linux/drivers/md/linear.c
<<
>>
Prefs
   1/*
   2   linear.c : Multiple Devices driver for Linux
   3              Copyright (C) 1994-96 Marc ZYNGIER
   4              <zyngier@ufr-info-p7.ibp.fr> or
   5              <maz@gloups.fdn.fr>
   6
   7   Linear mode management functions.
   8
   9   This program is free software; you can redistribute it and/or modify
  10   it under the terms of the GNU General Public License as published by
  11   the Free Software Foundation; either version 2, or (at your option)
  12   any later version.
  13   
  14   You should have received a copy of the GNU General Public License
  15   (for example /usr/src/linux/COPYING); if not, write to the Free
  16   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
  17*/
  18
  19#include <linux/module.h>
  20
  21#include <linux/raid/md.h>
  22#include <linux/slab.h>
  23#include <linux/raid/linear.h>
  24
  25#define MAJOR_NR MD_MAJOR
  26#define MD_DRIVER
  27#define MD_PERSONALITY
  28
  29/*
  30 * find which device holds a particular offset 
  31 */
  32static inline dev_info_t *which_dev(mddev_t *mddev, sector_t sector)
  33{
  34        dev_info_t *hash;
  35        linear_conf_t *conf = mddev_to_conf(mddev);
  36        sector_t block = sector >> 1;
  37
  38        /*
  39         * sector_div(a,b) returns the remainer and sets a to a/b
  40         */
  41        block >>= conf->preshift;
  42        (void)sector_div(block, conf->hash_spacing);
  43        hash = conf->hash_table[block];
  44
  45        while ((sector>>1) >= (hash->size + hash->offset))
  46                hash++;
  47        return hash;
  48}
  49
  50/**
  51 *      linear_mergeable_bvec -- tell bio layer if two requests can be merged
  52 *      @q: request queue
  53 *      @bio: the buffer head that's been built up so far
  54 *      @biovec: the request that could be merged to it.
  55 *
  56 *      Return amount of bytes we can take at this offset
  57 */
  58static int linear_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
  59{
  60        mddev_t *mddev = q->queuedata;
  61        dev_info_t *dev0;
  62        unsigned long maxsectors, bio_sectors = bio->bi_size >> 9;
  63        sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  64
  65        dev0 = which_dev(mddev, sector);
  66        maxsectors = (dev0->size << 1) - (sector - (dev0->offset<<1));
  67
  68        if (maxsectors < bio_sectors)
  69                maxsectors = 0;
  70        else
  71                maxsectors -= bio_sectors;
  72
  73        if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0)
  74                return biovec->bv_len;
  75        /* The bytes available at this offset could be really big,
  76         * so we cap at 2^31 to avoid overflow */
  77        if (maxsectors > (1 << (31-9)))
  78                return 1<<31;
  79        return maxsectors << 9;
  80}
  81
  82static void linear_unplug(struct request_queue *q)
  83{
  84        mddev_t *mddev = q->queuedata;
  85        linear_conf_t *conf = mddev_to_conf(mddev);
  86        int i;
  87
  88        for (i=0; i < mddev->raid_disks; i++) {
  89                struct request_queue *r_queue = bdev_get_queue(conf->disks[i].rdev->bdev);
  90                blk_unplug(r_queue);
  91        }
  92}
  93
  94static int linear_congested(void *data, int bits)
  95{
  96        mddev_t *mddev = data;
  97        linear_conf_t *conf = mddev_to_conf(mddev);
  98        int i, ret = 0;
  99
 100        for (i = 0; i < mddev->raid_disks && !ret ; i++) {
 101                struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev);
 102                ret |= bdi_congested(&q->backing_dev_info, bits);
 103        }
 104        return ret;
 105}
 106
 107static linear_conf_t *linear_conf(mddev_t *mddev, int raid_disks)
 108{
 109        linear_conf_t *conf;
 110        dev_info_t **table;
 111        mdk_rdev_t *rdev;
 112        int i, nb_zone, cnt;
 113        sector_t min_spacing;
 114        sector_t curr_offset;
 115        struct list_head *tmp;
 116
 117        conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(dev_info_t),
 118                        GFP_KERNEL);
 119        if (!conf)
 120                return NULL;
 121
 122        cnt = 0;
 123        conf->array_size = 0;
 124
 125        ITERATE_RDEV(mddev,rdev,tmp) {
 126                int j = rdev->raid_disk;
 127                dev_info_t *disk = conf->disks + j;
 128
 129                if (j < 0 || j > raid_disks || disk->rdev) {
 130                        printk("linear: disk numbering problem. Aborting!\n");
 131                        goto out;
 132                }
 133
 134                disk->rdev = rdev;
 135
 136                blk_queue_stack_limits(mddev->queue,
 137                                       rdev->bdev->bd_disk->queue);
 138                /* as we don't honour merge_bvec_fn, we must never risk
 139                 * violating it, so limit ->max_sector to one PAGE, as
 140                 * a one page request is never in violation.
 141                 */
 142                if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
 143                    mddev->queue->max_sectors > (PAGE_SIZE>>9))
 144                        blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
 145
 146                disk->size = rdev->size;
 147                conf->array_size += rdev->size;
 148
 149                cnt++;
 150        }
 151        if (cnt != raid_disks) {
 152                printk("linear: not enough drives present. Aborting!\n");
 153                goto out;
 154        }
 155
 156        min_spacing = conf->array_size;
 157        sector_div(min_spacing, PAGE_SIZE/sizeof(struct dev_info *));
 158
 159        /* min_spacing is the minimum spacing that will fit the hash
 160         * table in one PAGE.  This may be much smaller than needed.
 161         * We find the smallest non-terminal set of consecutive devices
 162         * that is larger than min_spacing as use the size of that as
 163         * the actual spacing
 164         */
 165        conf->hash_spacing = conf->array_size;
 166        for (i=0; i < cnt-1 ; i++) {
 167                sector_t sz = 0;
 168                int j;
 169                for (j = i; j < cnt - 1 && sz < min_spacing; j++)
 170                        sz += conf->disks[j].size;
 171                if (sz >= min_spacing && sz < conf->hash_spacing)
 172                        conf->hash_spacing = sz;
 173        }
 174
 175        /* hash_spacing may be too large for sector_div to work with,
 176         * so we might need to pre-shift
 177         */
 178        conf->preshift = 0;
 179        if (sizeof(sector_t) > sizeof(u32)) {
 180                sector_t space = conf->hash_spacing;
 181                while (space > (sector_t)(~(u32)0)) {
 182                        space >>= 1;
 183                        conf->preshift++;
 184                }
 185        }
 186        /*
 187         * This code was restructured to work around a gcc-2.95.3 internal
 188         * compiler error.  Alter it with care.
 189         */
 190        {
 191                sector_t sz;
 192                unsigned round;
 193                unsigned long base;
 194
 195                sz = conf->array_size >> conf->preshift;
 196                sz += 1; /* force round-up */
 197                base = conf->hash_spacing >> conf->preshift;
 198                round = sector_div(sz, base);
 199                nb_zone = sz + (round ? 1 : 0);
 200        }
 201        BUG_ON(nb_zone > PAGE_SIZE / sizeof(struct dev_info *));
 202
 203        conf->hash_table = kmalloc (sizeof (struct dev_info *) * nb_zone,
 204                                        GFP_KERNEL);
 205        if (!conf->hash_table)
 206                goto out;
 207
 208        /*
 209         * Here we generate the linear hash table
 210         * First calculate the device offsets.
 211         */
 212        conf->disks[0].offset = 0;
 213        for (i = 1; i < raid_disks; i++)
 214                conf->disks[i].offset =
 215                        conf->disks[i-1].offset +
 216                        conf->disks[i-1].size;
 217
 218        table = conf->hash_table;
 219        curr_offset = 0;
 220        i = 0;
 221        for (curr_offset = 0;
 222             curr_offset < conf->array_size;
 223             curr_offset += conf->hash_spacing) {
 224
 225                while (i < raid_disks-1 &&
 226                       curr_offset >= conf->disks[i+1].offset)
 227                        i++;
 228
 229                *table ++ = conf->disks + i;
 230        }
 231
 232        if (conf->preshift) {
 233                conf->hash_spacing >>= conf->preshift;
 234                /* round hash_spacing up so that when we divide by it,
 235                 * we err on the side of "too-low", which is safest.
 236                 */
 237                conf->hash_spacing++;
 238        }
 239
 240        BUG_ON(table - conf->hash_table > nb_zone);
 241
 242        return conf;
 243
 244out:
 245        kfree(conf);
 246        return NULL;
 247}
 248
 249static int linear_run (mddev_t *mddev)
 250{
 251        linear_conf_t *conf;
 252
 253        conf = linear_conf(mddev, mddev->raid_disks);
 254
 255        if (!conf)
 256                return 1;
 257        mddev->private = conf;
 258        mddev->array_size = conf->array_size;
 259
 260        blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec);
 261        mddev->queue->unplug_fn = linear_unplug;
 262        mddev->queue->backing_dev_info.congested_fn = linear_congested;
 263        mddev->queue->backing_dev_info.congested_data = mddev;
 264        return 0;
 265}
 266
 267static int linear_add(mddev_t *mddev, mdk_rdev_t *rdev)
 268{
 269        /* Adding a drive to a linear array allows the array to grow.
 270         * It is permitted if the new drive has a matching superblock
 271         * already on it, with raid_disk equal to raid_disks.
 272         * It is achieved by creating a new linear_private_data structure
 273         * and swapping it in in-place of the current one.
 274         * The current one is never freed until the array is stopped.
 275         * This avoids races.
 276         */
 277        linear_conf_t *newconf;
 278
 279        if (rdev->saved_raid_disk != mddev->raid_disks)
 280                return -EINVAL;
 281
 282        rdev->raid_disk = rdev->saved_raid_disk;
 283
 284        newconf = linear_conf(mddev,mddev->raid_disks+1);
 285
 286        if (!newconf)
 287                return -ENOMEM;
 288
 289        newconf->prev = mddev_to_conf(mddev);
 290        mddev->private = newconf;
 291        mddev->raid_disks++;
 292        mddev->array_size = newconf->array_size;
 293        set_capacity(mddev->gendisk, mddev->array_size << 1);
 294        return 0;
 295}
 296
 297static int linear_stop (mddev_t *mddev)
 298{
 299        linear_conf_t *conf = mddev_to_conf(mddev);
 300  
 301        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
 302        do {
 303                linear_conf_t *t = conf->prev;
 304                kfree(conf->hash_table);
 305                kfree(conf);
 306                conf = t;
 307        } while (conf);
 308
 309        return 0;
 310}
 311
 312static int linear_make_request (struct request_queue *q, struct bio *bio)
 313{
 314        const int rw = bio_data_dir(bio);
 315        mddev_t *mddev = q->queuedata;
 316        dev_info_t *tmp_dev;
 317        sector_t block;
 318
 319        if (unlikely(bio_barrier(bio))) {
 320                bio_endio(bio, -EOPNOTSUPP);
 321                return 0;
 322        }
 323
 324        disk_stat_inc(mddev->gendisk, ios[rw]);
 325        disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
 326
 327        tmp_dev = which_dev(mddev, bio->bi_sector);
 328        block = bio->bi_sector >> 1;
 329    
 330        if (unlikely(block >= (tmp_dev->size + tmp_dev->offset)
 331                     || block < tmp_dev->offset)) {
 332                char b[BDEVNAME_SIZE];
 333
 334                printk("linear_make_request: Block %llu out of bounds on "
 335                        "dev %s size %llu offset %llu\n",
 336                        (unsigned long long)block,
 337                        bdevname(tmp_dev->rdev->bdev, b),
 338                        (unsigned long long)tmp_dev->size,
 339                        (unsigned long long)tmp_dev->offset);
 340                bio_io_error(bio);
 341                return 0;
 342        }
 343        if (unlikely(bio->bi_sector + (bio->bi_size >> 9) >
 344                     (tmp_dev->offset + tmp_dev->size)<<1)) {
 345                /* This bio crosses a device boundary, so we have to
 346                 * split it.
 347                 */
 348                struct bio_pair *bp;
 349                bp = bio_split(bio, bio_split_pool,
 350                               ((tmp_dev->offset + tmp_dev->size)<<1) - bio->bi_sector);
 351                if (linear_make_request(q, &bp->bio1))
 352                        generic_make_request(&bp->bio1);
 353                if (linear_make_request(q, &bp->bio2))
 354                        generic_make_request(&bp->bio2);
 355                bio_pair_release(bp);
 356                return 0;
 357        }
 358                    
 359        bio->bi_bdev = tmp_dev->rdev->bdev;
 360        bio->bi_sector = bio->bi_sector - (tmp_dev->offset << 1) + tmp_dev->rdev->data_offset;
 361
 362        return 1;
 363}
 364
 365static void linear_status (struct seq_file *seq, mddev_t *mddev)
 366{
 367
 368#undef MD_DEBUG
 369#ifdef MD_DEBUG
 370        int j;
 371        linear_conf_t *conf = mddev_to_conf(mddev);
 372        sector_t s = 0;
 373  
 374        seq_printf(seq, "      ");
 375        for (j = 0; j < mddev->raid_disks; j++)
 376        {
 377                char b[BDEVNAME_SIZE];
 378                s += conf->smallest_size;
 379                seq_printf(seq, "[%s",
 380                           bdevname(conf->hash_table[j][0].rdev->bdev,b));
 381
 382                while (s > conf->hash_table[j][0].offset +
 383                           conf->hash_table[j][0].size)
 384                        seq_printf(seq, "/%s] ",
 385                                   bdevname(conf->hash_table[j][1].rdev->bdev,b));
 386                else
 387                        seq_printf(seq, "] ");
 388        }
 389        seq_printf(seq, "\n");
 390#endif
 391        seq_printf(seq, " %dk rounding", mddev->chunk_size/1024);
 392}
 393
 394
 395static struct mdk_personality linear_personality =
 396{
 397        .name           = "linear",
 398        .level          = LEVEL_LINEAR,
 399        .owner          = THIS_MODULE,
 400        .make_request   = linear_make_request,
 401        .run            = linear_run,
 402        .stop           = linear_stop,
 403        .status         = linear_status,
 404        .hot_add_disk   = linear_add,
 405};
 406
 407static int __init linear_init (void)
 408{
 409        return register_md_personality (&linear_personality);
 410}
 411
 412static void linear_exit (void)
 413{
 414        unregister_md_personality (&linear_personality);
 415}
 416
 417
 418module_init(linear_init);
 419module_exit(linear_exit);
 420MODULE_LICENSE("GPL");
 421MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
 422MODULE_ALIAS("md-linear");
 423MODULE_ALIAS("md-level--1");
 424