linux/drivers/net/e1000e/phy.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2007 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/delay.h>
  30
  31#include "e1000.h"
  32
  33static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  37
  38/* Cable length tables */
  39static const u16 e1000_m88_cable_length_table[] =
  40        { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  41
  42static const u16 e1000_igp_2_cable_length_table[] =
  43        { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  44          6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  45          26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  46          44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  47          66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  48          87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  49          100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  50          124};
  51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  52                (sizeof(e1000_igp_2_cable_length_table) / \
  53                 sizeof(e1000_igp_2_cable_length_table[0]))
  54
  55/**
  56 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  57 *  @hw: pointer to the HW structure
  58 *
  59 *  Read the PHY management control register and check whether a PHY reset
  60 *  is blocked.  If a reset is not blocked return 0, otherwise
  61 *  return E1000_BLK_PHY_RESET (12).
  62 **/
  63s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  64{
  65        u32 manc;
  66
  67        manc = er32(MANC);
  68
  69        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
  70               E1000_BLK_PHY_RESET : 0;
  71}
  72
  73/**
  74 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  75 *  @hw: pointer to the HW structure
  76 *
  77 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  78 *  revision in the hardware structure.
  79 **/
  80s32 e1000e_get_phy_id(struct e1000_hw *hw)
  81{
  82        struct e1000_phy_info *phy = &hw->phy;
  83        s32 ret_val;
  84        u16 phy_id;
  85
  86        ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
  87        if (ret_val)
  88                return ret_val;
  89
  90        phy->id = (u32)(phy_id << 16);
  91        udelay(20);
  92        ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
  93        if (ret_val)
  94                return ret_val;
  95
  96        phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  97        phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  98
  99        return 0;
 100}
 101
 102/**
 103 *  e1000e_phy_reset_dsp - Reset PHY DSP
 104 *  @hw: pointer to the HW structure
 105 *
 106 *  Reset the digital signal processor.
 107 **/
 108s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 109{
 110        s32 ret_val;
 111
 112        ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 113        if (ret_val)
 114                return ret_val;
 115
 116        return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 117}
 118
 119/**
 120 *  e1000_read_phy_reg_mdic - Read MDI control register
 121 *  @hw: pointer to the HW structure
 122 *  @offset: register offset to be read
 123 *  @data: pointer to the read data
 124 *
 125 *  Reads the MDI control regsiter in the PHY at offset and stores the
 126 *  information read to data.
 127 **/
 128static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 129{
 130        struct e1000_phy_info *phy = &hw->phy;
 131        u32 i, mdic = 0;
 132
 133        if (offset > MAX_PHY_REG_ADDRESS) {
 134                hw_dbg(hw, "PHY Address %d is out of range\n", offset);
 135                return -E1000_ERR_PARAM;
 136        }
 137
 138        /* Set up Op-code, Phy Address, and register offset in the MDI
 139         * Control register.  The MAC will take care of interfacing with the
 140         * PHY to retrieve the desired data.
 141         */
 142        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 143                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 144                (E1000_MDIC_OP_READ));
 145
 146        ew32(MDIC, mdic);
 147
 148        /* Poll the ready bit to see if the MDI read completed */
 149        for (i = 0; i < 64; i++) {
 150                udelay(50);
 151                mdic = er32(MDIC);
 152                if (mdic & E1000_MDIC_READY)
 153                        break;
 154        }
 155        if (!(mdic & E1000_MDIC_READY)) {
 156                hw_dbg(hw, "MDI Read did not complete\n");
 157                return -E1000_ERR_PHY;
 158        }
 159        if (mdic & E1000_MDIC_ERROR) {
 160                hw_dbg(hw, "MDI Error\n");
 161                return -E1000_ERR_PHY;
 162        }
 163        *data = (u16) mdic;
 164
 165        return 0;
 166}
 167
 168/**
 169 *  e1000_write_phy_reg_mdic - Write MDI control register
 170 *  @hw: pointer to the HW structure
 171 *  @offset: register offset to write to
 172 *  @data: data to write to register at offset
 173 *
 174 *  Writes data to MDI control register in the PHY at offset.
 175 **/
 176static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 177{
 178        struct e1000_phy_info *phy = &hw->phy;
 179        u32 i, mdic = 0;
 180
 181        if (offset > MAX_PHY_REG_ADDRESS) {
 182                hw_dbg(hw, "PHY Address %d is out of range\n", offset);
 183                return -E1000_ERR_PARAM;
 184        }
 185
 186        /* Set up Op-code, Phy Address, and register offset in the MDI
 187         * Control register.  The MAC will take care of interfacing with the
 188         * PHY to retrieve the desired data.
 189         */
 190        mdic = (((u32)data) |
 191                (offset << E1000_MDIC_REG_SHIFT) |
 192                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 193                (E1000_MDIC_OP_WRITE));
 194
 195        ew32(MDIC, mdic);
 196
 197        /* Poll the ready bit to see if the MDI read completed */
 198        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
 199                udelay(5);
 200                mdic = er32(MDIC);
 201                if (mdic & E1000_MDIC_READY)
 202                        break;
 203        }
 204        if (!(mdic & E1000_MDIC_READY)) {
 205                hw_dbg(hw, "MDI Write did not complete\n");
 206                return -E1000_ERR_PHY;
 207        }
 208
 209        return 0;
 210}
 211
 212/**
 213 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 214 *  @hw: pointer to the HW structure
 215 *  @offset: register offset to be read
 216 *  @data: pointer to the read data
 217 *
 218 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 219 *  and storing the retrieved information in data.  Release any acquired
 220 *  semaphores before exiting.
 221 **/
 222s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 223{
 224        s32 ret_val;
 225
 226        ret_val = hw->phy.ops.acquire_phy(hw);
 227        if (ret_val)
 228                return ret_val;
 229
 230        ret_val = e1000_read_phy_reg_mdic(hw,
 231                                          MAX_PHY_REG_ADDRESS & offset,
 232                                          data);
 233
 234        hw->phy.ops.release_phy(hw);
 235
 236        return ret_val;
 237}
 238
 239/**
 240 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 241 *  @hw: pointer to the HW structure
 242 *  @offset: register offset to write to
 243 *  @data: data to write at register offset
 244 *
 245 *  Acquires semaphore, if necessary, then writes the data to PHY register
 246 *  at the offset.  Release any acquired semaphores before exiting.
 247 **/
 248s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 249{
 250        s32 ret_val;
 251
 252        ret_val = hw->phy.ops.acquire_phy(hw);
 253        if (ret_val)
 254                return ret_val;
 255
 256        ret_val = e1000_write_phy_reg_mdic(hw,
 257                                           MAX_PHY_REG_ADDRESS & offset,
 258                                           data);
 259
 260        hw->phy.ops.release_phy(hw);
 261
 262        return ret_val;
 263}
 264
 265/**
 266 *  e1000e_read_phy_reg_igp - Read igp PHY register
 267 *  @hw: pointer to the HW structure
 268 *  @offset: register offset to be read
 269 *  @data: pointer to the read data
 270 *
 271 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 272 *  and storing the retrieved information in data.  Release any acquired
 273 *  semaphores before exiting.
 274 **/
 275s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 276{
 277        s32 ret_val;
 278
 279        ret_val = hw->phy.ops.acquire_phy(hw);
 280        if (ret_val)
 281                return ret_val;
 282
 283        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 284                ret_val = e1000_write_phy_reg_mdic(hw,
 285                                                   IGP01E1000_PHY_PAGE_SELECT,
 286                                                   (u16)offset);
 287                if (ret_val) {
 288                        hw->phy.ops.release_phy(hw);
 289                        return ret_val;
 290                }
 291        }
 292
 293        ret_val = e1000_read_phy_reg_mdic(hw,
 294                                          MAX_PHY_REG_ADDRESS & offset,
 295                                          data);
 296
 297        hw->phy.ops.release_phy(hw);
 298
 299        return ret_val;
 300}
 301
 302/**
 303 *  e1000e_write_phy_reg_igp - Write igp PHY register
 304 *  @hw: pointer to the HW structure
 305 *  @offset: register offset to write to
 306 *  @data: data to write at register offset
 307 *
 308 *  Acquires semaphore, if necessary, then writes the data to PHY register
 309 *  at the offset.  Release any acquired semaphores before exiting.
 310 **/
 311s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 312{
 313        s32 ret_val;
 314
 315        ret_val = hw->phy.ops.acquire_phy(hw);
 316        if (ret_val)
 317                return ret_val;
 318
 319        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 320                ret_val = e1000_write_phy_reg_mdic(hw,
 321                                                   IGP01E1000_PHY_PAGE_SELECT,
 322                                                   (u16)offset);
 323                if (ret_val) {
 324                        hw->phy.ops.release_phy(hw);
 325                        return ret_val;
 326                }
 327        }
 328
 329        ret_val = e1000_write_phy_reg_mdic(hw,
 330                                           MAX_PHY_REG_ADDRESS & offset,
 331                                           data);
 332
 333        hw->phy.ops.release_phy(hw);
 334
 335        return ret_val;
 336}
 337
 338/**
 339 *  e1000e_read_kmrn_reg - Read kumeran register
 340 *  @hw: pointer to the HW structure
 341 *  @offset: register offset to be read
 342 *  @data: pointer to the read data
 343 *
 344 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 345 *  using the kumeran interface.  The information retrieved is stored in data.
 346 *  Release any acquired semaphores before exiting.
 347 **/
 348s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 349{
 350        u32 kmrnctrlsta;
 351        s32 ret_val;
 352
 353        ret_val = hw->phy.ops.acquire_phy(hw);
 354        if (ret_val)
 355                return ret_val;
 356
 357        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 358                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 359        ew32(KMRNCTRLSTA, kmrnctrlsta);
 360
 361        udelay(2);
 362
 363        kmrnctrlsta = er32(KMRNCTRLSTA);
 364        *data = (u16)kmrnctrlsta;
 365
 366        hw->phy.ops.release_phy(hw);
 367
 368        return ret_val;
 369}
 370
 371/**
 372 *  e1000e_write_kmrn_reg - Write kumeran register
 373 *  @hw: pointer to the HW structure
 374 *  @offset: register offset to write to
 375 *  @data: data to write at register offset
 376 *
 377 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 378 *  at the offset using the kumeran interface.  Release any acquired semaphores
 379 *  before exiting.
 380 **/
 381s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 382{
 383        u32 kmrnctrlsta;
 384        s32 ret_val;
 385
 386        ret_val = hw->phy.ops.acquire_phy(hw);
 387        if (ret_val)
 388                return ret_val;
 389
 390        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 391                       E1000_KMRNCTRLSTA_OFFSET) | data;
 392        ew32(KMRNCTRLSTA, kmrnctrlsta);
 393
 394        udelay(2);
 395        hw->phy.ops.release_phy(hw);
 396
 397        return ret_val;
 398}
 399
 400/**
 401 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 402 *  @hw: pointer to the HW structure
 403 *
 404 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 405 *  and downshift values are set also.
 406 **/
 407s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 408{
 409        struct e1000_phy_info *phy = &hw->phy;
 410        s32 ret_val;
 411        u16 phy_data;
 412
 413        /* Enable CRS on TX. This must be set for half-duplex operation. */
 414        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 415        if (ret_val)
 416                return ret_val;
 417
 418        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 419
 420        /* Options:
 421         *   MDI/MDI-X = 0 (default)
 422         *   0 - Auto for all speeds
 423         *   1 - MDI mode
 424         *   2 - MDI-X mode
 425         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 426         */
 427        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 428
 429        switch (phy->mdix) {
 430        case 1:
 431                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 432                break;
 433        case 2:
 434                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 435                break;
 436        case 3:
 437                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 438                break;
 439        case 0:
 440        default:
 441                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 442                break;
 443        }
 444
 445        /* Options:
 446         *   disable_polarity_correction = 0 (default)
 447         *       Automatic Correction for Reversed Cable Polarity
 448         *   0 - Disabled
 449         *   1 - Enabled
 450         */
 451        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 452        if (phy->disable_polarity_correction == 1)
 453                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 454
 455        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 456        if (ret_val)
 457                return ret_val;
 458
 459        if (phy->revision < 4) {
 460                /* Force TX_CLK in the Extended PHY Specific Control Register
 461                 * to 25MHz clock.
 462                 */
 463                ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 464                if (ret_val)
 465                        return ret_val;
 466
 467                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 468
 469                if ((phy->revision == 2) &&
 470                    (phy->id == M88E1111_I_PHY_ID)) {
 471                        /* 82573L PHY - set the downshift counter to 5x. */
 472                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 473                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 474                } else {
 475                        /* Configure Master and Slave downshift values */
 476                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 477                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 478                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 479                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 480                }
 481                ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 482                if (ret_val)
 483                        return ret_val;
 484        }
 485
 486        /* Commit the changes. */
 487        ret_val = e1000e_commit_phy(hw);
 488        if (ret_val)
 489                hw_dbg(hw, "Error committing the PHY changes\n");
 490
 491        return ret_val;
 492}
 493
 494/**
 495 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 496 *  @hw: pointer to the HW structure
 497 *
 498 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 499 *  igp PHY's.
 500 **/
 501s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 502{
 503        struct e1000_phy_info *phy = &hw->phy;
 504        s32 ret_val;
 505        u16 data;
 506
 507        ret_val = e1000_phy_hw_reset(hw);
 508        if (ret_val) {
 509                hw_dbg(hw, "Error resetting the PHY.\n");
 510                return ret_val;
 511        }
 512
 513        /* Wait 15ms for MAC to configure PHY from NVM settings. */
 514        msleep(15);
 515
 516        /* disable lplu d0 during driver init */
 517        ret_val = e1000_set_d0_lplu_state(hw, 0);
 518        if (ret_val) {
 519                hw_dbg(hw, "Error Disabling LPLU D0\n");
 520                return ret_val;
 521        }
 522        /* Configure mdi-mdix settings */
 523        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 524        if (ret_val)
 525                return ret_val;
 526
 527        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 528
 529        switch (phy->mdix) {
 530        case 1:
 531                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 532                break;
 533        case 2:
 534                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 535                break;
 536        case 0:
 537        default:
 538                data |= IGP01E1000_PSCR_AUTO_MDIX;
 539                break;
 540        }
 541        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 542        if (ret_val)
 543                return ret_val;
 544
 545        /* set auto-master slave resolution settings */
 546        if (hw->mac.autoneg) {
 547                /* when autonegotiation advertisement is only 1000Mbps then we
 548                 * should disable SmartSpeed and enable Auto MasterSlave
 549                 * resolution as hardware default. */
 550                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 551                        /* Disable SmartSpeed */
 552                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 553                                                     &data);
 554                        if (ret_val)
 555                                return ret_val;
 556
 557                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 558                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 559                                                     data);
 560                        if (ret_val)
 561                                return ret_val;
 562
 563                        /* Set auto Master/Slave resolution process */
 564                        ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 565                        if (ret_val)
 566                                return ret_val;
 567
 568                        data &= ~CR_1000T_MS_ENABLE;
 569                        ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 570                        if (ret_val)
 571                                return ret_val;
 572                }
 573
 574                ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 575                if (ret_val)
 576                        return ret_val;
 577
 578                /* load defaults for future use */
 579                phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 580                        ((data & CR_1000T_MS_VALUE) ?
 581                        e1000_ms_force_master :
 582                        e1000_ms_force_slave) :
 583                        e1000_ms_auto;
 584
 585                switch (phy->ms_type) {
 586                case e1000_ms_force_master:
 587                        data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 588                        break;
 589                case e1000_ms_force_slave:
 590                        data |= CR_1000T_MS_ENABLE;
 591                        data &= ~(CR_1000T_MS_VALUE);
 592                        break;
 593                case e1000_ms_auto:
 594                        data &= ~CR_1000T_MS_ENABLE;
 595                default:
 596                        break;
 597                }
 598                ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 599        }
 600
 601        return ret_val;
 602}
 603
 604/**
 605 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 606 *  @hw: pointer to the HW structure
 607 *
 608 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 609 *  register and if the PHY is already setup for auto-negotiation, then
 610 *  return successful.  Otherwise, setup advertisement and flow control to
 611 *  the appropriate values for the wanted auto-negotiation.
 612 **/
 613static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 614{
 615        struct e1000_phy_info *phy = &hw->phy;
 616        s32 ret_val;
 617        u16 mii_autoneg_adv_reg;
 618        u16 mii_1000t_ctrl_reg = 0;
 619
 620        phy->autoneg_advertised &= phy->autoneg_mask;
 621
 622        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 623        ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 624        if (ret_val)
 625                return ret_val;
 626
 627        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 628                /* Read the MII 1000Base-T Control Register (Address 9). */
 629                ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 630                if (ret_val)
 631                        return ret_val;
 632        }
 633
 634        /* Need to parse both autoneg_advertised and fc and set up
 635         * the appropriate PHY registers.  First we will parse for
 636         * autoneg_advertised software override.  Since we can advertise
 637         * a plethora of combinations, we need to check each bit
 638         * individually.
 639         */
 640
 641        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
 642         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 643         * the  1000Base-T Control Register (Address 9).
 644         */
 645        mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 646                                 NWAY_AR_100TX_HD_CAPS |
 647                                 NWAY_AR_10T_FD_CAPS   |
 648                                 NWAY_AR_10T_HD_CAPS);
 649        mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 650
 651        hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
 652
 653        /* Do we want to advertise 10 Mb Half Duplex? */
 654        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 655                hw_dbg(hw, "Advertise 10mb Half duplex\n");
 656                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 657        }
 658
 659        /* Do we want to advertise 10 Mb Full Duplex? */
 660        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 661                hw_dbg(hw, "Advertise 10mb Full duplex\n");
 662                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 663        }
 664
 665        /* Do we want to advertise 100 Mb Half Duplex? */
 666        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 667                hw_dbg(hw, "Advertise 100mb Half duplex\n");
 668                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 669        }
 670
 671        /* Do we want to advertise 100 Mb Full Duplex? */
 672        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 673                hw_dbg(hw, "Advertise 100mb Full duplex\n");
 674                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 675        }
 676
 677        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 678        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 679                hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
 680
 681        /* Do we want to advertise 1000 Mb Full Duplex? */
 682        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 683                hw_dbg(hw, "Advertise 1000mb Full duplex\n");
 684                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 685        }
 686
 687        /* Check for a software override of the flow control settings, and
 688         * setup the PHY advertisement registers accordingly.  If
 689         * auto-negotiation is enabled, then software will have to set the
 690         * "PAUSE" bits to the correct value in the Auto-Negotiation
 691         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
 692         * negotiation.
 693         *
 694         * The possible values of the "fc" parameter are:
 695         *      0:  Flow control is completely disabled
 696         *      1:  Rx flow control is enabled (we can receive pause frames
 697         *        but not send pause frames).
 698         *      2:  Tx flow control is enabled (we can send pause frames
 699         *        but we do not support receiving pause frames).
 700         *      3:  Both Rx and TX flow control (symmetric) are enabled.
 701         *  other:  No software override.  The flow control configuration
 702         *        in the EEPROM is used.
 703         */
 704        switch (hw->mac.fc) {
 705        case e1000_fc_none:
 706                /* Flow control (RX & TX) is completely disabled by a
 707                 * software over-ride.
 708                 */
 709                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 710                break;
 711        case e1000_fc_rx_pause:
 712                /* RX Flow control is enabled, and TX Flow control is
 713                 * disabled, by a software over-ride.
 714                 */
 715                /* Since there really isn't a way to advertise that we are
 716                 * capable of RX Pause ONLY, we will advertise that we
 717                 * support both symmetric and asymmetric RX PAUSE.  Later
 718                 * (in e1000e_config_fc_after_link_up) we will disable the
 719                 * hw's ability to send PAUSE frames.
 720                 */
 721                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 722                break;
 723        case e1000_fc_tx_pause:
 724                /* TX Flow control is enabled, and RX Flow control is
 725                 * disabled, by a software over-ride.
 726                 */
 727                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
 728                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 729                break;
 730        case e1000_fc_full:
 731                /* Flow control (both RX and TX) is enabled by a software
 732                 * over-ride.
 733                 */
 734                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 735                break;
 736        default:
 737                hw_dbg(hw, "Flow control param set incorrectly\n");
 738                ret_val = -E1000_ERR_CONFIG;
 739                return ret_val;
 740        }
 741
 742        ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
 743        if (ret_val)
 744                return ret_val;
 745
 746        hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 747
 748        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 749                ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
 750        }
 751
 752        return ret_val;
 753}
 754
 755/**
 756 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 757 *  @hw: pointer to the HW structure
 758 *
 759 *  Performs initial bounds checking on autoneg advertisement parameter, then
 760 *  configure to advertise the full capability.  Setup the PHY to autoneg
 761 *  and restart the negotiation process between the link partner.  If
 762 *  wait_for_link, then wait for autoneg to complete before exiting.
 763 **/
 764static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
 765{
 766        struct e1000_phy_info *phy = &hw->phy;
 767        s32 ret_val;
 768        u16 phy_ctrl;
 769
 770        /* Perform some bounds checking on the autoneg advertisement
 771         * parameter.
 772         */
 773        phy->autoneg_advertised &= phy->autoneg_mask;
 774
 775        /* If autoneg_advertised is zero, we assume it was not defaulted
 776         * by the calling code so we set to advertise full capability.
 777         */
 778        if (phy->autoneg_advertised == 0)
 779                phy->autoneg_advertised = phy->autoneg_mask;
 780
 781        hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
 782        ret_val = e1000_phy_setup_autoneg(hw);
 783        if (ret_val) {
 784                hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
 785                return ret_val;
 786        }
 787        hw_dbg(hw, "Restarting Auto-Neg\n");
 788
 789        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
 790         * the Auto Neg Restart bit in the PHY control register.
 791         */
 792        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
 793        if (ret_val)
 794                return ret_val;
 795
 796        phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 797        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
 798        if (ret_val)
 799                return ret_val;
 800
 801        /* Does the user want to wait for Auto-Neg to complete here, or
 802         * check at a later time (for example, callback routine).
 803         */
 804        if (phy->wait_for_link) {
 805                ret_val = e1000_wait_autoneg(hw);
 806                if (ret_val) {
 807                        hw_dbg(hw, "Error while waiting for "
 808                                 "autoneg to complete\n");
 809                        return ret_val;
 810                }
 811        }
 812
 813        hw->mac.get_link_status = 1;
 814
 815        return ret_val;
 816}
 817
 818/**
 819 *  e1000e_setup_copper_link - Configure copper link settings
 820 *  @hw: pointer to the HW structure
 821 *
 822 *  Calls the appropriate function to configure the link for auto-neg or forced
 823 *  speed and duplex.  Then we check for link, once link is established calls
 824 *  to configure collision distance and flow control are called.  If link is
 825 *  not established, we return -E1000_ERR_PHY (-2).
 826 **/
 827s32 e1000e_setup_copper_link(struct e1000_hw *hw)
 828{
 829        s32 ret_val;
 830        bool link;
 831
 832        if (hw->mac.autoneg) {
 833                /* Setup autoneg and flow control advertisement and perform
 834                 * autonegotiation. */
 835                ret_val = e1000_copper_link_autoneg(hw);
 836                if (ret_val)
 837                        return ret_val;
 838        } else {
 839                /* PHY will be set to 10H, 10F, 100H or 100F
 840                 * depending on user settings. */
 841                hw_dbg(hw, "Forcing Speed and Duplex\n");
 842                ret_val = e1000_phy_force_speed_duplex(hw);
 843                if (ret_val) {
 844                        hw_dbg(hw, "Error Forcing Speed and Duplex\n");
 845                        return ret_val;
 846                }
 847        }
 848
 849        /* Check link status. Wait up to 100 microseconds for link to become
 850         * valid.
 851         */
 852        ret_val = e1000e_phy_has_link_generic(hw,
 853                                             COPPER_LINK_UP_LIMIT,
 854                                             10,
 855                                             &link);
 856        if (ret_val)
 857                return ret_val;
 858
 859        if (link) {
 860                hw_dbg(hw, "Valid link established!!!\n");
 861                e1000e_config_collision_dist(hw);
 862                ret_val = e1000e_config_fc_after_link_up(hw);
 863        } else {
 864                hw_dbg(hw, "Unable to establish link!!!\n");
 865        }
 866
 867        return ret_val;
 868}
 869
 870/**
 871 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 872 *  @hw: pointer to the HW structure
 873 *
 874 *  Calls the PHY setup function to force speed and duplex.  Clears the
 875 *  auto-crossover to force MDI manually.  Waits for link and returns
 876 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 877 **/
 878s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
 879{
 880        struct e1000_phy_info *phy = &hw->phy;
 881        s32 ret_val;
 882        u16 phy_data;
 883        bool link;
 884
 885        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
 886        if (ret_val)
 887                return ret_val;
 888
 889        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 890
 891        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
 892        if (ret_val)
 893                return ret_val;
 894
 895        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 896         * forced whenever speed and duplex are forced.
 897         */
 898        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
 899        if (ret_val)
 900                return ret_val;
 901
 902        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 903        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 904
 905        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
 906        if (ret_val)
 907                return ret_val;
 908
 909        hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
 910
 911        udelay(1);
 912
 913        if (phy->wait_for_link) {
 914                hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
 915
 916                ret_val = e1000e_phy_has_link_generic(hw,
 917                                                     PHY_FORCE_LIMIT,
 918                                                     100000,
 919                                                     &link);
 920                if (ret_val)
 921                        return ret_val;
 922
 923                if (!link)
 924                        hw_dbg(hw, "Link taking longer than expected.\n");
 925
 926                /* Try once more */
 927                ret_val = e1000e_phy_has_link_generic(hw,
 928                                                     PHY_FORCE_LIMIT,
 929                                                     100000,
 930                                                     &link);
 931                if (ret_val)
 932                        return ret_val;
 933        }
 934
 935        return ret_val;
 936}
 937
 938/**
 939 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 940 *  @hw: pointer to the HW structure
 941 *
 942 *  Calls the PHY setup function to force speed and duplex.  Clears the
 943 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 944 *  changes.  If time expires while waiting for link up, we reset the DSP.
 945 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
 946 *  successful completion, else return corresponding error code.
 947 **/
 948s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
 949{
 950        struct e1000_phy_info *phy = &hw->phy;
 951        s32 ret_val;
 952        u16 phy_data;
 953        bool link;
 954
 955        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 956         * forced whenever speed and duplex are forced.
 957         */
 958        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 959        if (ret_val)
 960                return ret_val;
 961
 962        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 963        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 964        if (ret_val)
 965                return ret_val;
 966
 967        hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
 968
 969        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
 970        if (ret_val)
 971                return ret_val;
 972
 973        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 974
 975        /* Reset the phy to commit changes. */
 976        phy_data |= MII_CR_RESET;
 977
 978        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
 979        if (ret_val)
 980                return ret_val;
 981
 982        udelay(1);
 983
 984        if (phy->wait_for_link) {
 985                hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
 986
 987                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 988                                                     100000, &link);
 989                if (ret_val)
 990                        return ret_val;
 991
 992                if (!link) {
 993                        /* We didn't get link.
 994                         * Reset the DSP and cross our fingers.
 995                         */
 996                        ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
 997                        if (ret_val)
 998                                return ret_val;
 999                        ret_val = e1000e_phy_reset_dsp(hw);
1000                        if (ret_val)
1001                                return ret_val;
1002                }
1003
1004                /* Try once more */
1005                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1006                                                     100000, &link);
1007                if (ret_val)
1008                        return ret_val;
1009        }
1010
1011        ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1012        if (ret_val)
1013                return ret_val;
1014
1015        /* Resetting the phy means we need to re-force TX_CLK in the
1016         * Extended PHY Specific Control Register to 25MHz clock from
1017         * the reset value of 2.5MHz.
1018         */
1019        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1020        ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1021        if (ret_val)
1022                return ret_val;
1023
1024        /* In addition, we must re-enable CRS on Tx for both half and full
1025         * duplex.
1026         */
1027        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1028        if (ret_val)
1029                return ret_val;
1030
1031        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1032        ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1033
1034        return ret_val;
1035}
1036
1037/**
1038 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1039 *  @hw: pointer to the HW structure
1040 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1041 *
1042 *  Forces speed and duplex on the PHY by doing the following: disable flow
1043 *  control, force speed/duplex on the MAC, disable auto speed detection,
1044 *  disable auto-negotiation, configure duplex, configure speed, configure
1045 *  the collision distance, write configuration to CTRL register.  The
1046 *  caller must write to the PHY_CONTROL register for these settings to
1047 *  take affect.
1048 **/
1049void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1050{
1051        struct e1000_mac_info *mac = &hw->mac;
1052        u32 ctrl;
1053
1054        /* Turn off flow control when forcing speed/duplex */
1055        mac->fc = e1000_fc_none;
1056
1057        /* Force speed/duplex on the mac */
1058        ctrl = er32(CTRL);
1059        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1060        ctrl &= ~E1000_CTRL_SPD_SEL;
1061
1062        /* Disable Auto Speed Detection */
1063        ctrl &= ~E1000_CTRL_ASDE;
1064
1065        /* Disable autoneg on the phy */
1066        *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1067
1068        /* Forcing Full or Half Duplex? */
1069        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1070                ctrl &= ~E1000_CTRL_FD;
1071                *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1072                hw_dbg(hw, "Half Duplex\n");
1073        } else {
1074                ctrl |= E1000_CTRL_FD;
1075                *phy_ctrl |= MII_CR_FULL_DUPLEX;
1076                hw_dbg(hw, "Full Duplex\n");
1077        }
1078
1079        /* Forcing 10mb or 100mb? */
1080        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1081                ctrl |= E1000_CTRL_SPD_100;
1082                *phy_ctrl |= MII_CR_SPEED_100;
1083                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1084                hw_dbg(hw, "Forcing 100mb\n");
1085        } else {
1086                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1087                *phy_ctrl |= MII_CR_SPEED_10;
1088                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1089                hw_dbg(hw, "Forcing 10mb\n");
1090        }
1091
1092        e1000e_config_collision_dist(hw);
1093
1094        ew32(CTRL, ctrl);
1095}
1096
1097/**
1098 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1099 *  @hw: pointer to the HW structure
1100 *  @active: boolean used to enable/disable lplu
1101 *
1102 *  Success returns 0, Failure returns 1
1103 *
1104 *  The low power link up (lplu) state is set to the power management level D3
1105 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1106 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1107 *  is used during Dx states where the power conservation is most important.
1108 *  During driver activity, SmartSpeed should be enabled so performance is
1109 *  maintained.
1110 **/
1111s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1112{
1113        struct e1000_phy_info *phy = &hw->phy;
1114        s32 ret_val;
1115        u16 data;
1116
1117        ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1118        if (ret_val)
1119                return ret_val;
1120
1121        if (!active) {
1122                data &= ~IGP02E1000_PM_D3_LPLU;
1123                ret_val = e1e_wphy(hw,
1124                                             IGP02E1000_PHY_POWER_MGMT,
1125                                             data);
1126                if (ret_val)
1127                        return ret_val;
1128                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1129                 * during Dx states where the power conservation is most
1130                 * important.  During driver activity we should enable
1131                 * SmartSpeed, so performance is maintained. */
1132                if (phy->smart_speed == e1000_smart_speed_on) {
1133                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1134                                                    &data);
1135                        if (ret_val)
1136                                return ret_val;
1137
1138                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1139                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1140                                                     data);
1141                        if (ret_val)
1142                                return ret_val;
1143                } else if (phy->smart_speed == e1000_smart_speed_off) {
1144                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1145                                                     &data);
1146                        if (ret_val)
1147                                return ret_val;
1148
1149                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1151                                                     data);
1152                        if (ret_val)
1153                                return ret_val;
1154                }
1155        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1156                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1157                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1158                data |= IGP02E1000_PM_D3_LPLU;
1159                ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1160                if (ret_val)
1161                        return ret_val;
1162
1163                /* When LPLU is enabled, we should disable SmartSpeed */
1164                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1165                if (ret_val)
1166                        return ret_val;
1167
1168                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1169                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1170        }
1171
1172        return ret_val;
1173}
1174
1175/**
1176 *  e1000e_check_downshift - Checks whether a downshift in speed occured
1177 *  @hw: pointer to the HW structure
1178 *
1179 *  Success returns 0, Failure returns 1
1180 *
1181 *  A downshift is detected by querying the PHY link health.
1182 **/
1183s32 e1000e_check_downshift(struct e1000_hw *hw)
1184{
1185        struct e1000_phy_info *phy = &hw->phy;
1186        s32 ret_val;
1187        u16 phy_data, offset, mask;
1188
1189        switch (phy->type) {
1190        case e1000_phy_m88:
1191        case e1000_phy_gg82563:
1192                offset  = M88E1000_PHY_SPEC_STATUS;
1193                mask    = M88E1000_PSSR_DOWNSHIFT;
1194                break;
1195        case e1000_phy_igp_2:
1196        case e1000_phy_igp_3:
1197                offset  = IGP01E1000_PHY_LINK_HEALTH;
1198                mask    = IGP01E1000_PLHR_SS_DOWNGRADE;
1199                break;
1200        default:
1201                /* speed downshift not supported */
1202                phy->speed_downgraded = 0;
1203                return 0;
1204        }
1205
1206        ret_val = e1e_rphy(hw, offset, &phy_data);
1207
1208        if (!ret_val)
1209                phy->speed_downgraded = (phy_data & mask);
1210
1211        return ret_val;
1212}
1213
1214/**
1215 *  e1000_check_polarity_m88 - Checks the polarity.
1216 *  @hw: pointer to the HW structure
1217 *
1218 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1219 *
1220 *  Polarity is determined based on the PHY specific status register.
1221 **/
1222static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1223{
1224        struct e1000_phy_info *phy = &hw->phy;
1225        s32 ret_val;
1226        u16 data;
1227
1228        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1229
1230        if (!ret_val)
1231                phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1232                                      ? e1000_rev_polarity_reversed
1233                                      : e1000_rev_polarity_normal;
1234
1235        return ret_val;
1236}
1237
1238/**
1239 *  e1000_check_polarity_igp - Checks the polarity.
1240 *  @hw: pointer to the HW structure
1241 *
1242 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1243 *
1244 *  Polarity is determined based on the PHY port status register, and the
1245 *  current speed (since there is no polarity at 100Mbps).
1246 **/
1247static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1248{
1249        struct e1000_phy_info *phy = &hw->phy;
1250        s32 ret_val;
1251        u16 data, offset, mask;
1252
1253        /* Polarity is determined based on the speed of
1254         * our connection. */
1255        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1256        if (ret_val)
1257                return ret_val;
1258
1259        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1260            IGP01E1000_PSSR_SPEED_1000MBPS) {
1261                offset  = IGP01E1000_PHY_PCS_INIT_REG;
1262                mask    = IGP01E1000_PHY_POLARITY_MASK;
1263        } else {
1264                /* This really only applies to 10Mbps since
1265                 * there is no polarity for 100Mbps (always 0).
1266                 */
1267                offset  = IGP01E1000_PHY_PORT_STATUS;
1268                mask    = IGP01E1000_PSSR_POLARITY_REVERSED;
1269        }
1270
1271        ret_val = e1e_rphy(hw, offset, &data);
1272
1273        if (!ret_val)
1274                phy->cable_polarity = (data & mask)
1275                                      ? e1000_rev_polarity_reversed
1276                                      : e1000_rev_polarity_normal;
1277
1278        return ret_val;
1279}
1280
1281/**
1282 *  e1000_wait_autoneg - Wait for auto-neg compeletion
1283 *  @hw: pointer to the HW structure
1284 *
1285 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1286 *  limit to expire, which ever happens first.
1287 **/
1288static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1289{
1290        s32 ret_val = 0;
1291        u16 i, phy_status;
1292
1293        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1294        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1295                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1296                if (ret_val)
1297                        break;
1298                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1299                if (ret_val)
1300                        break;
1301                if (phy_status & MII_SR_AUTONEG_COMPLETE)
1302                        break;
1303                msleep(100);
1304        }
1305
1306        /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1307         * has completed.
1308         */
1309        return ret_val;
1310}
1311
1312/**
1313 *  e1000e_phy_has_link_generic - Polls PHY for link
1314 *  @hw: pointer to the HW structure
1315 *  @iterations: number of times to poll for link
1316 *  @usec_interval: delay between polling attempts
1317 *  @success: pointer to whether polling was successful or not
1318 *
1319 *  Polls the PHY status register for link, 'iterations' number of times.
1320 **/
1321s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1322                               u32 usec_interval, bool *success)
1323{
1324        s32 ret_val = 0;
1325        u16 i, phy_status;
1326
1327        for (i = 0; i < iterations; i++) {
1328                /* Some PHYs require the PHY_STATUS register to be read
1329                 * twice due to the link bit being sticky.  No harm doing
1330                 * it across the board.
1331                 */
1332                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1333                if (ret_val)
1334                        break;
1335                ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1336                if (ret_val)
1337                        break;
1338                if (phy_status & MII_SR_LINK_STATUS)
1339                        break;
1340                if (usec_interval >= 1000)
1341                        mdelay(usec_interval/1000);
1342                else
1343                        udelay(usec_interval);
1344        }
1345
1346        *success = (i < iterations);
1347
1348        return ret_val;
1349}
1350
1351/**
1352 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1353 *  @hw: pointer to the HW structure
1354 *
1355 *  Reads the PHY specific status register to retrieve the cable length
1356 *  information.  The cable length is determined by averaging the minimum and
1357 *  maximum values to get the "average" cable length.  The m88 PHY has four
1358 *  possible cable length values, which are:
1359 *      Register Value          Cable Length
1360 *      0                       < 50 meters
1361 *      1                       50 - 80 meters
1362 *      2                       80 - 110 meters
1363 *      3                       110 - 140 meters
1364 *      4                       > 140 meters
1365 **/
1366s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1367{
1368        struct e1000_phy_info *phy = &hw->phy;
1369        s32 ret_val;
1370        u16 phy_data, index;
1371
1372        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1373        if (ret_val)
1374                return ret_val;
1375
1376        index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1377                M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1378        phy->min_cable_length = e1000_m88_cable_length_table[index];
1379        phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1380
1381        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1382
1383        return ret_val;
1384}
1385
1386/**
1387 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1388 *  @hw: pointer to the HW structure
1389 *
1390 *  The automatic gain control (agc) normalizes the amplitude of the
1391 *  received signal, adjusting for the attenuation produced by the
1392 *  cable.  By reading the AGC registers, which reperesent the
1393 *  cobination of course and fine gain value, the value can be put
1394 *  into a lookup table to obtain the approximate cable length
1395 *  for each channel.
1396 **/
1397s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1398{
1399        struct e1000_phy_info *phy = &hw->phy;
1400        s32 ret_val;
1401        u16 phy_data, i, agc_value = 0;
1402        u16 cur_agc_index, max_agc_index = 0;
1403        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1404        u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1405                                                         {IGP02E1000_PHY_AGC_A,
1406                                                          IGP02E1000_PHY_AGC_B,
1407                                                          IGP02E1000_PHY_AGC_C,
1408                                                          IGP02E1000_PHY_AGC_D};
1409
1410        /* Read the AGC registers for all channels */
1411        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1412                ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1413                if (ret_val)
1414                        return ret_val;
1415
1416                /* Getting bits 15:9, which represent the combination of
1417                 * course and fine gain values.  The result is a number
1418                 * that can be put into the lookup table to obtain the
1419                 * approximate cable length. */
1420                cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1421                                IGP02E1000_AGC_LENGTH_MASK;
1422
1423                /* Array index bound check. */
1424                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1425                    (cur_agc_index == 0))
1426                        return -E1000_ERR_PHY;
1427
1428                /* Remove min & max AGC values from calculation. */
1429                if (e1000_igp_2_cable_length_table[min_agc_index] >
1430                    e1000_igp_2_cable_length_table[cur_agc_index])
1431                        min_agc_index = cur_agc_index;
1432                if (e1000_igp_2_cable_length_table[max_agc_index] <
1433                    e1000_igp_2_cable_length_table[cur_agc_index])
1434                        max_agc_index = cur_agc_index;
1435
1436                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1437        }
1438
1439        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1440                      e1000_igp_2_cable_length_table[max_agc_index]);
1441        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1442
1443        /* Calculate cable length with the error range of +/- 10 meters. */
1444        phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1445                                 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1446        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1447
1448        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1449
1450        return ret_val;
1451}
1452
1453/**
1454 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  Valid for only copper links.  Read the PHY status register (sticky read)
1458 *  to verify that link is up.  Read the PHY special control register to
1459 *  determine the polarity and 10base-T extended distance.  Read the PHY
1460 *  special status register to determine MDI/MDIx and current speed.  If
1461 *  speed is 1000, then determine cable length, local and remote receiver.
1462 **/
1463s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1464{
1465        struct e1000_phy_info *phy = &hw->phy;
1466        s32  ret_val;
1467        u16 phy_data;
1468        bool link;
1469
1470        if (hw->media_type != e1000_media_type_copper) {
1471                hw_dbg(hw, "Phy info is only valid for copper media\n");
1472                return -E1000_ERR_CONFIG;
1473        }
1474
1475        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1476        if (ret_val)
1477                return ret_val;
1478
1479        if (!link) {
1480                hw_dbg(hw, "Phy info is only valid if link is up\n");
1481                return -E1000_ERR_CONFIG;
1482        }
1483
1484        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1485        if (ret_val)
1486                return ret_val;
1487
1488        phy->polarity_correction = (phy_data &
1489                                    M88E1000_PSCR_POLARITY_REVERSAL);
1490
1491        ret_val = e1000_check_polarity_m88(hw);
1492        if (ret_val)
1493                return ret_val;
1494
1495        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1496        if (ret_val)
1497                return ret_val;
1498
1499        phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1500
1501        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1502                ret_val = e1000_get_cable_length(hw);
1503                if (ret_val)
1504                        return ret_val;
1505
1506                ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1507                if (ret_val)
1508                        return ret_val;
1509
1510                phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1511                                ? e1000_1000t_rx_status_ok
1512                                : e1000_1000t_rx_status_not_ok;
1513
1514                phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1515                                 ? e1000_1000t_rx_status_ok
1516                                 : e1000_1000t_rx_status_not_ok;
1517        } else {
1518                /* Set values to "undefined" */
1519                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1520                phy->local_rx = e1000_1000t_rx_status_undefined;
1521                phy->remote_rx = e1000_1000t_rx_status_undefined;
1522        }
1523
1524        return ret_val;
1525}
1526
1527/**
1528 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Read PHY status to determine if link is up.  If link is up, then
1532 *  set/determine 10base-T extended distance and polarity correction.  Read
1533 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1534 *  determine on the cable length, local and remote receiver.
1535 **/
1536s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1537{
1538        struct e1000_phy_info *phy = &hw->phy;
1539        s32 ret_val;
1540        u16 data;
1541        bool link;
1542
1543        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1544        if (ret_val)
1545                return ret_val;
1546
1547        if (!link) {
1548                hw_dbg(hw, "Phy info is only valid if link is up\n");
1549                return -E1000_ERR_CONFIG;
1550        }
1551
1552        phy->polarity_correction = 1;
1553
1554        ret_val = e1000_check_polarity_igp(hw);
1555        if (ret_val)
1556                return ret_val;
1557
1558        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1559        if (ret_val)
1560                return ret_val;
1561
1562        phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1563
1564        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1565            IGP01E1000_PSSR_SPEED_1000MBPS) {
1566                ret_val = e1000_get_cable_length(hw);
1567                if (ret_val)
1568                        return ret_val;
1569
1570                ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1571                if (ret_val)
1572                        return ret_val;
1573
1574                phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1575                                ? e1000_1000t_rx_status_ok
1576                                : e1000_1000t_rx_status_not_ok;
1577
1578                phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1579                                 ? e1000_1000t_rx_status_ok
1580                                 : e1000_1000t_rx_status_not_ok;
1581        } else {
1582                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1583                phy->local_rx = e1000_1000t_rx_status_undefined;
1584                phy->remote_rx = e1000_1000t_rx_status_undefined;
1585        }
1586
1587        return ret_val;
1588}
1589
1590/**
1591 *  e1000e_phy_sw_reset - PHY software reset
1592 *  @hw: pointer to the HW structure
1593 *
1594 *  Does a software reset of the PHY by reading the PHY control register and
1595 *  setting/write the control register reset bit to the PHY.
1596 **/
1597s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1598{
1599        s32 ret_val;
1600        u16 phy_ctrl;
1601
1602        ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1603        if (ret_val)
1604                return ret_val;
1605
1606        phy_ctrl |= MII_CR_RESET;
1607        ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1608        if (ret_val)
1609                return ret_val;
1610
1611        udelay(1);
1612
1613        return ret_val;
1614}
1615
1616/**
1617 *  e1000e_phy_hw_reset_generic - PHY hardware reset
1618 *  @hw: pointer to the HW structure
1619 *
1620 *  Verify the reset block is not blocking us from resetting.  Acquire
1621 *  semaphore (if necessary) and read/set/write the device control reset
1622 *  bit in the PHY.  Wait the appropriate delay time for the device to
1623 *  reset and relase the semaphore (if necessary).
1624 **/
1625s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1626{
1627        struct e1000_phy_info *phy = &hw->phy;
1628        s32 ret_val;
1629        u32 ctrl;
1630
1631        ret_val = e1000_check_reset_block(hw);
1632        if (ret_val)
1633                return 0;
1634
1635        ret_val = phy->ops.acquire_phy(hw);
1636        if (ret_val)
1637                return ret_val;
1638
1639        ctrl = er32(CTRL);
1640        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1641        e1e_flush();
1642
1643        udelay(phy->reset_delay_us);
1644
1645        ew32(CTRL, ctrl);
1646        e1e_flush();
1647
1648        udelay(150);
1649
1650        phy->ops.release_phy(hw);
1651
1652        return e1000_get_phy_cfg_done(hw);
1653}
1654
1655/**
1656 *  e1000e_get_cfg_done - Generic configuration done
1657 *  @hw: pointer to the HW structure
1658 *
1659 *  Generic function to wait 10 milli-seconds for configuration to complete
1660 *  and return success.
1661 **/
1662s32 e1000e_get_cfg_done(struct e1000_hw *hw)
1663{
1664        mdelay(10);
1665        return 0;
1666}
1667
1668/* Internal function pointers */
1669
1670/**
1671 *  e1000_get_phy_cfg_done - Generic PHY configuration done
1672 *  @hw: pointer to the HW structure
1673 *
1674 *  Return success if silicon family did not implement a family specific
1675 *  get_cfg_done function.
1676 **/
1677static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
1678{
1679        if (hw->phy.ops.get_cfg_done)
1680                return hw->phy.ops.get_cfg_done(hw);
1681
1682        return 0;
1683}
1684
1685/**
1686 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1687 *  @hw: pointer to the HW structure
1688 *
1689 *  When the silicon family has not implemented a forced speed/duplex
1690 *  function for the PHY, simply return 0.
1691 **/
1692static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1693{
1694        if (hw->phy.ops.force_speed_duplex)
1695                return hw->phy.ops.force_speed_duplex(hw);
1696
1697        return 0;
1698}
1699
1700/**
1701 *  e1000e_get_phy_type_from_id - Get PHY type from id
1702 *  @phy_id: phy_id read from the phy
1703 *
1704 *  Returns the phy type from the id.
1705 **/
1706enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1707{
1708        enum e1000_phy_type phy_type = e1000_phy_unknown;
1709
1710        switch (phy_id) {
1711        case M88E1000_I_PHY_ID:
1712        case M88E1000_E_PHY_ID:
1713        case M88E1111_I_PHY_ID:
1714        case M88E1011_I_PHY_ID:
1715                phy_type = e1000_phy_m88;
1716                break;
1717        case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
1718                phy_type = e1000_phy_igp_2;
1719                break;
1720        case GG82563_E_PHY_ID:
1721                phy_type = e1000_phy_gg82563;
1722                break;
1723        case IGP03E1000_E_PHY_ID:
1724                phy_type = e1000_phy_igp_3;
1725                break;
1726        case IFE_E_PHY_ID:
1727        case IFE_PLUS_E_PHY_ID:
1728        case IFE_C_E_PHY_ID:
1729                phy_type = e1000_phy_ife;
1730                break;
1731        default:
1732                phy_type = e1000_phy_unknown;
1733                break;
1734        }
1735        return phy_type;
1736}
1737
1738/**
1739 *  e1000e_commit_phy - Soft PHY reset
1740 *  @hw: pointer to the HW structure
1741 *
1742 *  Performs a soft PHY reset on those that apply. This is a function pointer
1743 *  entry point called by drivers.
1744 **/
1745s32 e1000e_commit_phy(struct e1000_hw *hw)
1746{
1747        if (hw->phy.ops.commit_phy)
1748                return hw->phy.ops.commit_phy(hw);
1749
1750        return 0;
1751}
1752
1753/**
1754 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1755 *  @hw: pointer to the HW structure
1756 *  @active: boolean used to enable/disable lplu
1757 *
1758 *  Success returns 0, Failure returns 1
1759 *
1760 *  The low power link up (lplu) state is set to the power management level D0
1761 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1762 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1763 *  is used during Dx states where the power conservation is most important.
1764 *  During driver activity, SmartSpeed should be enabled so performance is
1765 *  maintained.  This is a function pointer entry point called by drivers.
1766 **/
1767static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1768{
1769        if (hw->phy.ops.set_d0_lplu_state)
1770                return hw->phy.ops.set_d0_lplu_state(hw, active);
1771
1772        return 0;
1773}
1774