linux/drivers/net/e1000e/es2lan.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2007 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
  31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  32 */
  33
  34#include <linux/netdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/delay.h>
  37#include <linux/pci.h>
  38
  39#include "e1000.h"
  40
  41#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
  42#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
  43#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
  44
  45#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
  46#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
  47#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
  48
  49#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
  50#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
  51
  52#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
  53#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
  54
  55#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
  56#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
  57
  58/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
  59#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
  60#define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
  61#define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
  62#define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
  63#define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
  64
  65/* PHY Specific Control Register 2 (Page 0, Register 26) */
  66#define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
  67                                                /* 1=Reverse Auto-Negotiation */
  68
  69/* MAC Specific Control Register (Page 2, Register 21) */
  70/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
  71#define GG82563_MSCR_TX_CLK_MASK                 0x0007
  72#define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
  73#define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
  74#define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
  75
  76#define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
  77
  78/* DSP Distance Register (Page 5, Register 26) */
  79#define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
  80                                                           1 = 50-80M
  81                                                           2 = 80-110M
  82                                                           3 = 110-140M
  83                                                           4 = >140M */
  84
  85/* Kumeran Mode Control Register (Page 193, Register 16) */
  86#define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
  87
  88/* Power Management Control Register (Page 193, Register 20) */
  89#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
  90                                           /* 1=Enable SERDES Electrical Idle */
  91
  92/* In-Band Control Register (Page 194, Register 18) */
  93#define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
  94
  95/* A table for the GG82563 cable length where the range is defined
  96 * with a lower bound at "index" and the upper bound at
  97 * "index + 5".
  98 */
  99static const u16 e1000_gg82563_cable_length_table[] =
 100         { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
 101
 102static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
 103static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
 104static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
 105static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
 106static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
 107static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
 108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
 109
 110/**
 111 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 112 *  @hw: pointer to the HW structure
 113 *
 114 *  This is a function pointer entry point called by the api module.
 115 **/
 116static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
 117{
 118        struct e1000_phy_info *phy = &hw->phy;
 119        s32 ret_val;
 120
 121        if (hw->media_type != e1000_media_type_copper) {
 122                phy->type       = e1000_phy_none;
 123                return 0;
 124        }
 125
 126        phy->addr               = 1;
 127        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 128        phy->reset_delay_us      = 100;
 129        phy->type               = e1000_phy_gg82563;
 130
 131        /* This can only be done after all function pointers are setup. */
 132        ret_val = e1000e_get_phy_id(hw);
 133
 134        /* Verify phy id */
 135        if (phy->id != GG82563_E_PHY_ID)
 136                return -E1000_ERR_PHY;
 137
 138        return ret_val;
 139}
 140
 141/**
 142 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 143 *  @hw: pointer to the HW structure
 144 *
 145 *  This is a function pointer entry point called by the api module.
 146 **/
 147static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
 148{
 149        struct e1000_nvm_info *nvm = &hw->nvm;
 150        u32 eecd = er32(EECD);
 151        u16 size;
 152
 153        nvm->opcode_bits        = 8;
 154        nvm->delay_usec  = 1;
 155        switch (nvm->override) {
 156        case e1000_nvm_override_spi_large:
 157                nvm->page_size    = 32;
 158                nvm->address_bits = 16;
 159                break;
 160        case e1000_nvm_override_spi_small:
 161                nvm->page_size    = 8;
 162                nvm->address_bits = 8;
 163                break;
 164        default:
 165                nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 166                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 167                break;
 168        }
 169
 170        nvm->type              = e1000_nvm_eeprom_spi;
 171
 172        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 173                          E1000_EECD_SIZE_EX_SHIFT);
 174
 175        /* Added to a constant, "size" becomes the left-shift value
 176         * for setting word_size.
 177         */
 178        size += NVM_WORD_SIZE_BASE_SHIFT;
 179        nvm->word_size  = 1 << size;
 180
 181        return 0;
 182}
 183
 184/**
 185 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  This is a function pointer entry point called by the api module.
 189 **/
 190static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
 191{
 192        struct e1000_hw *hw = &adapter->hw;
 193        struct e1000_mac_info *mac = &hw->mac;
 194        struct e1000_mac_operations *func = &mac->ops;
 195
 196        /* Set media type */
 197        switch (adapter->pdev->device) {
 198        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 199                hw->media_type = e1000_media_type_internal_serdes;
 200                break;
 201        default:
 202                hw->media_type = e1000_media_type_copper;
 203                break;
 204        }
 205
 206        /* Set mta register count */
 207        mac->mta_reg_count = 128;
 208        /* Set rar entry count */
 209        mac->rar_entry_count = E1000_RAR_ENTRIES;
 210        /* Set if manageability features are enabled. */
 211        mac->arc_subsystem_valid =
 212                (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
 213
 214        /* check for link */
 215        switch (hw->media_type) {
 216        case e1000_media_type_copper:
 217                func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
 218                func->check_for_link = e1000e_check_for_copper_link;
 219                break;
 220        case e1000_media_type_fiber:
 221                func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
 222                func->check_for_link = e1000e_check_for_fiber_link;
 223                break;
 224        case e1000_media_type_internal_serdes:
 225                func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
 226                func->check_for_link = e1000e_check_for_serdes_link;
 227                break;
 228        default:
 229                return -E1000_ERR_CONFIG;
 230                break;
 231        }
 232
 233        return 0;
 234}
 235
 236static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
 237{
 238        struct e1000_hw *hw = &adapter->hw;
 239        s32 rc;
 240
 241        rc = e1000_init_mac_params_80003es2lan(adapter);
 242        if (rc)
 243                return rc;
 244
 245        rc = e1000_init_nvm_params_80003es2lan(hw);
 246        if (rc)
 247                return rc;
 248
 249        rc = e1000_init_phy_params_80003es2lan(hw);
 250        if (rc)
 251                return rc;
 252
 253        return 0;
 254}
 255
 256/**
 257 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 258 *  @hw: pointer to the HW structure
 259 *
 260 *  A wrapper to acquire access rights to the correct PHY.  This is a
 261 *  function pointer entry point called by the api module.
 262 **/
 263static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 264{
 265        u16 mask;
 266
 267        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 268
 269        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 270}
 271
 272/**
 273 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 274 *  @hw: pointer to the HW structure
 275 *
 276 *  A wrapper to release access rights to the correct PHY.  This is a
 277 *  function pointer entry point called by the api module.
 278 **/
 279static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 280{
 281        u16 mask;
 282
 283        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 284        e1000_release_swfw_sync_80003es2lan(hw, mask);
 285}
 286
 287/**
 288 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 289 *  @hw: pointer to the HW structure
 290 *
 291 *  Acquire the semaphore to access the EEPROM.  This is a function
 292 *  pointer entry point called by the api module.
 293 **/
 294static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 295{
 296        s32 ret_val;
 297
 298        ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 299        if (ret_val)
 300                return ret_val;
 301
 302        ret_val = e1000e_acquire_nvm(hw);
 303
 304        if (ret_val)
 305                e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 306
 307        return ret_val;
 308}
 309
 310/**
 311 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 312 *  @hw: pointer to the HW structure
 313 *
 314 *  Release the semaphore used to access the EEPROM.  This is a
 315 *  function pointer entry point called by the api module.
 316 **/
 317static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 318{
 319        e1000e_release_nvm(hw);
 320        e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 321}
 322
 323/**
 324 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 325 *  @hw: pointer to the HW structure
 326 *  @mask: specifies which semaphore to acquire
 327 *
 328 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 329 *  will also specify which port we're acquiring the lock for.
 330 **/
 331static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 332{
 333        u32 swfw_sync;
 334        u32 swmask = mask;
 335        u32 fwmask = mask << 16;
 336        s32 i = 0;
 337        s32 timeout = 200;
 338
 339        while (i < timeout) {
 340                if (e1000e_get_hw_semaphore(hw))
 341                        return -E1000_ERR_SWFW_SYNC;
 342
 343                swfw_sync = er32(SW_FW_SYNC);
 344                if (!(swfw_sync & (fwmask | swmask)))
 345                        break;
 346
 347                /* Firmware currently using resource (fwmask)
 348                 * or other software thread using resource (swmask) */
 349                e1000e_put_hw_semaphore(hw);
 350                mdelay(5);
 351                i++;
 352        }
 353
 354        if (i == timeout) {
 355                hw_dbg(hw,
 356                       "Driver can't access resource, SW_FW_SYNC timeout.\n");
 357                return -E1000_ERR_SWFW_SYNC;
 358        }
 359
 360        swfw_sync |= swmask;
 361        ew32(SW_FW_SYNC, swfw_sync);
 362
 363        e1000e_put_hw_semaphore(hw);
 364
 365        return 0;
 366}
 367
 368/**
 369 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 370 *  @hw: pointer to the HW structure
 371 *  @mask: specifies which semaphore to acquire
 372 *
 373 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 374 *  will also specify which port we're releasing the lock for.
 375 **/
 376static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 377{
 378        u32 swfw_sync;
 379
 380        while (e1000e_get_hw_semaphore(hw) != 0);
 381        /* Empty */
 382
 383        swfw_sync = er32(SW_FW_SYNC);
 384        swfw_sync &= ~mask;
 385        ew32(SW_FW_SYNC, swfw_sync);
 386
 387        e1000e_put_hw_semaphore(hw);
 388}
 389
 390/**
 391 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 392 *  @hw: pointer to the HW structure
 393 *  @offset: offset of the register to read
 394 *  @data: pointer to the data returned from the operation
 395 *
 396 *  Read the GG82563 PHY register.  This is a function pointer entry
 397 *  point called by the api module.
 398 **/
 399static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 400                                                  u32 offset, u16 *data)
 401{
 402        s32 ret_val;
 403        u32 page_select;
 404        u16 temp;
 405
 406        /* Select Configuration Page */
 407        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
 408                page_select = GG82563_PHY_PAGE_SELECT;
 409        else
 410                /* Use Alternative Page Select register to access
 411                 * registers 30 and 31
 412                 */
 413                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 414
 415        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 416        ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
 417        if (ret_val)
 418                return ret_val;
 419
 420        /* The "ready" bit in the MDIC register may be incorrectly set
 421         * before the device has completed the "Page Select" MDI
 422         * transaction.  So we wait 200us after each MDI command...
 423         */
 424        udelay(200);
 425
 426        /* ...and verify the command was successful. */
 427        ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
 428
 429        if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 430                ret_val = -E1000_ERR_PHY;
 431                return ret_val;
 432        }
 433
 434        udelay(200);
 435
 436        ret_val = e1000e_read_phy_reg_m88(hw,
 437                                         MAX_PHY_REG_ADDRESS & offset,
 438                                         data);
 439
 440        udelay(200);
 441
 442        return ret_val;
 443}
 444
 445/**
 446 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 447 *  @hw: pointer to the HW structure
 448 *  @offset: offset of the register to read
 449 *  @data: value to write to the register
 450 *
 451 *  Write to the GG82563 PHY register.  This is a function pointer entry
 452 *  point called by the api module.
 453 **/
 454static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 455                                                   u32 offset, u16 data)
 456{
 457        s32 ret_val;
 458        u32 page_select;
 459        u16 temp;
 460
 461        /* Select Configuration Page */
 462        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
 463                page_select = GG82563_PHY_PAGE_SELECT;
 464        else
 465                /* Use Alternative Page Select register to access
 466                 * registers 30 and 31
 467                 */
 468                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 469
 470        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 471        ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
 472        if (ret_val)
 473                return ret_val;
 474
 475
 476        /* The "ready" bit in the MDIC register may be incorrectly set
 477         * before the device has completed the "Page Select" MDI
 478         * transaction.  So we wait 200us after each MDI command...
 479         */
 480        udelay(200);
 481
 482        /* ...and verify the command was successful. */
 483        ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
 484
 485        if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
 486                return -E1000_ERR_PHY;
 487
 488        udelay(200);
 489
 490        ret_val = e1000e_write_phy_reg_m88(hw,
 491                                          MAX_PHY_REG_ADDRESS & offset,
 492                                          data);
 493
 494        udelay(200);
 495
 496        return ret_val;
 497}
 498
 499/**
 500 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 501 *  @hw: pointer to the HW structure
 502 *  @offset: offset of the register to read
 503 *  @words: number of words to write
 504 *  @data: buffer of data to write to the NVM
 505 *
 506 *  Write "words" of data to the ESB2 NVM.  This is a function
 507 *  pointer entry point called by the api module.
 508 **/
 509static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 510                                       u16 words, u16 *data)
 511{
 512        return e1000e_write_nvm_spi(hw, offset, words, data);
 513}
 514
 515/**
 516 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Wait a specific amount of time for manageability processes to complete.
 520 *  This is a function pointer entry point called by the phy module.
 521 **/
 522static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 523{
 524        s32 timeout = PHY_CFG_TIMEOUT;
 525        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 526
 527        if (hw->bus.func == 1)
 528                mask = E1000_NVM_CFG_DONE_PORT_1;
 529
 530        while (timeout) {
 531                if (er32(EEMNGCTL) & mask)
 532                        break;
 533                msleep(1);
 534                timeout--;
 535        }
 536        if (!timeout) {
 537                hw_dbg(hw, "MNG configuration cycle has not completed.\n");
 538                return -E1000_ERR_RESET;
 539        }
 540
 541        return 0;
 542}
 543
 544/**
 545 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 546 *  @hw: pointer to the HW structure
 547 *
 548 *  Force the speed and duplex settings onto the PHY.  This is a
 549 *  function pointer entry point called by the phy module.
 550 **/
 551static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 552{
 553        s32 ret_val;
 554        u16 phy_data;
 555        bool link;
 556
 557        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 558         * forced whenever speed and duplex are forced.
 559         */
 560        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 561        if (ret_val)
 562                return ret_val;
 563
 564        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 565        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 566        if (ret_val)
 567                return ret_val;
 568
 569        hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
 570
 571        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
 572        if (ret_val)
 573                return ret_val;
 574
 575        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 576
 577        /* Reset the phy to commit changes. */
 578        phy_data |= MII_CR_RESET;
 579
 580        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
 581        if (ret_val)
 582                return ret_val;
 583
 584        udelay(1);
 585
 586        if (hw->phy.wait_for_link) {
 587                hw_dbg(hw, "Waiting for forced speed/duplex link "
 588                         "on GG82563 phy.\n");
 589
 590                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 591                                                     100000, &link);
 592                if (ret_val)
 593                        return ret_val;
 594
 595                if (!link) {
 596                        /* We didn't get link.
 597                         * Reset the DSP and cross our fingers.
 598                         */
 599                        ret_val = e1000e_phy_reset_dsp(hw);
 600                        if (ret_val)
 601                                return ret_val;
 602                }
 603
 604                /* Try once more */
 605                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 606                                                     100000, &link);
 607                if (ret_val)
 608                        return ret_val;
 609        }
 610
 611        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 612        if (ret_val)
 613                return ret_val;
 614
 615        /* Resetting the phy means we need to verify the TX_CLK corresponds
 616         * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 617         */
 618        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 619        if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 620                phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 621        else
 622                phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 623
 624        /* In addition, we must re-enable CRS on Tx for both half and full
 625         * duplex.
 626         */
 627        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 628        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 629
 630        return ret_val;
 631}
 632
 633/**
 634 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 635 *  @hw: pointer to the HW structure
 636 *
 637 *  Find the approximate cable length as measured by the GG82563 PHY.
 638 *  This is a function pointer entry point called by the phy module.
 639 **/
 640static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 641{
 642        struct e1000_phy_info *phy = &hw->phy;
 643        s32 ret_val;
 644        u16 phy_data;
 645        u16 index;
 646
 647        ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 648        if (ret_val)
 649                return ret_val;
 650
 651        index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 652        phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 653        phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
 654
 655        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 656
 657        return 0;
 658}
 659
 660/**
 661 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 662 *  @hw: pointer to the HW structure
 663 *  @speed: pointer to speed buffer
 664 *  @duplex: pointer to duplex buffer
 665 *
 666 *  Retrieve the current speed and duplex configuration.
 667 *  This is a function pointer entry point called by the api module.
 668 **/
 669static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 670                                              u16 *duplex)
 671{
 672        s32 ret_val;
 673
 674        if (hw->media_type == e1000_media_type_copper) {
 675                ret_val = e1000e_get_speed_and_duplex_copper(hw,
 676                                                                    speed,
 677                                                                    duplex);
 678                if (ret_val)
 679                        return ret_val;
 680                if (*speed == SPEED_1000)
 681                        ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
 682                else
 683                        ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
 684                                                              *duplex);
 685        } else {
 686                ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 687                                                                  speed,
 688                                                                  duplex);
 689        }
 690
 691        return ret_val;
 692}
 693
 694/**
 695 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 696 *  @hw: pointer to the HW structure
 697 *
 698 *  Perform a global reset to the ESB2 controller.
 699 *  This is a function pointer entry point called by the api module.
 700 **/
 701static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 702{
 703        u32 ctrl;
 704        u32 icr;
 705        s32 ret_val;
 706
 707        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 708         * on the last TLP read/write transaction when MAC is reset.
 709         */
 710        ret_val = e1000e_disable_pcie_master(hw);
 711        if (ret_val)
 712                hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
 713
 714        hw_dbg(hw, "Masking off all interrupts\n");
 715        ew32(IMC, 0xffffffff);
 716
 717        ew32(RCTL, 0);
 718        ew32(TCTL, E1000_TCTL_PSP);
 719        e1e_flush();
 720
 721        msleep(10);
 722
 723        ctrl = er32(CTRL);
 724
 725        hw_dbg(hw, "Issuing a global reset to MAC\n");
 726        ew32(CTRL, ctrl | E1000_CTRL_RST);
 727
 728        ret_val = e1000e_get_auto_rd_done(hw);
 729        if (ret_val)
 730                /* We don't want to continue accessing MAC registers. */
 731                return ret_val;
 732
 733        /* Clear any pending interrupt events. */
 734        ew32(IMC, 0xffffffff);
 735        icr = er32(ICR);
 736
 737        return 0;
 738}
 739
 740/**
 741 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 742 *  @hw: pointer to the HW structure
 743 *
 744 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 745 *  This is a function pointer entry point called by the api module.
 746 **/
 747static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 748{
 749        struct e1000_mac_info *mac = &hw->mac;
 750        u32 reg_data;
 751        s32 ret_val;
 752        u16 i;
 753
 754        e1000_initialize_hw_bits_80003es2lan(hw);
 755
 756        /* Initialize identification LED */
 757        ret_val = e1000e_id_led_init(hw);
 758        if (ret_val) {
 759                hw_dbg(hw, "Error initializing identification LED\n");
 760                return ret_val;
 761        }
 762
 763        /* Disabling VLAN filtering */
 764        hw_dbg(hw, "Initializing the IEEE VLAN\n");
 765        e1000e_clear_vfta(hw);
 766
 767        /* Setup the receive address. */
 768        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 769
 770        /* Zero out the Multicast HASH table */
 771        hw_dbg(hw, "Zeroing the MTA\n");
 772        for (i = 0; i < mac->mta_reg_count; i++)
 773                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 774
 775        /* Setup link and flow control */
 776        ret_val = e1000e_setup_link(hw);
 777
 778        /* Set the transmit descriptor write-back policy */
 779        reg_data = er32(TXDCTL);
 780        reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
 781                   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
 782        ew32(TXDCTL, reg_data);
 783
 784        /* ...for both queues. */
 785        reg_data = er32(TXDCTL1);
 786        reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
 787                   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
 788        ew32(TXDCTL1, reg_data);
 789
 790        /* Enable retransmit on late collisions */
 791        reg_data = er32(TCTL);
 792        reg_data |= E1000_TCTL_RTLC;
 793        ew32(TCTL, reg_data);
 794
 795        /* Configure Gigabit Carry Extend Padding */
 796        reg_data = er32(TCTL_EXT);
 797        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 798        reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 799        ew32(TCTL_EXT, reg_data);
 800
 801        /* Configure Transmit Inter-Packet Gap */
 802        reg_data = er32(TIPG);
 803        reg_data &= ~E1000_TIPG_IPGT_MASK;
 804        reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 805        ew32(TIPG, reg_data);
 806
 807        reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 808        reg_data &= ~0x00100000;
 809        E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 810
 811        /* Clear all of the statistics registers (clear on read).  It is
 812         * important that we do this after we have tried to establish link
 813         * because the symbol error count will increment wildly if there
 814         * is no link.
 815         */
 816        e1000_clear_hw_cntrs_80003es2lan(hw);
 817
 818        return ret_val;
 819}
 820
 821/**
 822 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 823 *  @hw: pointer to the HW structure
 824 *
 825 *  Initializes required hardware-dependent bits needed for normal operation.
 826 **/
 827static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 828{
 829        u32 reg;
 830
 831        /* Transmit Descriptor Control 0 */
 832        reg = er32(TXDCTL);
 833        reg |= (1 << 22);
 834        ew32(TXDCTL, reg);
 835
 836        /* Transmit Descriptor Control 1 */
 837        reg = er32(TXDCTL1);
 838        reg |= (1 << 22);
 839        ew32(TXDCTL1, reg);
 840
 841        /* Transmit Arbitration Control 0 */
 842        reg = er32(TARC0);
 843        reg &= ~(0xF << 27); /* 30:27 */
 844        if (hw->media_type != e1000_media_type_copper)
 845                reg &= ~(1 << 20);
 846        ew32(TARC0, reg);
 847
 848        /* Transmit Arbitration Control 1 */
 849        reg = er32(TARC1);
 850        if (er32(TCTL) & E1000_TCTL_MULR)
 851                reg &= ~(1 << 28);
 852        else
 853                reg |= (1 << 28);
 854        ew32(TARC1, reg);
 855}
 856
 857/**
 858 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Setup some GG82563 PHY registers for obtaining link
 862 **/
 863static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 864{
 865        struct e1000_phy_info *phy = &hw->phy;
 866        s32 ret_val;
 867        u32 ctrl_ext;
 868        u16 data;
 869
 870        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
 871                                     &data);
 872        if (ret_val)
 873                return ret_val;
 874
 875        data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 876        /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 877        data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 878
 879        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
 880                                      data);
 881        if (ret_val)
 882                return ret_val;
 883
 884        /* Options:
 885         *   MDI/MDI-X = 0 (default)
 886         *   0 - Auto for all speeds
 887         *   1 - MDI mode
 888         *   2 - MDI-X mode
 889         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 890         */
 891        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 892        if (ret_val)
 893                return ret_val;
 894
 895        data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 896
 897        switch (phy->mdix) {
 898        case 1:
 899                data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 900                break;
 901        case 2:
 902                data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 903                break;
 904        case 0:
 905        default:
 906                data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 907                break;
 908        }
 909
 910        /* Options:
 911         *   disable_polarity_correction = 0 (default)
 912         *       Automatic Correction for Reversed Cable Polarity
 913         *   0 - Disabled
 914         *   1 - Enabled
 915         */
 916        data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 917        if (phy->disable_polarity_correction)
 918                data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 919
 920        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 921        if (ret_val)
 922                return ret_val;
 923
 924        /* SW Reset the PHY so all changes take effect */
 925        ret_val = e1000e_commit_phy(hw);
 926        if (ret_val) {
 927                hw_dbg(hw, "Error Resetting the PHY\n");
 928                return ret_val;
 929        }
 930
 931        /* Bypass RX and TX FIFO's */
 932        ret_val = e1000e_write_kmrn_reg(hw,
 933                                E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
 934                                E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 935                                        E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 936        if (ret_val)
 937                return ret_val;
 938
 939        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 940        if (ret_val)
 941                return ret_val;
 942
 943        data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 944        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 945        if (ret_val)
 946                return ret_val;
 947
 948        ctrl_ext = er32(CTRL_EXT);
 949        ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
 950        ew32(CTRL_EXT, ctrl_ext);
 951
 952        ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 953        if (ret_val)
 954                return ret_val;
 955
 956        /* Do not init these registers when the HW is in IAMT mode, since the
 957         * firmware will have already initialized them.  We only initialize
 958         * them if the HW is not in IAMT mode.
 959         */
 960        if (!e1000e_check_mng_mode(hw)) {
 961                /* Enable Electrical Idle on the PHY */
 962                data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 963                ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 964                if (ret_val)
 965                        return ret_val;
 966
 967                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 968                if (ret_val)
 969                        return ret_val;
 970
 971                data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 972                ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 973                if (ret_val)
 974                        return ret_val;
 975        }
 976
 977        /* Workaround: Disable padding in Kumeran interface in the MAC
 978         * and in the PHY to avoid CRC errors.
 979         */
 980        ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
 981        if (ret_val)
 982                return ret_val;
 983
 984        data |= GG82563_ICR_DIS_PADDING;
 985        ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
 986        if (ret_val)
 987                return ret_val;
 988
 989        return 0;
 990}
 991
 992/**
 993 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 994 *  @hw: pointer to the HW structure
 995 *
 996 *  Essentially a wrapper for setting up all things "copper" related.
 997 *  This is a function pointer entry point called by the mac module.
 998 **/
 999static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1000{
1001        u32 ctrl;
1002        s32 ret_val;
1003        u16 reg_data;
1004
1005        ctrl = er32(CTRL);
1006        ctrl |= E1000_CTRL_SLU;
1007        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1008        ew32(CTRL, ctrl);
1009
1010        /* Set the mac to wait the maximum time between each
1011         * iteration and increase the max iterations when
1012         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1013        ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1014        if (ret_val)
1015                return ret_val;
1016        ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1017        if (ret_val)
1018                return ret_val;
1019        reg_data |= 0x3F;
1020        ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1021        if (ret_val)
1022                return ret_val;
1023        ret_val = e1000e_read_kmrn_reg(hw,
1024                                      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1025                                      &reg_data);
1026        if (ret_val)
1027                return ret_val;
1028        reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1029        ret_val = e1000e_write_kmrn_reg(hw,
1030                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1031                                       reg_data);
1032        if (ret_val)
1033                return ret_val;
1034
1035        ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1036        if (ret_val)
1037                return ret_val;
1038
1039        ret_val = e1000e_setup_copper_link(hw);
1040
1041        return 0;
1042}
1043
1044/**
1045 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1046 *  @hw: pointer to the HW structure
1047 *  @duplex: current duplex setting
1048 *
1049 *  Configure the KMRN interface by applying last minute quirks for
1050 *  10/100 operation.
1051 **/
1052static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1053{
1054        s32 ret_val;
1055        u32 tipg;
1056        u16 reg_data;
1057
1058        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1059        ret_val = e1000e_write_kmrn_reg(hw,
1060                                       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1061                                       reg_data);
1062        if (ret_val)
1063                return ret_val;
1064
1065        /* Configure Transmit Inter-Packet Gap */
1066        tipg = er32(TIPG);
1067        tipg &= ~E1000_TIPG_IPGT_MASK;
1068        tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1069        ew32(TIPG, tipg);
1070
1071        ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1072        if (ret_val)
1073                return ret_val;
1074
1075        if (duplex == HALF_DUPLEX)
1076                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1077        else
1078                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1079
1080        ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1081
1082        return 0;
1083}
1084
1085/**
1086 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1087 *  @hw: pointer to the HW structure
1088 *
1089 *  Configure the KMRN interface by applying last minute quirks for
1090 *  gigabit operation.
1091 **/
1092static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1093{
1094        s32 ret_val;
1095        u16 reg_data;
1096        u32 tipg;
1097
1098        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1099        ret_val = e1000e_write_kmrn_reg(hw,
1100                                       E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1101                                       reg_data);
1102        if (ret_val)
1103                return ret_val;
1104
1105        /* Configure Transmit Inter-Packet Gap */
1106        tipg = er32(TIPG);
1107        tipg &= ~E1000_TIPG_IPGT_MASK;
1108        tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1109        ew32(TIPG, tipg);
1110
1111        ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1112        if (ret_val)
1113                return ret_val;
1114
1115        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1116        ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1117
1118        return ret_val;
1119}
1120
1121/**
1122 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Clears the hardware counters by reading the counter registers.
1126 **/
1127static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1128{
1129        u32 temp;
1130
1131        e1000e_clear_hw_cntrs_base(hw);
1132
1133        temp = er32(PRC64);
1134        temp = er32(PRC127);
1135        temp = er32(PRC255);
1136        temp = er32(PRC511);
1137        temp = er32(PRC1023);
1138        temp = er32(PRC1522);
1139        temp = er32(PTC64);
1140        temp = er32(PTC127);
1141        temp = er32(PTC255);
1142        temp = er32(PTC511);
1143        temp = er32(PTC1023);
1144        temp = er32(PTC1522);
1145
1146        temp = er32(ALGNERRC);
1147        temp = er32(RXERRC);
1148        temp = er32(TNCRS);
1149        temp = er32(CEXTERR);
1150        temp = er32(TSCTC);
1151        temp = er32(TSCTFC);
1152
1153        temp = er32(MGTPRC);
1154        temp = er32(MGTPDC);
1155        temp = er32(MGTPTC);
1156
1157        temp = er32(IAC);
1158        temp = er32(ICRXOC);
1159
1160        temp = er32(ICRXPTC);
1161        temp = er32(ICRXATC);
1162        temp = er32(ICTXPTC);
1163        temp = er32(ICTXATC);
1164        temp = er32(ICTXQEC);
1165        temp = er32(ICTXQMTC);
1166        temp = er32(ICRXDMTC);
1167}
1168
1169static struct e1000_mac_operations es2_mac_ops = {
1170        .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1171        /* check_for_link dependent on media type */
1172        .cleanup_led            = e1000e_cleanup_led_generic,
1173        .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1174        .get_bus_info           = e1000e_get_bus_info_pcie,
1175        .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1176        .led_on                 = e1000e_led_on_generic,
1177        .led_off                = e1000e_led_off_generic,
1178        .mc_addr_list_update    = e1000e_mc_addr_list_update_generic,
1179        .reset_hw               = e1000_reset_hw_80003es2lan,
1180        .init_hw                = e1000_init_hw_80003es2lan,
1181        .setup_link             = e1000e_setup_link,
1182        /* setup_physical_interface dependent on media type */
1183};
1184
1185static struct e1000_phy_operations es2_phy_ops = {
1186        .acquire_phy            = e1000_acquire_phy_80003es2lan,
1187        .check_reset_block      = e1000e_check_reset_block_generic,
1188        .commit_phy             = e1000e_phy_sw_reset,
1189        .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1190        .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1191        .get_cable_length       = e1000_get_cable_length_80003es2lan,
1192        .get_phy_info           = e1000e_get_phy_info_m88,
1193        .read_phy_reg           = e1000_read_phy_reg_gg82563_80003es2lan,
1194        .release_phy            = e1000_release_phy_80003es2lan,
1195        .reset_phy              = e1000e_phy_hw_reset_generic,
1196        .set_d0_lplu_state      = NULL,
1197        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1198        .write_phy_reg          = e1000_write_phy_reg_gg82563_80003es2lan,
1199};
1200
1201static struct e1000_nvm_operations es2_nvm_ops = {
1202        .acquire_nvm            = e1000_acquire_nvm_80003es2lan,
1203        .read_nvm               = e1000e_read_nvm_eerd,
1204        .release_nvm            = e1000_release_nvm_80003es2lan,
1205        .update_nvm             = e1000e_update_nvm_checksum_generic,
1206        .valid_led_default      = e1000e_valid_led_default,
1207        .validate_nvm           = e1000e_validate_nvm_checksum_generic,
1208        .write_nvm              = e1000_write_nvm_80003es2lan,
1209};
1210
1211struct e1000_info e1000_es2_info = {
1212        .mac                    = e1000_80003es2lan,
1213        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1214                                  | FLAG_HAS_JUMBO_FRAMES
1215                                  | FLAG_HAS_STATS_PTC_PRC
1216                                  | FLAG_HAS_WOL
1217                                  | FLAG_APME_IN_CTRL3
1218                                  | FLAG_RX_CSUM_ENABLED
1219                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1220                                  | FLAG_HAS_STATS_ICR_ICT
1221                                  | FLAG_RX_NEEDS_RESTART /* errata */
1222                                  | FLAG_TARC_SET_BIT_ZERO /* errata */
1223                                  | FLAG_APME_CHECK_PORT_B
1224                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1225                                  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1226        .pba                    = 38,
1227        .get_invariants         = e1000_get_invariants_80003es2lan,
1228        .mac_ops                = &es2_mac_ops,
1229        .phy_ops                = &es2_phy_ops,
1230        .nvm_ops                = &es2_nvm_ops,
1231};
1232
1233