linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include "dm-bio-list.h"
  35#include <linux/raid/raid1.h>
  36#include <linux/raid/bitmap.h>
  37
  38#define DEBUG 0
  39#if DEBUG
  40#define PRINTK(x...) printk(x)
  41#else
  42#define PRINTK(x...)
  43#endif
  44
  45/*
  46 * Number of guaranteed r1bios in case of extreme VM load:
  47 */
  48#define NR_RAID1_BIOS 256
  49
  50
  51static void unplug_slaves(mddev_t *mddev);
  52
  53static void allow_barrier(conf_t *conf);
  54static void lower_barrier(conf_t *conf);
  55
  56static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  57{
  58        struct pool_info *pi = data;
  59        r1bio_t *r1_bio;
  60        int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  61
  62        /* allocate a r1bio with room for raid_disks entries in the bios array */
  63        r1_bio = kzalloc(size, gfp_flags);
  64        if (!r1_bio)
  65                unplug_slaves(pi->mddev);
  66
  67        return r1_bio;
  68}
  69
  70static void r1bio_pool_free(void *r1_bio, void *data)
  71{
  72        kfree(r1_bio);
  73}
  74
  75#define RESYNC_BLOCK_SIZE (64*1024)
  76//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  77#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  78#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  79#define RESYNC_WINDOW (2048*1024)
  80
  81static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  82{
  83        struct pool_info *pi = data;
  84        struct page *page;
  85        r1bio_t *r1_bio;
  86        struct bio *bio;
  87        int i, j;
  88
  89        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  90        if (!r1_bio) {
  91                unplug_slaves(pi->mddev);
  92                return NULL;
  93        }
  94
  95        /*
  96         * Allocate bios : 1 for reading, n-1 for writing
  97         */
  98        for (j = pi->raid_disks ; j-- ; ) {
  99                bio = bio_alloc(gfp_flags, RESYNC_PAGES);
 100                if (!bio)
 101                        goto out_free_bio;
 102                r1_bio->bios[j] = bio;
 103        }
 104        /*
 105         * Allocate RESYNC_PAGES data pages and attach them to
 106         * the first bio.
 107         * If this is a user-requested check/repair, allocate
 108         * RESYNC_PAGES for each bio.
 109         */
 110        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 111                j = pi->raid_disks;
 112        else
 113                j = 1;
 114        while(j--) {
 115                bio = r1_bio->bios[j];
 116                for (i = 0; i < RESYNC_PAGES; i++) {
 117                        page = alloc_page(gfp_flags);
 118                        if (unlikely(!page))
 119                                goto out_free_pages;
 120
 121                        bio->bi_io_vec[i].bv_page = page;
 122                }
 123        }
 124        /* If not user-requests, copy the page pointers to all bios */
 125        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 126                for (i=0; i<RESYNC_PAGES ; i++)
 127                        for (j=1; j<pi->raid_disks; j++)
 128                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 129                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 130        }
 131
 132        r1_bio->master_bio = NULL;
 133
 134        return r1_bio;
 135
 136out_free_pages:
 137        for (i=0; i < RESYNC_PAGES ; i++)
 138                for (j=0 ; j < pi->raid_disks; j++)
 139                        safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 140        j = -1;
 141out_free_bio:
 142        while ( ++j < pi->raid_disks )
 143                bio_put(r1_bio->bios[j]);
 144        r1bio_pool_free(r1_bio, data);
 145        return NULL;
 146}
 147
 148static void r1buf_pool_free(void *__r1_bio, void *data)
 149{
 150        struct pool_info *pi = data;
 151        int i,j;
 152        r1bio_t *r1bio = __r1_bio;
 153
 154        for (i = 0; i < RESYNC_PAGES; i++)
 155                for (j = pi->raid_disks; j-- ;) {
 156                        if (j == 0 ||
 157                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 158                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 159                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 160                }
 161        for (i=0 ; i < pi->raid_disks; i++)
 162                bio_put(r1bio->bios[i]);
 163
 164        r1bio_pool_free(r1bio, data);
 165}
 166
 167static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
 168{
 169        int i;
 170
 171        for (i = 0; i < conf->raid_disks; i++) {
 172                struct bio **bio = r1_bio->bios + i;
 173                if (*bio && *bio != IO_BLOCKED)
 174                        bio_put(*bio);
 175                *bio = NULL;
 176        }
 177}
 178
 179static void free_r1bio(r1bio_t *r1_bio)
 180{
 181        conf_t *conf = mddev_to_conf(r1_bio->mddev);
 182
 183        /*
 184         * Wake up any possible resync thread that waits for the device
 185         * to go idle.
 186         */
 187        allow_barrier(conf);
 188
 189        put_all_bios(conf, r1_bio);
 190        mempool_free(r1_bio, conf->r1bio_pool);
 191}
 192
 193static void put_buf(r1bio_t *r1_bio)
 194{
 195        conf_t *conf = mddev_to_conf(r1_bio->mddev);
 196        int i;
 197
 198        for (i=0; i<conf->raid_disks; i++) {
 199                struct bio *bio = r1_bio->bios[i];
 200                if (bio->bi_end_io)
 201                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 202        }
 203
 204        mempool_free(r1_bio, conf->r1buf_pool);
 205
 206        lower_barrier(conf);
 207}
 208
 209static void reschedule_retry(r1bio_t *r1_bio)
 210{
 211        unsigned long flags;
 212        mddev_t *mddev = r1_bio->mddev;
 213        conf_t *conf = mddev_to_conf(mddev);
 214
 215        spin_lock_irqsave(&conf->device_lock, flags);
 216        list_add(&r1_bio->retry_list, &conf->retry_list);
 217        conf->nr_queued ++;
 218        spin_unlock_irqrestore(&conf->device_lock, flags);
 219
 220        wake_up(&conf->wait_barrier);
 221        md_wakeup_thread(mddev->thread);
 222}
 223
 224/*
 225 * raid_end_bio_io() is called when we have finished servicing a mirrored
 226 * operation and are ready to return a success/failure code to the buffer
 227 * cache layer.
 228 */
 229static void raid_end_bio_io(r1bio_t *r1_bio)
 230{
 231        struct bio *bio = r1_bio->master_bio;
 232
 233        /* if nobody has done the final endio yet, do it now */
 234        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 235                PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
 236                        (bio_data_dir(bio) == WRITE) ? "write" : "read",
 237                        (unsigned long long) bio->bi_sector,
 238                        (unsigned long long) bio->bi_sector +
 239                                (bio->bi_size >> 9) - 1);
 240
 241                bio_endio(bio,
 242                        test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
 243        }
 244        free_r1bio(r1_bio);
 245}
 246
 247/*
 248 * Update disk head position estimator based on IRQ completion info.
 249 */
 250static inline void update_head_pos(int disk, r1bio_t *r1_bio)
 251{
 252        conf_t *conf = mddev_to_conf(r1_bio->mddev);
 253
 254        conf->mirrors[disk].head_position =
 255                r1_bio->sector + (r1_bio->sectors);
 256}
 257
 258static void raid1_end_read_request(struct bio *bio, int error)
 259{
 260        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 261        r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
 262        int mirror;
 263        conf_t *conf = mddev_to_conf(r1_bio->mddev);
 264
 265        mirror = r1_bio->read_disk;
 266        /*
 267         * this branch is our 'one mirror IO has finished' event handler:
 268         */
 269        update_head_pos(mirror, r1_bio);
 270
 271        if (uptodate)
 272                set_bit(R1BIO_Uptodate, &r1_bio->state);
 273        else {
 274                /* If all other devices have failed, we want to return
 275                 * the error upwards rather than fail the last device.
 276                 * Here we redefine "uptodate" to mean "Don't want to retry"
 277                 */
 278                unsigned long flags;
 279                spin_lock_irqsave(&conf->device_lock, flags);
 280                if (r1_bio->mddev->degraded == conf->raid_disks ||
 281                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 282                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 283                        uptodate = 1;
 284                spin_unlock_irqrestore(&conf->device_lock, flags);
 285        }
 286
 287        if (uptodate)
 288                raid_end_bio_io(r1_bio);
 289        else {
 290                /*
 291                 * oops, read error:
 292                 */
 293                char b[BDEVNAME_SIZE];
 294                if (printk_ratelimit())
 295                        printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
 296                               bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
 297                reschedule_retry(r1_bio);
 298        }
 299
 300        rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 301}
 302
 303static void raid1_end_write_request(struct bio *bio, int error)
 304{
 305        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 306        r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
 307        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 308        conf_t *conf = mddev_to_conf(r1_bio->mddev);
 309        struct bio *to_put = NULL;
 310
 311
 312        for (mirror = 0; mirror < conf->raid_disks; mirror++)
 313                if (r1_bio->bios[mirror] == bio)
 314                        break;
 315
 316        if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
 317                set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
 318                set_bit(R1BIO_BarrierRetry, &r1_bio->state);
 319                r1_bio->mddev->barriers_work = 0;
 320                /* Don't rdev_dec_pending in this branch - keep it for the retry */
 321        } else {
 322                /*
 323                 * this branch is our 'one mirror IO has finished' event handler:
 324                 */
 325                r1_bio->bios[mirror] = NULL;
 326                to_put = bio;
 327                if (!uptodate) {
 328                        md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
 329                        /* an I/O failed, we can't clear the bitmap */
 330                        set_bit(R1BIO_Degraded, &r1_bio->state);
 331                } else
 332                        /*
 333                         * Set R1BIO_Uptodate in our master bio, so that
 334                         * we will return a good error code for to the higher
 335                         * levels even if IO on some other mirrored buffer fails.
 336                         *
 337                         * The 'master' represents the composite IO operation to
 338                         * user-side. So if something waits for IO, then it will
 339                         * wait for the 'master' bio.
 340                         */
 341                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 342
 343                update_head_pos(mirror, r1_bio);
 344
 345                if (behind) {
 346                        if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 347                                atomic_dec(&r1_bio->behind_remaining);
 348
 349                        /* In behind mode, we ACK the master bio once the I/O has safely
 350                         * reached all non-writemostly disks. Setting the Returned bit
 351                         * ensures that this gets done only once -- we don't ever want to
 352                         * return -EIO here, instead we'll wait */
 353
 354                        if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 355                            test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 356                                /* Maybe we can return now */
 357                                if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 358                                        struct bio *mbio = r1_bio->master_bio;
 359                                        PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
 360                                               (unsigned long long) mbio->bi_sector,
 361                                               (unsigned long long) mbio->bi_sector +
 362                                               (mbio->bi_size >> 9) - 1);
 363                                        bio_endio(mbio, 0);
 364                                }
 365                        }
 366                }
 367                rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 368        }
 369        /*
 370         *
 371         * Let's see if all mirrored write operations have finished
 372         * already.
 373         */
 374        if (atomic_dec_and_test(&r1_bio->remaining)) {
 375                if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
 376                        reschedule_retry(r1_bio);
 377                else {
 378                        /* it really is the end of this request */
 379                        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 380                                /* free extra copy of the data pages */
 381                                int i = bio->bi_vcnt;
 382                                while (i--)
 383                                        safe_put_page(bio->bi_io_vec[i].bv_page);
 384                        }
 385                        /* clear the bitmap if all writes complete successfully */
 386                        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 387                                        r1_bio->sectors,
 388                                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 389                                        behind);
 390                        md_write_end(r1_bio->mddev);
 391                        raid_end_bio_io(r1_bio);
 392                }
 393        }
 394
 395        if (to_put)
 396                bio_put(to_put);
 397}
 398
 399
 400/*
 401 * This routine returns the disk from which the requested read should
 402 * be done. There is a per-array 'next expected sequential IO' sector
 403 * number - if this matches on the next IO then we use the last disk.
 404 * There is also a per-disk 'last know head position' sector that is
 405 * maintained from IRQ contexts, both the normal and the resync IO
 406 * completion handlers update this position correctly. If there is no
 407 * perfect sequential match then we pick the disk whose head is closest.
 408 *
 409 * If there are 2 mirrors in the same 2 devices, performance degrades
 410 * because position is mirror, not device based.
 411 *
 412 * The rdev for the device selected will have nr_pending incremented.
 413 */
 414static int read_balance(conf_t *conf, r1bio_t *r1_bio)
 415{
 416        const unsigned long this_sector = r1_bio->sector;
 417        int new_disk = conf->last_used, disk = new_disk;
 418        int wonly_disk = -1;
 419        const int sectors = r1_bio->sectors;
 420        sector_t new_distance, current_distance;
 421        mdk_rdev_t *rdev;
 422
 423        rcu_read_lock();
 424        /*
 425         * Check if we can balance. We can balance on the whole
 426         * device if no resync is going on, or below the resync window.
 427         * We take the first readable disk when above the resync window.
 428         */
 429 retry:
 430        if (conf->mddev->recovery_cp < MaxSector &&
 431            (this_sector + sectors >= conf->next_resync)) {
 432                /* Choose the first operation device, for consistancy */
 433                new_disk = 0;
 434
 435                for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
 436                     r1_bio->bios[new_disk] == IO_BLOCKED ||
 437                     !rdev || !test_bit(In_sync, &rdev->flags)
 438                             || test_bit(WriteMostly, &rdev->flags);
 439                     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
 440
 441                        if (rdev && test_bit(In_sync, &rdev->flags) &&
 442                                r1_bio->bios[new_disk] != IO_BLOCKED)
 443                                wonly_disk = new_disk;
 444
 445                        if (new_disk == conf->raid_disks - 1) {
 446                                new_disk = wonly_disk;
 447                                break;
 448                        }
 449                }
 450                goto rb_out;
 451        }
 452
 453
 454        /* make sure the disk is operational */
 455        for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
 456             r1_bio->bios[new_disk] == IO_BLOCKED ||
 457             !rdev || !test_bit(In_sync, &rdev->flags) ||
 458                     test_bit(WriteMostly, &rdev->flags);
 459             rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
 460
 461                if (rdev && test_bit(In_sync, &rdev->flags) &&
 462                    r1_bio->bios[new_disk] != IO_BLOCKED)
 463                        wonly_disk = new_disk;
 464
 465                if (new_disk <= 0)
 466                        new_disk = conf->raid_disks;
 467                new_disk--;
 468                if (new_disk == disk) {
 469                        new_disk = wonly_disk;
 470                        break;
 471                }
 472        }
 473
 474        if (new_disk < 0)
 475                goto rb_out;
 476
 477        disk = new_disk;
 478        /* now disk == new_disk == starting point for search */
 479
 480        /*
 481         * Don't change to another disk for sequential reads:
 482         */
 483        if (conf->next_seq_sect == this_sector)
 484                goto rb_out;
 485        if (this_sector == conf->mirrors[new_disk].head_position)
 486                goto rb_out;
 487
 488        current_distance = abs(this_sector - conf->mirrors[disk].head_position);
 489
 490        /* Find the disk whose head is closest */
 491
 492        do {
 493                if (disk <= 0)
 494                        disk = conf->raid_disks;
 495                disk--;
 496
 497                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 498
 499                if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
 500                    !test_bit(In_sync, &rdev->flags) ||
 501                    test_bit(WriteMostly, &rdev->flags))
 502                        continue;
 503
 504                if (!atomic_read(&rdev->nr_pending)) {
 505                        new_disk = disk;
 506                        break;
 507                }
 508                new_distance = abs(this_sector - conf->mirrors[disk].head_position);
 509                if (new_distance < current_distance) {
 510                        current_distance = new_distance;
 511                        new_disk = disk;
 512                }
 513        } while (disk != conf->last_used);
 514
 515 rb_out:
 516
 517
 518        if (new_disk >= 0) {
 519                rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
 520                if (!rdev)
 521                        goto retry;
 522                atomic_inc(&rdev->nr_pending);
 523                if (!test_bit(In_sync, &rdev->flags)) {
 524                        /* cannot risk returning a device that failed
 525                         * before we inc'ed nr_pending
 526                         */
 527                        rdev_dec_pending(rdev, conf->mddev);
 528                        goto retry;
 529                }
 530                conf->next_seq_sect = this_sector + sectors;
 531                conf->last_used = new_disk;
 532        }
 533        rcu_read_unlock();
 534
 535        return new_disk;
 536}
 537
 538static void unplug_slaves(mddev_t *mddev)
 539{
 540        conf_t *conf = mddev_to_conf(mddev);
 541        int i;
 542
 543        rcu_read_lock();
 544        for (i=0; i<mddev->raid_disks; i++) {
 545                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 546                if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
 547                        struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
 548
 549                        atomic_inc(&rdev->nr_pending);
 550                        rcu_read_unlock();
 551
 552                        blk_unplug(r_queue);
 553
 554                        rdev_dec_pending(rdev, mddev);
 555                        rcu_read_lock();
 556                }
 557        }
 558        rcu_read_unlock();
 559}
 560
 561static void raid1_unplug(struct request_queue *q)
 562{
 563        mddev_t *mddev = q->queuedata;
 564
 565        unplug_slaves(mddev);
 566        md_wakeup_thread(mddev->thread);
 567}
 568
 569static int raid1_congested(void *data, int bits)
 570{
 571        mddev_t *mddev = data;
 572        conf_t *conf = mddev_to_conf(mddev);
 573        int i, ret = 0;
 574
 575        rcu_read_lock();
 576        for (i = 0; i < mddev->raid_disks; i++) {
 577                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 578                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 579                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 580
 581                        /* Note the '|| 1' - when read_balance prefers
 582                         * non-congested targets, it can be removed
 583                         */
 584                        if ((bits & (1<<BDI_write_congested)) || 1)
 585                                ret |= bdi_congested(&q->backing_dev_info, bits);
 586                        else
 587                                ret &= bdi_congested(&q->backing_dev_info, bits);
 588                }
 589        }
 590        rcu_read_unlock();
 591        return ret;
 592}
 593
 594
 595/* Barriers....
 596 * Sometimes we need to suspend IO while we do something else,
 597 * either some resync/recovery, or reconfigure the array.
 598 * To do this we raise a 'barrier'.
 599 * The 'barrier' is a counter that can be raised multiple times
 600 * to count how many activities are happening which preclude
 601 * normal IO.
 602 * We can only raise the barrier if there is no pending IO.
 603 * i.e. if nr_pending == 0.
 604 * We choose only to raise the barrier if no-one is waiting for the
 605 * barrier to go down.  This means that as soon as an IO request
 606 * is ready, no other operations which require a barrier will start
 607 * until the IO request has had a chance.
 608 *
 609 * So: regular IO calls 'wait_barrier'.  When that returns there
 610 *    is no backgroup IO happening,  It must arrange to call
 611 *    allow_barrier when it has finished its IO.
 612 * backgroup IO calls must call raise_barrier.  Once that returns
 613 *    there is no normal IO happeing.  It must arrange to call
 614 *    lower_barrier when the particular background IO completes.
 615 */
 616#define RESYNC_DEPTH 32
 617
 618static void raise_barrier(conf_t *conf)
 619{
 620        spin_lock_irq(&conf->resync_lock);
 621
 622        /* Wait until no block IO is waiting */
 623        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 624                            conf->resync_lock,
 625                            raid1_unplug(conf->mddev->queue));
 626
 627        /* block any new IO from starting */
 628        conf->barrier++;
 629
 630        /* No wait for all pending IO to complete */
 631        wait_event_lock_irq(conf->wait_barrier,
 632                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 633                            conf->resync_lock,
 634                            raid1_unplug(conf->mddev->queue));
 635
 636        spin_unlock_irq(&conf->resync_lock);
 637}
 638
 639static void lower_barrier(conf_t *conf)
 640{
 641        unsigned long flags;
 642        spin_lock_irqsave(&conf->resync_lock, flags);
 643        conf->barrier--;
 644        spin_unlock_irqrestore(&conf->resync_lock, flags);
 645        wake_up(&conf->wait_barrier);
 646}
 647
 648static void wait_barrier(conf_t *conf)
 649{
 650        spin_lock_irq(&conf->resync_lock);
 651        if (conf->barrier) {
 652                conf->nr_waiting++;
 653                wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 654                                    conf->resync_lock,
 655                                    raid1_unplug(conf->mddev->queue));
 656                conf->nr_waiting--;
 657        }
 658        conf->nr_pending++;
 659        spin_unlock_irq(&conf->resync_lock);
 660}
 661
 662static void allow_barrier(conf_t *conf)
 663{
 664        unsigned long flags;
 665        spin_lock_irqsave(&conf->resync_lock, flags);
 666        conf->nr_pending--;
 667        spin_unlock_irqrestore(&conf->resync_lock, flags);
 668        wake_up(&conf->wait_barrier);
 669}
 670
 671static void freeze_array(conf_t *conf)
 672{
 673        /* stop syncio and normal IO and wait for everything to
 674         * go quite.
 675         * We increment barrier and nr_waiting, and then
 676         * wait until barrier+nr_pending match nr_queued+2
 677         */
 678        spin_lock_irq(&conf->resync_lock);
 679        conf->barrier++;
 680        conf->nr_waiting++;
 681        wait_event_lock_irq(conf->wait_barrier,
 682                            conf->barrier+conf->nr_pending == conf->nr_queued+2,
 683                            conf->resync_lock,
 684                            raid1_unplug(conf->mddev->queue));
 685        spin_unlock_irq(&conf->resync_lock);
 686}
 687static void unfreeze_array(conf_t *conf)
 688{
 689        /* reverse the effect of the freeze */
 690        spin_lock_irq(&conf->resync_lock);
 691        conf->barrier--;
 692        conf->nr_waiting--;
 693        wake_up(&conf->wait_barrier);
 694        spin_unlock_irq(&conf->resync_lock);
 695}
 696
 697
 698/* duplicate the data pages for behind I/O */
 699static struct page **alloc_behind_pages(struct bio *bio)
 700{
 701        int i;
 702        struct bio_vec *bvec;
 703        struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
 704                                        GFP_NOIO);
 705        if (unlikely(!pages))
 706                goto do_sync_io;
 707
 708        bio_for_each_segment(bvec, bio, i) {
 709                pages[i] = alloc_page(GFP_NOIO);
 710                if (unlikely(!pages[i]))
 711                        goto do_sync_io;
 712                memcpy(kmap(pages[i]) + bvec->bv_offset,
 713                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 714                kunmap(pages[i]);
 715                kunmap(bvec->bv_page);
 716        }
 717
 718        return pages;
 719
 720do_sync_io:
 721        if (pages)
 722                for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
 723                        put_page(pages[i]);
 724        kfree(pages);
 725        PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 726        return NULL;
 727}
 728
 729static int make_request(struct request_queue *q, struct bio * bio)
 730{
 731        mddev_t *mddev = q->queuedata;
 732        conf_t *conf = mddev_to_conf(mddev);
 733        mirror_info_t *mirror;
 734        r1bio_t *r1_bio;
 735        struct bio *read_bio;
 736        int i, targets = 0, disks;
 737        mdk_rdev_t *rdev;
 738        struct bitmap *bitmap = mddev->bitmap;
 739        unsigned long flags;
 740        struct bio_list bl;
 741        struct page **behind_pages = NULL;
 742        const int rw = bio_data_dir(bio);
 743        const int do_sync = bio_sync(bio);
 744        int do_barriers;
 745
 746        /*
 747         * Register the new request and wait if the reconstruction
 748         * thread has put up a bar for new requests.
 749         * Continue immediately if no resync is active currently.
 750         * We test barriers_work *after* md_write_start as md_write_start
 751         * may cause the first superblock write, and that will check out
 752         * if barriers work.
 753         */
 754
 755        md_write_start(mddev, bio); /* wait on superblock update early */
 756
 757        if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
 758                if (rw == WRITE)
 759                        md_write_end(mddev);
 760                bio_endio(bio, -EOPNOTSUPP);
 761                return 0;
 762        }
 763
 764        wait_barrier(conf);
 765
 766        disk_stat_inc(mddev->gendisk, ios[rw]);
 767        disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
 768
 769        /*
 770         * make_request() can abort the operation when READA is being
 771         * used and no empty request is available.
 772         *
 773         */
 774        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 775
 776        r1_bio->master_bio = bio;
 777        r1_bio->sectors = bio->bi_size >> 9;
 778        r1_bio->state = 0;
 779        r1_bio->mddev = mddev;
 780        r1_bio->sector = bio->bi_sector;
 781
 782        if (rw == READ) {
 783                /*
 784                 * read balancing logic:
 785                 */
 786                int rdisk = read_balance(conf, r1_bio);
 787
 788                if (rdisk < 0) {
 789                        /* couldn't find anywhere to read from */
 790                        raid_end_bio_io(r1_bio);
 791                        return 0;
 792                }
 793                mirror = conf->mirrors + rdisk;
 794
 795                r1_bio->read_disk = rdisk;
 796
 797                read_bio = bio_clone(bio, GFP_NOIO);
 798
 799                r1_bio->bios[rdisk] = read_bio;
 800
 801                read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 802                read_bio->bi_bdev = mirror->rdev->bdev;
 803                read_bio->bi_end_io = raid1_end_read_request;
 804                read_bio->bi_rw = READ | do_sync;
 805                read_bio->bi_private = r1_bio;
 806
 807                generic_make_request(read_bio);
 808                return 0;
 809        }
 810
 811        /*
 812         * WRITE:
 813         */
 814        /* first select target devices under spinlock and
 815         * inc refcount on their rdev.  Record them by setting
 816         * bios[x] to bio
 817         */
 818        disks = conf->raid_disks;
 819#if 0
 820        { static int first=1;
 821        if (first) printk("First Write sector %llu disks %d\n",
 822                          (unsigned long long)r1_bio->sector, disks);
 823        first = 0;
 824        }
 825#endif
 826        rcu_read_lock();
 827        for (i = 0;  i < disks; i++) {
 828                if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
 829                    !test_bit(Faulty, &rdev->flags)) {
 830                        atomic_inc(&rdev->nr_pending);
 831                        if (test_bit(Faulty, &rdev->flags)) {
 832                                rdev_dec_pending(rdev, mddev);
 833                                r1_bio->bios[i] = NULL;
 834                        } else
 835                                r1_bio->bios[i] = bio;
 836                        targets++;
 837                } else
 838                        r1_bio->bios[i] = NULL;
 839        }
 840        rcu_read_unlock();
 841
 842        BUG_ON(targets == 0); /* we never fail the last device */
 843
 844        if (targets < conf->raid_disks) {
 845                /* array is degraded, we will not clear the bitmap
 846                 * on I/O completion (see raid1_end_write_request) */
 847                set_bit(R1BIO_Degraded, &r1_bio->state);
 848        }
 849
 850        /* do behind I/O ? */
 851        if (bitmap &&
 852            atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
 853            (behind_pages = alloc_behind_pages(bio)) != NULL)
 854                set_bit(R1BIO_BehindIO, &r1_bio->state);
 855
 856        atomic_set(&r1_bio->remaining, 0);
 857        atomic_set(&r1_bio->behind_remaining, 0);
 858
 859        do_barriers = bio_barrier(bio);
 860        if (do_barriers)
 861                set_bit(R1BIO_Barrier, &r1_bio->state);
 862
 863        bio_list_init(&bl);
 864        for (i = 0; i < disks; i++) {
 865                struct bio *mbio;
 866                if (!r1_bio->bios[i])
 867                        continue;
 868
 869                mbio = bio_clone(bio, GFP_NOIO);
 870                r1_bio->bios[i] = mbio;
 871
 872                mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
 873                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
 874                mbio->bi_end_io = raid1_end_write_request;
 875                mbio->bi_rw = WRITE | do_barriers | do_sync;
 876                mbio->bi_private = r1_bio;
 877
 878                if (behind_pages) {
 879                        struct bio_vec *bvec;
 880                        int j;
 881
 882                        /* Yes, I really want the '__' version so that
 883                         * we clear any unused pointer in the io_vec, rather
 884                         * than leave them unchanged.  This is important
 885                         * because when we come to free the pages, we won't
 886                         * know the originial bi_idx, so we just free
 887                         * them all
 888                         */
 889                        __bio_for_each_segment(bvec, mbio, j, 0)
 890                                bvec->bv_page = behind_pages[j];
 891                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 892                                atomic_inc(&r1_bio->behind_remaining);
 893                }
 894
 895                atomic_inc(&r1_bio->remaining);
 896
 897                bio_list_add(&bl, mbio);
 898        }
 899        kfree(behind_pages); /* the behind pages are attached to the bios now */
 900
 901        bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
 902                                test_bit(R1BIO_BehindIO, &r1_bio->state));
 903        spin_lock_irqsave(&conf->device_lock, flags);
 904        bio_list_merge(&conf->pending_bio_list, &bl);
 905        bio_list_init(&bl);
 906
 907        blk_plug_device(mddev->queue);
 908        spin_unlock_irqrestore(&conf->device_lock, flags);
 909
 910        if (do_sync)
 911                md_wakeup_thread(mddev->thread);
 912#if 0
 913        while ((bio = bio_list_pop(&bl)) != NULL)
 914                generic_make_request(bio);
 915#endif
 916
 917        return 0;
 918}
 919
 920static void status(struct seq_file *seq, mddev_t *mddev)
 921{
 922        conf_t *conf = mddev_to_conf(mddev);
 923        int i;
 924
 925        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 926                   conf->raid_disks - mddev->degraded);
 927        rcu_read_lock();
 928        for (i = 0; i < conf->raid_disks; i++) {
 929                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 930                seq_printf(seq, "%s",
 931                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 932        }
 933        rcu_read_unlock();
 934        seq_printf(seq, "]");
 935}
 936
 937
 938static void error(mddev_t *mddev, mdk_rdev_t *rdev)
 939{
 940        char b[BDEVNAME_SIZE];
 941        conf_t *conf = mddev_to_conf(mddev);
 942
 943        /*
 944         * If it is not operational, then we have already marked it as dead
 945         * else if it is the last working disks, ignore the error, let the
 946         * next level up know.
 947         * else mark the drive as failed
 948         */
 949        if (test_bit(In_sync, &rdev->flags)
 950            && (conf->raid_disks - mddev->degraded) == 1)
 951                /*
 952                 * Don't fail the drive, act as though we were just a
 953                 * normal single drive
 954                 */
 955                return;
 956        if (test_and_clear_bit(In_sync, &rdev->flags)) {
 957                unsigned long flags;
 958                spin_lock_irqsave(&conf->device_lock, flags);
 959                mddev->degraded++;
 960                set_bit(Faulty, &rdev->flags);
 961                spin_unlock_irqrestore(&conf->device_lock, flags);
 962                /*
 963                 * if recovery is running, make sure it aborts.
 964                 */
 965                set_bit(MD_RECOVERY_ERR, &mddev->recovery);
 966        } else
 967                set_bit(Faulty, &rdev->flags);
 968        set_bit(MD_CHANGE_DEVS, &mddev->flags);
 969        printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
 970                "       Operation continuing on %d devices\n",
 971                bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
 972}
 973
 974static void print_conf(conf_t *conf)
 975{
 976        int i;
 977
 978        printk("RAID1 conf printout:\n");
 979        if (!conf) {
 980                printk("(!conf)\n");
 981                return;
 982        }
 983        printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
 984                conf->raid_disks);
 985
 986        rcu_read_lock();
 987        for (i = 0; i < conf->raid_disks; i++) {
 988                char b[BDEVNAME_SIZE];
 989                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 990                if (rdev)
 991                        printk(" disk %d, wo:%d, o:%d, dev:%s\n",
 992                               i, !test_bit(In_sync, &rdev->flags),
 993                               !test_bit(Faulty, &rdev->flags),
 994                               bdevname(rdev->bdev,b));
 995        }
 996        rcu_read_unlock();
 997}
 998
 999static void close_sync(conf_t *conf)
1000{
1001        wait_barrier(conf);
1002        allow_barrier(conf);
1003
1004        mempool_destroy(conf->r1buf_pool);
1005        conf->r1buf_pool = NULL;
1006}
1007
1008static int raid1_spare_active(mddev_t *mddev)
1009{
1010        int i;
1011        conf_t *conf = mddev->private;
1012
1013        /*
1014         * Find all failed disks within the RAID1 configuration 
1015         * and mark them readable.
1016         * Called under mddev lock, so rcu protection not needed.
1017         */
1018        for (i = 0; i < conf->raid_disks; i++) {
1019                mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1020                if (rdev
1021                    && !test_bit(Faulty, &rdev->flags)
1022                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1023                        unsigned long flags;
1024                        spin_lock_irqsave(&conf->device_lock, flags);
1025                        mddev->degraded--;
1026                        spin_unlock_irqrestore(&conf->device_lock, flags);
1027                }
1028        }
1029
1030        print_conf(conf);
1031        return 0;
1032}
1033
1034
1035static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1036{
1037        conf_t *conf = mddev->private;
1038        int found = 0;
1039        int mirror = 0;
1040        mirror_info_t *p;
1041
1042        for (mirror=0; mirror < mddev->raid_disks; mirror++)
1043                if ( !(p=conf->mirrors+mirror)->rdev) {
1044
1045                        blk_queue_stack_limits(mddev->queue,
1046                                               rdev->bdev->bd_disk->queue);
1047                        /* as we don't honour merge_bvec_fn, we must never risk
1048                         * violating it, so limit ->max_sector to one PAGE, as
1049                         * a one page request is never in violation.
1050                         */
1051                        if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1052                            mddev->queue->max_sectors > (PAGE_SIZE>>9))
1053                                blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1054
1055                        p->head_position = 0;
1056                        rdev->raid_disk = mirror;
1057                        found = 1;
1058                        /* As all devices are equivalent, we don't need a full recovery
1059                         * if this was recently any drive of the array
1060                         */
1061                        if (rdev->saved_raid_disk < 0)
1062                                conf->fullsync = 1;
1063                        rcu_assign_pointer(p->rdev, rdev);
1064                        break;
1065                }
1066
1067        print_conf(conf);
1068        return found;
1069}
1070
1071static int raid1_remove_disk(mddev_t *mddev, int number)
1072{
1073        conf_t *conf = mddev->private;
1074        int err = 0;
1075        mdk_rdev_t *rdev;
1076        mirror_info_t *p = conf->mirrors+ number;
1077
1078        print_conf(conf);
1079        rdev = p->rdev;
1080        if (rdev) {
1081                if (test_bit(In_sync, &rdev->flags) ||
1082                    atomic_read(&rdev->nr_pending)) {
1083                        err = -EBUSY;
1084                        goto abort;
1085                }
1086                p->rdev = NULL;
1087                synchronize_rcu();
1088                if (atomic_read(&rdev->nr_pending)) {
1089                        /* lost the race, try later */
1090                        err = -EBUSY;
1091                        p->rdev = rdev;
1092                }
1093        }
1094abort:
1095
1096        print_conf(conf);
1097        return err;
1098}
1099
1100
1101static void end_sync_read(struct bio *bio, int error)
1102{
1103        r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1104        int i;
1105
1106        for (i=r1_bio->mddev->raid_disks; i--; )
1107                if (r1_bio->bios[i] == bio)
1108                        break;
1109        BUG_ON(i < 0);
1110        update_head_pos(i, r1_bio);
1111        /*
1112         * we have read a block, now it needs to be re-written,
1113         * or re-read if the read failed.
1114         * We don't do much here, just schedule handling by raid1d
1115         */
1116        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1117                set_bit(R1BIO_Uptodate, &r1_bio->state);
1118
1119        if (atomic_dec_and_test(&r1_bio->remaining))
1120                reschedule_retry(r1_bio);
1121}
1122
1123static void end_sync_write(struct bio *bio, int error)
1124{
1125        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1126        r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1127        mddev_t *mddev = r1_bio->mddev;
1128        conf_t *conf = mddev_to_conf(mddev);
1129        int i;
1130        int mirror=0;
1131
1132        for (i = 0; i < conf->raid_disks; i++)
1133                if (r1_bio->bios[i] == bio) {
1134                        mirror = i;
1135                        break;
1136                }
1137        if (!uptodate) {
1138                int sync_blocks = 0;
1139                sector_t s = r1_bio->sector;
1140                long sectors_to_go = r1_bio->sectors;
1141                /* make sure these bits doesn't get cleared. */
1142                do {
1143                        bitmap_end_sync(mddev->bitmap, s,
1144                                        &sync_blocks, 1);
1145                        s += sync_blocks;
1146                        sectors_to_go -= sync_blocks;
1147                } while (sectors_to_go > 0);
1148                md_error(mddev, conf->mirrors[mirror].rdev);
1149        }
1150
1151        update_head_pos(mirror, r1_bio);
1152
1153        if (atomic_dec_and_test(&r1_bio->remaining)) {
1154                md_done_sync(mddev, r1_bio->sectors, uptodate);
1155                put_buf(r1_bio);
1156        }
1157}
1158
1159static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1160{
1161        conf_t *conf = mddev_to_conf(mddev);
1162        int i;
1163        int disks = conf->raid_disks;
1164        struct bio *bio, *wbio;
1165
1166        bio = r1_bio->bios[r1_bio->read_disk];
1167
1168
1169        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1170                /* We have read all readable devices.  If we haven't
1171                 * got the block, then there is no hope left.
1172                 * If we have, then we want to do a comparison
1173                 * and skip the write if everything is the same.
1174                 * If any blocks failed to read, then we need to
1175                 * attempt an over-write
1176                 */
1177                int primary;
1178                if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1179                        for (i=0; i<mddev->raid_disks; i++)
1180                                if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1181                                        md_error(mddev, conf->mirrors[i].rdev);
1182
1183                        md_done_sync(mddev, r1_bio->sectors, 1);
1184                        put_buf(r1_bio);
1185                        return;
1186                }
1187                for (primary=0; primary<mddev->raid_disks; primary++)
1188                        if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1189                            test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1190                                r1_bio->bios[primary]->bi_end_io = NULL;
1191                                rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1192                                break;
1193                        }
1194                r1_bio->read_disk = primary;
1195                for (i=0; i<mddev->raid_disks; i++)
1196                        if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1197                                int j;
1198                                int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1199                                struct bio *pbio = r1_bio->bios[primary];
1200                                struct bio *sbio = r1_bio->bios[i];
1201
1202                                if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1203                                        for (j = vcnt; j-- ; ) {
1204                                                struct page *p, *s;
1205                                                p = pbio->bi_io_vec[j].bv_page;
1206                                                s = sbio->bi_io_vec[j].bv_page;
1207                                                if (memcmp(page_address(p),
1208                                                           page_address(s),
1209                                                           PAGE_SIZE))
1210                                                        break;
1211                                        }
1212                                } else
1213                                        j = 0;
1214                                if (j >= 0)
1215                                        mddev->resync_mismatches += r1_bio->sectors;
1216                                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1217                                              && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1218                                        sbio->bi_end_io = NULL;
1219                                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1220                                } else {
1221                                        /* fixup the bio for reuse */
1222                                        sbio->bi_vcnt = vcnt;
1223                                        sbio->bi_size = r1_bio->sectors << 9;
1224                                        sbio->bi_idx = 0;
1225                                        sbio->bi_phys_segments = 0;
1226                                        sbio->bi_hw_segments = 0;
1227                                        sbio->bi_hw_front_size = 0;
1228                                        sbio->bi_hw_back_size = 0;
1229                                        sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1230                                        sbio->bi_flags |= 1 << BIO_UPTODATE;
1231                                        sbio->bi_next = NULL;
1232                                        sbio->bi_sector = r1_bio->sector +
1233                                                conf->mirrors[i].rdev->data_offset;
1234                                        sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1235                                        for (j = 0; j < vcnt ; j++)
1236                                                memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1237                                                       page_address(pbio->bi_io_vec[j].bv_page),
1238                                                       PAGE_SIZE);
1239
1240                                }
1241                        }
1242        }
1243        if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1244                /* ouch - failed to read all of that.
1245                 * Try some synchronous reads of other devices to get
1246                 * good data, much like with normal read errors.  Only
1247                 * read into the pages we already have so we don't
1248                 * need to re-issue the read request.
1249                 * We don't need to freeze the array, because being in an
1250                 * active sync request, there is no normal IO, and
1251                 * no overlapping syncs.
1252                 */
1253                sector_t sect = r1_bio->sector;
1254                int sectors = r1_bio->sectors;
1255                int idx = 0;
1256
1257                while(sectors) {
1258                        int s = sectors;
1259                        int d = r1_bio->read_disk;
1260                        int success = 0;
1261                        mdk_rdev_t *rdev;
1262
1263                        if (s > (PAGE_SIZE>>9))
1264                                s = PAGE_SIZE >> 9;
1265                        do {
1266                                if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1267                                        /* No rcu protection needed here devices
1268                                         * can only be removed when no resync is
1269                                         * active, and resync is currently active
1270                                         */
1271                                        rdev = conf->mirrors[d].rdev;
1272                                        if (sync_page_io(rdev->bdev,
1273                                                         sect + rdev->data_offset,
1274                                                         s<<9,
1275                                                         bio->bi_io_vec[idx].bv_page,
1276                                                         READ)) {
1277                                                success = 1;
1278                                                break;
1279                                        }
1280                                }
1281                                d++;
1282                                if (d == conf->raid_disks)
1283                                        d = 0;
1284                        } while (!success && d != r1_bio->read_disk);
1285
1286                        if (success) {
1287                                int start = d;
1288                                /* write it back and re-read */
1289                                set_bit(R1BIO_Uptodate, &r1_bio->state);
1290                                while (d != r1_bio->read_disk) {
1291                                        if (d == 0)
1292                                                d = conf->raid_disks;
1293                                        d--;
1294                                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1295                                                continue;
1296                                        rdev = conf->mirrors[d].rdev;
1297                                        atomic_add(s, &rdev->corrected_errors);
1298                                        if (sync_page_io(rdev->bdev,
1299                                                         sect + rdev->data_offset,
1300                                                         s<<9,
1301                                                         bio->bi_io_vec[idx].bv_page,
1302                                                         WRITE) == 0)
1303                                                md_error(mddev, rdev);
1304                                }
1305                                d = start;
1306                                while (d != r1_bio->read_disk) {
1307                                        if (d == 0)
1308                                                d = conf->raid_disks;
1309                                        d--;
1310                                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1311                                                continue;
1312                                        rdev = conf->mirrors[d].rdev;
1313                                        if (sync_page_io(rdev->bdev,
1314                                                         sect + rdev->data_offset,
1315                                                         s<<9,
1316                                                         bio->bi_io_vec[idx].bv_page,
1317                                                         READ) == 0)
1318                                                md_error(mddev, rdev);
1319                                }
1320                        } else {
1321                                char b[BDEVNAME_SIZE];
1322                                /* Cannot read from anywhere, array is toast */
1323                                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1324                                printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1325                                       " for block %llu\n",
1326                                       bdevname(bio->bi_bdev,b),
1327                                       (unsigned long long)r1_bio->sector);
1328                                md_done_sync(mddev, r1_bio->sectors, 0);
1329                                put_buf(r1_bio);
1330                                return;
1331                        }
1332                        sectors -= s;
1333                        sect += s;
1334                        idx ++;
1335                }
1336        }
1337
1338        /*
1339         * schedule writes
1340         */
1341        atomic_set(&r1_bio->remaining, 1);
1342        for (i = 0; i < disks ; i++) {
1343                wbio = r1_bio->bios[i];
1344                if (wbio->bi_end_io == NULL ||
1345                    (wbio->bi_end_io == end_sync_read &&
1346                     (i == r1_bio->read_disk ||
1347                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1348                        continue;
1349
1350                wbio->bi_rw = WRITE;
1351                wbio->bi_end_io = end_sync_write;
1352                atomic_inc(&r1_bio->remaining);
1353                md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1354
1355                generic_make_request(wbio);
1356        }
1357
1358        if (atomic_dec_and_test(&r1_bio->remaining)) {
1359                /* if we're here, all write(s) have completed, so clean up */
1360                md_done_sync(mddev, r1_bio->sectors, 1);
1361                put_buf(r1_bio);
1362        }
1363}
1364
1365/*
1366 * This is a kernel thread which:
1367 *
1368 *      1.      Retries failed read operations on working mirrors.
1369 *      2.      Updates the raid superblock when problems encounter.
1370 *      3.      Performs writes following reads for array syncronising.
1371 */
1372
1373static void fix_read_error(conf_t *conf, int read_disk,
1374                           sector_t sect, int sectors)
1375{
1376        mddev_t *mddev = conf->mddev;
1377        while(sectors) {
1378                int s = sectors;
1379                int d = read_disk;
1380                int success = 0;
1381                int start;
1382                mdk_rdev_t *rdev;
1383
1384                if (s > (PAGE_SIZE>>9))
1385                        s = PAGE_SIZE >> 9;
1386
1387                do {
1388                        /* Note: no rcu protection needed here
1389                         * as this is synchronous in the raid1d thread
1390                         * which is the thread that might remove
1391                         * a device.  If raid1d ever becomes multi-threaded....
1392                         */
1393                        rdev = conf->mirrors[d].rdev;
1394                        if (rdev &&
1395                            test_bit(In_sync, &rdev->flags) &&
1396                            sync_page_io(rdev->bdev,
1397                                         sect + rdev->data_offset,
1398                                         s<<9,
1399                                         conf->tmppage, READ))
1400                                success = 1;
1401                        else {
1402                                d++;
1403                                if (d == conf->raid_disks)
1404                                        d = 0;
1405                        }
1406                } while (!success && d != read_disk);
1407
1408                if (!success) {
1409                        /* Cannot read from anywhere -- bye bye array */
1410                        md_error(mddev, conf->mirrors[read_disk].rdev);
1411                        break;
1412                }
1413                /* write it back and re-read */
1414                start = d;
1415                while (d != read_disk) {
1416                        if (d==0)
1417                                d = conf->raid_disks;
1418                        d--;
1419                        rdev = conf->mirrors[d].rdev;
1420                        if (rdev &&
1421                            test_bit(In_sync, &rdev->flags)) {
1422                                if (sync_page_io(rdev->bdev,
1423                                                 sect + rdev->data_offset,
1424                                                 s<<9, conf->tmppage, WRITE)
1425                                    == 0)
1426                                        /* Well, this device is dead */
1427                                        md_error(mddev, rdev);
1428                        }
1429                }
1430                d = start;
1431                while (d != read_disk) {
1432                        char b[BDEVNAME_SIZE];
1433                        if (d==0)
1434                                d = conf->raid_disks;
1435                        d--;
1436                        rdev = conf->mirrors[d].rdev;
1437                        if (rdev &&
1438                            test_bit(In_sync, &rdev->flags)) {
1439                                if (sync_page_io(rdev->bdev,
1440                                                 sect + rdev->data_offset,
1441                                                 s<<9, conf->tmppage, READ)
1442                                    == 0)
1443                                        /* Well, this device is dead */
1444                                        md_error(mddev, rdev);
1445                                else {
1446                                        atomic_add(s, &rdev->corrected_errors);
1447                                        printk(KERN_INFO
1448                                               "raid1:%s: read error corrected "
1449                                               "(%d sectors at %llu on %s)\n",
1450                                               mdname(mddev), s,
1451                                               (unsigned long long)(sect +
1452                                                   rdev->data_offset),
1453                                               bdevname(rdev->bdev, b));
1454                                }
1455                        }
1456                }
1457                sectors -= s;
1458                sect += s;
1459        }
1460}
1461
1462static void raid1d(mddev_t *mddev)
1463{
1464        r1bio_t *r1_bio;
1465        struct bio *bio;
1466        unsigned long flags;
1467        conf_t *conf = mddev_to_conf(mddev);
1468        struct list_head *head = &conf->retry_list;
1469        int unplug=0;
1470        mdk_rdev_t *rdev;
1471
1472        md_check_recovery(mddev);
1473        
1474        for (;;) {
1475                char b[BDEVNAME_SIZE];
1476                spin_lock_irqsave(&conf->device_lock, flags);
1477
1478                if (conf->pending_bio_list.head) {
1479                        bio = bio_list_get(&conf->pending_bio_list);
1480                        blk_remove_plug(mddev->queue);
1481                        spin_unlock_irqrestore(&conf->device_lock, flags);
1482                        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1483                        bitmap_unplug(mddev->bitmap);
1484
1485                        while (bio) { /* submit pending writes */
1486                                struct bio *next = bio->bi_next;
1487                                bio->bi_next = NULL;
1488                                generic_make_request(bio);
1489                                bio = next;
1490                        }
1491                        unplug = 1;
1492
1493                        continue;
1494                }
1495
1496                if (list_empty(head))
1497                        break;
1498                r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1499                list_del(head->prev);
1500                conf->nr_queued--;
1501                spin_unlock_irqrestore(&conf->device_lock, flags);
1502
1503                mddev = r1_bio->mddev;
1504                conf = mddev_to_conf(mddev);
1505                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1506                        sync_request_write(mddev, r1_bio);
1507                        unplug = 1;
1508                } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1509                        /* some requests in the r1bio were BIO_RW_BARRIER
1510                         * requests which failed with -EOPNOTSUPP.  Hohumm..
1511                         * Better resubmit without the barrier.
1512                         * We know which devices to resubmit for, because
1513                         * all others have had their bios[] entry cleared.
1514                         * We already have a nr_pending reference on these rdevs.
1515                         */
1516                        int i;
1517                        const int do_sync = bio_sync(r1_bio->master_bio);
1518                        clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1519                        clear_bit(R1BIO_Barrier, &r1_bio->state);
1520                        for (i=0; i < conf->raid_disks; i++)
1521                                if (r1_bio->bios[i])
1522                                        atomic_inc(&r1_bio->remaining);
1523                        for (i=0; i < conf->raid_disks; i++)
1524                                if (r1_bio->bios[i]) {
1525                                        struct bio_vec *bvec;
1526                                        int j;
1527
1528                                        bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1529                                        /* copy pages from the failed bio, as
1530                                         * this might be a write-behind device */
1531                                        __bio_for_each_segment(bvec, bio, j, 0)
1532                                                bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1533                                        bio_put(r1_bio->bios[i]);
1534                                        bio->bi_sector = r1_bio->sector +
1535                                                conf->mirrors[i].rdev->data_offset;
1536                                        bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1537                                        bio->bi_end_io = raid1_end_write_request;
1538                                        bio->bi_rw = WRITE | do_sync;
1539                                        bio->bi_private = r1_bio;
1540                                        r1_bio->bios[i] = bio;
1541                                        generic_make_request(bio);
1542                                }
1543                } else {
1544                        int disk;
1545
1546                        /* we got a read error. Maybe the drive is bad.  Maybe just
1547                         * the block and we can fix it.
1548                         * We freeze all other IO, and try reading the block from
1549                         * other devices.  When we find one, we re-write
1550                         * and check it that fixes the read error.
1551                         * This is all done synchronously while the array is
1552                         * frozen
1553                         */
1554                        if (mddev->ro == 0) {
1555                                freeze_array(conf);
1556                                fix_read_error(conf, r1_bio->read_disk,
1557                                               r1_bio->sector,
1558                                               r1_bio->sectors);
1559                                unfreeze_array(conf);
1560                        }
1561
1562                        bio = r1_bio->bios[r1_bio->read_disk];
1563                        if ((disk=read_balance(conf, r1_bio)) == -1) {
1564                                printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1565                                       " read error for block %llu\n",
1566                                       bdevname(bio->bi_bdev,b),
1567                                       (unsigned long long)r1_bio->sector);
1568                                raid_end_bio_io(r1_bio);
1569                        } else {
1570                                const int do_sync = bio_sync(r1_bio->master_bio);
1571                                r1_bio->bios[r1_bio->read_disk] =
1572                                        mddev->ro ? IO_BLOCKED : NULL;
1573                                r1_bio->read_disk = disk;
1574                                bio_put(bio);
1575                                bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1576                                r1_bio->bios[r1_bio->read_disk] = bio;
1577                                rdev = conf->mirrors[disk].rdev;
1578                                if (printk_ratelimit())
1579                                        printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1580                                               " another mirror\n",
1581                                               bdevname(rdev->bdev,b),
1582                                               (unsigned long long)r1_bio->sector);
1583                                bio->bi_sector = r1_bio->sector + rdev->data_offset;
1584                                bio->bi_bdev = rdev->bdev;
1585                                bio->bi_end_io = raid1_end_read_request;
1586                                bio->bi_rw = READ | do_sync;
1587                                bio->bi_private = r1_bio;
1588                                unplug = 1;
1589                                generic_make_request(bio);
1590                        }
1591                }
1592        }
1593        spin_unlock_irqrestore(&conf->device_lock, flags);
1594        if (unplug)
1595                unplug_slaves(mddev);
1596}
1597
1598
1599static int init_resync(conf_t *conf)
1600{
1601        int buffs;
1602
1603        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1604        BUG_ON(conf->r1buf_pool);
1605        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1606                                          conf->poolinfo);
1607        if (!conf->r1buf_pool)
1608                return -ENOMEM;
1609        conf->next_resync = 0;
1610        return 0;
1611}
1612
1613/*
1614 * perform a "sync" on one "block"
1615 *
1616 * We need to make sure that no normal I/O request - particularly write
1617 * requests - conflict with active sync requests.
1618 *
1619 * This is achieved by tracking pending requests and a 'barrier' concept
1620 * that can be installed to exclude normal IO requests.
1621 */
1622
1623static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1624{
1625        conf_t *conf = mddev_to_conf(mddev);
1626        r1bio_t *r1_bio;
1627        struct bio *bio;
1628        sector_t max_sector, nr_sectors;
1629        int disk = -1;
1630        int i;
1631        int wonly = -1;
1632        int write_targets = 0, read_targets = 0;
1633        int sync_blocks;
1634        int still_degraded = 0;
1635
1636        if (!conf->r1buf_pool)
1637        {
1638/*
1639                printk("sync start - bitmap %p\n", mddev->bitmap);
1640*/
1641                if (init_resync(conf))
1642                        return 0;
1643        }
1644
1645        max_sector = mddev->size << 1;
1646        if (sector_nr >= max_sector) {
1647                /* If we aborted, we need to abort the
1648                 * sync on the 'current' bitmap chunk (there will
1649                 * only be one in raid1 resync.
1650                 * We can find the current addess in mddev->curr_resync
1651                 */
1652                if (mddev->curr_resync < max_sector) /* aborted */
1653                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1654                                                &sync_blocks, 1);
1655                else /* completed sync */
1656                        conf->fullsync = 0;
1657
1658                bitmap_close_sync(mddev->bitmap);
1659                close_sync(conf);
1660                return 0;
1661        }
1662
1663        if (mddev->bitmap == NULL &&
1664            mddev->recovery_cp == MaxSector &&
1665            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1666            conf->fullsync == 0) {
1667                *skipped = 1;
1668                return max_sector - sector_nr;
1669        }
1670        /* before building a request, check if we can skip these blocks..
1671         * This call the bitmap_start_sync doesn't actually record anything
1672         */
1673        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1674            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1675                /* We can skip this block, and probably several more */
1676                *skipped = 1;
1677                return sync_blocks;
1678        }
1679        /*
1680         * If there is non-resync activity waiting for a turn,
1681         * and resync is going fast enough,
1682         * then let it though before starting on this new sync request.
1683         */
1684        if (!go_faster && conf->nr_waiting)
1685                msleep_interruptible(1000);
1686
1687        raise_barrier(conf);
1688
1689        conf->next_resync = sector_nr;
1690
1691        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1692        rcu_read_lock();
1693        /*
1694         * If we get a correctably read error during resync or recovery,
1695         * we might want to read from a different device.  So we
1696         * flag all drives that could conceivably be read from for READ,
1697         * and any others (which will be non-In_sync devices) for WRITE.
1698         * If a read fails, we try reading from something else for which READ
1699         * is OK.
1700         */
1701
1702        r1_bio->mddev = mddev;
1703        r1_bio->sector = sector_nr;
1704        r1_bio->state = 0;
1705        set_bit(R1BIO_IsSync, &r1_bio->state);
1706
1707        for (i=0; i < conf->raid_disks; i++) {
1708                mdk_rdev_t *rdev;
1709                bio = r1_bio->bios[i];
1710
1711                /* take from bio_init */
1712                bio->bi_next = NULL;
1713                bio->bi_flags |= 1 << BIO_UPTODATE;
1714                bio->bi_rw = READ;
1715                bio->bi_vcnt = 0;
1716                bio->bi_idx = 0;
1717                bio->bi_phys_segments = 0;
1718                bio->bi_hw_segments = 0;
1719                bio->bi_size = 0;
1720                bio->bi_end_io = NULL;
1721                bio->bi_private = NULL;
1722
1723                rdev = rcu_dereference(conf->mirrors[i].rdev);
1724                if (rdev == NULL ||
1725                           test_bit(Faulty, &rdev->flags)) {
1726                        still_degraded = 1;
1727                        continue;
1728                } else if (!test_bit(In_sync, &rdev->flags)) {
1729                        bio->bi_rw = WRITE;
1730                        bio->bi_end_io = end_sync_write;
1731                        write_targets ++;
1732                } else {
1733                        /* may need to read from here */
1734                        bio->bi_rw = READ;
1735                        bio->bi_end_io = end_sync_read;
1736                        if (test_bit(WriteMostly, &rdev->flags)) {
1737                                if (wonly < 0)
1738                                        wonly = i;
1739                        } else {
1740                                if (disk < 0)
1741                                        disk = i;
1742                        }
1743                        read_targets++;
1744                }
1745                atomic_inc(&rdev->nr_pending);
1746                bio->bi_sector = sector_nr + rdev->data_offset;
1747                bio->bi_bdev = rdev->bdev;
1748                bio->bi_private = r1_bio;
1749        }
1750        rcu_read_unlock();
1751        if (disk < 0)
1752                disk = wonly;
1753        r1_bio->read_disk = disk;
1754
1755        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1756                /* extra read targets are also write targets */
1757                write_targets += read_targets-1;
1758
1759        if (write_targets == 0 || read_targets == 0) {
1760                /* There is nowhere to write, so all non-sync
1761                 * drives must be failed - so we are finished
1762                 */
1763                sector_t rv = max_sector - sector_nr;
1764                *skipped = 1;
1765                put_buf(r1_bio);
1766                return rv;
1767        }
1768
1769        nr_sectors = 0;
1770        sync_blocks = 0;
1771        do {
1772                struct page *page;
1773                int len = PAGE_SIZE;
1774                if (sector_nr + (len>>9) > max_sector)
1775                        len = (max_sector - sector_nr) << 9;
1776                if (len == 0)
1777                        break;
1778                if (sync_blocks == 0) {
1779                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1780                                               &sync_blocks, still_degraded) &&
1781                            !conf->fullsync &&
1782                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1783                                break;
1784                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1785                        if (len > (sync_blocks<<9))
1786                                len = sync_blocks<<9;
1787                }
1788
1789                for (i=0 ; i < conf->raid_disks; i++) {
1790                        bio = r1_bio->bios[i];
1791                        if (bio->bi_end_io) {
1792                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1793                                if (bio_add_page(bio, page, len, 0) == 0) {
1794                                        /* stop here */
1795                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1796                                        while (i > 0) {
1797                                                i--;
1798                                                bio = r1_bio->bios[i];
1799                                                if (bio->bi_end_io==NULL)
1800                                                        continue;
1801                                                /* remove last page from this bio */
1802                                                bio->bi_vcnt--;
1803                                                bio->bi_size -= len;
1804                                                bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1805                                        }
1806                                        goto bio_full;
1807                                }
1808                        }
1809                }
1810                nr_sectors += len>>9;
1811                sector_nr += len>>9;
1812                sync_blocks -= (len>>9);
1813        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1814 bio_full:
1815        r1_bio->sectors = nr_sectors;
1816
1817        /* For a user-requested sync, we read all readable devices and do a
1818         * compare
1819         */
1820        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1821                atomic_set(&r1_bio->remaining, read_targets);
1822                for (i=0; i<conf->raid_disks; i++) {
1823                        bio = r1_bio->bios[i];
1824                        if (bio->bi_end_io == end_sync_read) {
1825                                md_sync_acct(bio->bi_bdev, nr_sectors);
1826                                generic_make_request(bio);
1827                        }
1828                }
1829        } else {
1830                atomic_set(&r1_bio->remaining, 1);
1831                bio = r1_bio->bios[r1_bio->read_disk];
1832                md_sync_acct(bio->bi_bdev, nr_sectors);
1833                generic_make_request(bio);
1834
1835        }
1836        return nr_sectors;
1837}
1838
1839static int run(mddev_t *mddev)
1840{
1841        conf_t *conf;
1842        int i, j, disk_idx;
1843        mirror_info_t *disk;
1844        mdk_rdev_t *rdev;
1845        struct list_head *tmp;
1846
1847        if (mddev->level != 1) {
1848                printk("raid1: %s: raid level not set to mirroring (%d)\n",
1849                       mdname(mddev), mddev->level);
1850                goto out;
1851        }
1852        if (mddev->reshape_position != MaxSector) {
1853                printk("raid1: %s: reshape_position set but not supported\n",
1854                       mdname(mddev));
1855                goto out;
1856        }
1857        /*
1858         * copy the already verified devices into our private RAID1
1859         * bookkeeping area. [whatever we allocate in run(),
1860         * should be freed in stop()]
1861         */
1862        conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1863        mddev->private = conf;
1864        if (!conf)
1865                goto out_no_mem;
1866
1867        conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1868                                 GFP_KERNEL);
1869        if (!conf->mirrors)
1870                goto out_no_mem;
1871
1872        conf->tmppage = alloc_page(GFP_KERNEL);
1873        if (!conf->tmppage)
1874                goto out_no_mem;
1875
1876        conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1877        if (!conf->poolinfo)
1878                goto out_no_mem;
1879        conf->poolinfo->mddev = mddev;
1880        conf->poolinfo->raid_disks = mddev->raid_disks;
1881        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1882                                          r1bio_pool_free,
1883                                          conf->poolinfo);
1884        if (!conf->r1bio_pool)
1885                goto out_no_mem;
1886
1887        ITERATE_RDEV(mddev, rdev, tmp) {
1888                disk_idx = rdev->raid_disk;
1889                if (disk_idx >= mddev->raid_disks
1890                    || disk_idx < 0)
1891                        continue;
1892                disk = conf->mirrors + disk_idx;
1893
1894                disk->rdev = rdev;
1895
1896                blk_queue_stack_limits(mddev->queue,
1897                                       rdev->bdev->bd_disk->queue);
1898                /* as we don't honour merge_bvec_fn, we must never risk
1899                 * violating it, so limit ->max_sector to one PAGE, as
1900                 * a one page request is never in violation.
1901                 */
1902                if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1903                    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1904                        blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1905
1906                disk->head_position = 0;
1907        }
1908        conf->raid_disks = mddev->raid_disks;
1909        conf->mddev = mddev;
1910        spin_lock_init(&conf->device_lock);
1911        INIT_LIST_HEAD(&conf->retry_list);
1912
1913        spin_lock_init(&conf->resync_lock);
1914        init_waitqueue_head(&conf->wait_barrier);
1915
1916        bio_list_init(&conf->pending_bio_list);
1917        bio_list_init(&conf->flushing_bio_list);
1918
1919
1920        mddev->degraded = 0;
1921        for (i = 0; i < conf->raid_disks; i++) {
1922
1923                disk = conf->mirrors + i;
1924
1925                if (!disk->rdev ||
1926                    !test_bit(In_sync, &disk->rdev->flags)) {
1927                        disk->head_position = 0;
1928                        mddev->degraded++;
1929                        if (disk->rdev)
1930                                conf->fullsync = 1;
1931                }
1932        }
1933        if (mddev->degraded == conf->raid_disks) {
1934                printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1935                        mdname(mddev));
1936                goto out_free_conf;
1937        }
1938        if (conf->raid_disks - mddev->degraded == 1)
1939                mddev->recovery_cp = MaxSector;
1940
1941        /*
1942         * find the first working one and use it as a starting point
1943         * to read balancing.
1944         */
1945        for (j = 0; j < conf->raid_disks &&
1946                     (!conf->mirrors[j].rdev ||
1947                      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1948                /* nothing */;
1949        conf->last_used = j;
1950
1951
1952        mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1953        if (!mddev->thread) {
1954                printk(KERN_ERR
1955                       "raid1: couldn't allocate thread for %s\n",
1956                       mdname(mddev));
1957                goto out_free_conf;
1958        }
1959
1960        printk(KERN_INFO 
1961                "raid1: raid set %s active with %d out of %d mirrors\n",
1962                mdname(mddev), mddev->raid_disks - mddev->degraded, 
1963                mddev->raid_disks);
1964        /*
1965         * Ok, everything is just fine now
1966         */
1967        mddev->array_size = mddev->size;
1968
1969        mddev->queue->unplug_fn = raid1_unplug;
1970        mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1971        mddev->queue->backing_dev_info.congested_data = mddev;
1972
1973        return 0;
1974
1975out_no_mem:
1976        printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1977               mdname(mddev));
1978
1979out_free_conf:
1980        if (conf) {
1981                if (conf->r1bio_pool)
1982                        mempool_destroy(conf->r1bio_pool);
1983                kfree(conf->mirrors);
1984                safe_put_page(conf->tmppage);
1985                kfree(conf->poolinfo);
1986                kfree(conf);
1987                mddev->private = NULL;
1988        }
1989out:
1990        return -EIO;
1991}
1992
1993static int stop(mddev_t *mddev)
1994{
1995        conf_t *conf = mddev_to_conf(mddev);
1996        struct bitmap *bitmap = mddev->bitmap;
1997        int behind_wait = 0;
1998
1999        /* wait for behind writes to complete */
2000        while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2001                behind_wait++;
2002                printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2003                set_current_state(TASK_UNINTERRUPTIBLE);
2004                schedule_timeout(HZ); /* wait a second */
2005                /* need to kick something here to make sure I/O goes? */
2006        }
2007
2008        md_unregister_thread(mddev->thread);
2009        mddev->thread = NULL;
2010        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2011        if (conf->r1bio_pool)
2012                mempool_destroy(conf->r1bio_pool);
2013        kfree(conf->mirrors);
2014        kfree(conf->poolinfo);
2015        kfree(conf);
2016        mddev->private = NULL;
2017        return 0;
2018}
2019
2020static int raid1_resize(mddev_t *mddev, sector_t sectors)
2021{
2022        /* no resync is happening, and there is enough space
2023         * on all devices, so we can resize.
2024         * We need to make sure resync covers any new space.
2025         * If the array is shrinking we should possibly wait until
2026         * any io in the removed space completes, but it hardly seems
2027         * worth it.
2028         */
2029        mddev->array_size = sectors>>1;
2030        set_capacity(mddev->gendisk, mddev->array_size << 1);
2031        mddev->changed = 1;
2032        if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2033                mddev->recovery_cp = mddev->size << 1;
2034                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2035        }
2036        mddev->size = mddev->array_size;
2037        mddev->resync_max_sectors = sectors;
2038        return 0;
2039}
2040
2041static int raid1_reshape(mddev_t *mddev)
2042{
2043        /* We need to:
2044         * 1/ resize the r1bio_pool
2045         * 2/ resize conf->mirrors
2046         *
2047         * We allocate a new r1bio_pool if we can.
2048         * Then raise a device barrier and wait until all IO stops.
2049         * Then resize conf->mirrors and swap in the new r1bio pool.
2050         *
2051         * At the same time, we "pack" the devices so that all the missing
2052         * devices have the higher raid_disk numbers.
2053         */
2054        mempool_t *newpool, *oldpool;
2055        struct pool_info *newpoolinfo;
2056        mirror_info_t *newmirrors;
2057        conf_t *conf = mddev_to_conf(mddev);
2058        int cnt, raid_disks;
2059        unsigned long flags;
2060        int d, d2;
2061
2062        /* Cannot change chunk_size, layout, or level */
2063        if (mddev->chunk_size != mddev->new_chunk ||
2064            mddev->layout != mddev->new_layout ||
2065            mddev->level != mddev->new_level) {
2066                mddev->new_chunk = mddev->chunk_size;
2067                mddev->new_layout = mddev->layout;
2068                mddev->new_level = mddev->level;
2069                return -EINVAL;
2070        }
2071
2072        md_allow_write(mddev);
2073
2074        raid_disks = mddev->raid_disks + mddev->delta_disks;
2075
2076        if (raid_disks < conf->raid_disks) {
2077                cnt=0;
2078                for (d= 0; d < conf->raid_disks; d++)
2079                        if (conf->mirrors[d].rdev)
2080                                cnt++;
2081                if (cnt > raid_disks)
2082                        return -EBUSY;
2083        }
2084
2085        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2086        if (!newpoolinfo)
2087                return -ENOMEM;
2088        newpoolinfo->mddev = mddev;
2089        newpoolinfo->raid_disks = raid_disks;
2090
2091        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2092                                 r1bio_pool_free, newpoolinfo);
2093        if (!newpool) {
2094                kfree(newpoolinfo);
2095                return -ENOMEM;
2096        }
2097        newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2098        if (!newmirrors) {
2099                kfree(newpoolinfo);
2100                mempool_destroy(newpool);
2101                return -ENOMEM;
2102        }
2103
2104        raise_barrier(conf);
2105
2106        /* ok, everything is stopped */
2107        oldpool = conf->r1bio_pool;
2108        conf->r1bio_pool = newpool;
2109
2110        for (d = d2 = 0; d < conf->raid_disks; d++) {
2111                mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2112                if (rdev && rdev->raid_disk != d2) {
2113                        char nm[20];
2114                        sprintf(nm, "rd%d", rdev->raid_disk);
2115                        sysfs_remove_link(&mddev->kobj, nm);
2116                        rdev->raid_disk = d2;
2117                        sprintf(nm, "rd%d", rdev->raid_disk);
2118                        sysfs_remove_link(&mddev->kobj, nm);
2119                        if (sysfs_create_link(&mddev->kobj,
2120                                              &rdev->kobj, nm))
2121                                printk(KERN_WARNING
2122                                       "md/raid1: cannot register "
2123                                       "%s for %s\n",
2124                                       nm, mdname(mddev));
2125                }
2126                if (rdev)
2127                        newmirrors[d2++].rdev = rdev;
2128        }
2129        kfree(conf->mirrors);
2130        conf->mirrors = newmirrors;
2131        kfree(conf->poolinfo);
2132        conf->poolinfo = newpoolinfo;
2133
2134        spin_lock_irqsave(&conf->device_lock, flags);
2135        mddev->degraded += (raid_disks - conf->raid_disks);
2136        spin_unlock_irqrestore(&conf->device_lock, flags);
2137        conf->raid_disks = mddev->raid_disks = raid_disks;
2138        mddev->delta_disks = 0;
2139
2140        conf->last_used = 0; /* just make sure it is in-range */
2141        lower_barrier(conf);
2142
2143        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2144        md_wakeup_thread(mddev->thread);
2145
2146        mempool_destroy(oldpool);
2147        return 0;
2148}
2149
2150static void raid1_quiesce(mddev_t *mddev, int state)
2151{
2152        conf_t *conf = mddev_to_conf(mddev);
2153
2154        switch(state) {
2155        case 1:
2156                raise_barrier(conf);
2157                break;
2158        case 0:
2159                lower_barrier(conf);
2160                break;
2161        }
2162}
2163
2164
2165static struct mdk_personality raid1_personality =
2166{
2167        .name           = "raid1",
2168        .level          = 1,
2169        .owner          = THIS_MODULE,
2170        .make_request   = make_request,
2171        .run            = run,
2172        .stop           = stop,
2173        .status         = status,
2174        .error_handler  = error,
2175        .hot_add_disk   = raid1_add_disk,
2176        .hot_remove_disk= raid1_remove_disk,
2177        .spare_active   = raid1_spare_active,
2178        .sync_request   = sync_request,
2179        .resize         = raid1_resize,
2180        .check_reshape  = raid1_reshape,
2181        .quiesce        = raid1_quiesce,
2182};
2183
2184static int __init raid_init(void)
2185{
2186        return register_md_personality(&raid1_personality);
2187}
2188
2189static void raid_exit(void)
2190{
2191        unregister_md_personality(&raid1_personality);
2192}
2193
2194module_init(raid_init);
2195module_exit(raid_exit);
2196MODULE_LICENSE("GPL");
2197MODULE_ALIAS("md-personality-3"); /* RAID1 */
2198MODULE_ALIAS("md-raid1");
2199MODULE_ALIAS("md-level-1");
2200