linux/drivers/cpufreq/cpufreq_ondemand.c
<<
>>
Prefs
   1/*
   2 *  drivers/cpufreq/cpufreq_ondemand.c
   3 *
   4 *  Copyright (C)  2001 Russell King
   5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
   6 *                      Jun Nakajima <jun.nakajima@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/cpufreq.h>
  17#include <linux/cpu.h>
  18#include <linux/jiffies.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/mutex.h>
  21
  22/*
  23 * dbs is used in this file as a shortform for demandbased switching
  24 * It helps to keep variable names smaller, simpler
  25 */
  26
  27#define DEF_FREQUENCY_UP_THRESHOLD              (80)
  28#define MIN_FREQUENCY_UP_THRESHOLD              (11)
  29#define MAX_FREQUENCY_UP_THRESHOLD              (100)
  30
  31/*
  32 * The polling frequency of this governor depends on the capability of
  33 * the processor. Default polling frequency is 1000 times the transition
  34 * latency of the processor. The governor will work on any processor with
  35 * transition latency <= 10mS, using appropriate sampling
  36 * rate.
  37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38 * this governor will not work.
  39 * All times here are in uS.
  40 */
  41static unsigned int def_sampling_rate;
  42#define MIN_SAMPLING_RATE_RATIO                 (2)
  43/* for correct statistics, we need at least 10 ticks between each measure */
  44#define MIN_STAT_SAMPLING_RATE                  \
  45                        (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  46#define MIN_SAMPLING_RATE                       \
  47                        (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  48#define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
  49#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
  50#define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
  51
  52static void do_dbs_timer(struct work_struct *work);
  53
  54/* Sampling types */
  55enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  56
  57struct cpu_dbs_info_s {
  58        cputime64_t prev_cpu_idle;
  59        cputime64_t prev_cpu_wall;
  60        struct cpufreq_policy *cur_policy;
  61        struct delayed_work work;
  62        struct cpufreq_frequency_table *freq_table;
  63        unsigned int freq_lo;
  64        unsigned int freq_lo_jiffies;
  65        unsigned int freq_hi_jiffies;
  66        int cpu;
  67        unsigned int enable:1,
  68                     sample_type:1;
  69};
  70static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  71
  72static unsigned int dbs_enable; /* number of CPUs using this policy */
  73
  74/*
  75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
  77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  80 * is recursive for the same process. -Venki
  81 */
  82static DEFINE_MUTEX(dbs_mutex);
  83
  84static struct workqueue_struct  *kondemand_wq;
  85
  86static struct dbs_tuners {
  87        unsigned int sampling_rate;
  88        unsigned int up_threshold;
  89        unsigned int ignore_nice;
  90        unsigned int powersave_bias;
  91} dbs_tuners_ins = {
  92        .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  93        .ignore_nice = 0,
  94        .powersave_bias = 0,
  95};
  96
  97static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
  98{
  99        cputime64_t idle_time;
 100        cputime64_t cur_jiffies;
 101        cputime64_t busy_time;
 102
 103        cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
 104        busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
 105                        kstat_cpu(cpu).cpustat.system);
 106
 107        busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
 108        busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
 109        busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
 110
 111        if (!dbs_tuners_ins.ignore_nice) {
 112                busy_time = cputime64_add(busy_time,
 113                                kstat_cpu(cpu).cpustat.nice);
 114        }
 115
 116        idle_time = cputime64_sub(cur_jiffies, busy_time);
 117        return idle_time;
 118}
 119
 120/*
 121 * Find right freq to be set now with powersave_bias on.
 122 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 123 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 124 */
 125static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
 126                                          unsigned int freq_next,
 127                                          unsigned int relation)
 128{
 129        unsigned int freq_req, freq_reduc, freq_avg;
 130        unsigned int freq_hi, freq_lo;
 131        unsigned int index = 0;
 132        unsigned int jiffies_total, jiffies_hi, jiffies_lo;
 133        struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
 134
 135        if (!dbs_info->freq_table) {
 136                dbs_info->freq_lo = 0;
 137                dbs_info->freq_lo_jiffies = 0;
 138                return freq_next;
 139        }
 140
 141        cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
 142                        relation, &index);
 143        freq_req = dbs_info->freq_table[index].frequency;
 144        freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
 145        freq_avg = freq_req - freq_reduc;
 146
 147        /* Find freq bounds for freq_avg in freq_table */
 148        index = 0;
 149        cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
 150                        CPUFREQ_RELATION_H, &index);
 151        freq_lo = dbs_info->freq_table[index].frequency;
 152        index = 0;
 153        cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
 154                        CPUFREQ_RELATION_L, &index);
 155        freq_hi = dbs_info->freq_table[index].frequency;
 156
 157        /* Find out how long we have to be in hi and lo freqs */
 158        if (freq_hi == freq_lo) {
 159                dbs_info->freq_lo = 0;
 160                dbs_info->freq_lo_jiffies = 0;
 161                return freq_lo;
 162        }
 163        jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 164        jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
 165        jiffies_hi += ((freq_hi - freq_lo) / 2);
 166        jiffies_hi /= (freq_hi - freq_lo);
 167        jiffies_lo = jiffies_total - jiffies_hi;
 168        dbs_info->freq_lo = freq_lo;
 169        dbs_info->freq_lo_jiffies = jiffies_lo;
 170        dbs_info->freq_hi_jiffies = jiffies_hi;
 171        return freq_hi;
 172}
 173
 174static void ondemand_powersave_bias_init(void)
 175{
 176        int i;
 177        for_each_online_cpu(i) {
 178                struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
 179                dbs_info->freq_table = cpufreq_frequency_get_table(i);
 180                dbs_info->freq_lo = 0;
 181        }
 182}
 183
 184/************************** sysfs interface ************************/
 185static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
 186{
 187        return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
 188}
 189
 190static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
 191{
 192        return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
 193}
 194
 195#define define_one_ro(_name)            \
 196static struct freq_attr _name =         \
 197__ATTR(_name, 0444, show_##_name, NULL)
 198
 199define_one_ro(sampling_rate_max);
 200define_one_ro(sampling_rate_min);
 201
 202/* cpufreq_ondemand Governor Tunables */
 203#define show_one(file_name, object)                                     \
 204static ssize_t show_##file_name                                         \
 205(struct cpufreq_policy *unused, char *buf)                              \
 206{                                                                       \
 207        return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
 208}
 209show_one(sampling_rate, sampling_rate);
 210show_one(up_threshold, up_threshold);
 211show_one(ignore_nice_load, ignore_nice);
 212show_one(powersave_bias, powersave_bias);
 213
 214static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
 215                const char *buf, size_t count)
 216{
 217        unsigned int input;
 218        int ret;
 219        ret = sscanf(buf, "%u", &input);
 220
 221        mutex_lock(&dbs_mutex);
 222        if (ret != 1 || input > MAX_SAMPLING_RATE
 223                     || input < MIN_SAMPLING_RATE) {
 224                mutex_unlock(&dbs_mutex);
 225                return -EINVAL;
 226        }
 227
 228        dbs_tuners_ins.sampling_rate = input;
 229        mutex_unlock(&dbs_mutex);
 230
 231        return count;
 232}
 233
 234static ssize_t store_up_threshold(struct cpufreq_policy *unused,
 235                const char *buf, size_t count)
 236{
 237        unsigned int input;
 238        int ret;
 239        ret = sscanf(buf, "%u", &input);
 240
 241        mutex_lock(&dbs_mutex);
 242        if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
 243                        input < MIN_FREQUENCY_UP_THRESHOLD) {
 244                mutex_unlock(&dbs_mutex);
 245                return -EINVAL;
 246        }
 247
 248        dbs_tuners_ins.up_threshold = input;
 249        mutex_unlock(&dbs_mutex);
 250
 251        return count;
 252}
 253
 254static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
 255                const char *buf, size_t count)
 256{
 257        unsigned int input;
 258        int ret;
 259
 260        unsigned int j;
 261
 262        ret = sscanf(buf, "%u", &input);
 263        if ( ret != 1 )
 264                return -EINVAL;
 265
 266        if ( input > 1 )
 267                input = 1;
 268
 269        mutex_lock(&dbs_mutex);
 270        if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
 271                mutex_unlock(&dbs_mutex);
 272                return count;
 273        }
 274        dbs_tuners_ins.ignore_nice = input;
 275
 276        /* we need to re-evaluate prev_cpu_idle */
 277        for_each_online_cpu(j) {
 278                struct cpu_dbs_info_s *dbs_info;
 279                dbs_info = &per_cpu(cpu_dbs_info, j);
 280                dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
 281                dbs_info->prev_cpu_wall = get_jiffies_64();
 282        }
 283        mutex_unlock(&dbs_mutex);
 284
 285        return count;
 286}
 287
 288static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
 289                const char *buf, size_t count)
 290{
 291        unsigned int input;
 292        int ret;
 293        ret = sscanf(buf, "%u", &input);
 294
 295        if (ret != 1)
 296                return -EINVAL;
 297
 298        if (input > 1000)
 299                input = 1000;
 300
 301        mutex_lock(&dbs_mutex);
 302        dbs_tuners_ins.powersave_bias = input;
 303        ondemand_powersave_bias_init();
 304        mutex_unlock(&dbs_mutex);
 305
 306        return count;
 307}
 308
 309#define define_one_rw(_name) \
 310static struct freq_attr _name = \
 311__ATTR(_name, 0644, show_##_name, store_##_name)
 312
 313define_one_rw(sampling_rate);
 314define_one_rw(up_threshold);
 315define_one_rw(ignore_nice_load);
 316define_one_rw(powersave_bias);
 317
 318static struct attribute * dbs_attributes[] = {
 319        &sampling_rate_max.attr,
 320        &sampling_rate_min.attr,
 321        &sampling_rate.attr,
 322        &up_threshold.attr,
 323        &ignore_nice_load.attr,
 324        &powersave_bias.attr,
 325        NULL
 326};
 327
 328static struct attribute_group dbs_attr_group = {
 329        .attrs = dbs_attributes,
 330        .name = "ondemand",
 331};
 332
 333/************************** sysfs end ************************/
 334
 335static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
 336{
 337        unsigned int idle_ticks, total_ticks;
 338        unsigned int load = 0;
 339        cputime64_t cur_jiffies;
 340
 341        struct cpufreq_policy *policy;
 342        unsigned int j;
 343
 344        if (!this_dbs_info->enable)
 345                return;
 346
 347        this_dbs_info->freq_lo = 0;
 348        policy = this_dbs_info->cur_policy;
 349        cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
 350        total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
 351                        this_dbs_info->prev_cpu_wall);
 352        this_dbs_info->prev_cpu_wall = get_jiffies_64();
 353
 354        if (!total_ticks)
 355                return;
 356        /*
 357         * Every sampling_rate, we check, if current idle time is less
 358         * than 20% (default), then we try to increase frequency
 359         * Every sampling_rate, we look for a the lowest
 360         * frequency which can sustain the load while keeping idle time over
 361         * 30%. If such a frequency exist, we try to decrease to this frequency.
 362         *
 363         * Any frequency increase takes it to the maximum frequency.
 364         * Frequency reduction happens at minimum steps of
 365         * 5% (default) of current frequency
 366         */
 367
 368        /* Get Idle Time */
 369        idle_ticks = UINT_MAX;
 370        for_each_cpu_mask(j, policy->cpus) {
 371                cputime64_t total_idle_ticks;
 372                unsigned int tmp_idle_ticks;
 373                struct cpu_dbs_info_s *j_dbs_info;
 374
 375                j_dbs_info = &per_cpu(cpu_dbs_info, j);
 376                total_idle_ticks = get_cpu_idle_time(j);
 377                tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
 378                                j_dbs_info->prev_cpu_idle);
 379                j_dbs_info->prev_cpu_idle = total_idle_ticks;
 380
 381                if (tmp_idle_ticks < idle_ticks)
 382                        idle_ticks = tmp_idle_ticks;
 383        }
 384        if (likely(total_ticks > idle_ticks))
 385                load = (100 * (total_ticks - idle_ticks)) / total_ticks;
 386
 387        /* Check for frequency increase */
 388        if (load > dbs_tuners_ins.up_threshold) {
 389                /* if we are already at full speed then break out early */
 390                if (!dbs_tuners_ins.powersave_bias) {
 391                        if (policy->cur == policy->max)
 392                                return;
 393
 394                        __cpufreq_driver_target(policy, policy->max,
 395                                CPUFREQ_RELATION_H);
 396                } else {
 397                        int freq = powersave_bias_target(policy, policy->max,
 398                                        CPUFREQ_RELATION_H);
 399                        __cpufreq_driver_target(policy, freq,
 400                                CPUFREQ_RELATION_L);
 401                }
 402                return;
 403        }
 404
 405        /* Check for frequency decrease */
 406        /* if we cannot reduce the frequency anymore, break out early */
 407        if (policy->cur == policy->min)
 408                return;
 409
 410        /*
 411         * The optimal frequency is the frequency that is the lowest that
 412         * can support the current CPU usage without triggering the up
 413         * policy. To be safe, we focus 10 points under the threshold.
 414         */
 415        if (load < (dbs_tuners_ins.up_threshold - 10)) {
 416                unsigned int freq_next, freq_cur;
 417
 418                freq_cur = __cpufreq_driver_getavg(policy);
 419                if (!freq_cur)
 420                        freq_cur = policy->cur;
 421
 422                freq_next = (freq_cur * load) /
 423                        (dbs_tuners_ins.up_threshold - 10);
 424
 425                if (!dbs_tuners_ins.powersave_bias) {
 426                        __cpufreq_driver_target(policy, freq_next,
 427                                        CPUFREQ_RELATION_L);
 428                } else {
 429                        int freq = powersave_bias_target(policy, freq_next,
 430                                        CPUFREQ_RELATION_L);
 431                        __cpufreq_driver_target(policy, freq,
 432                                CPUFREQ_RELATION_L);
 433                }
 434        }
 435}
 436
 437static void do_dbs_timer(struct work_struct *work)
 438{
 439        struct cpu_dbs_info_s *dbs_info =
 440                container_of(work, struct cpu_dbs_info_s, work.work);
 441        unsigned int cpu = dbs_info->cpu;
 442        int sample_type = dbs_info->sample_type;
 443
 444        /* We want all CPUs to do sampling nearly on same jiffy */
 445        int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 446
 447        delay -= jiffies % delay;
 448
 449        if (lock_policy_rwsem_write(cpu) < 0)
 450                return;
 451
 452        if (!dbs_info->enable) {
 453                unlock_policy_rwsem_write(cpu);
 454                return;
 455        }
 456
 457        /* Common NORMAL_SAMPLE setup */
 458        dbs_info->sample_type = DBS_NORMAL_SAMPLE;
 459        if (!dbs_tuners_ins.powersave_bias ||
 460            sample_type == DBS_NORMAL_SAMPLE) {
 461                dbs_check_cpu(dbs_info);
 462                if (dbs_info->freq_lo) {
 463                        /* Setup timer for SUB_SAMPLE */
 464                        dbs_info->sample_type = DBS_SUB_SAMPLE;
 465                        delay = dbs_info->freq_hi_jiffies;
 466                }
 467        } else {
 468                __cpufreq_driver_target(dbs_info->cur_policy,
 469                                        dbs_info->freq_lo,
 470                                        CPUFREQ_RELATION_H);
 471        }
 472        queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
 473        unlock_policy_rwsem_write(cpu);
 474}
 475
 476static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
 477{
 478        /* We want all CPUs to do sampling nearly on same jiffy */
 479        int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 480        delay -= jiffies % delay;
 481
 482        dbs_info->enable = 1;
 483        ondemand_powersave_bias_init();
 484        dbs_info->sample_type = DBS_NORMAL_SAMPLE;
 485        INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
 486        queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
 487                              delay);
 488}
 489
 490static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
 491{
 492        dbs_info->enable = 0;
 493        cancel_delayed_work(&dbs_info->work);
 494}
 495
 496static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 497                                   unsigned int event)
 498{
 499        unsigned int cpu = policy->cpu;
 500        struct cpu_dbs_info_s *this_dbs_info;
 501        unsigned int j;
 502        int rc;
 503
 504        this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
 505
 506        switch (event) {
 507        case CPUFREQ_GOV_START:
 508                if ((!cpu_online(cpu)) || (!policy->cur))
 509                        return -EINVAL;
 510
 511                if (this_dbs_info->enable) /* Already enabled */
 512                        break;
 513
 514                mutex_lock(&dbs_mutex);
 515                dbs_enable++;
 516
 517                rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
 518                if (rc) {
 519                        dbs_enable--;
 520                        mutex_unlock(&dbs_mutex);
 521                        return rc;
 522                }
 523
 524                for_each_cpu_mask(j, policy->cpus) {
 525                        struct cpu_dbs_info_s *j_dbs_info;
 526                        j_dbs_info = &per_cpu(cpu_dbs_info, j);
 527                        j_dbs_info->cur_policy = policy;
 528
 529                        j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
 530                        j_dbs_info->prev_cpu_wall = get_jiffies_64();
 531                }
 532                this_dbs_info->cpu = cpu;
 533                /*
 534                 * Start the timerschedule work, when this governor
 535                 * is used for first time
 536                 */
 537                if (dbs_enable == 1) {
 538                        unsigned int latency;
 539                        /* policy latency is in nS. Convert it to uS first */
 540                        latency = policy->cpuinfo.transition_latency / 1000;
 541                        if (latency == 0)
 542                                latency = 1;
 543
 544                        def_sampling_rate = latency *
 545                                        DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
 546
 547                        if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
 548                                def_sampling_rate = MIN_STAT_SAMPLING_RATE;
 549
 550                        dbs_tuners_ins.sampling_rate = def_sampling_rate;
 551                }
 552                dbs_timer_init(this_dbs_info);
 553
 554                mutex_unlock(&dbs_mutex);
 555                break;
 556
 557        case CPUFREQ_GOV_STOP:
 558                mutex_lock(&dbs_mutex);
 559                dbs_timer_exit(this_dbs_info);
 560                sysfs_remove_group(&policy->kobj, &dbs_attr_group);
 561                dbs_enable--;
 562                mutex_unlock(&dbs_mutex);
 563
 564                break;
 565
 566        case CPUFREQ_GOV_LIMITS:
 567                mutex_lock(&dbs_mutex);
 568                if (policy->max < this_dbs_info->cur_policy->cur)
 569                        __cpufreq_driver_target(this_dbs_info->cur_policy,
 570                                                policy->max,
 571                                                CPUFREQ_RELATION_H);
 572                else if (policy->min > this_dbs_info->cur_policy->cur)
 573                        __cpufreq_driver_target(this_dbs_info->cur_policy,
 574                                                policy->min,
 575                                                CPUFREQ_RELATION_L);
 576                mutex_unlock(&dbs_mutex);
 577                break;
 578        }
 579        return 0;
 580}
 581
 582struct cpufreq_governor cpufreq_gov_ondemand = {
 583        .name                   = "ondemand",
 584        .governor               = cpufreq_governor_dbs,
 585        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
 586        .owner                  = THIS_MODULE,
 587};
 588EXPORT_SYMBOL(cpufreq_gov_ondemand);
 589
 590static int __init cpufreq_gov_dbs_init(void)
 591{
 592        kondemand_wq = create_workqueue("kondemand");
 593        if (!kondemand_wq) {
 594                printk(KERN_ERR "Creation of kondemand failed\n");
 595                return -EFAULT;
 596        }
 597        return cpufreq_register_governor(&cpufreq_gov_ondemand);
 598}
 599
 600static void __exit cpufreq_gov_dbs_exit(void)
 601{
 602        cpufreq_unregister_governor(&cpufreq_gov_ondemand);
 603        destroy_workqueue(kondemand_wq);
 604}
 605
 606
 607MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
 608MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
 609MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
 610                   "Low Latency Frequency Transition capable processors");
 611MODULE_LICENSE("GPL");
 612
 613#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
 614fs_initcall(cpufreq_gov_dbs_init);
 615#else
 616module_init(cpufreq_gov_dbs_init);
 617#endif
 618module_exit(cpufreq_gov_dbs_exit);
 619