linux/drivers/mtd/chips/cfi_cmdset_0002.c
<<
>>
Prefs
   1/*
   2 * Common Flash Interface support:
   3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4 *
   5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8 *
   9 * 2_by_8 routines added by Simon Munton
  10 *
  11 * 4_by_16 work by Carolyn J. Smith
  12 *
  13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14 * by Nicolas Pitre)
  15 *
  16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  17 *
  18 * This code is GPL
  19 *
  20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/sched.h>
  28#include <linux/init.h>
  29#include <asm/io.h>
  30#include <asm/byteorder.h>
  31
  32#include <linux/errno.h>
  33#include <linux/slab.h>
  34#include <linux/delay.h>
  35#include <linux/interrupt.h>
  36#include <linux/mtd/compatmac.h>
  37#include <linux/mtd/map.h>
  38#include <linux/mtd/mtd.h>
  39#include <linux/mtd/cfi.h>
  40#include <linux/mtd/xip.h>
  41
  42#define AMD_BOOTLOC_BUG
  43#define FORCE_WORD_WRITE 0
  44
  45#define MAX_WORD_RETRIES 3
  46
  47#define MANUFACTURER_AMD        0x0001
  48#define MANUFACTURER_ATMEL      0x001F
  49#define MANUFACTURER_SST        0x00BF
  50#define SST49LF004B             0x0060
  51#define SST49LF040B             0x0050
  52#define SST49LF008A             0x005a
  53#define AT49BV6416              0x00d6
  54
  55static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  56static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  57static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  58static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  59static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  60static void cfi_amdstd_sync (struct mtd_info *);
  61static int cfi_amdstd_suspend (struct mtd_info *);
  62static void cfi_amdstd_resume (struct mtd_info *);
  63static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  64
  65static void cfi_amdstd_destroy(struct mtd_info *);
  66
  67struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  68static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  69
  70static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  71static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  72#include "fwh_lock.h"
  73
  74static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
  75static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
  76
  77static struct mtd_chip_driver cfi_amdstd_chipdrv = {
  78        .probe          = NULL, /* Not usable directly */
  79        .destroy        = cfi_amdstd_destroy,
  80        .name           = "cfi_cmdset_0002",
  81        .module         = THIS_MODULE
  82};
  83
  84
  85/* #define DEBUG_CFI_FEATURES */
  86
  87
  88#ifdef DEBUG_CFI_FEATURES
  89static void cfi_tell_features(struct cfi_pri_amdstd *extp)
  90{
  91        const char* erase_suspend[3] = {
  92                "Not supported", "Read only", "Read/write"
  93        };
  94        const char* top_bottom[6] = {
  95                "No WP", "8x8KiB sectors at top & bottom, no WP",
  96                "Bottom boot", "Top boot",
  97                "Uniform, Bottom WP", "Uniform, Top WP"
  98        };
  99
 100        printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 101        printk("  Address sensitive unlock: %s\n",
 102               (extp->SiliconRevision & 1) ? "Not required" : "Required");
 103
 104        if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 105                printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 106        else
 107                printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 108
 109        if (extp->BlkProt == 0)
 110                printk("  Block protection: Not supported\n");
 111        else
 112                printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 113
 114
 115        printk("  Temporary block unprotect: %s\n",
 116               extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 117        printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 118        printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 119        printk("  Burst mode: %s\n",
 120               extp->BurstMode ? "Supported" : "Not supported");
 121        if (extp->PageMode == 0)
 122                printk("  Page mode: Not supported\n");
 123        else
 124                printk("  Page mode: %d word page\n", extp->PageMode << 2);
 125
 126        printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 127               extp->VppMin >> 4, extp->VppMin & 0xf);
 128        printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 129               extp->VppMax >> 4, extp->VppMax & 0xf);
 130
 131        if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 132                printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 133        else
 134                printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 135}
 136#endif
 137
 138#ifdef AMD_BOOTLOC_BUG
 139/* Wheee. Bring me the head of someone at AMD. */
 140static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
 141{
 142        struct map_info *map = mtd->priv;
 143        struct cfi_private *cfi = map->fldrv_priv;
 144        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 145        __u8 major = extp->MajorVersion;
 146        __u8 minor = extp->MinorVersion;
 147
 148        if (((major << 8) | minor) < 0x3131) {
 149                /* CFI version 1.0 => don't trust bootloc */
 150                if (cfi->id & 0x80) {
 151                        printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 152                        extp->TopBottom = 3;    /* top boot */
 153                } else {
 154                        extp->TopBottom = 2;    /* bottom boot */
 155                }
 156        }
 157}
 158#endif
 159
 160static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
 161{
 162        struct map_info *map = mtd->priv;
 163        struct cfi_private *cfi = map->fldrv_priv;
 164        if (cfi->cfiq->BufWriteTimeoutTyp) {
 165                DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
 166                mtd->write = cfi_amdstd_write_buffers;
 167        }
 168}
 169
 170/* Atmel chips don't use the same PRI format as AMD chips */
 171static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
 172{
 173        struct map_info *map = mtd->priv;
 174        struct cfi_private *cfi = map->fldrv_priv;
 175        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 176        struct cfi_pri_atmel atmel_pri;
 177
 178        memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 179        memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 180
 181        if (atmel_pri.Features & 0x02)
 182                extp->EraseSuspend = 2;
 183
 184        if (atmel_pri.BottomBoot)
 185                extp->TopBottom = 2;
 186        else
 187                extp->TopBottom = 3;
 188}
 189
 190static void fixup_use_secsi(struct mtd_info *mtd, void *param)
 191{
 192        /* Setup for chips with a secsi area */
 193        mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
 194        mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
 195}
 196
 197static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
 198{
 199        struct map_info *map = mtd->priv;
 200        struct cfi_private *cfi = map->fldrv_priv;
 201        if ((cfi->cfiq->NumEraseRegions == 1) &&
 202                ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 203                mtd->erase = cfi_amdstd_erase_chip;
 204        }
 205
 206}
 207
 208/*
 209 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 210 * locked by default.
 211 */
 212static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
 213{
 214        mtd->lock = cfi_atmel_lock;
 215        mtd->unlock = cfi_atmel_unlock;
 216        mtd->flags |= MTD_STUPID_LOCK;
 217}
 218
 219static struct cfi_fixup cfi_fixup_table[] = {
 220#ifdef AMD_BOOTLOC_BUG
 221        { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
 222#endif
 223        { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
 224        { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
 225        { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
 226        { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
 227        { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
 228        { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
 229#if !FORCE_WORD_WRITE
 230        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
 231#endif
 232        { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
 233        { 0, 0, NULL, NULL }
 234};
 235static struct cfi_fixup jedec_fixup_table[] = {
 236        { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
 237        { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
 238        { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
 239        { 0, 0, NULL, NULL }
 240};
 241
 242static struct cfi_fixup fixup_table[] = {
 243        /* The CFI vendor ids and the JEDEC vendor IDs appear
 244         * to be common.  It is like the devices id's are as
 245         * well.  This table is to pick all cases where
 246         * we know that is the case.
 247         */
 248        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
 249        { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
 250        { 0, 0, NULL, NULL }
 251};
 252
 253
 254struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 255{
 256        struct cfi_private *cfi = map->fldrv_priv;
 257        struct mtd_info *mtd;
 258        int i;
 259
 260        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 261        if (!mtd) {
 262                printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
 263                return NULL;
 264        }
 265        mtd->priv = map;
 266        mtd->type = MTD_NORFLASH;
 267
 268        /* Fill in the default mtd operations */
 269        mtd->erase   = cfi_amdstd_erase_varsize;
 270        mtd->write   = cfi_amdstd_write_words;
 271        mtd->read    = cfi_amdstd_read;
 272        mtd->sync    = cfi_amdstd_sync;
 273        mtd->suspend = cfi_amdstd_suspend;
 274        mtd->resume  = cfi_amdstd_resume;
 275        mtd->flags   = MTD_CAP_NORFLASH;
 276        mtd->name    = map->name;
 277        mtd->writesize = 1;
 278
 279        if (cfi->cfi_mode==CFI_MODE_CFI){
 280                unsigned char bootloc;
 281                /*
 282                 * It's a real CFI chip, not one for which the probe
 283                 * routine faked a CFI structure. So we read the feature
 284                 * table from it.
 285                 */
 286                __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 287                struct cfi_pri_amdstd *extp;
 288
 289                extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 290                if (!extp) {
 291                        kfree(mtd);
 292                        return NULL;
 293                }
 294
 295                if (extp->MajorVersion != '1' ||
 296                    (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
 297                        printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 298                               "version %c.%c.\n",  extp->MajorVersion,
 299                               extp->MinorVersion);
 300                        kfree(extp);
 301                        kfree(mtd);
 302                        return NULL;
 303                }
 304
 305                /* Install our own private info structure */
 306                cfi->cmdset_priv = extp;
 307
 308                /* Apply cfi device specific fixups */
 309                cfi_fixup(mtd, cfi_fixup_table);
 310
 311#ifdef DEBUG_CFI_FEATURES
 312                /* Tell the user about it in lots of lovely detail */
 313                cfi_tell_features(extp);
 314#endif
 315
 316                bootloc = extp->TopBottom;
 317                if ((bootloc != 2) && (bootloc != 3)) {
 318                        printk(KERN_WARNING "%s: CFI does not contain boot "
 319                               "bank location. Assuming top.\n", map->name);
 320                        bootloc = 2;
 321                }
 322
 323                if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 324                        printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
 325
 326                        for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 327                                int j = (cfi->cfiq->NumEraseRegions-1)-i;
 328                                __u32 swap;
 329
 330                                swap = cfi->cfiq->EraseRegionInfo[i];
 331                                cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
 332                                cfi->cfiq->EraseRegionInfo[j] = swap;
 333                        }
 334                }
 335                /* Set the default CFI lock/unlock addresses */
 336                cfi->addr_unlock1 = 0x555;
 337                cfi->addr_unlock2 = 0x2aa;
 338                /* Modify the unlock address if we are in compatibility mode */
 339                if (    /* x16 in x8 mode */
 340                        ((cfi->device_type == CFI_DEVICETYPE_X8) &&
 341                                (cfi->cfiq->InterfaceDesc == 2)) ||
 342                        /* x32 in x16 mode */
 343                        ((cfi->device_type == CFI_DEVICETYPE_X16) &&
 344                                (cfi->cfiq->InterfaceDesc == 4)))
 345                {
 346                        cfi->addr_unlock1 = 0xaaa;
 347                        cfi->addr_unlock2 = 0x555;
 348                }
 349
 350        } /* CFI mode */
 351        else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 352                /* Apply jedec specific fixups */
 353                cfi_fixup(mtd, jedec_fixup_table);
 354        }
 355        /* Apply generic fixups */
 356        cfi_fixup(mtd, fixup_table);
 357
 358        for (i=0; i< cfi->numchips; i++) {
 359                cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 360                cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 361                cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 362                cfi->chips[i].ref_point_counter = 0;
 363                init_waitqueue_head(&(cfi->chips[i].wq));
 364        }
 365
 366        map->fldrv = &cfi_amdstd_chipdrv;
 367
 368        return cfi_amdstd_setup(mtd);
 369}
 370EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 371
 372static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 373{
 374        struct map_info *map = mtd->priv;
 375        struct cfi_private *cfi = map->fldrv_priv;
 376        unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 377        unsigned long offset = 0;
 378        int i,j;
 379
 380        printk(KERN_NOTICE "number of %s chips: %d\n",
 381               (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 382        /* Select the correct geometry setup */
 383        mtd->size = devsize * cfi->numchips;
 384
 385        mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 386        mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
 387                                    * mtd->numeraseregions, GFP_KERNEL);
 388        if (!mtd->eraseregions) {
 389                printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
 390                goto setup_err;
 391        }
 392
 393        for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 394                unsigned long ernum, ersize;
 395                ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 396                ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 397
 398                if (mtd->erasesize < ersize) {
 399                        mtd->erasesize = ersize;
 400                }
 401                for (j=0; j<cfi->numchips; j++) {
 402                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 403                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 404                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 405                }
 406                offset += (ersize * ernum);
 407        }
 408        if (offset != devsize) {
 409                /* Argh */
 410                printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 411                goto setup_err;
 412        }
 413#if 0
 414        // debug
 415        for (i=0; i<mtd->numeraseregions;i++){
 416                printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
 417                       i,mtd->eraseregions[i].offset,
 418                       mtd->eraseregions[i].erasesize,
 419                       mtd->eraseregions[i].numblocks);
 420        }
 421#endif
 422
 423        /* FIXME: erase-suspend-program is broken.  See
 424           http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
 425        printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
 426
 427        __module_get(THIS_MODULE);
 428        return mtd;
 429
 430 setup_err:
 431        if(mtd) {
 432                kfree(mtd->eraseregions);
 433                kfree(mtd);
 434        }
 435        kfree(cfi->cmdset_priv);
 436        kfree(cfi->cfiq);
 437        return NULL;
 438}
 439
 440/*
 441 * Return true if the chip is ready.
 442 *
 443 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 444 * non-suspended sector) and is indicated by no toggle bits toggling.
 445 *
 446 * Note that anything more complicated than checking if no bits are toggling
 447 * (including checking DQ5 for an error status) is tricky to get working
 448 * correctly and is therefore not done  (particulary with interleaved chips
 449 * as each chip must be checked independantly of the others).
 450 */
 451static int __xipram chip_ready(struct map_info *map, unsigned long addr)
 452{
 453        map_word d, t;
 454
 455        d = map_read(map, addr);
 456        t = map_read(map, addr);
 457
 458        return map_word_equal(map, d, t);
 459}
 460
 461/*
 462 * Return true if the chip is ready and has the correct value.
 463 *
 464 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 465 * non-suspended sector) and it is indicated by no bits toggling.
 466 *
 467 * Error are indicated by toggling bits or bits held with the wrong value,
 468 * or with bits toggling.
 469 *
 470 * Note that anything more complicated than checking if no bits are toggling
 471 * (including checking DQ5 for an error status) is tricky to get working
 472 * correctly and is therefore not done  (particulary with interleaved chips
 473 * as each chip must be checked independantly of the others).
 474 *
 475 */
 476static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
 477{
 478        map_word oldd, curd;
 479
 480        oldd = map_read(map, addr);
 481        curd = map_read(map, addr);
 482
 483        return  map_word_equal(map, oldd, curd) &&
 484                map_word_equal(map, curd, expected);
 485}
 486
 487static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 488{
 489        DECLARE_WAITQUEUE(wait, current);
 490        struct cfi_private *cfi = map->fldrv_priv;
 491        unsigned long timeo;
 492        struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 493
 494 resettime:
 495        timeo = jiffies + HZ;
 496 retry:
 497        switch (chip->state) {
 498
 499        case FL_STATUS:
 500                for (;;) {
 501                        if (chip_ready(map, adr))
 502                                break;
 503
 504                        if (time_after(jiffies, timeo)) {
 505                                printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 506                                spin_unlock(chip->mutex);
 507                                return -EIO;
 508                        }
 509                        spin_unlock(chip->mutex);
 510                        cfi_udelay(1);
 511                        spin_lock(chip->mutex);
 512                        /* Someone else might have been playing with it. */
 513                        goto retry;
 514                }
 515
 516        case FL_READY:
 517        case FL_CFI_QUERY:
 518        case FL_JEDEC_QUERY:
 519                return 0;
 520
 521        case FL_ERASING:
 522                if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
 523                        goto sleep;
 524
 525                if (!(   mode == FL_READY
 526                      || mode == FL_POINT
 527                      || !cfip
 528                      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
 529                      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
 530                    )))
 531                        goto sleep;
 532
 533                /* We could check to see if we're trying to access the sector
 534                 * that is currently being erased. However, no user will try
 535                 * anything like that so we just wait for the timeout. */
 536
 537                /* Erase suspend */
 538                /* It's harmless to issue the Erase-Suspend and Erase-Resume
 539                 * commands when the erase algorithm isn't in progress. */
 540                map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 541                chip->oldstate = FL_ERASING;
 542                chip->state = FL_ERASE_SUSPENDING;
 543                chip->erase_suspended = 1;
 544                for (;;) {
 545                        if (chip_ready(map, adr))
 546                                break;
 547
 548                        if (time_after(jiffies, timeo)) {
 549                                /* Should have suspended the erase by now.
 550                                 * Send an Erase-Resume command as either
 551                                 * there was an error (so leave the erase
 552                                 * routine to recover from it) or we trying to
 553                                 * use the erase-in-progress sector. */
 554                                map_write(map, CMD(0x30), chip->in_progress_block_addr);
 555                                chip->state = FL_ERASING;
 556                                chip->oldstate = FL_READY;
 557                                printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 558                                return -EIO;
 559                        }
 560
 561                        spin_unlock(chip->mutex);
 562                        cfi_udelay(1);
 563                        spin_lock(chip->mutex);
 564                        /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 565                           So we can just loop here. */
 566                }
 567                chip->state = FL_READY;
 568                return 0;
 569
 570        case FL_XIP_WHILE_ERASING:
 571                if (mode != FL_READY && mode != FL_POINT &&
 572                    (!cfip || !(cfip->EraseSuspend&2)))
 573                        goto sleep;
 574                chip->oldstate = chip->state;
 575                chip->state = FL_READY;
 576                return 0;
 577
 578        case FL_POINT:
 579                /* Only if there's no operation suspended... */
 580                if (mode == FL_READY && chip->oldstate == FL_READY)
 581                        return 0;
 582
 583        default:
 584        sleep:
 585                set_current_state(TASK_UNINTERRUPTIBLE);
 586                add_wait_queue(&chip->wq, &wait);
 587                spin_unlock(chip->mutex);
 588                schedule();
 589                remove_wait_queue(&chip->wq, &wait);
 590                spin_lock(chip->mutex);
 591                goto resettime;
 592        }
 593}
 594
 595
 596static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 597{
 598        struct cfi_private *cfi = map->fldrv_priv;
 599
 600        switch(chip->oldstate) {
 601        case FL_ERASING:
 602                chip->state = chip->oldstate;
 603                map_write(map, CMD(0x30), chip->in_progress_block_addr);
 604                chip->oldstate = FL_READY;
 605                chip->state = FL_ERASING;
 606                break;
 607
 608        case FL_XIP_WHILE_ERASING:
 609                chip->state = chip->oldstate;
 610                chip->oldstate = FL_READY;
 611                break;
 612
 613        case FL_READY:
 614        case FL_STATUS:
 615                /* We should really make set_vpp() count, rather than doing this */
 616                DISABLE_VPP(map);
 617                break;
 618        default:
 619                printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
 620        }
 621        wake_up(&chip->wq);
 622}
 623
 624#ifdef CONFIG_MTD_XIP
 625
 626/*
 627 * No interrupt what so ever can be serviced while the flash isn't in array
 628 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 629 * enclosing any code path where the flash is known not to be in array mode.
 630 * And within a XIP disabled code path, only functions marked with __xipram
 631 * may be called and nothing else (it's a good thing to inspect generated
 632 * assembly to make sure inline functions were actually inlined and that gcc
 633 * didn't emit calls to its own support functions). Also configuring MTD CFI
 634 * support to a single buswidth and a single interleave is also recommended.
 635 */
 636
 637static void xip_disable(struct map_info *map, struct flchip *chip,
 638                        unsigned long adr)
 639{
 640        /* TODO: chips with no XIP use should ignore and return */
 641        (void) map_read(map, adr); /* ensure mmu mapping is up to date */
 642        local_irq_disable();
 643}
 644
 645static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
 646                                unsigned long adr)
 647{
 648        struct cfi_private *cfi = map->fldrv_priv;
 649
 650        if (chip->state != FL_POINT && chip->state != FL_READY) {
 651                map_write(map, CMD(0xf0), adr);
 652                chip->state = FL_READY;
 653        }
 654        (void) map_read(map, adr);
 655        xip_iprefetch();
 656        local_irq_enable();
 657}
 658
 659/*
 660 * When a delay is required for the flash operation to complete, the
 661 * xip_udelay() function is polling for both the given timeout and pending
 662 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 663 * pending then the flash erase operation is suspended, array mode restored
 664 * and interrupts unmasked.  Task scheduling might also happen at that
 665 * point.  The CPU eventually returns from the interrupt or the call to
 666 * schedule() and the suspended flash operation is resumed for the remaining
 667 * of the delay period.
 668 *
 669 * Warning: this function _will_ fool interrupt latency tracing tools.
 670 */
 671
 672static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
 673                                unsigned long adr, int usec)
 674{
 675        struct cfi_private *cfi = map->fldrv_priv;
 676        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 677        map_word status, OK = CMD(0x80);
 678        unsigned long suspended, start = xip_currtime();
 679        flstate_t oldstate;
 680
 681        do {
 682                cpu_relax();
 683                if (xip_irqpending() && extp &&
 684                    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
 685                    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
 686                        /*
 687                         * Let's suspend the erase operation when supported.
 688                         * Note that we currently don't try to suspend
 689                         * interleaved chips if there is already another
 690                         * operation suspended (imagine what happens
 691                         * when one chip was already done with the current
 692                         * operation while another chip suspended it, then
 693                         * we resume the whole thing at once).  Yes, it
 694                         * can happen!
 695                         */
 696                        map_write(map, CMD(0xb0), adr);
 697                        usec -= xip_elapsed_since(start);
 698                        suspended = xip_currtime();
 699                        do {
 700                                if (xip_elapsed_since(suspended) > 100000) {
 701                                        /*
 702                                         * The chip doesn't want to suspend
 703                                         * after waiting for 100 msecs.
 704                                         * This is a critical error but there
 705                                         * is not much we can do here.
 706                                         */
 707                                        return;
 708                                }
 709                                status = map_read(map, adr);
 710                        } while (!map_word_andequal(map, status, OK, OK));
 711
 712                        /* Suspend succeeded */
 713                        oldstate = chip->state;
 714                        if (!map_word_bitsset(map, status, CMD(0x40)))
 715                                break;
 716                        chip->state = FL_XIP_WHILE_ERASING;
 717                        chip->erase_suspended = 1;
 718                        map_write(map, CMD(0xf0), adr);
 719                        (void) map_read(map, adr);
 720                        asm volatile (".rep 8; nop; .endr");
 721                        local_irq_enable();
 722                        spin_unlock(chip->mutex);
 723                        asm volatile (".rep 8; nop; .endr");
 724                        cond_resched();
 725
 726                        /*
 727                         * We're back.  However someone else might have
 728                         * decided to go write to the chip if we are in
 729                         * a suspended erase state.  If so let's wait
 730                         * until it's done.
 731                         */
 732                        spin_lock(chip->mutex);
 733                        while (chip->state != FL_XIP_WHILE_ERASING) {
 734                                DECLARE_WAITQUEUE(wait, current);
 735                                set_current_state(TASK_UNINTERRUPTIBLE);
 736                                add_wait_queue(&chip->wq, &wait);
 737                                spin_unlock(chip->mutex);
 738                                schedule();
 739                                remove_wait_queue(&chip->wq, &wait);
 740                                spin_lock(chip->mutex);
 741                        }
 742                        /* Disallow XIP again */
 743                        local_irq_disable();
 744
 745                        /* Resume the write or erase operation */
 746                        map_write(map, CMD(0x30), adr);
 747                        chip->state = oldstate;
 748                        start = xip_currtime();
 749                } else if (usec >= 1000000/HZ) {
 750                        /*
 751                         * Try to save on CPU power when waiting delay
 752                         * is at least a system timer tick period.
 753                         * No need to be extremely accurate here.
 754                         */
 755                        xip_cpu_idle();
 756                }
 757                status = map_read(map, adr);
 758        } while (!map_word_andequal(map, status, OK, OK)
 759                 && xip_elapsed_since(start) < usec);
 760}
 761
 762#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
 763
 764/*
 765 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
 766 * the flash is actively programming or erasing since we have to poll for
 767 * the operation to complete anyway.  We can't do that in a generic way with
 768 * a XIP setup so do it before the actual flash operation in this case
 769 * and stub it out from INVALIDATE_CACHE_UDELAY.
 770 */
 771#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
 772        INVALIDATE_CACHED_RANGE(map, from, size)
 773
 774#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
 775        UDELAY(map, chip, adr, usec)
 776
 777/*
 778 * Extra notes:
 779 *
 780 * Activating this XIP support changes the way the code works a bit.  For
 781 * example the code to suspend the current process when concurrent access
 782 * happens is never executed because xip_udelay() will always return with the
 783 * same chip state as it was entered with.  This is why there is no care for
 784 * the presence of add_wait_queue() or schedule() calls from within a couple
 785 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
 786 * The queueing and scheduling are always happening within xip_udelay().
 787 *
 788 * Similarly, get_chip() and put_chip() just happen to always be executed
 789 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
 790 * is in array mode, therefore never executing many cases therein and not
 791 * causing any problem with XIP.
 792 */
 793
 794#else
 795
 796#define xip_disable(map, chip, adr)
 797#define xip_enable(map, chip, adr)
 798#define XIP_INVAL_CACHED_RANGE(x...)
 799
 800#define UDELAY(map, chip, adr, usec)  \
 801do {  \
 802        spin_unlock(chip->mutex);  \
 803        cfi_udelay(usec);  \
 804        spin_lock(chip->mutex);  \
 805} while (0)
 806
 807#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
 808do {  \
 809        spin_unlock(chip->mutex);  \
 810        INVALIDATE_CACHED_RANGE(map, adr, len);  \
 811        cfi_udelay(usec);  \
 812        spin_lock(chip->mutex);  \
 813} while (0)
 814
 815#endif
 816
 817static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
 818{
 819        unsigned long cmd_addr;
 820        struct cfi_private *cfi = map->fldrv_priv;
 821        int ret;
 822
 823        adr += chip->start;
 824
 825        /* Ensure cmd read/writes are aligned. */
 826        cmd_addr = adr & ~(map_bankwidth(map)-1);
 827
 828        spin_lock(chip->mutex);
 829        ret = get_chip(map, chip, cmd_addr, FL_READY);
 830        if (ret) {
 831                spin_unlock(chip->mutex);
 832                return ret;
 833        }
 834
 835        if (chip->state != FL_POINT && chip->state != FL_READY) {
 836                map_write(map, CMD(0xf0), cmd_addr);
 837                chip->state = FL_READY;
 838        }
 839
 840        map_copy_from(map, buf, adr, len);
 841
 842        put_chip(map, chip, cmd_addr);
 843
 844        spin_unlock(chip->mutex);
 845        return 0;
 846}
 847
 848
 849static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
 850{
 851        struct map_info *map = mtd->priv;
 852        struct cfi_private *cfi = map->fldrv_priv;
 853        unsigned long ofs;
 854        int chipnum;
 855        int ret = 0;
 856
 857        /* ofs: offset within the first chip that the first read should start */
 858
 859        chipnum = (from >> cfi->chipshift);
 860        ofs = from - (chipnum <<  cfi->chipshift);
 861
 862
 863        *retlen = 0;
 864
 865        while (len) {
 866                unsigned long thislen;
 867
 868                if (chipnum >= cfi->numchips)
 869                        break;
 870
 871                if ((len + ofs -1) >> cfi->chipshift)
 872                        thislen = (1<<cfi->chipshift) - ofs;
 873                else
 874                        thislen = len;
 875
 876                ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
 877                if (ret)
 878                        break;
 879
 880                *retlen += thislen;
 881                len -= thislen;
 882                buf += thislen;
 883
 884                ofs = 0;
 885                chipnum++;
 886        }
 887        return ret;
 888}
 889
 890
 891static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
 892{
 893        DECLARE_WAITQUEUE(wait, current);
 894        unsigned long timeo = jiffies + HZ;
 895        struct cfi_private *cfi = map->fldrv_priv;
 896
 897 retry:
 898        spin_lock(chip->mutex);
 899
 900        if (chip->state != FL_READY){
 901#if 0
 902                printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
 903#endif
 904                set_current_state(TASK_UNINTERRUPTIBLE);
 905                add_wait_queue(&chip->wq, &wait);
 906
 907                spin_unlock(chip->mutex);
 908
 909                schedule();
 910                remove_wait_queue(&chip->wq, &wait);
 911#if 0
 912                if(signal_pending(current))
 913                        return -EINTR;
 914#endif
 915                timeo = jiffies + HZ;
 916
 917                goto retry;
 918        }
 919
 920        adr += chip->start;
 921
 922        chip->state = FL_READY;
 923
 924        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 925        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 926        cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 927
 928        map_copy_from(map, buf, adr, len);
 929
 930        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 931        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 932        cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 933        cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 934
 935        wake_up(&chip->wq);
 936        spin_unlock(chip->mutex);
 937
 938        return 0;
 939}
 940
 941static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
 942{
 943        struct map_info *map = mtd->priv;
 944        struct cfi_private *cfi = map->fldrv_priv;
 945        unsigned long ofs;
 946        int chipnum;
 947        int ret = 0;
 948
 949
 950        /* ofs: offset within the first chip that the first read should start */
 951
 952        /* 8 secsi bytes per chip */
 953        chipnum=from>>3;
 954        ofs=from & 7;
 955
 956
 957        *retlen = 0;
 958
 959        while (len) {
 960                unsigned long thislen;
 961
 962                if (chipnum >= cfi->numchips)
 963                        break;
 964
 965                if ((len + ofs -1) >> 3)
 966                        thislen = (1<<3) - ofs;
 967                else
 968                        thislen = len;
 969
 970                ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
 971                if (ret)
 972                        break;
 973
 974                *retlen += thislen;
 975                len -= thislen;
 976                buf += thislen;
 977
 978                ofs = 0;
 979                chipnum++;
 980        }
 981        return ret;
 982}
 983
 984
 985static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
 986{
 987        struct cfi_private *cfi = map->fldrv_priv;
 988        unsigned long timeo = jiffies + HZ;
 989        /*
 990         * We use a 1ms + 1 jiffies generic timeout for writes (most devices
 991         * have a max write time of a few hundreds usec). However, we should
 992         * use the maximum timeout value given by the chip at probe time
 993         * instead.  Unfortunately, struct flchip does have a field for
 994         * maximum timeout, only for typical which can be far too short
 995         * depending of the conditions.  The ' + 1' is to avoid having a
 996         * timeout of 0 jiffies if HZ is smaller than 1000.
 997         */
 998        unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
 999        int ret = 0;
1000        map_word oldd;
1001        int retry_cnt = 0;
1002
1003        adr += chip->start;
1004
1005        spin_lock(chip->mutex);
1006        ret = get_chip(map, chip, adr, FL_WRITING);
1007        if (ret) {
1008                spin_unlock(chip->mutex);
1009                return ret;
1010        }
1011
1012        DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1013               __func__, adr, datum.x[0] );
1014
1015        /*
1016         * Check for a NOP for the case when the datum to write is already
1017         * present - it saves time and works around buggy chips that corrupt
1018         * data at other locations when 0xff is written to a location that
1019         * already contains 0xff.
1020         */
1021        oldd = map_read(map, adr);
1022        if (map_word_equal(map, oldd, datum)) {
1023                DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1024                       __func__);
1025                goto op_done;
1026        }
1027
1028        XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1029        ENABLE_VPP(map);
1030        xip_disable(map, chip, adr);
1031 retry:
1032        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1033        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1034        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1035        map_write(map, datum, adr);
1036        chip->state = FL_WRITING;
1037
1038        INVALIDATE_CACHE_UDELAY(map, chip,
1039                                adr, map_bankwidth(map),
1040                                chip->word_write_time);
1041
1042        /* See comment above for timeout value. */
1043        timeo = jiffies + uWriteTimeout;
1044        for (;;) {
1045                if (chip->state != FL_WRITING) {
1046                        /* Someone's suspended the write. Sleep */
1047                        DECLARE_WAITQUEUE(wait, current);
1048
1049                        set_current_state(TASK_UNINTERRUPTIBLE);
1050                        add_wait_queue(&chip->wq, &wait);
1051                        spin_unlock(chip->mutex);
1052                        schedule();
1053                        remove_wait_queue(&chip->wq, &wait);
1054                        timeo = jiffies + (HZ / 2); /* FIXME */
1055                        spin_lock(chip->mutex);
1056                        continue;
1057                }
1058
1059                if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1060                        xip_enable(map, chip, adr);
1061                        printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1062                        xip_disable(map, chip, adr);
1063                        break;
1064                }
1065
1066                if (chip_ready(map, adr))
1067                        break;
1068
1069                /* Latency issues. Drop the lock, wait a while and retry */
1070                UDELAY(map, chip, adr, 1);
1071        }
1072        /* Did we succeed? */
1073        if (!chip_good(map, adr, datum)) {
1074                /* reset on all failures. */
1075                map_write( map, CMD(0xF0), chip->start );
1076                /* FIXME - should have reset delay before continuing */
1077
1078                if (++retry_cnt <= MAX_WORD_RETRIES)
1079                        goto retry;
1080
1081                ret = -EIO;
1082        }
1083        xip_enable(map, chip, adr);
1084 op_done:
1085        chip->state = FL_READY;
1086        put_chip(map, chip, adr);
1087        spin_unlock(chip->mutex);
1088
1089        return ret;
1090}
1091
1092
1093static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1094                                  size_t *retlen, const u_char *buf)
1095{
1096        struct map_info *map = mtd->priv;
1097        struct cfi_private *cfi = map->fldrv_priv;
1098        int ret = 0;
1099        int chipnum;
1100        unsigned long ofs, chipstart;
1101        DECLARE_WAITQUEUE(wait, current);
1102
1103        *retlen = 0;
1104        if (!len)
1105                return 0;
1106
1107        chipnum = to >> cfi->chipshift;
1108        ofs = to  - (chipnum << cfi->chipshift);
1109        chipstart = cfi->chips[chipnum].start;
1110
1111        /* If it's not bus-aligned, do the first byte write */
1112        if (ofs & (map_bankwidth(map)-1)) {
1113                unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1114                int i = ofs - bus_ofs;
1115                int n = 0;
1116                map_word tmp_buf;
1117
1118 retry:
1119                spin_lock(cfi->chips[chipnum].mutex);
1120
1121                if (cfi->chips[chipnum].state != FL_READY) {
1122#if 0
1123                        printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1124#endif
1125                        set_current_state(TASK_UNINTERRUPTIBLE);
1126                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1127
1128                        spin_unlock(cfi->chips[chipnum].mutex);
1129
1130                        schedule();
1131                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1132#if 0
1133                        if(signal_pending(current))
1134                                return -EINTR;
1135#endif
1136                        goto retry;
1137                }
1138
1139                /* Load 'tmp_buf' with old contents of flash */
1140                tmp_buf = map_read(map, bus_ofs+chipstart);
1141
1142                spin_unlock(cfi->chips[chipnum].mutex);
1143
1144                /* Number of bytes to copy from buffer */
1145                n = min_t(int, len, map_bankwidth(map)-i);
1146
1147                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1148
1149                ret = do_write_oneword(map, &cfi->chips[chipnum],
1150                                       bus_ofs, tmp_buf);
1151                if (ret)
1152                        return ret;
1153
1154                ofs += n;
1155                buf += n;
1156                (*retlen) += n;
1157                len -= n;
1158
1159                if (ofs >> cfi->chipshift) {
1160                        chipnum ++;
1161                        ofs = 0;
1162                        if (chipnum == cfi->numchips)
1163                                return 0;
1164                }
1165        }
1166
1167        /* We are now aligned, write as much as possible */
1168        while(len >= map_bankwidth(map)) {
1169                map_word datum;
1170
1171                datum = map_word_load(map, buf);
1172
1173                ret = do_write_oneword(map, &cfi->chips[chipnum],
1174                                       ofs, datum);
1175                if (ret)
1176                        return ret;
1177
1178                ofs += map_bankwidth(map);
1179                buf += map_bankwidth(map);
1180                (*retlen) += map_bankwidth(map);
1181                len -= map_bankwidth(map);
1182
1183                if (ofs >> cfi->chipshift) {
1184                        chipnum ++;
1185                        ofs = 0;
1186                        if (chipnum == cfi->numchips)
1187                                return 0;
1188                        chipstart = cfi->chips[chipnum].start;
1189                }
1190        }
1191
1192        /* Write the trailing bytes if any */
1193        if (len & (map_bankwidth(map)-1)) {
1194                map_word tmp_buf;
1195
1196 retry1:
1197                spin_lock(cfi->chips[chipnum].mutex);
1198
1199                if (cfi->chips[chipnum].state != FL_READY) {
1200#if 0
1201                        printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1202#endif
1203                        set_current_state(TASK_UNINTERRUPTIBLE);
1204                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1205
1206                        spin_unlock(cfi->chips[chipnum].mutex);
1207
1208                        schedule();
1209                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1210#if 0
1211                        if(signal_pending(current))
1212                                return -EINTR;
1213#endif
1214                        goto retry1;
1215                }
1216
1217                tmp_buf = map_read(map, ofs + chipstart);
1218
1219                spin_unlock(cfi->chips[chipnum].mutex);
1220
1221                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1222
1223                ret = do_write_oneword(map, &cfi->chips[chipnum],
1224                                ofs, tmp_buf);
1225                if (ret)
1226                        return ret;
1227
1228                (*retlen) += len;
1229        }
1230
1231        return 0;
1232}
1233
1234
1235/*
1236 * FIXME: interleaved mode not tested, and probably not supported!
1237 */
1238static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1239                                    unsigned long adr, const u_char *buf,
1240                                    int len)
1241{
1242        struct cfi_private *cfi = map->fldrv_priv;
1243        unsigned long timeo = jiffies + HZ;
1244        /* see comments in do_write_oneword() regarding uWriteTimeo. */
1245        unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1246        int ret = -EIO;
1247        unsigned long cmd_adr;
1248        int z, words;
1249        map_word datum;
1250
1251        adr += chip->start;
1252        cmd_adr = adr;
1253
1254        spin_lock(chip->mutex);
1255        ret = get_chip(map, chip, adr, FL_WRITING);
1256        if (ret) {
1257                spin_unlock(chip->mutex);
1258                return ret;
1259        }
1260
1261        datum = map_word_load(map, buf);
1262
1263        DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1264               __func__, adr, datum.x[0] );
1265
1266        XIP_INVAL_CACHED_RANGE(map, adr, len);
1267        ENABLE_VPP(map);
1268        xip_disable(map, chip, cmd_adr);
1269
1270        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1271        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1272        //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1273
1274        /* Write Buffer Load */
1275        map_write(map, CMD(0x25), cmd_adr);
1276
1277        chip->state = FL_WRITING_TO_BUFFER;
1278
1279        /* Write length of data to come */
1280        words = len / map_bankwidth(map);
1281        map_write(map, CMD(words - 1), cmd_adr);
1282        /* Write data */
1283        z = 0;
1284        while(z < words * map_bankwidth(map)) {
1285                datum = map_word_load(map, buf);
1286                map_write(map, datum, adr + z);
1287
1288                z += map_bankwidth(map);
1289                buf += map_bankwidth(map);
1290        }
1291        z -= map_bankwidth(map);
1292
1293        adr += z;
1294
1295        /* Write Buffer Program Confirm: GO GO GO */
1296        map_write(map, CMD(0x29), cmd_adr);
1297        chip->state = FL_WRITING;
1298
1299        INVALIDATE_CACHE_UDELAY(map, chip,
1300                                adr, map_bankwidth(map),
1301                                chip->word_write_time);
1302
1303        timeo = jiffies + uWriteTimeout;
1304
1305        for (;;) {
1306                if (chip->state != FL_WRITING) {
1307                        /* Someone's suspended the write. Sleep */
1308                        DECLARE_WAITQUEUE(wait, current);
1309
1310                        set_current_state(TASK_UNINTERRUPTIBLE);
1311                        add_wait_queue(&chip->wq, &wait);
1312                        spin_unlock(chip->mutex);
1313                        schedule();
1314                        remove_wait_queue(&chip->wq, &wait);
1315                        timeo = jiffies + (HZ / 2); /* FIXME */
1316                        spin_lock(chip->mutex);
1317                        continue;
1318                }
1319
1320                if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1321                        break;
1322
1323                if (chip_ready(map, adr)) {
1324                        xip_enable(map, chip, adr);
1325                        goto op_done;
1326                }
1327
1328                /* Latency issues. Drop the lock, wait a while and retry */
1329                UDELAY(map, chip, adr, 1);
1330        }
1331
1332        /* reset on all failures. */
1333        map_write( map, CMD(0xF0), chip->start );
1334        xip_enable(map, chip, adr);
1335        /* FIXME - should have reset delay before continuing */
1336
1337        printk(KERN_WARNING "MTD %s(): software timeout\n",
1338               __func__ );
1339
1340        ret = -EIO;
1341 op_done:
1342        chip->state = FL_READY;
1343        put_chip(map, chip, adr);
1344        spin_unlock(chip->mutex);
1345
1346        return ret;
1347}
1348
1349
1350static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1351                                    size_t *retlen, const u_char *buf)
1352{
1353        struct map_info *map = mtd->priv;
1354        struct cfi_private *cfi = map->fldrv_priv;
1355        int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1356        int ret = 0;
1357        int chipnum;
1358        unsigned long ofs;
1359
1360        *retlen = 0;
1361        if (!len)
1362                return 0;
1363
1364        chipnum = to >> cfi->chipshift;
1365        ofs = to  - (chipnum << cfi->chipshift);
1366
1367        /* If it's not bus-aligned, do the first word write */
1368        if (ofs & (map_bankwidth(map)-1)) {
1369                size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1370                if (local_len > len)
1371                        local_len = len;
1372                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1373                                             local_len, retlen, buf);
1374                if (ret)
1375                        return ret;
1376                ofs += local_len;
1377                buf += local_len;
1378                len -= local_len;
1379
1380                if (ofs >> cfi->chipshift) {
1381                        chipnum ++;
1382                        ofs = 0;
1383                        if (chipnum == cfi->numchips)
1384                                return 0;
1385                }
1386        }
1387
1388        /* Write buffer is worth it only if more than one word to write... */
1389        while (len >= map_bankwidth(map) * 2) {
1390                /* We must not cross write block boundaries */
1391                int size = wbufsize - (ofs & (wbufsize-1));
1392
1393                if (size > len)
1394                        size = len;
1395                if (size % map_bankwidth(map))
1396                        size -= size % map_bankwidth(map);
1397
1398                ret = do_write_buffer(map, &cfi->chips[chipnum],
1399                                      ofs, buf, size);
1400                if (ret)
1401                        return ret;
1402
1403                ofs += size;
1404                buf += size;
1405                (*retlen) += size;
1406                len -= size;
1407
1408                if (ofs >> cfi->chipshift) {
1409                        chipnum ++;
1410                        ofs = 0;
1411                        if (chipnum == cfi->numchips)
1412                                return 0;
1413                }
1414        }
1415
1416        if (len) {
1417                size_t retlen_dregs = 0;
1418
1419                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1420                                             len, &retlen_dregs, buf);
1421
1422                *retlen += retlen_dregs;
1423                return ret;
1424        }
1425
1426        return 0;
1427}
1428
1429
1430/*
1431 * Handle devices with one erase region, that only implement
1432 * the chip erase command.
1433 */
1434static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1435{
1436        struct cfi_private *cfi = map->fldrv_priv;
1437        unsigned long timeo = jiffies + HZ;
1438        unsigned long int adr;
1439        DECLARE_WAITQUEUE(wait, current);
1440        int ret = 0;
1441
1442        adr = cfi->addr_unlock1;
1443
1444        spin_lock(chip->mutex);
1445        ret = get_chip(map, chip, adr, FL_WRITING);
1446        if (ret) {
1447                spin_unlock(chip->mutex);
1448                return ret;
1449        }
1450
1451        DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1452               __func__, chip->start );
1453
1454        XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1455        ENABLE_VPP(map);
1456        xip_disable(map, chip, adr);
1457
1458        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1459        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1460        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1461        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1462        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1463        cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1464
1465        chip->state = FL_ERASING;
1466        chip->erase_suspended = 0;
1467        chip->in_progress_block_addr = adr;
1468
1469        INVALIDATE_CACHE_UDELAY(map, chip,
1470                                adr, map->size,
1471                                chip->erase_time*500);
1472
1473        timeo = jiffies + (HZ*20);
1474
1475        for (;;) {
1476                if (chip->state != FL_ERASING) {
1477                        /* Someone's suspended the erase. Sleep */
1478                        set_current_state(TASK_UNINTERRUPTIBLE);
1479                        add_wait_queue(&chip->wq, &wait);
1480                        spin_unlock(chip->mutex);
1481                        schedule();
1482                        remove_wait_queue(&chip->wq, &wait);
1483                        spin_lock(chip->mutex);
1484                        continue;
1485                }
1486                if (chip->erase_suspended) {
1487                        /* This erase was suspended and resumed.
1488                           Adjust the timeout */
1489                        timeo = jiffies + (HZ*20); /* FIXME */
1490                        chip->erase_suspended = 0;
1491                }
1492
1493                if (chip_ready(map, adr))
1494                        break;
1495
1496                if (time_after(jiffies, timeo)) {
1497                        printk(KERN_WARNING "MTD %s(): software timeout\n",
1498                                __func__ );
1499                        break;
1500                }
1501
1502                /* Latency issues. Drop the lock, wait a while and retry */
1503                UDELAY(map, chip, adr, 1000000/HZ);
1504        }
1505        /* Did we succeed? */
1506        if (!chip_good(map, adr, map_word_ff(map))) {
1507                /* reset on all failures. */
1508                map_write( map, CMD(0xF0), chip->start );
1509                /* FIXME - should have reset delay before continuing */
1510
1511                ret = -EIO;
1512        }
1513
1514        chip->state = FL_READY;
1515        xip_enable(map, chip, adr);
1516        put_chip(map, chip, adr);
1517        spin_unlock(chip->mutex);
1518
1519        return ret;
1520}
1521
1522
1523static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1524{
1525        struct cfi_private *cfi = map->fldrv_priv;
1526        unsigned long timeo = jiffies + HZ;
1527        DECLARE_WAITQUEUE(wait, current);
1528        int ret = 0;
1529
1530        adr += chip->start;
1531
1532        spin_lock(chip->mutex);
1533        ret = get_chip(map, chip, adr, FL_ERASING);
1534        if (ret) {
1535                spin_unlock(chip->mutex);
1536                return ret;
1537        }
1538
1539        DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1540               __func__, adr );
1541
1542        XIP_INVAL_CACHED_RANGE(map, adr, len);
1543        ENABLE_VPP(map);
1544        xip_disable(map, chip, adr);
1545
1546        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1547        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1548        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1549        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1550        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1551        map_write(map, CMD(0x30), adr);
1552
1553        chip->state = FL_ERASING;
1554        chip->erase_suspended = 0;
1555        chip->in_progress_block_addr = adr;
1556
1557        INVALIDATE_CACHE_UDELAY(map, chip,
1558                                adr, len,
1559                                chip->erase_time*500);
1560
1561        timeo = jiffies + (HZ*20);
1562
1563        for (;;) {
1564                if (chip->state != FL_ERASING) {
1565                        /* Someone's suspended the erase. Sleep */
1566                        set_current_state(TASK_UNINTERRUPTIBLE);
1567                        add_wait_queue(&chip->wq, &wait);
1568                        spin_unlock(chip->mutex);
1569                        schedule();
1570                        remove_wait_queue(&chip->wq, &wait);
1571                        spin_lock(chip->mutex);
1572                        continue;
1573                }
1574                if (chip->erase_suspended) {
1575                        /* This erase was suspended and resumed.
1576                           Adjust the timeout */
1577                        timeo = jiffies + (HZ*20); /* FIXME */
1578                        chip->erase_suspended = 0;
1579                }
1580
1581                if (chip_ready(map, adr)) {
1582                        xip_enable(map, chip, adr);
1583                        break;
1584                }
1585
1586                if (time_after(jiffies, timeo)) {
1587                        xip_enable(map, chip, adr);
1588                        printk(KERN_WARNING "MTD %s(): software timeout\n",
1589                                __func__ );
1590                        break;
1591                }
1592
1593                /* Latency issues. Drop the lock, wait a while and retry */
1594                UDELAY(map, chip, adr, 1000000/HZ);
1595        }
1596        /* Did we succeed? */
1597        if (!chip_good(map, adr, map_word_ff(map))) {
1598                /* reset on all failures. */
1599                map_write( map, CMD(0xF0), chip->start );
1600                /* FIXME - should have reset delay before continuing */
1601
1602                ret = -EIO;
1603        }
1604
1605        chip->state = FL_READY;
1606        put_chip(map, chip, adr);
1607        spin_unlock(chip->mutex);
1608        return ret;
1609}
1610
1611
1612static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1613{
1614        unsigned long ofs, len;
1615        int ret;
1616
1617        ofs = instr->addr;
1618        len = instr->len;
1619
1620        ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1621        if (ret)
1622                return ret;
1623
1624        instr->state = MTD_ERASE_DONE;
1625        mtd_erase_callback(instr);
1626
1627        return 0;
1628}
1629
1630
1631static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1632{
1633        struct map_info *map = mtd->priv;
1634        struct cfi_private *cfi = map->fldrv_priv;
1635        int ret = 0;
1636
1637        if (instr->addr != 0)
1638                return -EINVAL;
1639
1640        if (instr->len != mtd->size)
1641                return -EINVAL;
1642
1643        ret = do_erase_chip(map, &cfi->chips[0]);
1644        if (ret)
1645                return ret;
1646
1647        instr->state = MTD_ERASE_DONE;
1648        mtd_erase_callback(instr);
1649
1650        return 0;
1651}
1652
1653static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1654                         unsigned long adr, int len, void *thunk)
1655{
1656        struct cfi_private *cfi = map->fldrv_priv;
1657        int ret;
1658
1659        spin_lock(chip->mutex);
1660        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1661        if (ret)
1662                goto out_unlock;
1663        chip->state = FL_LOCKING;
1664
1665        DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1666              __func__, adr, len);
1667
1668        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1669                         cfi->device_type, NULL);
1670        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1671                         cfi->device_type, NULL);
1672        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1673                         cfi->device_type, NULL);
1674        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1675                         cfi->device_type, NULL);
1676        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1677                         cfi->device_type, NULL);
1678        map_write(map, CMD(0x40), chip->start + adr);
1679
1680        chip->state = FL_READY;
1681        put_chip(map, chip, adr + chip->start);
1682        ret = 0;
1683
1684out_unlock:
1685        spin_unlock(chip->mutex);
1686        return ret;
1687}
1688
1689static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1690                           unsigned long adr, int len, void *thunk)
1691{
1692        struct cfi_private *cfi = map->fldrv_priv;
1693        int ret;
1694
1695        spin_lock(chip->mutex);
1696        ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1697        if (ret)
1698                goto out_unlock;
1699        chip->state = FL_UNLOCKING;
1700
1701        DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1702              __func__, adr, len);
1703
1704        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1705                         cfi->device_type, NULL);
1706        map_write(map, CMD(0x70), adr);
1707
1708        chip->state = FL_READY;
1709        put_chip(map, chip, adr + chip->start);
1710        ret = 0;
1711
1712out_unlock:
1713        spin_unlock(chip->mutex);
1714        return ret;
1715}
1716
1717static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1718{
1719        return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1720}
1721
1722static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1723{
1724        return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1725}
1726
1727
1728static void cfi_amdstd_sync (struct mtd_info *mtd)
1729{
1730        struct map_info *map = mtd->priv;
1731        struct cfi_private *cfi = map->fldrv_priv;
1732        int i;
1733        struct flchip *chip;
1734        int ret = 0;
1735        DECLARE_WAITQUEUE(wait, current);
1736
1737        for (i=0; !ret && i<cfi->numchips; i++) {
1738                chip = &cfi->chips[i];
1739
1740        retry:
1741                spin_lock(chip->mutex);
1742
1743                switch(chip->state) {
1744                case FL_READY:
1745                case FL_STATUS:
1746                case FL_CFI_QUERY:
1747                case FL_JEDEC_QUERY:
1748                        chip->oldstate = chip->state;
1749                        chip->state = FL_SYNCING;
1750                        /* No need to wake_up() on this state change -
1751                         * as the whole point is that nobody can do anything
1752                         * with the chip now anyway.
1753                         */
1754                case FL_SYNCING:
1755                        spin_unlock(chip->mutex);
1756                        break;
1757
1758                default:
1759                        /* Not an idle state */
1760                        add_wait_queue(&chip->wq, &wait);
1761
1762                        spin_unlock(chip->mutex);
1763
1764                        schedule();
1765
1766                        remove_wait_queue(&chip->wq, &wait);
1767
1768                        goto retry;
1769                }
1770        }
1771
1772        /* Unlock the chips again */
1773
1774        for (i--; i >=0; i--) {
1775                chip = &cfi->chips[i];
1776
1777                spin_lock(chip->mutex);
1778
1779                if (chip->state == FL_SYNCING) {
1780                        chip->state = chip->oldstate;
1781                        wake_up(&chip->wq);
1782                }
1783                spin_unlock(chip->mutex);
1784        }
1785}
1786
1787
1788static int cfi_amdstd_suspend(struct mtd_info *mtd)
1789{
1790        struct map_info *map = mtd->priv;
1791        struct cfi_private *cfi = map->fldrv_priv;
1792        int i;
1793        struct flchip *chip;
1794        int ret = 0;
1795
1796        for (i=0; !ret && i<cfi->numchips; i++) {
1797                chip = &cfi->chips[i];
1798
1799                spin_lock(chip->mutex);
1800
1801                switch(chip->state) {
1802                case FL_READY:
1803                case FL_STATUS:
1804                case FL_CFI_QUERY:
1805                case FL_JEDEC_QUERY:
1806                        chip->oldstate = chip->state;
1807                        chip->state = FL_PM_SUSPENDED;
1808                        /* No need to wake_up() on this state change -
1809                         * as the whole point is that nobody can do anything
1810                         * with the chip now anyway.
1811                         */
1812                case FL_PM_SUSPENDED:
1813                        break;
1814
1815                default:
1816                        ret = -EAGAIN;
1817                        break;
1818                }
1819                spin_unlock(chip->mutex);
1820        }
1821
1822        /* Unlock the chips again */
1823
1824        if (ret) {
1825                for (i--; i >=0; i--) {
1826                        chip = &cfi->chips[i];
1827
1828                        spin_lock(chip->mutex);
1829
1830                        if (chip->state == FL_PM_SUSPENDED) {
1831                                chip->state = chip->oldstate;
1832                                wake_up(&chip->wq);
1833                        }
1834                        spin_unlock(chip->mutex);
1835                }
1836        }
1837
1838        return ret;
1839}
1840
1841
1842static void cfi_amdstd_resume(struct mtd_info *mtd)
1843{
1844        struct map_info *map = mtd->priv;
1845        struct cfi_private *cfi = map->fldrv_priv;
1846        int i;
1847        struct flchip *chip;
1848
1849        for (i=0; i<cfi->numchips; i++) {
1850
1851                chip = &cfi->chips[i];
1852
1853                spin_lock(chip->mutex);
1854
1855                if (chip->state == FL_PM_SUSPENDED) {
1856                        chip->state = FL_READY;
1857                        map_write(map, CMD(0xF0), chip->start);
1858                        wake_up(&chip->wq);
1859                }
1860                else
1861                        printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1862
1863                spin_unlock(chip->mutex);
1864        }
1865}
1866
1867static void cfi_amdstd_destroy(struct mtd_info *mtd)
1868{
1869        struct map_info *map = mtd->priv;
1870        struct cfi_private *cfi = map->fldrv_priv;
1871
1872        kfree(cfi->cmdset_priv);
1873        kfree(cfi->cfiq);
1874        kfree(cfi);
1875        kfree(mtd->eraseregions);
1876}
1877
1878MODULE_LICENSE("GPL");
1879MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1880MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
1881