linux/drivers/net/e100.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/100 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 *      e100.c: Intel(R) PRO/100 ethernet driver
  31 *
  32 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  33 *      original e100 driver, but better described as a munging of
  34 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  35 *
  36 *      References:
  37 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  38 *              Open Source Software Developers Manual,
  39 *              http://sourceforge.net/projects/e1000
  40 *
  41 *
  42 *                            Theory of Operation
  43 *
  44 *      I.   General
  45 *
  46 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  47 *      controller family, which includes the 82557, 82558, 82559, 82550,
  48 *      82551, and 82562 devices.  82558 and greater controllers
  49 *      integrate the Intel 82555 PHY.  The controllers are used in
  50 *      server and client network interface cards, as well as in
  51 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  52 *      configurations.  8255x supports a 32-bit linear addressing
  53 *      mode and operates at 33Mhz PCI clock rate.
  54 *
  55 *      II.  Driver Operation
  56 *
  57 *      Memory-mapped mode is used exclusively to access the device's
  58 *      shared-memory structure, the Control/Status Registers (CSR). All
  59 *      setup, configuration, and control of the device, including queuing
  60 *      of Tx, Rx, and configuration commands is through the CSR.
  61 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  62 *      protects the shared Command Block List (CBL).
  63 *
  64 *      8255x is highly MII-compliant and all access to the PHY go
  65 *      through the Management Data Interface (MDI).  Consequently, the
  66 *      driver leverages the mii.c library shared with other MII-compliant
  67 *      devices.
  68 *
  69 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  70 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  71 *      archs are supported.
  72 *
  73 *      III. Transmit
  74 *
  75 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  76 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  77 *      memory structure.  A TCB marked with the suspend-bit indicates
  78 *      the end of the ring.  The last TCB processed suspends the
  79 *      controller, and the controller can be restarted by issue a CU
  80 *      resume command to continue from the suspend point, or a CU start
  81 *      command to start at a given position in the ring.
  82 *
  83 *      Non-Tx commands (config, multicast setup, etc) are linked
  84 *      into the CBL ring along with Tx commands.  The common structure
  85 *      used for both Tx and non-Tx commands is the Command Block (CB).
  86 *
  87 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  88 *      is the next CB to check for completion; cb_to_send is the first
  89 *      CB to start on in case of a previous failure to resume.  CB clean
  90 *      up happens in interrupt context in response to a CU interrupt.
  91 *      cbs_avail keeps track of number of free CB resources available.
  92 *
  93 *      Hardware padding of short packets to minimum packet size is
  94 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  95 *      with 00h.
  96 *
  97 *      IV.  Recieve
  98 *
  99 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 100 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 101 *      memory structure.  Rx skbs are allocated to contain both the RFD
 102 *      and the data buffer, but the RFD is pulled off before the skb is
 103 *      indicated.  The data buffer is aligned such that encapsulated
 104 *      protocol headers are u32-aligned.  Since the RFD is part of the
 105 *      mapped shared memory, and completion status is contained within
 106 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 107 *      view from software and hardware.
 108 *
 109 *      Under typical operation, the  receive unit (RU) is start once,
 110 *      and the controller happily fills RFDs as frames arrive.  If
 111 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 112 *      the RU must be restarted.  Frame arrival generates an interrupt,
 113 *      and Rx indication and re-allocation happen in the same context,
 114 *      therefore no locking is required.  A software-generated interrupt
 115 *      is generated from the watchdog to recover from a failed allocation
 116 *      senario where all Rx resources have been indicated and none re-
 117 *      placed.
 118 *
 119 *      V.   Miscellaneous
 120 *
 121 *      VLAN offloading of tagging, stripping and filtering is not
 122 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 123 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 124 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 125 *      not supported (hardware limitation).
 126 *
 127 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 128 *
 129 *      Thanks to JC (jchapman@katalix.com) for helping with
 130 *      testing/troubleshooting the development driver.
 131 *
 132 *      TODO:
 133 *      o several entry points race with dev->close
 134 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 135 *
 136 *      FIXES:
 137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 138 *      - Stratus87247: protect MDI control register manipulations
 139 */
 140
 141#include <linux/module.h>
 142#include <linux/moduleparam.h>
 143#include <linux/kernel.h>
 144#include <linux/types.h>
 145#include <linux/slab.h>
 146#include <linux/delay.h>
 147#include <linux/init.h>
 148#include <linux/pci.h>
 149#include <linux/dma-mapping.h>
 150#include <linux/netdevice.h>
 151#include <linux/etherdevice.h>
 152#include <linux/mii.h>
 153#include <linux/if_vlan.h>
 154#include <linux/skbuff.h>
 155#include <linux/ethtool.h>
 156#include <linux/string.h>
 157#include <asm/unaligned.h>
 158
 159
 160#define DRV_NAME                "e100"
 161#define DRV_EXT                 "-NAPI"
 162#define DRV_VERSION             "3.5.23-k4"DRV_EXT
 163#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 164#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 165#define PFX                     DRV_NAME ": "
 166
 167#define E100_WATCHDOG_PERIOD    (2 * HZ)
 168#define E100_NAPI_WEIGHT        16
 169
 170MODULE_DESCRIPTION(DRV_DESCRIPTION);
 171MODULE_AUTHOR(DRV_COPYRIGHT);
 172MODULE_LICENSE("GPL");
 173MODULE_VERSION(DRV_VERSION);
 174
 175static int debug = 3;
 176static int eeprom_bad_csum_allow = 0;
 177static int use_io = 0;
 178module_param(debug, int, 0);
 179module_param(eeprom_bad_csum_allow, int, 0);
 180module_param(use_io, int, 0);
 181MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 182MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 183MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 184#define DPRINTK(nlevel, klevel, fmt, args...) \
 185        (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
 186        printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
 187                __FUNCTION__ , ## args))
 188
 189#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 190        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 191        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 192static struct pci_device_id e100_id_table[] = {
 193        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 194        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 195        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 196        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 197        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 198        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 199        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 200        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 201        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 202        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 203        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 204        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 205        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 206        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 207        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 208        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 209        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 210        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 211        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 212        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 213        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 219        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 220        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 221        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 222        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 223        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 224        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 225        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 226        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 227        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 228        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 229        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 230        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 231        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 232        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 233        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 234        { 0, }
 235};
 236MODULE_DEVICE_TABLE(pci, e100_id_table);
 237
 238enum mac {
 239        mac_82557_D100_A  = 0,
 240        mac_82557_D100_B  = 1,
 241        mac_82557_D100_C  = 2,
 242        mac_82558_D101_A4 = 4,
 243        mac_82558_D101_B0 = 5,
 244        mac_82559_D101M   = 8,
 245        mac_82559_D101S   = 9,
 246        mac_82550_D102    = 12,
 247        mac_82550_D102_C  = 13,
 248        mac_82551_E       = 14,
 249        mac_82551_F       = 15,
 250        mac_82551_10      = 16,
 251        mac_unknown       = 0xFF,
 252};
 253
 254enum phy {
 255        phy_100a     = 0x000003E0,
 256        phy_100c     = 0x035002A8,
 257        phy_82555_tx = 0x015002A8,
 258        phy_nsc_tx   = 0x5C002000,
 259        phy_82562_et = 0x033002A8,
 260        phy_82562_em = 0x032002A8,
 261        phy_82562_ek = 0x031002A8,
 262        phy_82562_eh = 0x017002A8,
 263        phy_unknown  = 0xFFFFFFFF,
 264};
 265
 266/* CSR (Control/Status Registers) */
 267struct csr {
 268        struct {
 269                u8 status;
 270                u8 stat_ack;
 271                u8 cmd_lo;
 272                u8 cmd_hi;
 273                u32 gen_ptr;
 274        } scb;
 275        u32 port;
 276        u16 flash_ctrl;
 277        u8 eeprom_ctrl_lo;
 278        u8 eeprom_ctrl_hi;
 279        u32 mdi_ctrl;
 280        u32 rx_dma_count;
 281};
 282
 283enum scb_status {
 284        rus_ready        = 0x10,
 285        rus_mask         = 0x3C,
 286};
 287
 288enum ru_state  {
 289        RU_SUSPENDED = 0,
 290        RU_RUNNING       = 1,
 291        RU_UNINITIALIZED = -1,
 292};
 293
 294enum scb_stat_ack {
 295        stat_ack_not_ours    = 0x00,
 296        stat_ack_sw_gen      = 0x04,
 297        stat_ack_rnr         = 0x10,
 298        stat_ack_cu_idle     = 0x20,
 299        stat_ack_frame_rx    = 0x40,
 300        stat_ack_cu_cmd_done = 0x80,
 301        stat_ack_not_present = 0xFF,
 302        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 303        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 304};
 305
 306enum scb_cmd_hi {
 307        irq_mask_none = 0x00,
 308        irq_mask_all  = 0x01,
 309        irq_sw_gen    = 0x02,
 310};
 311
 312enum scb_cmd_lo {
 313        cuc_nop        = 0x00,
 314        ruc_start      = 0x01,
 315        ruc_load_base  = 0x06,
 316        cuc_start      = 0x10,
 317        cuc_resume     = 0x20,
 318        cuc_dump_addr  = 0x40,
 319        cuc_dump_stats = 0x50,
 320        cuc_load_base  = 0x60,
 321        cuc_dump_reset = 0x70,
 322};
 323
 324enum cuc_dump {
 325        cuc_dump_complete       = 0x0000A005,
 326        cuc_dump_reset_complete = 0x0000A007,
 327};
 328
 329enum port {
 330        software_reset  = 0x0000,
 331        selftest        = 0x0001,
 332        selective_reset = 0x0002,
 333};
 334
 335enum eeprom_ctrl_lo {
 336        eesk = 0x01,
 337        eecs = 0x02,
 338        eedi = 0x04,
 339        eedo = 0x08,
 340};
 341
 342enum mdi_ctrl {
 343        mdi_write = 0x04000000,
 344        mdi_read  = 0x08000000,
 345        mdi_ready = 0x10000000,
 346};
 347
 348enum eeprom_op {
 349        op_write = 0x05,
 350        op_read  = 0x06,
 351        op_ewds  = 0x10,
 352        op_ewen  = 0x13,
 353};
 354
 355enum eeprom_offsets {
 356        eeprom_cnfg_mdix  = 0x03,
 357        eeprom_id         = 0x0A,
 358        eeprom_config_asf = 0x0D,
 359        eeprom_smbus_addr = 0x90,
 360};
 361
 362enum eeprom_cnfg_mdix {
 363        eeprom_mdix_enabled = 0x0080,
 364};
 365
 366enum eeprom_id {
 367        eeprom_id_wol = 0x0020,
 368};
 369
 370enum eeprom_config_asf {
 371        eeprom_asf = 0x8000,
 372        eeprom_gcl = 0x4000,
 373};
 374
 375enum cb_status {
 376        cb_complete = 0x8000,
 377        cb_ok       = 0x2000,
 378};
 379
 380enum cb_command {
 381        cb_nop    = 0x0000,
 382        cb_iaaddr = 0x0001,
 383        cb_config = 0x0002,
 384        cb_multi  = 0x0003,
 385        cb_tx     = 0x0004,
 386        cb_ucode  = 0x0005,
 387        cb_dump   = 0x0006,
 388        cb_tx_sf  = 0x0008,
 389        cb_cid    = 0x1f00,
 390        cb_i      = 0x2000,
 391        cb_s      = 0x4000,
 392        cb_el     = 0x8000,
 393};
 394
 395struct rfd {
 396        u16 status;
 397        u16 command;
 398        u32 link;
 399        u32 rbd;
 400        u16 actual_size;
 401        u16 size;
 402};
 403
 404struct rx {
 405        struct rx *next, *prev;
 406        struct sk_buff *skb;
 407        dma_addr_t dma_addr;
 408};
 409
 410#if defined(__BIG_ENDIAN_BITFIELD)
 411#define X(a,b)  b,a
 412#else
 413#define X(a,b)  a,b
 414#endif
 415struct config {
 416/*0*/   u8 X(byte_count:6, pad0:2);
 417/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 418/*2*/   u8 adaptive_ifs;
 419/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 420           term_write_cache_line:1), pad3:4);
 421/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 422/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 423/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 424           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 425           rx_discard_overruns:1), rx_save_bad_frames:1);
 426/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 427           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 428           tx_dynamic_tbd:1);
 429/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 430/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 431           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 432/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 433           loopback:2);
 434/*11*/  u8 X(linear_priority:3, pad11:5);
 435/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 436/*13*/  u8 ip_addr_lo;
 437/*14*/  u8 ip_addr_hi;
 438/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 439           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 440           pad15_2:1), crs_or_cdt:1);
 441/*16*/  u8 fc_delay_lo;
 442/*17*/  u8 fc_delay_hi;
 443/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 444           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 445/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 446           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 447           full_duplex_force:1), full_duplex_pin:1);
 448/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 449/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 450/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 451        u8 pad_d102[9];
 452};
 453
 454#define E100_MAX_MULTICAST_ADDRS        64
 455struct multi {
 456        u16 count;
 457        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 458};
 459
 460/* Important: keep total struct u32-aligned */
 461#define UCODE_SIZE                      134
 462struct cb {
 463        u16 status;
 464        u16 command;
 465        u32 link;
 466        union {
 467                u8 iaaddr[ETH_ALEN];
 468                u32 ucode[UCODE_SIZE];
 469                struct config config;
 470                struct multi multi;
 471                struct {
 472                        u32 tbd_array;
 473                        u16 tcb_byte_count;
 474                        u8 threshold;
 475                        u8 tbd_count;
 476                        struct {
 477                                u32 buf_addr;
 478                                u16 size;
 479                                u16 eol;
 480                        } tbd;
 481                } tcb;
 482                u32 dump_buffer_addr;
 483        } u;
 484        struct cb *next, *prev;
 485        dma_addr_t dma_addr;
 486        struct sk_buff *skb;
 487};
 488
 489enum loopback {
 490        lb_none = 0, lb_mac = 1, lb_phy = 3,
 491};
 492
 493struct stats {
 494        u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 495                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 496                tx_multiple_collisions, tx_total_collisions;
 497        u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 498                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 499                rx_short_frame_errors;
 500        u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 501        u16 xmt_tco_frames, rcv_tco_frames;
 502        u32 complete;
 503};
 504
 505struct mem {
 506        struct {
 507                u32 signature;
 508                u32 result;
 509        } selftest;
 510        struct stats stats;
 511        u8 dump_buf[596];
 512};
 513
 514struct param_range {
 515        u32 min;
 516        u32 max;
 517        u32 count;
 518};
 519
 520struct params {
 521        struct param_range rfds;
 522        struct param_range cbs;
 523};
 524
 525struct nic {
 526        /* Begin: frequently used values: keep adjacent for cache effect */
 527        u32 msg_enable                          ____cacheline_aligned;
 528        struct net_device *netdev;
 529        struct pci_dev *pdev;
 530
 531        struct rx *rxs                          ____cacheline_aligned;
 532        struct rx *rx_to_use;
 533        struct rx *rx_to_clean;
 534        struct rfd blank_rfd;
 535        enum ru_state ru_running;
 536
 537        spinlock_t cb_lock                      ____cacheline_aligned;
 538        spinlock_t cmd_lock;
 539        struct csr __iomem *csr;
 540        enum scb_cmd_lo cuc_cmd;
 541        unsigned int cbs_avail;
 542        struct napi_struct napi;
 543        struct cb *cbs;
 544        struct cb *cb_to_use;
 545        struct cb *cb_to_send;
 546        struct cb *cb_to_clean;
 547        u16 tx_command;
 548        /* End: frequently used values: keep adjacent for cache effect */
 549
 550        enum {
 551                ich                = (1 << 0),
 552                promiscuous        = (1 << 1),
 553                multicast_all      = (1 << 2),
 554                wol_magic          = (1 << 3),
 555                ich_10h_workaround = (1 << 4),
 556        } flags                                 ____cacheline_aligned;
 557
 558        enum mac mac;
 559        enum phy phy;
 560        struct params params;
 561        struct timer_list watchdog;
 562        struct timer_list blink_timer;
 563        struct mii_if_info mii;
 564        struct work_struct tx_timeout_task;
 565        enum loopback loopback;
 566
 567        struct mem *mem;
 568        dma_addr_t dma_addr;
 569
 570        dma_addr_t cbs_dma_addr;
 571        u8 adaptive_ifs;
 572        u8 tx_threshold;
 573        u32 tx_frames;
 574        u32 tx_collisions;
 575        u32 tx_deferred;
 576        u32 tx_single_collisions;
 577        u32 tx_multiple_collisions;
 578        u32 tx_fc_pause;
 579        u32 tx_tco_frames;
 580
 581        u32 rx_fc_pause;
 582        u32 rx_fc_unsupported;
 583        u32 rx_tco_frames;
 584        u32 rx_over_length_errors;
 585
 586        u16 leds;
 587        u16 eeprom_wc;
 588        u16 eeprom[256];
 589        spinlock_t mdio_lock;
 590};
 591
 592static inline void e100_write_flush(struct nic *nic)
 593{
 594        /* Flush previous PCI writes through intermediate bridges
 595         * by doing a benign read */
 596        (void)ioread8(&nic->csr->scb.status);
 597}
 598
 599static void e100_enable_irq(struct nic *nic)
 600{
 601        unsigned long flags;
 602
 603        spin_lock_irqsave(&nic->cmd_lock, flags);
 604        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 605        e100_write_flush(nic);
 606        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 607}
 608
 609static void e100_disable_irq(struct nic *nic)
 610{
 611        unsigned long flags;
 612
 613        spin_lock_irqsave(&nic->cmd_lock, flags);
 614        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 615        e100_write_flush(nic);
 616        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 617}
 618
 619static void e100_hw_reset(struct nic *nic)
 620{
 621        /* Put CU and RU into idle with a selective reset to get
 622         * device off of PCI bus */
 623        iowrite32(selective_reset, &nic->csr->port);
 624        e100_write_flush(nic); udelay(20);
 625
 626        /* Now fully reset device */
 627        iowrite32(software_reset, &nic->csr->port);
 628        e100_write_flush(nic); udelay(20);
 629
 630        /* Mask off our interrupt line - it's unmasked after reset */
 631        e100_disable_irq(nic);
 632}
 633
 634static int e100_self_test(struct nic *nic)
 635{
 636        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 637
 638        /* Passing the self-test is a pretty good indication
 639         * that the device can DMA to/from host memory */
 640
 641        nic->mem->selftest.signature = 0;
 642        nic->mem->selftest.result = 0xFFFFFFFF;
 643
 644        iowrite32(selftest | dma_addr, &nic->csr->port);
 645        e100_write_flush(nic);
 646        /* Wait 10 msec for self-test to complete */
 647        msleep(10);
 648
 649        /* Interrupts are enabled after self-test */
 650        e100_disable_irq(nic);
 651
 652        /* Check results of self-test */
 653        if(nic->mem->selftest.result != 0) {
 654                DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
 655                        nic->mem->selftest.result);
 656                return -ETIMEDOUT;
 657        }
 658        if(nic->mem->selftest.signature == 0) {
 659                DPRINTK(HW, ERR, "Self-test failed: timed out\n");
 660                return -ETIMEDOUT;
 661        }
 662
 663        return 0;
 664}
 665
 666static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
 667{
 668        u32 cmd_addr_data[3];
 669        u8 ctrl;
 670        int i, j;
 671
 672        /* Three cmds: write/erase enable, write data, write/erase disable */
 673        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 674        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 675                cpu_to_le16(data);
 676        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 677
 678        /* Bit-bang cmds to write word to eeprom */
 679        for(j = 0; j < 3; j++) {
 680
 681                /* Chip select */
 682                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 683                e100_write_flush(nic); udelay(4);
 684
 685                for(i = 31; i >= 0; i--) {
 686                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 687                                eecs | eedi : eecs;
 688                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 689                        e100_write_flush(nic); udelay(4);
 690
 691                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 692                        e100_write_flush(nic); udelay(4);
 693                }
 694                /* Wait 10 msec for cmd to complete */
 695                msleep(10);
 696
 697                /* Chip deselect */
 698                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 699                e100_write_flush(nic); udelay(4);
 700        }
 701};
 702
 703/* General technique stolen from the eepro100 driver - very clever */
 704static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 705{
 706        u32 cmd_addr_data;
 707        u16 data = 0;
 708        u8 ctrl;
 709        int i;
 710
 711        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 712
 713        /* Chip select */
 714        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 715        e100_write_flush(nic); udelay(4);
 716
 717        /* Bit-bang to read word from eeprom */
 718        for(i = 31; i >= 0; i--) {
 719                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 720                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 721                e100_write_flush(nic); udelay(4);
 722
 723                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 724                e100_write_flush(nic); udelay(4);
 725
 726                /* Eeprom drives a dummy zero to EEDO after receiving
 727                 * complete address.  Use this to adjust addr_len. */
 728                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 729                if(!(ctrl & eedo) && i > 16) {
 730                        *addr_len -= (i - 16);
 731                        i = 17;
 732                }
 733
 734                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 735        }
 736
 737        /* Chip deselect */
 738        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 739        e100_write_flush(nic); udelay(4);
 740
 741        return le16_to_cpu(data);
 742};
 743
 744/* Load entire EEPROM image into driver cache and validate checksum */
 745static int e100_eeprom_load(struct nic *nic)
 746{
 747        u16 addr, addr_len = 8, checksum = 0;
 748
 749        /* Try reading with an 8-bit addr len to discover actual addr len */
 750        e100_eeprom_read(nic, &addr_len, 0);
 751        nic->eeprom_wc = 1 << addr_len;
 752
 753        for(addr = 0; addr < nic->eeprom_wc; addr++) {
 754                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 755                if(addr < nic->eeprom_wc - 1)
 756                        checksum += cpu_to_le16(nic->eeprom[addr]);
 757        }
 758
 759        /* The checksum, stored in the last word, is calculated such that
 760         * the sum of words should be 0xBABA */
 761        checksum = le16_to_cpu(0xBABA - checksum);
 762        if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
 763                DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
 764                if (!eeprom_bad_csum_allow)
 765                        return -EAGAIN;
 766        }
 767
 768        return 0;
 769}
 770
 771/* Save (portion of) driver EEPROM cache to device and update checksum */
 772static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 773{
 774        u16 addr, addr_len = 8, checksum = 0;
 775
 776        /* Try reading with an 8-bit addr len to discover actual addr len */
 777        e100_eeprom_read(nic, &addr_len, 0);
 778        nic->eeprom_wc = 1 << addr_len;
 779
 780        if(start + count >= nic->eeprom_wc)
 781                return -EINVAL;
 782
 783        for(addr = start; addr < start + count; addr++)
 784                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 785
 786        /* The checksum, stored in the last word, is calculated such that
 787         * the sum of words should be 0xBABA */
 788        for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
 789                checksum += cpu_to_le16(nic->eeprom[addr]);
 790        nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
 791        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 792                nic->eeprom[nic->eeprom_wc - 1]);
 793
 794        return 0;
 795}
 796
 797#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 798#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 799static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 800{
 801        unsigned long flags;
 802        unsigned int i;
 803        int err = 0;
 804
 805        spin_lock_irqsave(&nic->cmd_lock, flags);
 806
 807        /* Previous command is accepted when SCB clears */
 808        for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 809                if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
 810                        break;
 811                cpu_relax();
 812                if(unlikely(i > E100_WAIT_SCB_FAST))
 813                        udelay(5);
 814        }
 815        if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 816                err = -EAGAIN;
 817                goto err_unlock;
 818        }
 819
 820        if(unlikely(cmd != cuc_resume))
 821                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 822        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 823
 824err_unlock:
 825        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 826
 827        return err;
 828}
 829
 830static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 831        void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 832{
 833        struct cb *cb;
 834        unsigned long flags;
 835        int err = 0;
 836
 837        spin_lock_irqsave(&nic->cb_lock, flags);
 838
 839        if(unlikely(!nic->cbs_avail)) {
 840                err = -ENOMEM;
 841                goto err_unlock;
 842        }
 843
 844        cb = nic->cb_to_use;
 845        nic->cb_to_use = cb->next;
 846        nic->cbs_avail--;
 847        cb->skb = skb;
 848
 849        if(unlikely(!nic->cbs_avail))
 850                err = -ENOSPC;
 851
 852        cb_prepare(nic, cb, skb);
 853
 854        /* Order is important otherwise we'll be in a race with h/w:
 855         * set S-bit in current first, then clear S-bit in previous. */
 856        cb->command |= cpu_to_le16(cb_s);
 857        wmb();
 858        cb->prev->command &= cpu_to_le16(~cb_s);
 859
 860        while(nic->cb_to_send != nic->cb_to_use) {
 861                if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 862                        nic->cb_to_send->dma_addr))) {
 863                        /* Ok, here's where things get sticky.  It's
 864                         * possible that we can't schedule the command
 865                         * because the controller is too busy, so
 866                         * let's just queue the command and try again
 867                         * when another command is scheduled. */
 868                        if(err == -ENOSPC) {
 869                                //request a reset
 870                                schedule_work(&nic->tx_timeout_task);
 871                        }
 872                        break;
 873                } else {
 874                        nic->cuc_cmd = cuc_resume;
 875                        nic->cb_to_send = nic->cb_to_send->next;
 876                }
 877        }
 878
 879err_unlock:
 880        spin_unlock_irqrestore(&nic->cb_lock, flags);
 881
 882        return err;
 883}
 884
 885static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 886{
 887        u32 data_out = 0;
 888        unsigned int i;
 889        unsigned long flags;
 890
 891
 892        /*
 893         * Stratus87247: we shouldn't be writing the MDI control
 894         * register until the Ready bit shows True.  Also, since
 895         * manipulation of the MDI control registers is a multi-step
 896         * procedure it should be done under lock.
 897         */
 898        spin_lock_irqsave(&nic->mdio_lock, flags);
 899        for (i = 100; i; --i) {
 900                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 901                        break;
 902                udelay(20);
 903        }
 904        if (unlikely(!i)) {
 905                printk("e100.mdio_ctrl(%s) won't go Ready\n",
 906                        nic->netdev->name );
 907                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 908                return 0;               /* No way to indicate timeout error */
 909        }
 910        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 911
 912        for (i = 0; i < 100; i++) {
 913                udelay(20);
 914                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 915                        break;
 916        }
 917        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 918        DPRINTK(HW, DEBUG,
 919                "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 920                dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
 921        return (u16)data_out;
 922}
 923
 924static int mdio_read(struct net_device *netdev, int addr, int reg)
 925{
 926        return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
 927}
 928
 929static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 930{
 931        mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
 932}
 933
 934static void e100_get_defaults(struct nic *nic)
 935{
 936        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
 937        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
 938
 939        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
 940        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
 941        if(nic->mac == mac_unknown)
 942                nic->mac = mac_82557_D100_A;
 943
 944        nic->params.rfds = rfds;
 945        nic->params.cbs = cbs;
 946
 947        /* Quadwords to DMA into FIFO before starting frame transmit */
 948        nic->tx_threshold = 0xE0;
 949
 950        /* no interrupt for every tx completion, delay = 256us if not 557*/
 951        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
 952                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
 953
 954        /* Template for a freshly allocated RFD */
 955        nic->blank_rfd.command = cpu_to_le16(cb_el);
 956        nic->blank_rfd.rbd = 0xFFFFFFFF;
 957        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
 958
 959        /* MII setup */
 960        nic->mii.phy_id_mask = 0x1F;
 961        nic->mii.reg_num_mask = 0x1F;
 962        nic->mii.dev = nic->netdev;
 963        nic->mii.mdio_read = mdio_read;
 964        nic->mii.mdio_write = mdio_write;
 965}
 966
 967static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
 968{
 969        struct config *config = &cb->u.config;
 970        u8 *c = (u8 *)config;
 971
 972        cb->command = cpu_to_le16(cb_config);
 973
 974        memset(config, 0, sizeof(struct config));
 975
 976        config->byte_count = 0x16;              /* bytes in this struct */
 977        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
 978        config->direct_rx_dma = 0x1;            /* reserved */
 979        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
 980        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
 981        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
 982        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
 983        config->mii_mode = 0x1;                 /* 1=MII mode, 0=503 mode */
 984        config->pad10 = 0x6;
 985        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
 986        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
 987        config->ifs = 0x6;                      /* x16 = inter frame spacing */
 988        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
 989        config->pad15_1 = 0x1;
 990        config->pad15_2 = 0x1;
 991        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
 992        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
 993        config->tx_padding = 0x1;               /* 1=pad short frames */
 994        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
 995        config->pad18 = 0x1;
 996        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
 997        config->pad20_1 = 0x1F;
 998        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
 999        config->pad21_1 = 0x5;
1000
1001        config->adaptive_ifs = nic->adaptive_ifs;
1002        config->loopback = nic->loopback;
1003
1004        if(nic->mii.force_media && nic->mii.full_duplex)
1005                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1006
1007        if(nic->flags & promiscuous || nic->loopback) {
1008                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1009                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1010                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1011        }
1012
1013        if(nic->flags & multicast_all)
1014                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1015
1016        /* disable WoL when up */
1017        if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1018                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1019
1020        if(nic->mac >= mac_82558_D101_A4) {
1021                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1022                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1023                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1024                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1025                if (nic->mac >= mac_82559_D101M) {
1026                        config->tno_intr = 0x1;         /* TCO stats enable */
1027                        /* Enable TCO in extended config */
1028                        if (nic->mac >= mac_82551_10) {
1029                                config->byte_count = 0x20; /* extended bytes */
1030                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1031                        }
1032                } else {
1033                        config->standard_stat_counter = 0x0;
1034                }
1035        }
1036
1037        DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1038                c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1039        DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1040                c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1041        DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1042                c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1043}
1044
1045/********************************************************/
1046/*  Micro code for 8086:1229 Rev 8                      */
1047/********************************************************/
1048
1049/*  Parameter values for the D101M B-step  */
1050#define D101M_CPUSAVER_TIMER_DWORD              78
1051#define D101M_CPUSAVER_BUNDLE_DWORD             65
1052#define D101M_CPUSAVER_MIN_SIZE_DWORD           126
1053
1054#define D101M_B_RCVBUNDLE_UCODE \
1055{\
10560x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
10570x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
10580x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
10590x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
10600x00380438, 0x00000000, 0x00140000, 0x00380555, \
10610x00308000, 0x00100662, 0x00100561, 0x000E0408, \
10620x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10630x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10640x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
10650x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
10660x00000000, 0x00000000, 0x00000000, 0x00000000, \
10670x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
10680x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
10690x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
10700x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
10710x00041000, 0x00010004, 0x00130826, 0x000C0006, \
10720x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
10730x00000000, 0x00000000, 0x00000000, 0x00000000, \
10740x00000000, 0x00000000, 0x00000000, 0x00000000, \
10750x00080600, 0x00101B10, 0x00050004, 0x00100826, \
10760x00101210, 0x00380C34, 0x00000000, 0x00000000, \
10770x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
10780x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
10790x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
10800x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
10810x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
10820x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
10830x00130826, 0x000C0001, 0x00220559, 0x00101313, \
10840x00380559, 0x00000000, 0x00000000, 0x00000000, \
10850x00000000, 0x00000000, 0x00000000, 0x00000000, \
10860x00000000, 0x00130831, 0x0010090B, 0x00124813, \
10870x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
10880x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1089}
1090
1091/********************************************************/
1092/*  Micro code for 8086:1229 Rev 9                      */
1093/********************************************************/
1094
1095/*  Parameter values for the D101S  */
1096#define D101S_CPUSAVER_TIMER_DWORD              78
1097#define D101S_CPUSAVER_BUNDLE_DWORD             67
1098#define D101S_CPUSAVER_MIN_SIZE_DWORD           128
1099
1100#define D101S_RCVBUNDLE_UCODE \
1101{\
11020x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
11030x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
11040x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
11050x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
11060x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
11070x00308000, 0x00100610, 0x00100561, 0x000E0408, \
11080x00134861, 0x000C0002, 0x00103093, 0x00308000, \
11090x00100624, 0x00100561, 0x000E0408, 0x00100861, \
11100x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
11110x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
11120x00000000, 0x00000000, 0x00000000, 0x00000000, \
11130x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
11140x003A047E, 0x00044010, 0x00380819, 0x00000000, \
11150x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
11160x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
11170x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
11180x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
11190x00101313, 0x00380700, 0x00000000, 0x00000000, \
11200x00000000, 0x00000000, 0x00000000, 0x00000000, \
11210x00080600, 0x00101B10, 0x00050004, 0x00100826, \
11220x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
11230x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
11240x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
11250x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
11260x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
11270x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
11280x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
11290x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
11300x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
11310x00000000, 0x00000000, 0x00000000, 0x00000000, \
11320x00000000, 0x00000000, 0x00000000, 0x00130831, \
11330x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
11340x00041000, 0x00010004, 0x00380700  \
1135}
1136
1137/********************************************************/
1138/*  Micro code for the 8086:1229 Rev F/10               */
1139/********************************************************/
1140
1141/*  Parameter values for the D102 E-step  */
1142#define D102_E_CPUSAVER_TIMER_DWORD             42
1143#define D102_E_CPUSAVER_BUNDLE_DWORD            54
1144#define D102_E_CPUSAVER_MIN_SIZE_DWORD          46
1145
1146#define     D102_E_RCVBUNDLE_UCODE \
1147{\
11480x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
11490x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
11500x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
11510x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
11520x00000000, 0x00000000, 0x00000000, 0x00000000, \
11530x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
11540x00000000, 0x00000000, 0x00000000, 0x00000000, \
11550x00000000, 0x00000000, 0x00000000, 0x00000000, \
11560x00000000, 0x00000000, 0x00000000, 0x00000000, \
11570x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
11580x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
11590x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
11600x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
11610x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
11620x00000000, 0x00000000, 0x00000000, 0x00000000, \
11630x00000000, 0x00000000, 0x00000000, 0x00000000, \
11640x00000000, 0x00000000, 0x00000000, 0x00000000, \
11650x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
11660x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
11670x00000000, 0x00000000, 0x00000000, 0x00000000, \
11680x00000000, 0x00000000, 0x00000000, 0x00000000, \
11690x00000000, 0x00000000, 0x00000000, 0x00000000, \
11700x00000000, 0x00000000, 0x00000000, 0x00000000, \
11710x00000000, 0x00000000, 0x00000000, 0x00000000, \
11720x00000000, 0x00000000, 0x00000000, 0x00000000, \
11730x00000000, 0x00000000, 0x00000000, 0x00000000, \
11740x00000000, 0x00000000, 0x00000000, 0x00000000, \
11750x00000000, 0x00000000, 0x00000000, 0x00000000, \
11760x00000000, 0x00000000, 0x00000000, 0x00000000, \
11770x00000000, 0x00000000, 0x00000000, 0x00000000, \
11780x00000000, 0x00000000, 0x00000000, 0x00000000, \
11790x00000000, 0x00000000, 0x00000000, 0x00000000, \
11800x00000000, 0x00000000, 0x00000000, 0x00000000, \
1181}
1182
1183static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1184{
1185/* *INDENT-OFF* */
1186        static struct {
1187                u32 ucode[UCODE_SIZE + 1];
1188                u8 mac;
1189                u8 timer_dword;
1190                u8 bundle_dword;
1191                u8 min_size_dword;
1192        } ucode_opts[] = {
1193                { D101M_B_RCVBUNDLE_UCODE,
1194                  mac_82559_D101M,
1195                  D101M_CPUSAVER_TIMER_DWORD,
1196                  D101M_CPUSAVER_BUNDLE_DWORD,
1197                  D101M_CPUSAVER_MIN_SIZE_DWORD },
1198                { D101S_RCVBUNDLE_UCODE,
1199                  mac_82559_D101S,
1200                  D101S_CPUSAVER_TIMER_DWORD,
1201                  D101S_CPUSAVER_BUNDLE_DWORD,
1202                  D101S_CPUSAVER_MIN_SIZE_DWORD },
1203                { D102_E_RCVBUNDLE_UCODE,
1204                  mac_82551_F,
1205                  D102_E_CPUSAVER_TIMER_DWORD,
1206                  D102_E_CPUSAVER_BUNDLE_DWORD,
1207                  D102_E_CPUSAVER_MIN_SIZE_DWORD },
1208                { D102_E_RCVBUNDLE_UCODE,
1209                  mac_82551_10,
1210                  D102_E_CPUSAVER_TIMER_DWORD,
1211                  D102_E_CPUSAVER_BUNDLE_DWORD,
1212                  D102_E_CPUSAVER_MIN_SIZE_DWORD },
1213                { {0}, 0, 0, 0, 0}
1214        }, *opts;
1215/* *INDENT-ON* */
1216
1217/*************************************************************************
1218*  CPUSaver parameters
1219*
1220*  All CPUSaver parameters are 16-bit literals that are part of a
1221*  "move immediate value" instruction.  By changing the value of
1222*  the literal in the instruction before the code is loaded, the
1223*  driver can change the algorithm.
1224*
1225*  INTDELAY - This loads the dead-man timer with its initial value.
1226*    When this timer expires the interrupt is asserted, and the
1227*    timer is reset each time a new packet is received.  (see
1228*    BUNDLEMAX below to set the limit on number of chained packets)
1229*    The current default is 0x600 or 1536.  Experiments show that
1230*    the value should probably stay within the 0x200 - 0x1000.
1231*
1232*  BUNDLEMAX -
1233*    This sets the maximum number of frames that will be bundled.  In
1234*    some situations, such as the TCP windowing algorithm, it may be
1235*    better to limit the growth of the bundle size than let it go as
1236*    high as it can, because that could cause too much added latency.
1237*    The default is six, because this is the number of packets in the
1238*    default TCP window size.  A value of 1 would make CPUSaver indicate
1239*    an interrupt for every frame received.  If you do not want to put
1240*    a limit on the bundle size, set this value to xFFFF.
1241*
1242*  BUNDLESMALL -
1243*    This contains a bit-mask describing the minimum size frame that
1244*    will be bundled.  The default masks the lower 7 bits, which means
1245*    that any frame less than 128 bytes in length will not be bundled,
1246*    but will instead immediately generate an interrupt.  This does
1247*    not affect the current bundle in any way.  Any frame that is 128
1248*    bytes or large will be bundled normally.  This feature is meant
1249*    to provide immediate indication of ACK frames in a TCP environment.
1250*    Customers were seeing poor performance when a machine with CPUSaver
1251*    enabled was sending but not receiving.  The delay introduced when
1252*    the ACKs were received was enough to reduce total throughput, because
1253*    the sender would sit idle until the ACK was finally seen.
1254*
1255*    The current default is 0xFF80, which masks out the lower 7 bits.
1256*    This means that any frame which is x7F (127) bytes or smaller
1257*    will cause an immediate interrupt.  Because this value must be a
1258*    bit mask, there are only a few valid values that can be used.  To
1259*    turn this feature off, the driver can write the value xFFFF to the
1260*    lower word of this instruction (in the same way that the other
1261*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1262*    cause an interrupt to be generated for every frame, because all
1263*    standard Ethernet frames are <= 2047 bytes in length.
1264*************************************************************************/
1265
1266/* if you wish to disable the ucode functionality, while maintaining the
1267 * workarounds it provides, set the following defines to:
1268 * BUNDLESMALL 0
1269 * BUNDLEMAX 1
1270 * INTDELAY 1
1271 */
1272#define BUNDLESMALL 1
1273#define BUNDLEMAX (u16)6
1274#define INTDELAY (u16)1536 /* 0x600 */
1275
1276        /* do not load u-code for ICH devices */
1277        if (nic->flags & ich)
1278                goto noloaducode;
1279
1280        /* Search for ucode match against h/w revision */
1281        for (opts = ucode_opts; opts->mac; opts++) {
1282                int i;
1283                u32 *ucode = opts->ucode;
1284                if (nic->mac != opts->mac)
1285                        continue;
1286
1287                /* Insert user-tunable settings */
1288                ucode[opts->timer_dword] &= 0xFFFF0000;
1289                ucode[opts->timer_dword] |= INTDELAY;
1290                ucode[opts->bundle_dword] &= 0xFFFF0000;
1291                ucode[opts->bundle_dword] |= BUNDLEMAX;
1292                ucode[opts->min_size_dword] &= 0xFFFF0000;
1293                ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1294
1295                for (i = 0; i < UCODE_SIZE; i++)
1296                        cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1297                cb->command = cpu_to_le16(cb_ucode | cb_el);
1298                return;
1299        }
1300
1301noloaducode:
1302        cb->command = cpu_to_le16(cb_nop | cb_el);
1303}
1304
1305static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1306        void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1307{
1308        int err = 0, counter = 50;
1309        struct cb *cb = nic->cb_to_clean;
1310
1311        if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1312                DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1313
1314        /* must restart cuc */
1315        nic->cuc_cmd = cuc_start;
1316
1317        /* wait for completion */
1318        e100_write_flush(nic);
1319        udelay(10);
1320
1321        /* wait for possibly (ouch) 500ms */
1322        while (!(cb->status & cpu_to_le16(cb_complete))) {
1323                msleep(10);
1324                if (!--counter) break;
1325        }
1326
1327        /* ack any interrupts, something could have been set */
1328        iowrite8(~0, &nic->csr->scb.stat_ack);
1329
1330        /* if the command failed, or is not OK, notify and return */
1331        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1332                DPRINTK(PROBE,ERR, "ucode load failed\n");
1333                err = -EPERM;
1334        }
1335
1336        return err;
1337}
1338
1339static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1340        struct sk_buff *skb)
1341{
1342        cb->command = cpu_to_le16(cb_iaaddr);
1343        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1344}
1345
1346static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1347{
1348        cb->command = cpu_to_le16(cb_dump);
1349        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1350                offsetof(struct mem, dump_buf));
1351}
1352
1353#define NCONFIG_AUTO_SWITCH     0x0080
1354#define MII_NSC_CONG            MII_RESV1
1355#define NSC_CONG_ENABLE         0x0100
1356#define NSC_CONG_TXREADY        0x0400
1357#define ADVERTISE_FC_SUPPORTED  0x0400
1358static int e100_phy_init(struct nic *nic)
1359{
1360        struct net_device *netdev = nic->netdev;
1361        u32 addr;
1362        u16 bmcr, stat, id_lo, id_hi, cong;
1363
1364        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1365        for(addr = 0; addr < 32; addr++) {
1366                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1367                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1368                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1369                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1370                if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1371                        break;
1372        }
1373        DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1374        if(addr == 32)
1375                return -EAGAIN;
1376
1377        /* Selected the phy and isolate the rest */
1378        for(addr = 0; addr < 32; addr++) {
1379                if(addr != nic->mii.phy_id) {
1380                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1381                } else {
1382                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1383                        mdio_write(netdev, addr, MII_BMCR,
1384                                bmcr & ~BMCR_ISOLATE);
1385                }
1386        }
1387
1388        /* Get phy ID */
1389        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1390        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1391        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1392        DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1393
1394        /* Handle National tx phys */
1395#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1396        if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1397                /* Disable congestion control */
1398                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1399                cong |= NSC_CONG_TXREADY;
1400                cong &= ~NSC_CONG_ENABLE;
1401                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1402        }
1403
1404        if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1405           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1406                !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1407                /* enable/disable MDI/MDI-X auto-switching. */
1408                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1409                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1410        }
1411
1412        return 0;
1413}
1414
1415static int e100_hw_init(struct nic *nic)
1416{
1417        int err;
1418
1419        e100_hw_reset(nic);
1420
1421        DPRINTK(HW, ERR, "e100_hw_init\n");
1422        if(!in_interrupt() && (err = e100_self_test(nic)))
1423                return err;
1424
1425        if((err = e100_phy_init(nic)))
1426                return err;
1427        if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1428                return err;
1429        if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1430                return err;
1431        if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1432                return err;
1433        if((err = e100_exec_cb(nic, NULL, e100_configure)))
1434                return err;
1435        if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1436                return err;
1437        if((err = e100_exec_cmd(nic, cuc_dump_addr,
1438                nic->dma_addr + offsetof(struct mem, stats))))
1439                return err;
1440        if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1441                return err;
1442
1443        e100_disable_irq(nic);
1444
1445        return 0;
1446}
1447
1448static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1449{
1450        struct net_device *netdev = nic->netdev;
1451        struct dev_mc_list *list = netdev->mc_list;
1452        u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1453
1454        cb->command = cpu_to_le16(cb_multi);
1455        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1456        for(i = 0; list && i < count; i++, list = list->next)
1457                memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1458                        ETH_ALEN);
1459}
1460
1461static void e100_set_multicast_list(struct net_device *netdev)
1462{
1463        struct nic *nic = netdev_priv(netdev);
1464
1465        DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1466                netdev->mc_count, netdev->flags);
1467
1468        if(netdev->flags & IFF_PROMISC)
1469                nic->flags |= promiscuous;
1470        else
1471                nic->flags &= ~promiscuous;
1472
1473        if(netdev->flags & IFF_ALLMULTI ||
1474                netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1475                nic->flags |= multicast_all;
1476        else
1477                nic->flags &= ~multicast_all;
1478
1479        e100_exec_cb(nic, NULL, e100_configure);
1480        e100_exec_cb(nic, NULL, e100_multi);
1481}
1482
1483static void e100_update_stats(struct nic *nic)
1484{
1485        struct net_device *dev = nic->netdev;
1486        struct net_device_stats *ns = &dev->stats;
1487        struct stats *s = &nic->mem->stats;
1488        u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1489                (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1490                &s->complete;
1491
1492        /* Device's stats reporting may take several microseconds to
1493         * complete, so where always waiting for results of the
1494         * previous command. */
1495
1496        if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1497                *complete = 0;
1498                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1499                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1500                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1501                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1502                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1503                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1504                ns->collisions += nic->tx_collisions;
1505                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1506                        le32_to_cpu(s->tx_lost_crs);
1507                ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1508                        nic->rx_over_length_errors;
1509                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1510                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1511                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1512                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1513                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1514                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1515                        le32_to_cpu(s->rx_alignment_errors) +
1516                        le32_to_cpu(s->rx_short_frame_errors) +
1517                        le32_to_cpu(s->rx_cdt_errors);
1518                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1519                nic->tx_single_collisions +=
1520                        le32_to_cpu(s->tx_single_collisions);
1521                nic->tx_multiple_collisions +=
1522                        le32_to_cpu(s->tx_multiple_collisions);
1523                if(nic->mac >= mac_82558_D101_A4) {
1524                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1525                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1526                        nic->rx_fc_unsupported +=
1527                                le32_to_cpu(s->fc_rcv_unsupported);
1528                        if(nic->mac >= mac_82559_D101M) {
1529                                nic->tx_tco_frames +=
1530                                        le16_to_cpu(s->xmt_tco_frames);
1531                                nic->rx_tco_frames +=
1532                                        le16_to_cpu(s->rcv_tco_frames);
1533                        }
1534                }
1535        }
1536
1537
1538        if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1539                DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1540}
1541
1542static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1543{
1544        /* Adjust inter-frame-spacing (IFS) between two transmits if
1545         * we're getting collisions on a half-duplex connection. */
1546
1547        if(duplex == DUPLEX_HALF) {
1548                u32 prev = nic->adaptive_ifs;
1549                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1550
1551                if((nic->tx_frames / 32 < nic->tx_collisions) &&
1552                   (nic->tx_frames > min_frames)) {
1553                        if(nic->adaptive_ifs < 60)
1554                                nic->adaptive_ifs += 5;
1555                } else if (nic->tx_frames < min_frames) {
1556                        if(nic->adaptive_ifs >= 5)
1557                                nic->adaptive_ifs -= 5;
1558                }
1559                if(nic->adaptive_ifs != prev)
1560                        e100_exec_cb(nic, NULL, e100_configure);
1561        }
1562}
1563
1564static void e100_watchdog(unsigned long data)
1565{
1566        struct nic *nic = (struct nic *)data;
1567        struct ethtool_cmd cmd;
1568
1569        DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1570
1571        /* mii library handles link maintenance tasks */
1572
1573        mii_ethtool_gset(&nic->mii, &cmd);
1574
1575        if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1576                DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1577                        cmd.speed == SPEED_100 ? "100" : "10",
1578                        cmd.duplex == DUPLEX_FULL ? "full" : "half");
1579        } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1580                DPRINTK(LINK, INFO, "link down\n");
1581        }
1582
1583        mii_check_link(&nic->mii);
1584
1585        /* Software generated interrupt to recover from (rare) Rx
1586         * allocation failure.
1587         * Unfortunately have to use a spinlock to not re-enable interrupts
1588         * accidentally, due to hardware that shares a register between the
1589         * interrupt mask bit and the SW Interrupt generation bit */
1590        spin_lock_irq(&nic->cmd_lock);
1591        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1592        e100_write_flush(nic);
1593        spin_unlock_irq(&nic->cmd_lock);
1594
1595        e100_update_stats(nic);
1596        e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1597
1598        if(nic->mac <= mac_82557_D100_C)
1599                /* Issue a multicast command to workaround a 557 lock up */
1600                e100_set_multicast_list(nic->netdev);
1601
1602        if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1603                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1604                nic->flags |= ich_10h_workaround;
1605        else
1606                nic->flags &= ~ich_10h_workaround;
1607
1608        mod_timer(&nic->watchdog,
1609                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1610}
1611
1612static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1613        struct sk_buff *skb)
1614{
1615        cb->command = nic->tx_command;
1616        /* interrupt every 16 packets regardless of delay */
1617        if((nic->cbs_avail & ~15) == nic->cbs_avail)
1618                cb->command |= cpu_to_le16(cb_i);
1619        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1620        cb->u.tcb.tcb_byte_count = 0;
1621        cb->u.tcb.threshold = nic->tx_threshold;
1622        cb->u.tcb.tbd_count = 1;
1623        cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1624                skb->data, skb->len, PCI_DMA_TODEVICE));
1625        /* check for mapping failure? */
1626        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1627}
1628
1629static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1630{
1631        struct nic *nic = netdev_priv(netdev);
1632        int err;
1633
1634        if(nic->flags & ich_10h_workaround) {
1635                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1636                   Issue a NOP command followed by a 1us delay before
1637                   issuing the Tx command. */
1638                if(e100_exec_cmd(nic, cuc_nop, 0))
1639                        DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1640                udelay(1);
1641        }
1642
1643        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1644
1645        switch(err) {
1646        case -ENOSPC:
1647                /* We queued the skb, but now we're out of space. */
1648                DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1649                netif_stop_queue(netdev);
1650                break;
1651        case -ENOMEM:
1652                /* This is a hard error - log it. */
1653                DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1654                netif_stop_queue(netdev);
1655                return 1;
1656        }
1657
1658        netdev->trans_start = jiffies;
1659        return 0;
1660}
1661
1662static int e100_tx_clean(struct nic *nic)
1663{
1664        struct net_device *dev = nic->netdev;
1665        struct cb *cb;
1666        int tx_cleaned = 0;
1667
1668        spin_lock(&nic->cb_lock);
1669
1670        /* Clean CBs marked complete */
1671        for(cb = nic->cb_to_clean;
1672            cb->status & cpu_to_le16(cb_complete);
1673            cb = nic->cb_to_clean = cb->next) {
1674                DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1675                        (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1676                        cb->status);
1677
1678                if(likely(cb->skb != NULL)) {
1679                        dev->stats.tx_packets++;
1680                        dev->stats.tx_bytes += cb->skb->len;
1681
1682                        pci_unmap_single(nic->pdev,
1683                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1684                                le16_to_cpu(cb->u.tcb.tbd.size),
1685                                PCI_DMA_TODEVICE);
1686                        dev_kfree_skb_any(cb->skb);
1687                        cb->skb = NULL;
1688                        tx_cleaned = 1;
1689                }
1690                cb->status = 0;
1691                nic->cbs_avail++;
1692        }
1693
1694        spin_unlock(&nic->cb_lock);
1695
1696        /* Recover from running out of Tx resources in xmit_frame */
1697        if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1698                netif_wake_queue(nic->netdev);
1699
1700        return tx_cleaned;
1701}
1702
1703static void e100_clean_cbs(struct nic *nic)
1704{
1705        if(nic->cbs) {
1706                while(nic->cbs_avail != nic->params.cbs.count) {
1707                        struct cb *cb = nic->cb_to_clean;
1708                        if(cb->skb) {
1709                                pci_unmap_single(nic->pdev,
1710                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1711                                        le16_to_cpu(cb->u.tcb.tbd.size),
1712                                        PCI_DMA_TODEVICE);
1713                                dev_kfree_skb(cb->skb);
1714                        }
1715                        nic->cb_to_clean = nic->cb_to_clean->next;
1716                        nic->cbs_avail++;
1717                }
1718                pci_free_consistent(nic->pdev,
1719                        sizeof(struct cb) * nic->params.cbs.count,
1720                        nic->cbs, nic->cbs_dma_addr);
1721                nic->cbs = NULL;
1722                nic->cbs_avail = 0;
1723        }
1724        nic->cuc_cmd = cuc_start;
1725        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1726                nic->cbs;
1727}
1728
1729static int e100_alloc_cbs(struct nic *nic)
1730{
1731        struct cb *cb;
1732        unsigned int i, count = nic->params.cbs.count;
1733
1734        nic->cuc_cmd = cuc_start;
1735        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1736        nic->cbs_avail = 0;
1737
1738        nic->cbs = pci_alloc_consistent(nic->pdev,
1739                sizeof(struct cb) * count, &nic->cbs_dma_addr);
1740        if(!nic->cbs)
1741                return -ENOMEM;
1742
1743        for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1744                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1745                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1746
1747                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1748                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1749                        ((i+1) % count) * sizeof(struct cb));
1750                cb->skb = NULL;
1751        }
1752
1753        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1754        nic->cbs_avail = count;
1755
1756        return 0;
1757}
1758
1759static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1760{
1761        if(!nic->rxs) return;
1762        if(RU_SUSPENDED != nic->ru_running) return;
1763
1764        /* handle init time starts */
1765        if(!rx) rx = nic->rxs;
1766
1767        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1768        if(rx->skb) {
1769                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1770                nic->ru_running = RU_RUNNING;
1771        }
1772}
1773
1774#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1775static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1776{
1777        if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1778                return -ENOMEM;
1779
1780        /* Align, init, and map the RFD. */
1781        skb_reserve(rx->skb, NET_IP_ALIGN);
1782        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1783        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1784                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1785
1786        if(pci_dma_mapping_error(rx->dma_addr)) {
1787                dev_kfree_skb_any(rx->skb);
1788                rx->skb = NULL;
1789                rx->dma_addr = 0;
1790                return -ENOMEM;
1791        }
1792
1793        /* Link the RFD to end of RFA by linking previous RFD to
1794         * this one, and clearing EL bit of previous.  */
1795        if(rx->prev->skb) {
1796                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1797                put_unaligned(cpu_to_le32(rx->dma_addr),
1798                        (u32 *)&prev_rfd->link);
1799                wmb();
1800                prev_rfd->command &= ~cpu_to_le16(cb_el);
1801                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1802                        sizeof(struct rfd), PCI_DMA_TODEVICE);
1803        }
1804
1805        return 0;
1806}
1807
1808static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1809        unsigned int *work_done, unsigned int work_to_do)
1810{
1811        struct net_device *dev = nic->netdev;
1812        struct sk_buff *skb = rx->skb;
1813        struct rfd *rfd = (struct rfd *)skb->data;
1814        u16 rfd_status, actual_size;
1815
1816        if(unlikely(work_done && *work_done >= work_to_do))
1817                return -EAGAIN;
1818
1819        /* Need to sync before taking a peek at cb_complete bit */
1820        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1821                sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1822        rfd_status = le16_to_cpu(rfd->status);
1823
1824        DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1825
1826        /* If data isn't ready, nothing to indicate */
1827        if(unlikely(!(rfd_status & cb_complete)))
1828                return -ENODATA;
1829
1830        /* Get actual data size */
1831        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1832        if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1833                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1834
1835        /* Get data */
1836        pci_unmap_single(nic->pdev, rx->dma_addr,
1837                RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1838
1839        /* this allows for a fast restart without re-enabling interrupts */
1840        if(le16_to_cpu(rfd->command) & cb_el)
1841                nic->ru_running = RU_SUSPENDED;
1842
1843        /* Pull off the RFD and put the actual data (minus eth hdr) */
1844        skb_reserve(skb, sizeof(struct rfd));
1845        skb_put(skb, actual_size);
1846        skb->protocol = eth_type_trans(skb, nic->netdev);
1847
1848        if(unlikely(!(rfd_status & cb_ok))) {
1849                /* Don't indicate if hardware indicates errors */
1850                dev_kfree_skb_any(skb);
1851        } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1852                /* Don't indicate oversized frames */
1853                nic->rx_over_length_errors++;
1854                dev_kfree_skb_any(skb);
1855        } else {
1856                dev->stats.rx_packets++;
1857                dev->stats.rx_bytes += actual_size;
1858                nic->netdev->last_rx = jiffies;
1859                netif_receive_skb(skb);
1860                if(work_done)
1861                        (*work_done)++;
1862        }
1863
1864        rx->skb = NULL;
1865
1866        return 0;
1867}
1868
1869static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1870        unsigned int work_to_do)
1871{
1872        struct rx *rx;
1873        int restart_required = 0;
1874        struct rx *rx_to_start = NULL;
1875
1876        /* are we already rnr? then pay attention!!! this ensures that
1877         * the state machine progression never allows a start with a
1878         * partially cleaned list, avoiding a race between hardware
1879         * and rx_to_clean when in NAPI mode */
1880        if(RU_SUSPENDED == nic->ru_running)
1881                restart_required = 1;
1882
1883        /* Indicate newly arrived packets */
1884        for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1885                int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1886                if(-EAGAIN == err) {
1887                        /* hit quota so have more work to do, restart once
1888                         * cleanup is complete */
1889                        restart_required = 0;
1890                        break;
1891                } else if(-ENODATA == err)
1892                        break; /* No more to clean */
1893        }
1894
1895        /* save our starting point as the place we'll restart the receiver */
1896        if(restart_required)
1897                rx_to_start = nic->rx_to_clean;
1898
1899        /* Alloc new skbs to refill list */
1900        for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1901                if(unlikely(e100_rx_alloc_skb(nic, rx)))
1902                        break; /* Better luck next time (see watchdog) */
1903        }
1904
1905        if(restart_required) {
1906                // ack the rnr?
1907                writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1908                e100_start_receiver(nic, rx_to_start);
1909                if(work_done)
1910                        (*work_done)++;
1911        }
1912}
1913
1914static void e100_rx_clean_list(struct nic *nic)
1915{
1916        struct rx *rx;
1917        unsigned int i, count = nic->params.rfds.count;
1918
1919        nic->ru_running = RU_UNINITIALIZED;
1920
1921        if(nic->rxs) {
1922                for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1923                        if(rx->skb) {
1924                                pci_unmap_single(nic->pdev, rx->dma_addr,
1925                                        RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1926                                dev_kfree_skb(rx->skb);
1927                        }
1928                }
1929                kfree(nic->rxs);
1930                nic->rxs = NULL;
1931        }
1932
1933        nic->rx_to_use = nic->rx_to_clean = NULL;
1934}
1935
1936static int e100_rx_alloc_list(struct nic *nic)
1937{
1938        struct rx *rx;
1939        unsigned int i, count = nic->params.rfds.count;
1940
1941        nic->rx_to_use = nic->rx_to_clean = NULL;
1942        nic->ru_running = RU_UNINITIALIZED;
1943
1944        if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1945                return -ENOMEM;
1946
1947        for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1948                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1949                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1950                if(e100_rx_alloc_skb(nic, rx)) {
1951                        e100_rx_clean_list(nic);
1952                        return -ENOMEM;
1953                }
1954        }
1955
1956        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1957        nic->ru_running = RU_SUSPENDED;
1958
1959        return 0;
1960}
1961
1962static irqreturn_t e100_intr(int irq, void *dev_id)
1963{
1964        struct net_device *netdev = dev_id;
1965        struct nic *nic = netdev_priv(netdev);
1966        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1967
1968        DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1969
1970        if(stat_ack == stat_ack_not_ours ||     /* Not our interrupt */
1971           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
1972                return IRQ_NONE;
1973
1974        /* Ack interrupt(s) */
1975        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1976
1977        /* We hit Receive No Resource (RNR); restart RU after cleaning */
1978        if(stat_ack & stat_ack_rnr)
1979                nic->ru_running = RU_SUSPENDED;
1980
1981        if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
1982                e100_disable_irq(nic);
1983                __netif_rx_schedule(netdev, &nic->napi);
1984        }
1985
1986        return IRQ_HANDLED;
1987}
1988
1989static int e100_poll(struct napi_struct *napi, int budget)
1990{
1991        struct nic *nic = container_of(napi, struct nic, napi);
1992        struct net_device *netdev = nic->netdev;
1993        unsigned int work_done = 0;
1994
1995        e100_rx_clean(nic, &work_done, budget);
1996        e100_tx_clean(nic);
1997
1998        /* If budget not fully consumed, exit the polling mode */
1999        if (work_done < budget) {
2000                netif_rx_complete(netdev, napi);
2001                e100_enable_irq(nic);
2002        }
2003
2004        return work_done;
2005}
2006
2007#ifdef CONFIG_NET_POLL_CONTROLLER
2008static void e100_netpoll(struct net_device *netdev)
2009{
2010        struct nic *nic = netdev_priv(netdev);
2011
2012        e100_disable_irq(nic);
2013        e100_intr(nic->pdev->irq, netdev);
2014        e100_tx_clean(nic);
2015        e100_enable_irq(nic);
2016}
2017#endif
2018
2019static int e100_set_mac_address(struct net_device *netdev, void *p)
2020{
2021        struct nic *nic = netdev_priv(netdev);
2022        struct sockaddr *addr = p;
2023
2024        if (!is_valid_ether_addr(addr->sa_data))
2025                return -EADDRNOTAVAIL;
2026
2027        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2028        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2029
2030        return 0;
2031}
2032
2033static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2034{
2035        if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2036                return -EINVAL;
2037        netdev->mtu = new_mtu;
2038        return 0;
2039}
2040
2041static int e100_asf(struct nic *nic)
2042{
2043        /* ASF can be enabled from eeprom */
2044        return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2045           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2046           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2047           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2048}
2049
2050static int e100_up(struct nic *nic)
2051{
2052        int err;
2053
2054        if((err = e100_rx_alloc_list(nic)))
2055                return err;
2056        if((err = e100_alloc_cbs(nic)))
2057                goto err_rx_clean_list;
2058        if((err = e100_hw_init(nic)))
2059                goto err_clean_cbs;
2060        e100_set_multicast_list(nic->netdev);
2061        e100_start_receiver(nic, NULL);
2062        mod_timer(&nic->watchdog, jiffies);
2063        if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2064                nic->netdev->name, nic->netdev)))
2065                goto err_no_irq;
2066        netif_wake_queue(nic->netdev);
2067        napi_enable(&nic->napi);
2068        /* enable ints _after_ enabling poll, preventing a race between
2069         * disable ints+schedule */
2070        e100_enable_irq(nic);
2071        return 0;
2072
2073err_no_irq:
2074        del_timer_sync(&nic->watchdog);
2075err_clean_cbs:
2076        e100_clean_cbs(nic);
2077err_rx_clean_list:
2078        e100_rx_clean_list(nic);
2079        return err;
2080}
2081
2082static void e100_down(struct nic *nic)
2083{
2084        /* wait here for poll to complete */
2085        napi_disable(&nic->napi);
2086        netif_stop_queue(nic->netdev);
2087        e100_hw_reset(nic);
2088        free_irq(nic->pdev->irq, nic->netdev);
2089        del_timer_sync(&nic->watchdog);
2090        netif_carrier_off(nic->netdev);
2091        e100_clean_cbs(nic);
2092        e100_rx_clean_list(nic);
2093}
2094
2095static void e100_tx_timeout(struct net_device *netdev)
2096{
2097        struct nic *nic = netdev_priv(netdev);
2098
2099        /* Reset outside of interrupt context, to avoid request_irq
2100         * in interrupt context */
2101        schedule_work(&nic->tx_timeout_task);
2102}
2103
2104static void e100_tx_timeout_task(struct work_struct *work)
2105{
2106        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2107        struct net_device *netdev = nic->netdev;
2108
2109        DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2110                ioread8(&nic->csr->scb.status));
2111        e100_down(netdev_priv(netdev));
2112        e100_up(netdev_priv(netdev));
2113}
2114
2115static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2116{
2117        int err;
2118        struct sk_buff *skb;
2119
2120        /* Use driver resources to perform internal MAC or PHY
2121         * loopback test.  A single packet is prepared and transmitted
2122         * in loopback mode, and the test passes if the received
2123         * packet compares byte-for-byte to the transmitted packet. */
2124
2125        if((err = e100_rx_alloc_list(nic)))
2126                return err;
2127        if((err = e100_alloc_cbs(nic)))
2128                goto err_clean_rx;
2129
2130        /* ICH PHY loopback is broken so do MAC loopback instead */
2131        if(nic->flags & ich && loopback_mode == lb_phy)
2132                loopback_mode = lb_mac;
2133
2134        nic->loopback = loopback_mode;
2135        if((err = e100_hw_init(nic)))
2136                goto err_loopback_none;
2137
2138        if(loopback_mode == lb_phy)
2139                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2140                        BMCR_LOOPBACK);
2141
2142        e100_start_receiver(nic, NULL);
2143
2144        if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2145                err = -ENOMEM;
2146                goto err_loopback_none;
2147        }
2148        skb_put(skb, ETH_DATA_LEN);
2149        memset(skb->data, 0xFF, ETH_DATA_LEN);
2150        e100_xmit_frame(skb, nic->netdev);
2151
2152        msleep(10);
2153
2154        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2155                        RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2156
2157        if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2158           skb->data, ETH_DATA_LEN))
2159                err = -EAGAIN;
2160
2161err_loopback_none:
2162        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2163        nic->loopback = lb_none;
2164        e100_clean_cbs(nic);
2165        e100_hw_reset(nic);
2166err_clean_rx:
2167        e100_rx_clean_list(nic);
2168        return err;
2169}
2170
2171#define MII_LED_CONTROL 0x1B
2172static void e100_blink_led(unsigned long data)
2173{
2174        struct nic *nic = (struct nic *)data;
2175        enum led_state {
2176                led_on     = 0x01,
2177                led_off    = 0x04,
2178                led_on_559 = 0x05,
2179                led_on_557 = 0x07,
2180        };
2181
2182        nic->leds = (nic->leds & led_on) ? led_off :
2183                (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2184        mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2185        mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2186}
2187
2188static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2189{
2190        struct nic *nic = netdev_priv(netdev);
2191        return mii_ethtool_gset(&nic->mii, cmd);
2192}
2193
2194static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2195{
2196        struct nic *nic = netdev_priv(netdev);
2197        int err;
2198
2199        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2200        err = mii_ethtool_sset(&nic->mii, cmd);
2201        e100_exec_cb(nic, NULL, e100_configure);
2202
2203        return err;
2204}
2205
2206static void e100_get_drvinfo(struct net_device *netdev,
2207        struct ethtool_drvinfo *info)
2208{
2209        struct nic *nic = netdev_priv(netdev);
2210        strcpy(info->driver, DRV_NAME);
2211        strcpy(info->version, DRV_VERSION);
2212        strcpy(info->fw_version, "N/A");
2213        strcpy(info->bus_info, pci_name(nic->pdev));
2214}
2215
2216#define E100_PHY_REGS 0x1C
2217static int e100_get_regs_len(struct net_device *netdev)
2218{
2219        struct nic *nic = netdev_priv(netdev);
2220        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2221}
2222
2223static void e100_get_regs(struct net_device *netdev,
2224        struct ethtool_regs *regs, void *p)
2225{
2226        struct nic *nic = netdev_priv(netdev);
2227        u32 *buff = p;
2228        int i;
2229
2230        regs->version = (1 << 24) | nic->pdev->revision;
2231        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2232                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2233                ioread16(&nic->csr->scb.status);
2234        for(i = E100_PHY_REGS; i >= 0; i--)
2235                buff[1 + E100_PHY_REGS - i] =
2236                        mdio_read(netdev, nic->mii.phy_id, i);
2237        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2238        e100_exec_cb(nic, NULL, e100_dump);
2239        msleep(10);
2240        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2241                sizeof(nic->mem->dump_buf));
2242}
2243
2244static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2245{
2246        struct nic *nic = netdev_priv(netdev);
2247        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2248        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2249}
2250
2251static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2252{
2253        struct nic *nic = netdev_priv(netdev);
2254
2255        if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2256                return -EOPNOTSUPP;
2257
2258        if(wol->wolopts)
2259                nic->flags |= wol_magic;
2260        else
2261                nic->flags &= ~wol_magic;
2262
2263        e100_exec_cb(nic, NULL, e100_configure);
2264
2265        return 0;
2266}
2267
2268static u32 e100_get_msglevel(struct net_device *netdev)
2269{
2270        struct nic *nic = netdev_priv(netdev);
2271        return nic->msg_enable;
2272}
2273
2274static void e100_set_msglevel(struct net_device *netdev, u32 value)
2275{
2276        struct nic *nic = netdev_priv(netdev);
2277        nic->msg_enable = value;
2278}
2279
2280static int e100_nway_reset(struct net_device *netdev)
2281{
2282        struct nic *nic = netdev_priv(netdev);
2283        return mii_nway_restart(&nic->mii);
2284}
2285
2286static u32 e100_get_link(struct net_device *netdev)
2287{
2288        struct nic *nic = netdev_priv(netdev);
2289        return mii_link_ok(&nic->mii);
2290}
2291
2292static int e100_get_eeprom_len(struct net_device *netdev)
2293{
2294        struct nic *nic = netdev_priv(netdev);
2295        return nic->eeprom_wc << 1;
2296}
2297
2298#define E100_EEPROM_MAGIC       0x1234
2299static int e100_get_eeprom(struct net_device *netdev,
2300        struct ethtool_eeprom *eeprom, u8 *bytes)
2301{
2302        struct nic *nic = netdev_priv(netdev);
2303
2304        eeprom->magic = E100_EEPROM_MAGIC;
2305        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2306
2307        return 0;
2308}
2309
2310static int e100_set_eeprom(struct net_device *netdev,
2311        struct ethtool_eeprom *eeprom, u8 *bytes)
2312{
2313        struct nic *nic = netdev_priv(netdev);
2314
2315        if(eeprom->magic != E100_EEPROM_MAGIC)
2316                return -EINVAL;
2317
2318        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2319
2320        return e100_eeprom_save(nic, eeprom->offset >> 1,
2321                (eeprom->len >> 1) + 1);
2322}
2323
2324static void e100_get_ringparam(struct net_device *netdev,
2325        struct ethtool_ringparam *ring)
2326{
2327        struct nic *nic = netdev_priv(netdev);
2328        struct param_range *rfds = &nic->params.rfds;
2329        struct param_range *cbs = &nic->params.cbs;
2330
2331        ring->rx_max_pending = rfds->max;
2332        ring->tx_max_pending = cbs->max;
2333        ring->rx_mini_max_pending = 0;
2334        ring->rx_jumbo_max_pending = 0;
2335        ring->rx_pending = rfds->count;
2336        ring->tx_pending = cbs->count;
2337        ring->rx_mini_pending = 0;
2338        ring->rx_jumbo_pending = 0;
2339}
2340
2341static int e100_set_ringparam(struct net_device *netdev,
2342        struct ethtool_ringparam *ring)
2343{
2344        struct nic *nic = netdev_priv(netdev);
2345        struct param_range *rfds = &nic->params.rfds;
2346        struct param_range *cbs = &nic->params.cbs;
2347
2348        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2349                return -EINVAL;
2350
2351        if(netif_running(netdev))
2352                e100_down(nic);
2353        rfds->count = max(ring->rx_pending, rfds->min);
2354        rfds->count = min(rfds->count, rfds->max);
2355        cbs->count = max(ring->tx_pending, cbs->min);
2356        cbs->count = min(cbs->count, cbs->max);
2357        DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2358                rfds->count, cbs->count);
2359        if(netif_running(netdev))
2360                e100_up(nic);
2361
2362        return 0;
2363}
2364
2365static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2366        "Link test     (on/offline)",
2367        "Eeprom test   (on/offline)",
2368        "Self test        (offline)",
2369        "Mac loopback     (offline)",
2370        "Phy loopback     (offline)",
2371};
2372#define E100_TEST_LEN   sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2373
2374static void e100_diag_test(struct net_device *netdev,
2375        struct ethtool_test *test, u64 *data)
2376{
2377        struct ethtool_cmd cmd;
2378        struct nic *nic = netdev_priv(netdev);
2379        int i, err;
2380
2381        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2382        data[0] = !mii_link_ok(&nic->mii);
2383        data[1] = e100_eeprom_load(nic);
2384        if(test->flags & ETH_TEST_FL_OFFLINE) {
2385
2386                /* save speed, duplex & autoneg settings */
2387                err = mii_ethtool_gset(&nic->mii, &cmd);
2388
2389                if(netif_running(netdev))
2390                        e100_down(nic);
2391                data[2] = e100_self_test(nic);
2392                data[3] = e100_loopback_test(nic, lb_mac);
2393                data[4] = e100_loopback_test(nic, lb_phy);
2394
2395                /* restore speed, duplex & autoneg settings */
2396                err = mii_ethtool_sset(&nic->mii, &cmd);
2397
2398                if(netif_running(netdev))
2399                        e100_up(nic);
2400        }
2401        for(i = 0; i < E100_TEST_LEN; i++)
2402                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2403
2404        msleep_interruptible(4 * 1000);
2405}
2406
2407static int e100_phys_id(struct net_device *netdev, u32 data)
2408{
2409        struct nic *nic = netdev_priv(netdev);
2410
2411        if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2412                data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2413        mod_timer(&nic->blink_timer, jiffies);
2414        msleep_interruptible(data * 1000);
2415        del_timer_sync(&nic->blink_timer);
2416        mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2417
2418        return 0;
2419}
2420
2421static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2422        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2423        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2424        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2425        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2426        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2427        "tx_heartbeat_errors", "tx_window_errors",
2428        /* device-specific stats */
2429        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2430        "tx_flow_control_pause", "rx_flow_control_pause",
2431        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2432};
2433#define E100_NET_STATS_LEN      21
2434#define E100_STATS_LEN  sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2435
2436static int e100_get_sset_count(struct net_device *netdev, int sset)
2437{
2438        switch (sset) {
2439        case ETH_SS_TEST:
2440                return E100_TEST_LEN;
2441        case ETH_SS_STATS:
2442                return E100_STATS_LEN;
2443        default:
2444                return -EOPNOTSUPP;
2445        }
2446}
2447
2448static void e100_get_ethtool_stats(struct net_device *netdev,
2449        struct ethtool_stats *stats, u64 *data)
2450{
2451        struct nic *nic = netdev_priv(netdev);
2452        int i;
2453
2454        for(i = 0; i < E100_NET_STATS_LEN; i++)
2455                data[i] = ((unsigned long *)&netdev->stats)[i];
2456
2457        data[i++] = nic->tx_deferred;
2458        data[i++] = nic->tx_single_collisions;
2459        data[i++] = nic->tx_multiple_collisions;
2460        data[i++] = nic->tx_fc_pause;
2461        data[i++] = nic->rx_fc_pause;
2462        data[i++] = nic->rx_fc_unsupported;
2463        data[i++] = nic->tx_tco_frames;
2464        data[i++] = nic->rx_tco_frames;
2465}
2466
2467static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2468{
2469        switch(stringset) {
2470        case ETH_SS_TEST:
2471                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2472                break;
2473        case ETH_SS_STATS:
2474                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2475                break;
2476        }
2477}
2478
2479static const struct ethtool_ops e100_ethtool_ops = {
2480        .get_settings           = e100_get_settings,
2481        .set_settings           = e100_set_settings,
2482        .get_drvinfo            = e100_get_drvinfo,
2483        .get_regs_len           = e100_get_regs_len,
2484        .get_regs               = e100_get_regs,
2485        .get_wol                = e100_get_wol,
2486        .set_wol                = e100_set_wol,
2487        .get_msglevel           = e100_get_msglevel,
2488        .set_msglevel           = e100_set_msglevel,
2489        .nway_reset             = e100_nway_reset,
2490        .get_link               = e100_get_link,
2491        .get_eeprom_len         = e100_get_eeprom_len,
2492        .get_eeprom             = e100_get_eeprom,
2493        .set_eeprom             = e100_set_eeprom,
2494        .get_ringparam          = e100_get_ringparam,
2495        .set_ringparam          = e100_set_ringparam,
2496        .self_test              = e100_diag_test,
2497        .get_strings            = e100_get_strings,
2498        .phys_id                = e100_phys_id,
2499        .get_ethtool_stats      = e100_get_ethtool_stats,
2500        .get_sset_count         = e100_get_sset_count,
2501};
2502
2503static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2504{
2505        struct nic *nic = netdev_priv(netdev);
2506
2507        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2508}
2509
2510static int e100_alloc(struct nic *nic)
2511{
2512        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2513                &nic->dma_addr);
2514        return nic->mem ? 0 : -ENOMEM;
2515}
2516
2517static void e100_free(struct nic *nic)
2518{
2519        if(nic->mem) {
2520                pci_free_consistent(nic->pdev, sizeof(struct mem),
2521                        nic->mem, nic->dma_addr);
2522                nic->mem = NULL;
2523        }
2524}
2525
2526static int e100_open(struct net_device *netdev)
2527{
2528        struct nic *nic = netdev_priv(netdev);
2529        int err = 0;
2530
2531        netif_carrier_off(netdev);
2532        if((err = e100_up(nic)))
2533                DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2534        return err;
2535}
2536
2537static int e100_close(struct net_device *netdev)
2538{
2539        e100_down(netdev_priv(netdev));
2540        return 0;
2541}
2542
2543static int __devinit e100_probe(struct pci_dev *pdev,
2544        const struct pci_device_id *ent)
2545{
2546        struct net_device *netdev;
2547        struct nic *nic;
2548        int err;
2549        DECLARE_MAC_BUF(mac);
2550
2551        if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2552                if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2553                        printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2554                return -ENOMEM;
2555        }
2556
2557        netdev->open = e100_open;
2558        netdev->stop = e100_close;
2559        netdev->hard_start_xmit = e100_xmit_frame;
2560        netdev->set_multicast_list = e100_set_multicast_list;
2561        netdev->set_mac_address = e100_set_mac_address;
2562        netdev->change_mtu = e100_change_mtu;
2563        netdev->do_ioctl = e100_do_ioctl;
2564        SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2565        netdev->tx_timeout = e100_tx_timeout;
2566        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2567#ifdef CONFIG_NET_POLL_CONTROLLER
2568        netdev->poll_controller = e100_netpoll;
2569#endif
2570        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2571
2572        nic = netdev_priv(netdev);
2573        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2574        nic->netdev = netdev;
2575        nic->pdev = pdev;
2576        nic->msg_enable = (1 << debug) - 1;
2577        pci_set_drvdata(pdev, netdev);
2578
2579        if((err = pci_enable_device(pdev))) {
2580                DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2581                goto err_out_free_dev;
2582        }
2583
2584        if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2585                DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2586                        "base address, aborting.\n");
2587                err = -ENODEV;
2588                goto err_out_disable_pdev;
2589        }
2590
2591        if((err = pci_request_regions(pdev, DRV_NAME))) {
2592                DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2593                goto err_out_disable_pdev;
2594        }
2595
2596        if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2597                DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2598                goto err_out_free_res;
2599        }
2600
2601        SET_NETDEV_DEV(netdev, &pdev->dev);
2602
2603        if (use_io)
2604                DPRINTK(PROBE, INFO, "using i/o access mode\n");
2605
2606        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2607        if(!nic->csr) {
2608                DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2609                err = -ENOMEM;
2610                goto err_out_free_res;
2611        }
2612
2613        if(ent->driver_data)
2614                nic->flags |= ich;
2615        else
2616                nic->flags &= ~ich;
2617
2618        e100_get_defaults(nic);
2619
2620        /* locks must be initialized before calling hw_reset */
2621        spin_lock_init(&nic->cb_lock);
2622        spin_lock_init(&nic->cmd_lock);
2623        spin_lock_init(&nic->mdio_lock);
2624
2625        /* Reset the device before pci_set_master() in case device is in some
2626         * funky state and has an interrupt pending - hint: we don't have the
2627         * interrupt handler registered yet. */
2628        e100_hw_reset(nic);
2629
2630        pci_set_master(pdev);
2631
2632        init_timer(&nic->watchdog);
2633        nic->watchdog.function = e100_watchdog;
2634        nic->watchdog.data = (unsigned long)nic;
2635        init_timer(&nic->blink_timer);
2636        nic->blink_timer.function = e100_blink_led;
2637        nic->blink_timer.data = (unsigned long)nic;
2638
2639        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2640
2641        if((err = e100_alloc(nic))) {
2642                DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2643                goto err_out_iounmap;
2644        }
2645
2646        if((err = e100_eeprom_load(nic)))
2647                goto err_out_free;
2648
2649        e100_phy_init(nic);
2650
2651        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2652        memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2653        if (!is_valid_ether_addr(netdev->perm_addr)) {
2654                if (!eeprom_bad_csum_allow) {
2655                        DPRINTK(PROBE, ERR, "Invalid MAC address from "
2656                                "EEPROM, aborting.\n");
2657                        err = -EAGAIN;
2658                        goto err_out_free;
2659                } else {
2660                        DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2661                                "you MUST configure one.\n");
2662                }
2663        }
2664
2665        /* Wol magic packet can be enabled from eeprom */
2666        if((nic->mac >= mac_82558_D101_A4) &&
2667           (nic->eeprom[eeprom_id] & eeprom_id_wol))
2668                nic->flags |= wol_magic;
2669
2670        /* ack any pending wake events, disable PME */
2671        err = pci_enable_wake(pdev, 0, 0);
2672        if (err)
2673                DPRINTK(PROBE, ERR, "Error clearing wake event\n");
2674
2675        strcpy(netdev->name, "eth%d");
2676        if((err = register_netdev(netdev))) {
2677                DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2678                goto err_out_free;
2679        }
2680
2681        DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %s\n",
2682                (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2683                pdev->irq, print_mac(mac, netdev->dev_addr));
2684
2685        return 0;
2686
2687err_out_free:
2688        e100_free(nic);
2689err_out_iounmap:
2690        pci_iounmap(pdev, nic->csr);
2691err_out_free_res:
2692        pci_release_regions(pdev);
2693err_out_disable_pdev:
2694        pci_disable_device(pdev);
2695err_out_free_dev:
2696        pci_set_drvdata(pdev, NULL);
2697        free_netdev(netdev);
2698        return err;
2699}
2700
2701static void __devexit e100_remove(struct pci_dev *pdev)
2702{
2703        struct net_device *netdev = pci_get_drvdata(pdev);
2704
2705        if(netdev) {
2706                struct nic *nic = netdev_priv(netdev);
2707                unregister_netdev(netdev);
2708                e100_free(nic);
2709                iounmap(nic->csr);
2710                free_netdev(netdev);
2711                pci_release_regions(pdev);
2712                pci_disable_device(pdev);
2713                pci_set_drvdata(pdev, NULL);
2714        }
2715}
2716
2717#ifdef CONFIG_PM
2718static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2719{
2720        struct net_device *netdev = pci_get_drvdata(pdev);
2721        struct nic *nic = netdev_priv(netdev);
2722
2723        if (netif_running(netdev))
2724                napi_disable(&nic->napi);
2725        del_timer_sync(&nic->watchdog);
2726        netif_carrier_off(nic->netdev);
2727        netif_device_detach(netdev);
2728
2729        pci_save_state(pdev);
2730
2731        if ((nic->flags & wol_magic) | e100_asf(nic)) {
2732                pci_enable_wake(pdev, PCI_D3hot, 1);
2733                pci_enable_wake(pdev, PCI_D3cold, 1);
2734        } else {
2735                pci_enable_wake(pdev, PCI_D3hot, 0);
2736                pci_enable_wake(pdev, PCI_D3cold, 0);
2737        }
2738
2739        free_irq(pdev->irq, netdev);
2740
2741        pci_disable_device(pdev);
2742        pci_set_power_state(pdev, PCI_D3hot);
2743
2744        return 0;
2745}
2746
2747static int e100_resume(struct pci_dev *pdev)
2748{
2749        struct net_device *netdev = pci_get_drvdata(pdev);
2750        struct nic *nic = netdev_priv(netdev);
2751
2752        pci_set_power_state(pdev, PCI_D0);
2753        pci_restore_state(pdev);
2754        /* ack any pending wake events, disable PME */
2755        pci_enable_wake(pdev, 0, 0);
2756
2757        netif_device_attach(netdev);
2758        if (netif_running(netdev))
2759                e100_up(nic);
2760
2761        return 0;
2762}
2763#endif /* CONFIG_PM */
2764
2765static void e100_shutdown(struct pci_dev *pdev)
2766{
2767        struct net_device *netdev = pci_get_drvdata(pdev);
2768        struct nic *nic = netdev_priv(netdev);
2769
2770        if (netif_running(netdev))
2771                napi_disable(&nic->napi);
2772        del_timer_sync(&nic->watchdog);
2773        netif_carrier_off(nic->netdev);
2774
2775        if ((nic->flags & wol_magic) | e100_asf(nic)) {
2776                pci_enable_wake(pdev, PCI_D3hot, 1);
2777                pci_enable_wake(pdev, PCI_D3cold, 1);
2778        } else {
2779                pci_enable_wake(pdev, PCI_D3hot, 0);
2780                pci_enable_wake(pdev, PCI_D3cold, 0);
2781        }
2782
2783        free_irq(pdev->irq, netdev);
2784
2785        pci_disable_device(pdev);
2786        pci_set_power_state(pdev, PCI_D3hot);
2787}
2788
2789/* ------------------ PCI Error Recovery infrastructure  -------------- */
2790/**
2791 * e100_io_error_detected - called when PCI error is detected.
2792 * @pdev: Pointer to PCI device
2793 * @state: The current pci conneection state
2794 */
2795static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2796{
2797        struct net_device *netdev = pci_get_drvdata(pdev);
2798        struct nic *nic = netdev_priv(netdev);
2799
2800        /* Similar to calling e100_down(), but avoids adpater I/O. */
2801        netdev->stop(netdev);
2802
2803        /* Detach; put netif into state similar to hotplug unplug. */
2804        napi_enable(&nic->napi);
2805        netif_device_detach(netdev);
2806        pci_disable_device(pdev);
2807
2808        /* Request a slot reset. */
2809        return PCI_ERS_RESULT_NEED_RESET;
2810}
2811
2812/**
2813 * e100_io_slot_reset - called after the pci bus has been reset.
2814 * @pdev: Pointer to PCI device
2815 *
2816 * Restart the card from scratch.
2817 */
2818static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2819{
2820        struct net_device *netdev = pci_get_drvdata(pdev);
2821        struct nic *nic = netdev_priv(netdev);
2822
2823        if (pci_enable_device(pdev)) {
2824                printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2825                return PCI_ERS_RESULT_DISCONNECT;
2826        }
2827        pci_set_master(pdev);
2828
2829        /* Only one device per card can do a reset */
2830        if (0 != PCI_FUNC(pdev->devfn))
2831                return PCI_ERS_RESULT_RECOVERED;
2832        e100_hw_reset(nic);
2833        e100_phy_init(nic);
2834
2835        return PCI_ERS_RESULT_RECOVERED;
2836}
2837
2838/**
2839 * e100_io_resume - resume normal operations
2840 * @pdev: Pointer to PCI device
2841 *
2842 * Resume normal operations after an error recovery
2843 * sequence has been completed.
2844 */
2845static void e100_io_resume(struct pci_dev *pdev)
2846{
2847        struct net_device *netdev = pci_get_drvdata(pdev);
2848        struct nic *nic = netdev_priv(netdev);
2849
2850        /* ack any pending wake events, disable PME */
2851        pci_enable_wake(pdev, 0, 0);
2852
2853        netif_device_attach(netdev);
2854        if (netif_running(netdev)) {
2855                e100_open(netdev);
2856                mod_timer(&nic->watchdog, jiffies);
2857        }
2858}
2859
2860static struct pci_error_handlers e100_err_handler = {
2861        .error_detected = e100_io_error_detected,
2862        .slot_reset = e100_io_slot_reset,
2863        .resume = e100_io_resume,
2864};
2865
2866static struct pci_driver e100_driver = {
2867        .name =         DRV_NAME,
2868        .id_table =     e100_id_table,
2869        .probe =        e100_probe,
2870        .remove =       __devexit_p(e100_remove),
2871#ifdef CONFIG_PM
2872        /* Power Management hooks */
2873        .suspend =      e100_suspend,
2874        .resume =       e100_resume,
2875#endif
2876        .shutdown =     e100_shutdown,
2877        .err_handler = &e100_err_handler,
2878};
2879
2880static int __init e100_init_module(void)
2881{
2882        if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2883                printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2884                printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2885        }
2886        return pci_register_driver(&e100_driver);
2887}
2888
2889static void __exit e100_cleanup_module(void)
2890{
2891        pci_unregister_driver(&e100_driver);
2892}
2893
2894module_init(e100_init_module);
2895module_exit(e100_cleanup_module);
2896