197                uuid[8] = 0;
1198        }
1199        if (uuid[8] == 0)
1200                generate_random_uuid(uuid);
1201
1202        sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1203                "%02x%02x%02x%02x%02x%02x",
1204                uuid[0],  uuid[1],  uuid[2],  uuid[3],
1205                uuid[4],  uuid[5],  uuid[6],  uuid[7],
1206                uuid[8],  uuid[9],  uuid[10], uuid[11],
1207                uuid[12], uuid[13], uuid[14], uuid[15]);
1208        fake_table.data = buf;
1209        fake_table.maxlen = sizeof(buf);
1210
1211        return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1212}
1213
1214static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1215                         void __user *oldval, size_t __user *oldlenp,
1216                         void __user *newval, size_t newlen)
1217{
1218        unsigned char tmp_uuid[16], *uuid;
1219        unsigned int len;
1220
1221        if (!oldval || !oldlenp)
1222                return 1;
1223
1224        uuid = table->data;
1225        if (!uuid) {
1226                uuid = tmp_uuid;
1227                uuid[8] = 0;
1228        }
1229        if (uuid[8] == 0)
1230                generate_random_uuid(uuid);
1231
1232        if (get_user(len, oldlenp))
1233                return -EFAULT;
1234        if (len) {
1235                if (len > 16)
1236                        len = 16;
1237                if (copy_to_user(oldval, uuid, len) ||
1238                    put_user(len, oldlenp))
1239                        return -EFAULT;
1240        }
1241        return 1;
1242}
1243
1244static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1245ctl_table random_table[] = {
1246        {
1247                .ctl_name       = RANDOM_POOLSIZE,
1248                .procname       = "poolsize",
1249                .data           = &sysctl_poolsize,
1250                .maxlen         = sizeof(int),
1251                .mode           = 0444,
1252                .proc_handler   = &proc_dointvec,
1253        },
1254        {
1255                .ctl_name       = RANDOM_ENTROPY_COUNT,
1256                .procname       = "entropy_avail",
1257                .maxlen         = sizeof(int),
1258                .mode           = 0444,
1259                .proc_handler   = &proc_dointvec,
1260                .data           = &input_pool.entropy_count,
1261        },
1262        {
1263                .ctl_name       = RANDOM_READ_THRESH,
1264                .procname       = "read_wakeup_threshold",
1265                .data           = &random_read_wakeup_thresh,
1266                .maxlen         = sizeof(int),
1267                .mode           = 0644,
1268                .proc_handler   = &proc_dointvec_minmax,
1269                .strategy       = &sysctl_intvec,
1270                .extra1         = &min_read_thresh,
1271                .extra2         = &max_read_thresh,
1272        },
1273        {
1274                .ctl_name       = RANDOM_WRITE_THRESH,
1275                .procname       = "write_wakeup_threshold",
1276                .data           = &random_write_wakeup_thresh,
1277                .maxlen         = sizeof(int),
1278                .mode           = 0644,
1279                .proc_handler   = &proc_dointvec_minmax,
1280                .strategy       = &sysctl_intvec,
1281                .extra1         = &min_write_thresh,
1282                .extra2         = &max_write_thresh,
1283        },
1284        {
1285                .ctl_name       = RANDOM_BOOT_ID,
1286                .procname       = "boot_id",
1287                .data           = &sysctl_bootid,
1288                .maxlen         = 16,
1289                .mode           = 0444,
1290                .proc_handler   = &proc_do_uuid,
1291                .strategy       = &uuid_strategy,
1292        },
1293        {
1294                .ctl_name       = RANDOM_UUID,
1295                .procname       = "uuid",
1296                .maxlen         = 16,
1297                .mode           = 0444,
1298                .proc_handler   = &proc_do_uuid,
1299                .strategy       = &uuid_strategy,
1300        },
1301        { .ctl_name = 0 }
1302};
1303#endif  /* CONFIG_SYSCTL */
1304
1305/********************************************************************
1306 *
1307 * Random funtions for networking
1308 *
1309 ********************************************************************/
1310
1311/*
1312 * TCP initial sequence number picking.  This uses the random number
1313 * generator to pick an initial secret value.  This value is hashed
1314 * along with the TCP endpoint information to provide a unique
1315 * starting point for each pair of TCP endpoints.  This defeats
1316 * attacks which rely on guessing the initial TCP sequence number.
1317 * This algorithm was suggested by Steve Bellovin.
1318 *
1319 * Using a very strong hash was taking an appreciable amount of the total
1320 * TCP connection establishment time, so this is a weaker hash,
1321 * compensated for by changing the secret periodically.
1322 */
1323
1324/* F, G and H are basic MD4 functions: selection, majority, parity */
1325#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1326#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1327#define H(x, y, z) ((x) ^ (y) ^ (z))
1328
1329/*
1330 * The generic round function.  The application is so specific that
1331 * we don't bother protecting all the arguments with parens, as is generally
1332 * good macro practice, in favor of extra legibility.
1333 * Rotation is separate from addition to prevent recomputation
1334 */
1335#define ROUND(f, a, b, c, d, x, s)      \
1336        (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1337#define K1 0
1338#define K2 013240474631UL
1339#define K3 015666365641UL
1340
1341#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1342
1343static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1344{
1345        __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1346
1347        /* Round 1 */
1348        ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1349        ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1350        ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1351        ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1352        ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1353        ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1354        ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1355        ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1356        ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1357        ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1358        ROUND(F, c, d, a, b, in[10] + K1, 11);
1359        ROUND(F, b, c, d, a, in[11] + K1, 19);
1360
1361        /* Round 2 */
1362        ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1363        ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1364        ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1365        ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1366        ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1367        ROUND(G, d, a, b, c, in[11] + K2,  5);
1368        ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1369        ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1370        ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1371        ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1372        ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1373        ROUND(G, b, c, d, a, in[10] + K2, 13);
1374
1375        /* Round 3 */
1376        ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1377        ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1378        ROUND(H, c, d, a, b, in[11] + K3, 11);
1379        ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1380        ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1381        ROUND(H, d, a, b, c, in[10] + K3,  9);
1382        ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1383        ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1384        ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1385        ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1386        ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1387        ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1388
1389        return buf[1] + b; /* "most hashed" word */
1390        /* Alternative: return sum of all words? */
1391}
1392#endif
1393
1394#undef ROUND
1395#undef F
1396#undef G
1397#undef H
1398#undef K1
1399#undef K2
1400#undef K3
1401
1402/* This should not be decreased so low that ISNs wrap too fast. */
1403#define REKEY_INTERVAL (300 * HZ)
1404/*
1405 * Bit layout of the tcp sequence numbers (before adding current time):
1406 * bit 24-31: increased after every key exchange
1407 * bit 0-23: hash(source,dest)
1408 *
1409 * The implementation is similar to the algorithm described
1410 * in the Appendix of RFC 1185, except that
1411 * - it uses a 1 MHz clock instead of a 250 kHz clock
1412 * - it performs a rekey every 5 minutes, which is equivalent
1413 *      to a (source,dest) tulple dependent forward jump of the
1414 *      clock by 0..2^(HASH_BITS+1)
1415 *
1416 * Thus the average ISN wraparound time is 68 minutes instead of
1417 * 4.55 hours.
1418 *
1419 * SMP cleanup and lock avoidance with poor man's RCU.
1420 *                      Manfred Spraul <manfred@colorfullife.com>
1421 *
1422 */
1423#define COUNT_BITS 8
1424#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1425#define HASH_BITS 24
1426#define HASH_MASK ((1 << HASH_BITS) - 1)
1427
1428static struct keydata {
1429        __u32 count; /* already shifted to the final position */
1430        __u32 secret[12];
1431} ____cacheline_aligned ip_keydata[2];
1432
1433static unsigned int ip_cnt;
1434
1435static void rekey_seq_generator(struct work_struct *work);
1436
1437static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1438
1439/*
1440 * Lock avoidance:
1441 * The ISN generation runs lockless - it's just a hash over random data.
1442 * State changes happen every 5 minutes when the random key is replaced.
1443 * Synchronization is performed by having two copies of the hash function
1444 * state and rekey_seq_generator always updates the inactive copy.
1445 * The copy is then activated by updating ip_cnt.
1446 * The implementation breaks down if someone blocks the thread
1447 * that processes SYN requests for more than 5 minutes. Should never
1448 * happen, and even if that happens only a not perfectly compliant
1449 * ISN is generated, nothing fatal.
1450 */
1451static void rekey_seq_generator(struct work_struct *work)
1452{
1453        struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1454
1455        get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1456        keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1457        smp_wmb();
1458        ip_cnt++;
1459        schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1460}
1461
1462static inline struct keydata *get_keyptr(void)
1463{
1464        struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1465
1466        smp_rmb();
1467
1468        return keyptr;
1469}
1470
1471static __init int seqgen_init(void)
1472{
1473        rekey_seq_generator(NULL);
1474        return 0;
1475}
1476late_initcall(seqgen_init);
1477
1478#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1479__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1480                                   __be16 sport, __be16 dport)
1481{
1482        __u32 seq;
1483        __u32 hash[12];
1484        struct keydata *keyptr = get_keyptr();
1485
1486        /* The procedure is the same as for IPv4, but addresses are longer.
1487         * Thus we must use twothirdsMD4Transform.
1488         */
1489
1490        memcpy(hash, saddr, 16);
1491        hash[4]=((__force u16)sport << 16) + (__force u16)dport;
1492        memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1493
1494        seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1495        seq += keyptr->count;
1496
1497        seq += ktime_to_ns(ktime_get_real());
1498
1499        return seq;
1500}
1501EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1502#endif
1503
1504/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1505 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1506 */
1507__u32 secure_ip_id(__be32 daddr)
1508{
1509        struct keydata *keyptr;
1510        __u32 hash[4];
1511
1512        keyptr = get_keyptr();
1513
1514        /*
1515         *  Pick a unique starting offset for each IP destination.
1516         *  The dest ip address is placed in the starting vector,
1517         *  which is then hashed with random data.
1518         */
1519        hash[0] = (__force __u32)daddr;
1520        hash[1] = keyptr->secret[9];
1521        hash[2] = keyptr->secret[10];
1522        hash[3] = keyptr->secret[11];
1523
1524        return half_md4_transform(hash, keyptr->secret);
1525}
1526
1527#ifdef CONFIG_INET
1528
1529__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1530                                 __be16 sport, __be16 dport)
1531{
1532        __u32 seq;
1533        __u32 hash[4];
1534        struct keydata *keyptr = get_keyptr();
1535
1536        /*
1537         *  Pick a unique starting offset for each TCP connection endpoints
1538         *  (saddr, daddr, sport, dport).
1539         *  Note that the words are placed into the starting vector, which is
1540         *  then mixed with a partial MD4 over random data.
1541         */
1542        hash[0]=(__force u32)saddr;
1543        hash[1]=(__force u32)daddr;
1544        hash[2]=((__force u16)sport << 16) + (__force u16)dport;
1545        hash[3]=keyptr->secret[11];
1546
1547        seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1548        seq += keyptr->count;
1549        /*
1550         *      As close as possible to RFC 793, which
1551         *      suggests using a 250 kHz clock.
1552         *      Further reading shows this assumes 2 Mb/s networks.
1553         *      For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1554         *      For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1555         *      we also need to limit the resolution so that the u32 seq
1556         *      overlaps less than one time per MSL (2 minutes).
1557         *      Choosing a clock of 64 ns period is OK. (period of 274 s)
1558         */
1559        seq += ktime_to_ns(ktime_get_real()) >> 6;
1560#if 0
1561        printk("init_seq(%lx, %lx, %d, %d) = %d\n",
1562               saddr, daddr, sport, dport, seq);
1563#endif
1564        return seq;
1565}
1566
1567/* Generate secure starting point for ephemeral IPV4 transport port search */
1568u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1569{
1570        struct keydata *keyptr = get_keyptr();
1571        u32 hash[4];
1572
1573        /*
1574         *  Pick a unique starting offset for each ephemeral port search
1575         *  (saddr, daddr, dport) and 48bits of random data.
1576         */
1577        hash[0] = (__force u32)saddr;
1578        hash[1] = (__force u32)daddr;
1579        hash[2] = (__force u32)dport ^ keyptr->secret[10];
1580        hash[3] = keyptr->secret[11];
1581
1582        return half_md4_transform(hash, keyptr->secret);
1583}
1584
1585#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1586u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport)
1587{
1588        struct keydata *keyptr = get_keyptr();
1589        u32 hash[12];
1590
1591        memcpy(hash, saddr, 16);
1592        hash[4] = (__force u32)dport;
1593        memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1594
1595        return twothirdsMD4Transform((const __u32 *)daddr, hash);
1596}
1597#endif
1598
1599#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1600/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1601 * bit's 32-47 increase every key exchange
1602 *       0-31  hash(source, dest)
1603 */
1604u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1605                                __be16 sport, __be16 dport)
1606{
1607        u64 seq;
1608        __u32 hash[4];
1609        struct keydata *keyptr = get_keyptr();
1610
1611        hash[0] = (__force u32)saddr;
1612        hash[1] = (__force u32)daddr;
1613        hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1614        hash[3] = keyptr->secret[11];
1615
1616        seq = half_md4_transform(hash, keyptr->secret);
1617        seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1618
1619        seq += ktime_to_ns(ktime_get_real());
1620        seq &= (1ull << 48) - 1;
1621#if 0
1622        printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
1623               saddr, daddr, sport, dport, seq);
1624#endif
1625        return seq;
1626}
1627
1628EXPORT_SYMBOL(secure_dccp_sequence_number);
1629#endif
1630
1631#endif /* CONFIG_INET */
1632
1633
1634/*
1635 * Get a random word for internal kernel use only. Similar to urandom but
1636 * with the goal of minimal entropy pool depletion. As a result, the random
1637 * value is not cryptographically secure but for several uses the cost of
1638 * depleting entropy is too high
1639 */
1640unsigned int get_random_int(void)
1641{
1642        /*
1643         * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1644         * every second, from the entropy pool (and thus creates a limited
1645         * drain on it), and uses halfMD4Transform within the second. We
1646         * also mix it with jiffies and the PID:
1647         */
1648        return secure_ip_id((__force __be32)(current->pid + jiffies));
1649}
1650
1651/*
1652 * randomize_range() returns a start address such that
1653 *
1654 *    [...... <range> .....]
1655 *  start                  end
1656 *
1657 * a <range> with size "len" starting at the return value is inside in the
1658 * area defined by [start, end], but is otherwise randomized.
1659 */
1660unsigned long
1661randomize_range(unsigned long start, unsigned long end, unsigned long len)
1662{
1663        unsigned long range = end - len - start;
1664
1665        if (end <= start + len)
1666                return 0;
1667        return PAGE_ALIGN(get_random_int() % range + start);
1668}
1669