linux/drivers/net/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2007 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32
  33#include "ixgbe_common.h"
  34#include "ixgbe_phy.h"
  35
  36static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw);
  37
  38static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
  42
  43static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw);
  44static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw);
  45static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  46static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
  47
  48/**
  49 *  ixgbe_start_hw - Prepare hardware for TX/RX
  50 *  @hw: pointer to hardware structure
  51 *
  52 *  Starts the hardware by filling the bus info structure and media type, clears
  53 *  all on chip counters, initializes receive address registers, multicast
  54 *  table, VLAN filter table, calls routine to set up link and flow control
  55 *  settings, and leaves transmit and receive units disabled and uninitialized
  56 **/
  57s32 ixgbe_start_hw(struct ixgbe_hw *hw)
  58{
  59        u32 ctrl_ext;
  60
  61        /* Set the media type */
  62        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
  63
  64        /* Identify the PHY */
  65        ixgbe_identify_phy(hw);
  66
  67        /*
  68         * Store MAC address from RAR0, clear receive address registers, and
  69         * clear the multicast table
  70         */
  71        ixgbe_init_rx_addrs(hw);
  72
  73        /* Clear the VLAN filter table */
  74        ixgbe_clear_vfta(hw);
  75
  76        /* Set up link */
  77        hw->phy.ops.setup(hw);
  78
  79        /* Clear statistics registers */
  80        ixgbe_clear_hw_cntrs(hw);
  81
  82        /* Set No Snoop Disable */
  83        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
  84        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
  85        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
  86
  87        /* Clear adapter stopped flag */
  88        hw->adapter_stopped = false;
  89
  90        return 0;
  91}
  92
  93/**
  94 *  ixgbe_init_hw - Generic hardware initialization
  95 *  @hw: pointer to hardware structure
  96 *
  97 *  Initialize the hardware by reseting the hardware, filling the bus info
  98 *  structure and media type, clears all on chip counters, initializes receive
  99 *  address registers, multicast table, VLAN filter table, calls routine to set
 100 *  up link and flow control settings, and leaves transmit and receive units
 101 *  disabled and uninitialized
 102 **/
 103s32 ixgbe_init_hw(struct ixgbe_hw *hw)
 104{
 105        /* Reset the hardware */
 106        hw->mac.ops.reset(hw);
 107
 108        /* Start the HW */
 109        ixgbe_start_hw(hw);
 110
 111        return 0;
 112}
 113
 114/**
 115 *  ixgbe_clear_hw_cntrs - Generic clear hardware counters
 116 *  @hw: pointer to hardware structure
 117 *
 118 *  Clears all hardware statistics counters by reading them from the hardware
 119 *  Statistics counters are clear on read.
 120 **/
 121static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw)
 122{
 123        u16 i = 0;
 124
 125        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 126        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 127        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 128        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 129        for (i = 0; i < 8; i++)
 130                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 131
 132        IXGBE_READ_REG(hw, IXGBE_MLFC);
 133        IXGBE_READ_REG(hw, IXGBE_MRFC);
 134        IXGBE_READ_REG(hw, IXGBE_RLEC);
 135        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 136        IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 137        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 138        IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 139
 140        for (i = 0; i < 8; i++) {
 141                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 142                IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 143                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 144                IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 145        }
 146
 147        IXGBE_READ_REG(hw, IXGBE_PRC64);
 148        IXGBE_READ_REG(hw, IXGBE_PRC127);
 149        IXGBE_READ_REG(hw, IXGBE_PRC255);
 150        IXGBE_READ_REG(hw, IXGBE_PRC511);
 151        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 152        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 153        IXGBE_READ_REG(hw, IXGBE_GPRC);
 154        IXGBE_READ_REG(hw, IXGBE_BPRC);
 155        IXGBE_READ_REG(hw, IXGBE_MPRC);
 156        IXGBE_READ_REG(hw, IXGBE_GPTC);
 157        IXGBE_READ_REG(hw, IXGBE_GORCL);
 158        IXGBE_READ_REG(hw, IXGBE_GORCH);
 159        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 160        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 161        for (i = 0; i < 8; i++)
 162                IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 163        IXGBE_READ_REG(hw, IXGBE_RUC);
 164        IXGBE_READ_REG(hw, IXGBE_RFC);
 165        IXGBE_READ_REG(hw, IXGBE_ROC);
 166        IXGBE_READ_REG(hw, IXGBE_RJC);
 167        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 168        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 169        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 170        IXGBE_READ_REG(hw, IXGBE_TORL);
 171        IXGBE_READ_REG(hw, IXGBE_TORH);
 172        IXGBE_READ_REG(hw, IXGBE_TPR);
 173        IXGBE_READ_REG(hw, IXGBE_TPT);
 174        IXGBE_READ_REG(hw, IXGBE_PTC64);
 175        IXGBE_READ_REG(hw, IXGBE_PTC127);
 176        IXGBE_READ_REG(hw, IXGBE_PTC255);
 177        IXGBE_READ_REG(hw, IXGBE_PTC511);
 178        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 179        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 180        IXGBE_READ_REG(hw, IXGBE_MPTC);
 181        IXGBE_READ_REG(hw, IXGBE_BPTC);
 182        for (i = 0; i < 16; i++) {
 183                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 184                IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 185                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 186                IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 187        }
 188
 189        return 0;
 190}
 191
 192/**
 193 *  ixgbe_get_mac_addr - Generic get MAC address
 194 *  @hw: pointer to hardware structure
 195 *  @mac_addr: Adapter MAC address
 196 *
 197 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 198 *  A reset of the adapter must be performed prior to calling this function
 199 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 200 **/
 201s32 ixgbe_get_mac_addr(struct ixgbe_hw *hw, u8 *mac_addr)
 202{
 203        u32 rar_high;
 204        u32 rar_low;
 205        u16 i;
 206
 207        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 208        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 209
 210        for (i = 0; i < 4; i++)
 211                mac_addr[i] = (u8)(rar_low >> (i*8));
 212
 213        for (i = 0; i < 2; i++)
 214                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 215
 216        return 0;
 217}
 218
 219s32 ixgbe_read_part_num(struct ixgbe_hw *hw, u32 *part_num)
 220{
 221        s32 ret_val;
 222        u16 data;
 223
 224        ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM0_PTR, &data);
 225        if (ret_val) {
 226                hw_dbg(hw, "NVM Read Error\n");
 227                return ret_val;
 228        }
 229        *part_num = (u32)(data << 16);
 230
 231        ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM1_PTR, &data);
 232        if (ret_val) {
 233                hw_dbg(hw, "NVM Read Error\n");
 234                return ret_val;
 235        }
 236        *part_num |= data;
 237
 238        return 0;
 239}
 240
 241/**
 242 *  ixgbe_stop_adapter - Generic stop TX/RX units
 243 *  @hw: pointer to hardware structure
 244 *
 245 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 246 *  disables transmit and receive units. The adapter_stopped flag is used by
 247 *  the shared code and drivers to determine if the adapter is in a stopped
 248 *  state and should not touch the hardware.
 249 **/
 250s32 ixgbe_stop_adapter(struct ixgbe_hw *hw)
 251{
 252        u32 number_of_queues;
 253        u32 reg_val;
 254        u16 i;
 255
 256        /*
 257         * Set the adapter_stopped flag so other driver functions stop touching
 258         * the hardware
 259         */
 260        hw->adapter_stopped = true;
 261
 262        /* Disable the receive unit */
 263        reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 264        reg_val &= ~(IXGBE_RXCTRL_RXEN);
 265        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 266        msleep(2);
 267
 268        /* Clear interrupt mask to stop from interrupts being generated */
 269        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 270
 271        /* Clear any pending interrupts */
 272        IXGBE_READ_REG(hw, IXGBE_EICR);
 273
 274        /* Disable the transmit unit.  Each queue must be disabled. */
 275        number_of_queues = hw->mac.num_tx_queues;
 276        for (i = 0; i < number_of_queues; i++) {
 277                reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 278                if (reg_val & IXGBE_TXDCTL_ENABLE) {
 279                        reg_val &= ~IXGBE_TXDCTL_ENABLE;
 280                        IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 281                }
 282        }
 283
 284        return 0;
 285}
 286
 287/**
 288 *  ixgbe_led_on - Turns on the software controllable LEDs.
 289 *  @hw: pointer to hardware structure
 290 *  @index: led number to turn on
 291 **/
 292s32 ixgbe_led_on(struct ixgbe_hw *hw, u32 index)
 293{
 294        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 295
 296        /* To turn on the LED, set mode to ON. */
 297        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 298        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 299        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 300
 301        return 0;
 302}
 303
 304/**
 305 *  ixgbe_led_off - Turns off the software controllable LEDs.
 306 *  @hw: pointer to hardware structure
 307 *  @index: led number to turn off
 308 **/
 309s32 ixgbe_led_off(struct ixgbe_hw *hw, u32 index)
 310{
 311        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 312
 313        /* To turn off the LED, set mode to OFF. */
 314        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 315        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 316        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 317
 318        return 0;
 319}
 320
 321
 322/**
 323 *  ixgbe_init_eeprom - Initialize EEPROM params
 324 *  @hw: pointer to hardware structure
 325 *
 326 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 327 *  ixgbe_hw struct in order to set up EEPROM access.
 328 **/
 329s32 ixgbe_init_eeprom(struct ixgbe_hw *hw)
 330{
 331        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 332        u32 eec;
 333        u16 eeprom_size;
 334
 335        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 336                eeprom->type = ixgbe_eeprom_none;
 337
 338                /*
 339                 * Check for EEPROM present first.
 340                 * If not present leave as none
 341                 */
 342                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 343                if (eec & IXGBE_EEC_PRES) {
 344                        eeprom->type = ixgbe_eeprom_spi;
 345
 346                        /*
 347                         * SPI EEPROM is assumed here.  This code would need to
 348                         * change if a future EEPROM is not SPI.
 349                         */
 350                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 351                                            IXGBE_EEC_SIZE_SHIFT);
 352                        eeprom->word_size = 1 << (eeprom_size +
 353                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 354                }
 355
 356                if (eec & IXGBE_EEC_ADDR_SIZE)
 357                        eeprom->address_bits = 16;
 358                else
 359                        eeprom->address_bits = 8;
 360                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 361                          "%d\n", eeprom->type, eeprom->word_size,
 362                          eeprom->address_bits);
 363        }
 364
 365        return 0;
 366}
 367
 368/**
 369 *  ixgbe_read_eeprom - Read EEPROM word using EERD
 370 *  @hw: pointer to hardware structure
 371 *  @offset: offset of  word in the EEPROM to read
 372 *  @data: word read from the EEPROM
 373 *
 374 *  Reads a 16 bit word from the EEPROM using the EERD register.
 375 **/
 376s32 ixgbe_read_eeprom(struct ixgbe_hw *hw, u16 offset, u16 *data)
 377{
 378        u32 eerd;
 379        s32 status;
 380
 381        eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
 382               IXGBE_EEPROM_READ_REG_START;
 383
 384        IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 385        status = ixgbe_poll_eeprom_eerd_done(hw);
 386
 387        if (status == 0)
 388                *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 389                        IXGBE_EEPROM_READ_REG_DATA);
 390        else
 391                hw_dbg(hw, "Eeprom read timed out\n");
 392
 393        return status;
 394}
 395
 396/**
 397 *  ixgbe_poll_eeprom_eerd_done - Poll EERD status
 398 *  @hw: pointer to hardware structure
 399 *
 400 *  Polls the status bit (bit 1) of the EERD to determine when the read is done.
 401 **/
 402static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
 403{
 404        u32 i;
 405        u32 reg;
 406        s32 status = IXGBE_ERR_EEPROM;
 407
 408        for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
 409                reg = IXGBE_READ_REG(hw, IXGBE_EERD);
 410                if (reg & IXGBE_EEPROM_READ_REG_DONE) {
 411                        status = 0;
 412                        break;
 413                }
 414                udelay(5);
 415        }
 416        return status;
 417}
 418
 419/**
 420 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 421 *  @hw: pointer to hardware structure
 422 *
 423 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 424 **/
 425static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
 426{
 427        s32 status = IXGBE_ERR_EEPROM;
 428        u32 timeout;
 429        u32 i;
 430        u32 swsm;
 431
 432        /* Set timeout value based on size of EEPROM */
 433        timeout = hw->eeprom.word_size + 1;
 434
 435        /* Get SMBI software semaphore between device drivers first */
 436        for (i = 0; i < timeout; i++) {
 437                /*
 438                 * If the SMBI bit is 0 when we read it, then the bit will be
 439                 * set and we have the semaphore
 440                 */
 441                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 442                if (!(swsm & IXGBE_SWSM_SMBI)) {
 443                        status = 0;
 444                        break;
 445                }
 446                msleep(1);
 447        }
 448
 449        /* Now get the semaphore between SW/FW through the SWESMBI bit */
 450        if (status == 0) {
 451                for (i = 0; i < timeout; i++) {
 452                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 453
 454                        /* Set the SW EEPROM semaphore bit to request access */
 455                        swsm |= IXGBE_SWSM_SWESMBI;
 456                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 457
 458                        /*
 459                         * If we set the bit successfully then we got the
 460                         * semaphore.
 461                         */
 462                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 463                        if (swsm & IXGBE_SWSM_SWESMBI)
 464                                break;
 465
 466                        udelay(50);
 467                }
 468
 469                /*
 470                 * Release semaphores and return error if SW EEPROM semaphore
 471                 * was not granted because we don't have access to the EEPROM
 472                 */
 473                if (i >= timeout) {
 474                        hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
 475                                 "not granted.\n");
 476                        ixgbe_release_eeprom_semaphore(hw);
 477                        status = IXGBE_ERR_EEPROM;
 478                }
 479        }
 480
 481        return status;
 482}
 483
 484/**
 485 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 486 *  @hw: pointer to hardware structure
 487 *
 488 *  This function clears hardware semaphore bits.
 489 **/
 490static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
 491{
 492        u32 swsm;
 493
 494        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 495
 496        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
 497        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
 498        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 499}
 500
 501/**
 502 *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
 503 *  @hw: pointer to hardware structure
 504 **/
 505static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
 506{
 507        u16 i;
 508        u16 j;
 509        u16 checksum = 0;
 510        u16 length = 0;
 511        u16 pointer = 0;
 512        u16 word = 0;
 513
 514        /* Include 0x0-0x3F in the checksum */
 515        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
 516                if (ixgbe_read_eeprom(hw, i, &word) != 0) {
 517                        hw_dbg(hw, "EEPROM read failed\n");
 518                        break;
 519                }
 520                checksum += word;
 521        }
 522
 523        /* Include all data from pointers except for the fw pointer */
 524        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
 525                ixgbe_read_eeprom(hw, i, &pointer);
 526
 527                /* Make sure the pointer seems valid */
 528                if (pointer != 0xFFFF && pointer != 0) {
 529                        ixgbe_read_eeprom(hw, pointer, &length);
 530
 531                        if (length != 0xFFFF && length != 0) {
 532                                for (j = pointer+1; j <= pointer+length; j++) {
 533                                        ixgbe_read_eeprom(hw, j, &word);
 534                                        checksum += word;
 535                                }
 536                        }
 537                }
 538        }
 539
 540        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
 541
 542        return checksum;
 543}
 544
 545/**
 546 *  ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
 547 *  @hw: pointer to hardware structure
 548 *  @checksum_val: calculated checksum
 549 *
 550 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 551 *  caller does not need checksum_val, the value can be NULL.
 552 **/
 553s32 ixgbe_validate_eeprom_checksum(struct ixgbe_hw *hw, u16 *checksum_val)
 554{
 555        s32 status;
 556        u16 checksum;
 557        u16 read_checksum = 0;
 558
 559        /*
 560         * Read the first word from the EEPROM. If this times out or fails, do
 561         * not continue or we could be in for a very long wait while every
 562         * EEPROM read fails
 563         */
 564        status = ixgbe_read_eeprom(hw, 0, &checksum);
 565
 566        if (status == 0) {
 567                checksum = ixgbe_calc_eeprom_checksum(hw);
 568
 569                ixgbe_read_eeprom(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
 570
 571                /*
 572                 * Verify read checksum from EEPROM is the same as
 573                 * calculated checksum
 574                 */
 575                if (read_checksum != checksum)
 576                        status = IXGBE_ERR_EEPROM_CHECKSUM;
 577
 578                /* If the user cares, return the calculated checksum */
 579                if (checksum_val)
 580                        *checksum_val = checksum;
 581        } else {
 582                hw_dbg(hw, "EEPROM read failed\n");
 583        }
 584
 585        return status;
 586}
 587
 588/**
 589 *  ixgbe_validate_mac_addr - Validate MAC address
 590 *  @mac_addr: pointer to MAC address.
 591 *
 592 *  Tests a MAC address to ensure it is a valid Individual Address
 593 **/
 594s32 ixgbe_validate_mac_addr(u8 *mac_addr)
 595{
 596        s32 status = 0;
 597
 598        /* Make sure it is not a multicast address */
 599        if (IXGBE_IS_MULTICAST(mac_addr))
 600                status = IXGBE_ERR_INVALID_MAC_ADDR;
 601        /* Not a broadcast address */
 602        else if (IXGBE_IS_BROADCAST(mac_addr))
 603                status = IXGBE_ERR_INVALID_MAC_ADDR;
 604        /* Reject the zero address */
 605        else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
 606                 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
 607                status = IXGBE_ERR_INVALID_MAC_ADDR;
 608
 609        return status;
 610}
 611
 612/**
 613 *  ixgbe_set_rar - Set RX address register
 614 *  @hw: pointer to hardware structure
 615 *  @addr: Address to put into receive address register
 616 *  @index: Receive address register to write
 617 *  @vind: Vind to set RAR to
 618 *  @enable_addr: set flag that address is active
 619 *
 620 *  Puts an ethernet address into a receive address register.
 621 **/
 622s32 ixgbe_set_rar(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vind,
 623                  u32 enable_addr)
 624{
 625        u32 rar_low, rar_high;
 626
 627        /*
 628         * HW expects these in little endian so we reverse the byte order from
 629         * network order (big endian) to little endian
 630         */
 631        rar_low = ((u32)addr[0] |
 632                   ((u32)addr[1] << 8) |
 633                   ((u32)addr[2] << 16) |
 634                   ((u32)addr[3] << 24));
 635
 636        rar_high = ((u32)addr[4] |
 637                    ((u32)addr[5] << 8) |
 638                    ((vind << IXGBE_RAH_VIND_SHIFT) & IXGBE_RAH_VIND_MASK));
 639
 640        if (enable_addr != 0)
 641                rar_high |= IXGBE_RAH_AV;
 642
 643        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 644        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 645
 646        return 0;
 647}
 648
 649/**
 650 *  ixgbe_init_rx_addrs - Initializes receive address filters.
 651 *  @hw: pointer to hardware structure
 652 *
 653 *  Places the MAC address in receive address register 0 and clears the rest
 654 *  of the receive addresss registers. Clears the multicast table. Assumes
 655 *  the receiver is in reset when the routine is called.
 656 **/
 657static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw)
 658{
 659        u32 i;
 660        u32 rar_entries = hw->mac.num_rx_addrs;
 661
 662        /*
 663         * If the current mac address is valid, assume it is a software override
 664         * to the permanent address.
 665         * Otherwise, use the permanent address from the eeprom.
 666         */
 667        if (ixgbe_validate_mac_addr(hw->mac.addr) ==
 668            IXGBE_ERR_INVALID_MAC_ADDR) {
 669                /* Get the MAC address from the RAR0 for later reference */
 670                ixgbe_get_mac_addr(hw, hw->mac.addr);
 671
 672                hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
 673                          hw->mac.addr[0], hw->mac.addr[1],
 674                          hw->mac.addr[2]);
 675                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
 676                          hw->mac.addr[4], hw->mac.addr[5]);
 677        } else {
 678                /* Setup the receive address. */
 679                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
 680                hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
 681                          hw->mac.addr[0], hw->mac.addr[1],
 682                          hw->mac.addr[2]);
 683                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
 684                          hw->mac.addr[4], hw->mac.addr[5]);
 685
 686                ixgbe_set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
 687        }
 688
 689        hw->addr_ctrl.rar_used_count = 1;
 690
 691        /* Zero out the other receive addresses. */
 692        hw_dbg(hw, "Clearing RAR[1-15]\n");
 693        for (i = 1; i < rar_entries; i++) {
 694                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
 695                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
 696        }
 697
 698        /* Clear the MTA */
 699        hw->addr_ctrl.mc_addr_in_rar_count = 0;
 700        hw->addr_ctrl.mta_in_use = 0;
 701        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
 702
 703        hw_dbg(hw, " Clearing MTA\n");
 704        for (i = 0; i < IXGBE_MC_TBL_SIZE; i++)
 705                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
 706
 707        return 0;
 708}
 709
 710/**
 711 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 712 *  @hw: pointer to hardware structure
 713 *  @mc_addr: the multicast address
 714 *
 715 *  Extracts the 12 bits, from a multicast address, to determine which
 716 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 717 *  incoming rx multicast addresses, to determine the bit-vector to check in
 718 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
 719 *  by the MO field of the MCSTCTRL. The MO field is set during initalization
 720 *  to mc_filter_type.
 721 **/
 722static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
 723{
 724        u32 vector = 0;
 725
 726        switch (hw->mac.mc_filter_type) {
 727        case 0:   /* use bits [47:36] of the address */
 728                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
 729                break;
 730        case 1:   /* use bits [46:35] of the address */
 731                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
 732                break;
 733        case 2:   /* use bits [45:34] of the address */
 734                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
 735                break;
 736        case 3:   /* use bits [43:32] of the address */
 737                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
 738                break;
 739        default:         /* Invalid mc_filter_type */
 740                hw_dbg(hw, "MC filter type param set incorrectly\n");
 741                break;
 742        }
 743
 744        /* vector can only be 12-bits or boundary will be exceeded */
 745        vector &= 0xFFF;
 746        return vector;
 747}
 748
 749/**
 750 *  ixgbe_set_mta - Set bit-vector in multicast table
 751 *  @hw: pointer to hardware structure
 752 *  @hash_value: Multicast address hash value
 753 *
 754 *  Sets the bit-vector in the multicast table.
 755 **/
 756static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
 757{
 758        u32 vector;
 759        u32 vector_bit;
 760        u32 vector_reg;
 761        u32 mta_reg;
 762
 763        hw->addr_ctrl.mta_in_use++;
 764
 765        vector = ixgbe_mta_vector(hw, mc_addr);
 766        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
 767
 768        /*
 769         * The MTA is a register array of 128 32-bit registers. It is treated
 770         * like an array of 4096 bits.  We want to set bit
 771         * BitArray[vector_value]. So we figure out what register the bit is
 772         * in, read it, OR in the new bit, then write back the new value.  The
 773         * register is determined by the upper 7 bits of the vector value and
 774         * the bit within that register are determined by the lower 5 bits of
 775         * the value.
 776         */
 777        vector_reg = (vector >> 5) & 0x7F;
 778        vector_bit = vector & 0x1F;
 779        mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
 780        mta_reg |= (1 << vector_bit);
 781        IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
 782}
 783
 784/**
 785 *  ixgbe_add_mc_addr - Adds a multicast address.
 786 *  @hw: pointer to hardware structure
 787 *  @mc_addr: new multicast address
 788 *
 789 *  Adds it to unused receive address register or to the multicast table.
 790 **/
 791static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
 792{
 793        u32 rar_entries = hw->mac.num_rx_addrs;
 794
 795        hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
 796                  mc_addr[0], mc_addr[1], mc_addr[2],
 797                  mc_addr[3], mc_addr[4], mc_addr[5]);
 798
 799        /*
 800         * Place this multicast address in the RAR if there is room,
 801         * else put it in the MTA
 802         */
 803        if (hw->addr_ctrl.rar_used_count < rar_entries) {
 804                ixgbe_set_rar(hw, hw->addr_ctrl.rar_used_count,
 805                              mc_addr, 0, IXGBE_RAH_AV);
 806                hw_dbg(hw, "Added a multicast address to RAR[%d]\n",
 807                          hw->addr_ctrl.rar_used_count);
 808                hw->addr_ctrl.rar_used_count++;
 809                hw->addr_ctrl.mc_addr_in_rar_count++;
 810        } else {
 811                ixgbe_set_mta(hw, mc_addr);
 812        }
 813
 814        hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
 815}
 816
 817/**
 818 *  ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
 819 *  @hw: pointer to hardware structure
 820 *  @mc_addr_list: the list of new multicast addresses
 821 *  @mc_addr_count: number of addresses
 822 *  @pad: number of bytes between addresses in the list
 823 *
 824 *  The given list replaces any existing list. Clears the MC addrs from receive
 825 *  address registers and the multicast table. Uses unsed receive address
 826 *  registers for the first multicast addresses, and hashes the rest into the
 827 *  multicast table.
 828 **/
 829s32 ixgbe_update_mc_addr_list(struct ixgbe_hw *hw, u8 *mc_addr_list,
 830                              u32 mc_addr_count, u32 pad)
 831{
 832        u32 i;
 833        u32 rar_entries = hw->mac.num_rx_addrs;
 834
 835        /*
 836         * Set the new number of MC addresses that we are being requested to
 837         * use.
 838         */
 839        hw->addr_ctrl.num_mc_addrs = mc_addr_count;
 840        hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
 841        hw->addr_ctrl.mc_addr_in_rar_count = 0;
 842        hw->addr_ctrl.mta_in_use = 0;
 843
 844        /* Zero out the other receive addresses. */
 845        hw_dbg(hw, "Clearing RAR[1-15]\n");
 846        for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
 847                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
 848                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
 849        }
 850
 851        /* Clear the MTA */
 852        hw_dbg(hw, " Clearing MTA\n");
 853        for (i = 0; i < IXGBE_MC_TBL_SIZE; i++)
 854                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
 855
 856        /* Add the new addresses */
 857        for (i = 0; i < mc_addr_count; i++) {
 858                hw_dbg(hw, " Adding the multicast addresses:\n");
 859                ixgbe_add_mc_addr(hw, mc_addr_list +
 860                                  (i * (IXGBE_ETH_LENGTH_OF_ADDRESS + pad)));
 861        }
 862
 863        /* Enable mta */
 864        if (hw->addr_ctrl.mta_in_use > 0)
 865                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
 866                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
 867
 868        hw_dbg(hw, "ixgbe_update_mc_addr_list Complete\n");
 869        return 0;
 870}
 871
 872/**
 873 *  ixgbe_clear_vfta - Clear VLAN filter table
 874 *  @hw: pointer to hardware structure
 875 *
 876 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 877 **/
 878static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw)
 879{
 880        u32 offset;
 881        u32 vlanbyte;
 882
 883        for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++)
 884                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
 885
 886        for (vlanbyte = 0; vlanbyte < 4; vlanbyte++)
 887                for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++)
 888                        IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset),
 889                                        0);
 890
 891        return 0;
 892}
 893
 894/**
 895 *  ixgbe_set_vfta - Set VLAN filter table
 896 *  @hw: pointer to hardware structure
 897 *  @vlan: VLAN id to write to VLAN filter
 898 *  @vind: VMDq output index that maps queue to VLAN id in VFTA
 899 *  @vlan_on: boolean flag to turn on/off VLAN in VFTA
 900 *
 901 *  Turn on/off specified VLAN in the VLAN filter table.
 902 **/
 903s32 ixgbe_set_vfta(struct ixgbe_hw *hw, u32 vlan, u32 vind,
 904                   bool vlan_on)
 905{
 906        u32 VftaIndex;
 907        u32 BitOffset;
 908        u32 VftaReg;
 909        u32 VftaByte;
 910
 911        /* Determine 32-bit word position in array */
 912        VftaIndex = (vlan >> 5) & 0x7F;   /* upper seven bits */
 913
 914        /* Determine the location of the (VMD) queue index */
 915        VftaByte =  ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */
 916        BitOffset = (vlan & 0x7) << 2;    /* lower 3 bits indicate nibble */
 917
 918        /* Set the nibble for VMD queue index */
 919        VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex));
 920        VftaReg &= (~(0x0F << BitOffset));
 921        VftaReg |= (vind << BitOffset);
 922        IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg);
 923
 924        /* Determine the location of the bit for this VLAN id */
 925        BitOffset = vlan & 0x1F;           /* lower five bits */
 926
 927        VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex));
 928        if (vlan_on)
 929                /* Turn on this VLAN id */
 930                VftaReg |= (1 << BitOffset);
 931        else
 932                /* Turn off this VLAN id */
 933                VftaReg &= ~(1 << BitOffset);
 934        IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg);
 935
 936        return 0;
 937}
 938
 939/**
 940 *  ixgbe_setup_fc - Configure flow control settings
 941 *  @hw: pointer to hardware structure
 942 *  @packetbuf_num: packet buffer number (0-7)
 943 *
 944 *  Configures the flow control settings based on SW configuration.
 945 *  This function is used for 802.3x flow control configuration only.
 946 **/
 947s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
 948{
 949        u32 frctl_reg;
 950        u32 rmcs_reg;
 951
 952        if (packetbuf_num < 0 || packetbuf_num > 7)
 953                hw_dbg(hw, "Invalid packet buffer number [%d], expected range"
 954                       "is 0-7\n", packetbuf_num);
 955
 956        frctl_reg = IXGBE_READ_REG(hw, IXGBE_FCTRL);
 957        frctl_reg &= ~(IXGBE_FCTRL_RFCE | IXGBE_FCTRL_RPFCE);
 958
 959        rmcs_reg = IXGBE_READ_REG(hw, IXGBE_RMCS);
 960        rmcs_reg &= ~(IXGBE_RMCS_TFCE_PRIORITY | IXGBE_RMCS_TFCE_802_3X);
 961
 962        /*
 963         * We want to save off the original Flow Control configuration just in
 964         * case we get disconnected and then reconnected into a different hub
 965         * or switch with different Flow Control capabilities.
 966         */
 967        hw->fc.type = hw->fc.original_type;
 968
 969        /*
 970         * The possible values of the "flow_control" parameter are:
 971         * 0: Flow control is completely disabled
 972         * 1: Rx flow control is enabled (we can receive pause frames but not
 973         *    send pause frames).
 974         * 2: Tx flow control is enabled (we can send pause frames but we do not
 975         *    support receiving pause frames)
 976         * 3: Both Rx and TX flow control (symmetric) are enabled.
 977         * other: Invalid.
 978         */
 979        switch (hw->fc.type) {
 980        case ixgbe_fc_none:
 981                break;
 982        case ixgbe_fc_rx_pause:
 983                /*
 984                 * RX Flow control is enabled,
 985                 * and TX Flow control is disabled.
 986                 */
 987                frctl_reg |= IXGBE_FCTRL_RFCE;
 988                break;
 989        case ixgbe_fc_tx_pause:
 990                /*
 991                 * TX Flow control is enabled, and RX Flow control is disabled,
 992                 * by a software over-ride.
 993                 */
 994                rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
 995                break;
 996        case ixgbe_fc_full:
 997                /*
 998                 * Flow control (both RX and TX) is enabled by a software
 999                 * over-ride.
1000                 */
1001                frctl_reg |= IXGBE_FCTRL_RFCE;
1002                rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1003                break;
1004        default:
1005                /* We should never get here.  The value should be 0-3. */
1006                hw_dbg(hw, "Flow control param set incorrectly\n");
1007                break;
1008        }
1009
1010        /* Enable 802.3x based flow control settings. */
1011        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, frctl_reg);
1012        IXGBE_WRITE_REG(hw, IXGBE_RMCS, rmcs_reg);
1013
1014        /*
1015         * We need to set up the Receive Threshold high and low water
1016         * marks as well as (optionally) enabling the transmission of
1017         * XON frames.
1018         */
1019        if (hw->fc.type & ixgbe_fc_tx_pause) {
1020                if (hw->fc.send_xon) {
1021                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1022                                        (hw->fc.low_water | IXGBE_FCRTL_XONE));
1023                } else {
1024                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1025                                        hw->fc.low_water);
1026                }
1027                IXGBE_WRITE_REG(hw, IXGBE_FCRTH(packetbuf_num),
1028                                (hw->fc.high_water)|IXGBE_FCRTH_FCEN);
1029        }
1030
1031        IXGBE_WRITE_REG(hw, IXGBE_FCTTV(0), hw->fc.pause_time);
1032        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1033
1034        return 0;
1035}
1036
1037/**
1038 *  ixgbe_disable_pcie_master - Disable PCI-express master access
1039 *  @hw: pointer to hardware structure
1040 *
1041 *  Disables PCI-Express master access and verifies there are no pending
1042 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1043 *  bit hasn't caused the master requests to be disabled, else 0
1044 *  is returned signifying master requests disabled.
1045 **/
1046s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1047{
1048        u32 ctrl;
1049        s32 i;
1050        s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1051
1052        ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
1053        ctrl |= IXGBE_CTRL_GIO_DIS;
1054        IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
1055
1056        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1057                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1058                        status = 0;
1059                        break;
1060                }
1061                udelay(100);
1062        }
1063
1064        return status;
1065}
1066
1067
1068/**
1069 *  ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1070 *  @hw: pointer to hardware structure
1071 *  @mask: Mask to specify wich semaphore to acquire
1072 *
1073 *  Aquires the SWFW semaphore throught the GSSR register for the specified
1074 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1075 **/
1076s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1077{
1078        u32 gssr;
1079        u32 swmask = mask;
1080        u32 fwmask = mask << 5;
1081        s32 timeout = 200;
1082
1083        while (timeout) {
1084                if (ixgbe_get_eeprom_semaphore(hw))
1085                        return -IXGBE_ERR_SWFW_SYNC;
1086
1087                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1088                if (!(gssr & (fwmask | swmask)))
1089                        break;
1090
1091                /*
1092                 * Firmware currently using resource (fwmask) or other software
1093                 * thread currently using resource (swmask)
1094                 */
1095                ixgbe_release_eeprom_semaphore(hw);
1096                msleep(5);
1097                timeout--;
1098        }
1099
1100        if (!timeout) {
1101                hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1102                return -IXGBE_ERR_SWFW_SYNC;
1103        }
1104
1105        gssr |= swmask;
1106        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1107
1108        ixgbe_release_eeprom_semaphore(hw);
1109        return 0;
1110}
1111
1112/**
1113 *  ixgbe_release_swfw_sync - Release SWFW semaphore
1114 *  @hw: pointer to hardware structure
1115 *  @mask: Mask to specify wich semaphore to release
1116 *
1117 *  Releases the SWFW semaphore throught the GSSR register for the specified
1118 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1119 **/
1120void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1121{
1122        u32 gssr;
1123        u32 swmask = mask;
1124
1125        ixgbe_get_eeprom_semaphore(hw);
1126
1127        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1128        gssr &= ~swmask;
1129        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1130
1131        ixgbe_release_eeprom_semaphore(hw);
1132}
1133
1134/**
1135 *  ixgbe_read_analog_reg8- Reads 8 bit 82598 Atlas analog register
1136 *  @hw: pointer to hardware structure
1137 *  @reg: analog register to read
1138 *  @val: read value
1139 *
1140 *  Performs write operation to analog register specified.
1141 **/
1142s32 ixgbe_read_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 *val)
1143{
1144        u32  atlas_ctl;
1145
1146        IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL,
1147                        IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
1148        IXGBE_WRITE_FLUSH(hw);
1149        udelay(10);
1150        atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
1151        *val = (u8)atlas_ctl;
1152
1153        return 0;
1154}
1155
1156/**
1157 *  ixgbe_write_analog_reg8- Writes 8 bit Atlas analog register
1158 *  @hw: pointer to hardware structure
1159 *  @reg: atlas register to write
1160 *  @val: value to write
1161 *
1162 *  Performs write operation to Atlas analog register specified.
1163 **/
1164s32 ixgbe_write_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 val)
1165{
1166        u32  atlas_ctl;
1167
1168        atlas_ctl = (reg << 8) | val;
1169        IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
1170        IXGBE_WRITE_FLUSH(hw);
1171        udelay(10);
1172
1173        return 0;
1174}
1175
1176